KR100349595B1 - Process for producing biodegradable copolyester - Google Patents

Process for producing biodegradable copolyester Download PDF

Info

Publication number
KR100349595B1
KR100349595B1 KR1019980020628A KR19980020628A KR100349595B1 KR 100349595 B1 KR100349595 B1 KR 100349595B1 KR 1019980020628 A KR1019980020628 A KR 1019980020628A KR 19980020628 A KR19980020628 A KR 19980020628A KR 100349595 B1 KR100349595 B1 KR 100349595B1
Authority
KR
South Korea
Prior art keywords
acid
mol
aliphatic
catalyst
ester
Prior art date
Application number
KR1019980020628A
Other languages
Korean (ko)
Other versions
KR20000000780A (en
Inventor
한세광
이봉근
이남영
이정수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1019980020628A priority Critical patent/KR100349595B1/en
Publication of KR20000000780A publication Critical patent/KR20000000780A/en
Application granted granted Critical
Publication of KR100349595B1 publication Critical patent/KR100349595B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08G63/197Hydroxy compounds containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Abstract

본 발명은 충격강도가 향상된 신규 생분해성 삼원 공중합 폴리에스테르의 제조 방법에 관한 것으로, 보다 구체적으로는 지방족 2가 카르복실산 및 방향족 2가 카르복실산과 지방족 2가 알코올을 폴리테트라메틸렌에테르글리콜과 함께 에스테르 반응시킨 후 촉매를 투입하고 고온, 고진공 하에서 축중합하거나, 지방족 2가 카르복실산과 지방족 2가 알코올을 에스테르 반응시킨 후 촉매투입과 함께 폴리부틸렌테레프탈레이트-폴리테트라메틸렌에테르글리콜 공중합체를 넣고 고온, 고진공 하에서 축중합하여 지방족 에스테르 단위가 삼원공중합체의 60∼92 몰 %, 방향족 에스테르 단위가 3∼15 몰 %, 테트라메틸렌에테르 단위가 5∼25 몰 %, 함유되도록 만든 충격강도가 향상된 생분해성 공중합 폴리스테르를 제조하는 방법에 관한 것이다.The present invention relates to a novel biodegradable terpolymer having improved impact strength and, more particularly, to a process for producing a novel biodegradable terpolymer having improved impact strength, After the esterification reaction, the catalyst is added and condensation is carried out under high temperature and high vacuum, or an ester reaction of an aliphatic dicarboxylic acid and an aliphatic divalent alcohol is carried out, and then a polybutylene terephthalate-polytetramethylene ether glycol copolymer is added together with a catalyst The polymer is polymerized under high temperature and high vacuum so that the aliphatic ester unit contains 60 to 92 mol% of the terpolymer, 3 to 15 mol% of the aromatic ester unit and 5 to 25 mol% of the tetramethylene ether unit, To a method for producing a copolymer polyster.

Description

생분해성 공중합 폴리에스테르 제조 방법Process for producing biodegradable copolyester

본 발명은 충격강도가 향상된 신규 생분해성 삼원 공중합 폴리에스테르의 제조 방법에 관한 것으로, 보다 구체적으로는 지방족 2가 카르복실산 및 방향족 2가 카르복실산과 지방족 2가 알코올을 폴리테트라메틸렌에테르글리콜과 함께 에스테르 반응시킨 후 촉매를 투입하고 고온, 고진공하에서 축중합하거나, 지방족 2가 카르복실산과 지방족 2가 알코올을 에스테르 반응시킨 후 촉매투입과 함께 폴리부틸렌테레프탈레이트-폴리테트라메틸렌에스테르글리콜 공중합체를 넣고 고온, 고진공하에서 축중합하여 생분해 가능한 공중합 폴리에스테르를 제조하는 방법에 관한 것이다.The present invention relates to a novel biodegradable terpolymer having improved impact strength and, more particularly, to a process for producing a novel biodegradable terpolymer having improved impact strength, After the ester reaction, the catalyst is added and condensation is carried out under high temperature and high vacuum, or an ester reaction of an aliphatic dicarboxylic acid and an aliphatic dicarboxylic acid is carried out, and then a polybutylene terephthalate-polytetramethylene ester glycol copolymer is added together with a catalyst The present invention relates to a method for producing biodegradable copolyester by intensive polymerization under high temperature and high vacuum conditions.

최근에 폐플라스틱에 의한 환경오염의 문제가 심각해짐에 따라 전세계적으로 생분해성 고분자에 대한 연구가 활발하게 진행되어 왔다. 그 결과 전분계 고분자, 셀룰로오즈 아세테이트, 폴리하이드록시 부틸레이트, 폴리락타이드, 폴리카프로락톤, 폴리부틸렌숙시네이트 등과 같은 생분해성 고분자의 상업화가 이루어지고 있다. 이 중에서도 폴리부틸렌숙시네이트와 같이 2가 알코올과 2가 카르복실산의 축중합 반응에 의해 생산되는 생분해성 고분자의 경우 물성 및 가공성이 우수할 뿐만아니라 대량생산에도 적합하여 앞으로 가장 유망한 생분해성 고분자가 될 것으로 예상되고 있다. 일본공개특허 평 4-189822, 소 59-213724호에는 지방족 2가 카르복실산과 2가 알코올을 반응시켜 순수한 지방족 폴리에스테르를 제조하는 방법이 개시되어 있고, 미국특허 5374259와 5391644에는 지방족 폴리에스테르 제조시 분자량을 높이기 위하여 다이아이소시아네이트를 사용하는 방법이 개시되어 있다.Recently, as the problem of environmental pollution caused by waste plastics becomes serious, researches on biodegradable polymers have been actively conducted worldwide. As a result, commercialization of biodegradable polymers such as starch-based polymers, cellulose acetate, polyhydroxybutyrate, polylactide, polycaprolactone, and polybutylene succinate has been commercialized. Among them, a biodegradable polymer produced by condensation polymerization of a dihydric alcohol and a dicarboxylic acid, such as polybutylene succinate, is excellent not only in physical properties and processability but also in mass production, and is expected to be the most promising biodegradable polymer Is expected to be. Japanese Patent Application Laid-Open Nos. 4-189822 and 59-213724 disclose a process for producing a pure aliphatic polyester by reacting an aliphatic dicarboxylic acid with a dihydric alcohol. U.S. Patent Nos. 5374259 and 5391644 disclose a process for producing an aliphatic polyester A method of using a diisocyanate to increase the molecular weight is disclosed.

일반적으로 지방족 폴리에스테르는 생분해성을 가지고 있으나 융점이 낮고 기계적 물성 및 내열성이 떨어지는 반면 방향족 폴리에스테르는 물성이 좋으나 생분해성이 없는 것으로 알려져 있다. 이러한 특성을 활용하여 방향족 폴리에스테르와 지방족 폴리에스테르를 촉매와 함께 교반하여 전형적인 에스테르 교환반응이 일어나게 함으로써 생분해성이 있는 랜덤 공중합체를 제조하는 연구가 진행되어 왔다 (일본공개특허 평 2-11013호, 미국특허 42447678, 미국특허 5292783). 한편 특허출원 90-22052에는 지방족 폴리에스테르의 물성을 향상시키기 위하여 방향족 폴리에스테르의 함량을 증가시키는 대신 방향족 폴리에스테르의 중합도를 조절한 생분해성 폴리에스테르 공중합체의 제조 방법이 개시되어 있으며 특허출원 94-027071에는 지방족 2가 알코올 및 방향족 2가 알코올과 지방족 2가 카르복실산 및 방향족 2가 카르복실산을 공중합하는 방법이 개시되어 있다. 일반적으로 방향족 함유량이 증가함에 따라 생분해성이 감소되지만, 랜덤 공중합체의 경우와 같이 방향족 블록의 길이가 짧으면 먼저 지방족 폴리에스테르 부분이 분해된 후 잔류 방향족 부분도 상대적으로 저분자량이므로 분해가능한 것으로 알려져 있다.Generally, aliphatic polyesters have biodegradability, but have low melting point, low mechanical and thermal resistance, while aromatic polyesters have good physical properties but no biodegradability. Studies have been made on the production of a random copolymer having biodegradability by causing a typical transesterification reaction by stirring the aromatic polyester and the aliphatic polyester together with the catalyst by utilizing these characteristics (JP-A-2-11013, U. S. Patent No. 42447678, U.S. Patent No. 5292783). On the other hand, Patent Application No. 90-22052 discloses a method for producing a biodegradable polyester copolymer in which the degree of polymerization of an aromatic polyester is controlled instead of increasing the content of aromatic polyester in order to improve the physical properties of the aliphatic polyester. 027071 discloses a process for copolymerizing aliphatic divalent alcohols and aromatic divalent alcohols with aliphatic divalent carboxylic acids and aromatic divalent carboxylic acids. Generally, the biodegradability is reduced as the aromatic content increases. However, as in the case of the random copolymer, it is known that when the length of the aromatic block is short, the aliphatic polyester portion is decomposed first and then the residual aromatic portion is relatively low molecular weight. .

그러나, 이와 같은 연구 노력에도 불구하고 현재 생분해성 고분자의 생산 비용이 범용수지에 비해 높기 때문에 그 사용 범위가 특수 목적에 한정되어 있는 실정이다. 생산 비용을 낮추기 위한 노력의 일환으로 값싼 전분과 생분해성 중합물의 블렌드에 대한 연구가 활발하게 진행되어 왔으며 전세계적으로 전분과 생분해성 중합물 블렌드의 생산량도 많고 산업적으로 가치가 크다. 하지만 전분은 대부분 불용성이기 때문에 생분해성 중합물과 상용성이 없으며 이로 인해 중합물과의 계면접착력이 떨어져 기계적 물성 및 가공성을 저하시키는 요인이 되고 있다.However, despite these research efforts, the production cost of the biodegradable polymer is higher than that of the general-purpose resin, so that the use range of the biodegradable polymer is limited to the special purpose. As part of efforts to lower production costs, research into the blend of cheap starch and biodegradable polymerizers has been actively conducted, and the production of starch and biodegradable polymer blends is also high worldwide and is of great industrial value. However, since starch is mostly insoluble, it is not compatible with biodegradable polymeric materials, and as a result, the interfacial adhesion between the polymeric materials is deteriorated, which degrades mechanical properties and processability.

수지와 전분의 상용성을 높이기 위하여 적절한 활제나 상용화제를 사용하기도 하고 촉매나 커플링제를 사용하여 전분과 수지의 화학적 결합을 유도하는 연구가 진행되고 있지만 이러한 방법으로 상용성을 높이는 데에는 한계가 있기 때문에 기계적 강도와 신율 및 충격강도가 좋은 생분해성 중합물을 매트릭스 수지로 사용하는 것이 필수적이라 하겠다. 이에 본 발명자들은 생분해성이 유지되면서 기계적 강도와 신율 및 충격 강도가 우수한 공중합 폴리에스테르의 개발을 위한 연구를 수행하여 왔다.Studies have been carried out to induce the chemical bonding of starch and resin using catalysts or coupling agents to improve the compatibility of resin and starch. However, there is a limitation in increasing the compatibility with such a method Therefore, it is essential to use biodegradable polymeric materials as matrix resins with good mechanical strength, elongation and impact strength. Accordingly, the present inventors have conducted studies for developing a copolymer polyester having excellent mechanical strength, elongation and impact strength while maintaining biodegradability.

본 연구에서는 지방족 2가 카르복실산 및 방향족 2가 카르복실산과 지방족 2가 알코올을 분자량 1,000인 폴리테트라메틸렌에테르글리콜과 함께 에스테르 반응시킨 후 촉매를 투입하고 고온, 고진공하에서 축중합하거나, 지방족 2가 카르복실산과 지방족 2가 알코올을 에스테르 반응시킨후 촉매투입과 함께 테트라메틸렌에테르의 함량이 다른 폴리부틸렌테레프탈레이트-폴리테트라메틸렌에테르글리콜 공중합체의 첨가량 및 첨가시기를 조절하여 고온, 고진공하에서 축중합으로써 여러 가지 물성 및 가공성이 우수한 생분해성 공중합 폴리에스테르를 개발할 수 있었다. 이에 비하여, 부틸렌숙시네이트와 부틸렌테레프탈레이트만으로 이루어진 공중합체의 경우 부틸렌테레프탈레이트의 함량이 증가함에 따라 신율은 좋아졌지만 융점이 급격히 낮아져 결정화 속도가 느려졌을 뿐만 아니라 인장강도가 낮아졌고 충격강도도 별로 향상되지 않았다. 부틸렌숙시네이트와 테트라메틸렌에테르글리콜만으로 이루어진 공중합체의 경우에는 융점 저하나 결정화 속도에는 문제가 없었지만 충격강도가 효과적으로 좋아지지 않았다. 본 발명에 대해 좀 더 구체적으로 설명하자면 다음과 같다.In this study, the aliphatic dicarboxylic acid and the aromatic dicarboxylic acid and the aliphatic dicarboxylic alcohol were ester - reacted with the polytetramethylene ether glycol having a molecular weight of 1,000 and then the catalyst was added and condensation was carried out under high temperature and high vacuum, The addition amount and the addition timing of the polybutylene terephthalate-polytetramethylene ether glycol copolymer having different contents of tetramethylene ether with the addition of the catalyst after the esterification reaction of the carboxylic acid and the aliphatic divalent alcohol are controlled, It was possible to develop a biodegradable copolymer polyester having various physical properties and processability. On the other hand, in the case of the copolymer comprising only butylene succinate and butylene terephthalate, the elongation was improved as the content of butylene terephthalate was increased, but the melting point was drastically lowered, which slowed the crystallization rate, lowered the tensile strength, It did not improve much. In the case of a copolymer comprising only butylene succinate and tetramethylene ether glycol, there was no problem in lowering the melting point or in the crystallization speed, but the impact strength did not improve effectively. Hereinafter, the present invention will be described in more detail.

본 발명에 사용되는 2가 카르복실산은 옥살산, 말론산, 숙신산, 글루타린산, 아디픽산, 서베릭산, 세바식산 등의 지방족 2가 카르복실산과 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르본산, 1,4-나프탈렌디카르본산 등과 같은 방향족 2가 카르복실산이며, 특히 숙신산과 아디프산을 테레프탈산과 함께 사용하는 것이 효과적이다. 또한 지방족 2가 알코올의 구체적인 예로는 에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 1,4-사이클로헥산디메탄올 등이 있으며, 특히 에틸렌글리콜과 1,4-부탄디올을 사용하는 것이 효과적이다.The divalent carboxylic acid to be used in the present invention is preferably a dicarboxylic acid selected from the group consisting of aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, , 1,4-naphthalenedicarboxylic acid and the like, and it is particularly effective to use succinic acid and adipic acid together with terephthalic acid. Specific examples of aliphatic divalent alcohols include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol and the like , Especially ethylene glycol and 1,4-butanediol.

본 발명에서, 에스테르 반응초기에 투입하는 테레프탈산과 폴리테트라메틸렌글리콜의 양이나 또는 축중합직전에 투입하는 폴리부틸렌테레프탈레이트-폴리테트라메틸렌에테르글리콜 공중합체의 양은, 중합후 삼원 공중합체의 구성이 지방족 에스테르 단위가 전체 수지의 60∼92 몰 %, 부틸렌테레프탈레이트 단위가 3∼15 몰 %, 테트라메틸렌에테르 단위가 5∼25 몰 % 의 비율로 구성되게 하는 것이 효과적이다. 삼원 공중합 폴리에스테르에서 부틸렌테레프탈레이트 단위와 테트라메틸렌에테르 단위를 합친 비율이 전체 중합체에 대해 5 몰 % 미만일 때는 물성향상에 별로 도움이 되지 않으며 또 함유량이 40 몰 % 이상일 때는 공중합 폴리에스테르의 융점이 낮고 생분해성이 떨어져 바람직하지 못하다.In the present invention, the amount of terephthalic acid and polytetramethylene glycol charged in the early stage of the ester reaction, or the amount of the polybutylene terephthalate-polytetramethylene ether glycol copolymer charged just before the condensation polymerization, It is effective that the aliphatic ester unit is composed of 60 to 92 mol% of the total resin, 3 to 15 mol% of the butylene terephthalate unit and 5 to 25 mol% of the tetramethylene ether unit. When the content of the butylene terephthalate unit and the tetramethylene ether unit in the terpolymer is less than 5 mol%, the melting point of the copolymerized polyester is insufficient for improving the physical properties. When the content is more than 40 mol% It is low and biodegradable.

본 발명에 사용되는 촉매로는 테트라 이소프로필 티타네이트, 테트라 부틸 티타네이트, 테트라 에틸 티타네이트, 테트라 메틸 티타네이트를 들 수 있으며 사용량은 2가 카르복실산에 대하여 0.01∼0.5 중량 %의 범위인 것이 바람직하다. 촉매의 사용량이 0.01 중량 % 이하일 경우에는 축합반응이 효과적으로 진행되지 않아 충분한 중합도의 폴리머를 얻을 수 없으며, 0.5 중량 % 이상일 경우 반응속도는 빨라지지만 얻어진 중합체가 착색이 되며 열분해가 진행되는 경향이 있어 좋지 않다. 에스테르 반응중에는 촉매가 필요하지 않으며 에스테르 반응말기에 촉매를 넣어주어 축중합 반응에서 탈글리콜 반응이 효과적으로 진행되도록 하는 것이 좋다.Examples of the catalyst used in the present invention include tetraisopropyl titanate, tetrabutyl titanate, tetraethyl titanate, and tetramethyl titanate. The amount of the catalyst to be used is in the range of 0.01 to 0.5% by weight based on the dicarboxylic acid desirable. When the amount of the catalyst used is less than 0.01% by weight, the condensation reaction does not progress effectively and a polymer having a sufficient degree of polymerization can not be obtained. On the other hand, when the amount of the catalyst is more than 0.5% by weight, the reaction rate is accelerated but the obtained polymer tends to be colored and pyrolytic not. A catalyst is not required during the ester reaction, and a catalyst is preferably added at the end of the ester reaction so that the deglycol reaction proceeds effectively in the condensation polymerization reaction.

본 발명에 사용되는 안정제로는 1차 산화방지제인 페놀계 화합물과 2차 산화방지제인 황계 화합물을 함께 사용하는 것이 좋으며 2가 카르복실산에 대하여 각각 0.04∼0.8 중량 % 이하에서는 안정제로서의 효과가 불충분하며 0.8 중량 % 이상에서는 중합체의 색상이 나빠지며 기계적 물성이 저하되는 등의 결점이 있다. 첨가시기는 에스테르 반응초기나 말기로 하여도 관계가 없다. 본 발명에서는 상기 언급한성분이외에 일반적으로 폴리에스테르의 제조에 사용되는 자외선흡수제, 안료, 형광증백제 등을 사용할 수 있다.As the stabilizer to be used in the present invention, it is preferable to use a phenolic compound as the primary antioxidant and a sulfur compound as the secondary antioxidant. When the amount is less than 0.04 to 0.8 wt% based on the dicarboxylic acid, the effect as a stabilizer is insufficient And when it is more than 0.8% by weight, the color of the polymer is deteriorated and the mechanical properties are deteriorated. The addition timing may be at the initial or end of the esterification reaction. In the present invention, in addition to the above-mentioned components, ultraviolet absorbers, pigments, fluorescent whitening agents and the like generally used in the production of polyester can be used.

이하 본 발명을 실시예로서 구체적으로 설명하지만, 본 발명이 실시예로 제한되는 것은 아니다.Hereinafter, the present invention will be described specifically by way of examples, but the present invention is not limited to the examples.

실시예 1Example 1

숙신산 1몰에 대하여 테레프탈산 0.23몰, 테트라메틸렌에테르글리콜 0.36몰, 1,4-부탄디올 1.2몰의 비율로 반응물을 넣고 1차 및 2차 산화방지제를 숙신산 기준으로 각각 0.1 중량%씩 반응기에 투입한 다음, 온도를 상온으로부터 200 ℃까지 서서히 상승시키면서 100분에 걸쳐 에스테르 반응을 실시하였다. 생성된 물은 컨덴서를 통해 계외로 완전히 유출시켰으며, 이후 티타네이트계 촉매를 숙신산 기준으로 0.2 중량% 투입하고 10분간 잘 섞은 다음 천천히 감압하여 진공도를 1토르(torr) 이하로 유지하면서 온도를 250 ℃로 올리고 3시간동안 축합반응을 진행하였다. 반응이 종료되면 진공을 해체하고 중합물을 질소로 토출하여 최종 생성물을 얻었다. 최종중합체의 조성 및 물성을 평가하여 표 1에 정리하였다.The reactants were added to the reaction mixture in an amount of 0.23 mol of terephthalic acid, 0.36 mol of tetramethylene ether glycol and 1.2 mol of 1,4-butanediol per 1 mol of succinic acid, and 0.1% by weight of each of primary and secondary antioxidants , And the ester reaction was carried out over a period of 100 minutes while gradually raising the temperature from room temperature to 200 占 폚. The resulting water was completely drained out of the system through a condenser. Then, the titanate catalyst was added in an amount of 0.2 wt% based on the succinic acid, mixed well for 10 minutes, and slowly decompressed to maintain the vacuum at a level of 1 torr or less And the condensation reaction was carried out for 3 hours. After completion of the reaction, the vacuum was disassembled and the polymer was discharged with nitrogen to obtain a final product. The composition and physical properties of the final polymer were evaluated and summarized in Table 1.

표 1에 나타나 있는 측정값은 하기 시험조건 및 방법을 이용하여 실시예 및 비교예에서 제조한 조성물의 물성 데이터이다.The measured values shown in Table 1 are the physical property data of the compositions prepared in Examples and Comparative Examples using the following test conditions and methods.

* 조성물의 함량분석 : 300-MHZ 1H NMR을 이용하여 부틸렌숙시네이트, 부 틸렌테레프탈레이트, 테트라메틸렌에테르 단위의 함 량을 분석.* Content of composition: Analysis of the contents of butylene succinate, butylene terephthalate and tetramethylene ether units using 300-MH Z 1 H NMR.

* 용융지수 : ASTM D-1238에 의해 130 ℃, 2160 g의 하중에서 측정, 융용 지수가 적을수록 고중합도임.* Melt index: measured according to ASTM D-1238 at 130 ° C under a load of 2160 g, the lower the melting index, the higher the degree of polymerization.

* 융점 및 용융열 : DSC를 사용하여 10℃/min으로 승온하면서 측정.Melting point and melting heat: Measured at a heating rate of 10 ° C / min using DSC.

* 인장 강조 : ASTM D-638에 의해 측정.* Tensile stress: measured by ASTM D-638.

* 아이조드 충격강도 : ASTM D-126에 의해 측정, 1/4인치 시편 사용.* Izod impact strength: measured by ASTM D-126, using 1/4 inch specimen.

* 생분해성 : 곰팡이에 의한 플라스틱의 저항성 시험법인 ASTM G 21-70에 따라 60일간 배양하여 5×5×0.3 cm 시편의 표면에 곰팡이가 뒤덮인 정도를 다음과 같이 구분하여 생분해도를 측정.* Biodegradability: Plastics resistance by fungi Test for biodegradability by cultivating for 60 days according to ASTM G 21-70, and dividing the degree of fungus cover on the surface of 5 × 5 × 0.3 cm specimens as follows.

등 급Rating 00 1One 22 33 44 곰팡이 성장표면적 (%)Fungal growth surface area (%) 00 0∼100-10 10∼3010 to 30 30∼6030 to 60 60∼10060-100

실시예 2Example 2

에스테르 반응초기에 테레프탈산과 테트라메틸렌에테르글리콜을 투입하는 대신 축중합 직전에 폴리부틸렌테레프탈레이트-폴리테트라메틸렌에테르글리콜 공중합체 37 mol % 를 투입한 것을 제외하고는 실시예 1과 같은 방법으로 축중합하였으며 최종 중합체의 조성 및 물성을 평가하여 표 1에 정리하였다.Except that 37 mol% of polybutylene terephthalate-polytetramethylene ether glycol copolymer was added immediately before the condensation polymerization instead of the addition of terephthalic acid and tetramethylene ether glycol in the early stage of the ester reaction, The composition and physical properties of the final polymer were evaluated and are summarized in Table 1.

실시예 3∼5Examples 3 to 5

테레프탈산과 테트라메틸렌에테르글리콜의 투입량을 변화시킨 것을 제외하고는 실시예 1과 같은 방법으로 축중합하였으며 최종 중합체의 조성 및 물성을 평가하여 표 1에 정리하였다.The amount of terephthalic acid and tetramethylene ether glycol was changed, and condensation polymerization was carried out in the same manner as in Example 1. The composition and physical properties of the resulting polymer were evaluated and summarized in Table 1.

비교예 1Comparative Example 1

반응물로 숙신산과 1,4-부탄디올만을 사용한 것을 제외하고는 실시예 1과 같은 방법으로 축중합하였으며 최종 중합체의 조성 및 물성을 평가하여 표 1에 정리하였다.The polymer was condensed in the same manner as in Example 1 except that succinic acid and 1,4-butanediol were used as reactants. The composition and physical properties of the resulting polymer were evaluated and summarized in Table 1.

비교예 2Comparative Example 2

테트라메틸렌에테르글리콜을 투입하지 않은 것을 제외하고는 실시예 1과 같은 방법으로 축중합하였으며 최종 중합체의 조성 및 물성을 평가하여 표 1에 정리하였다.The polymer was condensed in the same manner as in Example 1 except that tetramethylene ether glycol was not added. The composition and physical properties of the final polymer were evaluated and summarized in Table 1.

비교예 3Comparative Example 3

테레프탈산을 투입하지 않은 것을 제외하고는 실시예 1과 같은 방법으로 축중합하였으며 최종 중합체의 조성 및 물성을 평가하여 표 1에 정리하였다.Except that terephthalic acid was not added. The composition and physical properties of the final polymer were evaluated and summarized in Table 1.

비교예 4Comparative Example 4

폴리부틸렌테레프탈레이트-폴리테트라메틸렌에테르글리콜 공중합체의 투입량을 4 mol% 로 줄인 것을 제외하고는 실시예 2와 같은 방법으로 축중합하였으며 최종 중합체의 조성 및 물성을 평가하여 표 1에 정리하였다.Polymerization was carried out in the same manner as in Example 2 except that the amount of the polybutylene terephthalate-polytetramethylene ether glycol copolymer was reduced to 4 mol%. The composition and physical properties of the final polymer were evaluated in Table 1.

여러 가지 공중합 폴리에스테르의 물성 및 생분해성Physical properties and biodegradability of various copolyester 공중합 단량체의 조성a Composition a 용융지수(g/10 분)Melt Index (g / 10 min) 융점 (℃)Melting point (캜) 인장강도(Kgf/cm2)Tensile strength (Kg f / cm 2) 신율(%)Elongation (%) 충격강도(Kgfcm/cm)Impact strength (Kg f cm / cm) 생분해도Biodegradability BS(mol%)BS (mol%) BT(mol%)BT (mol%) BO(mol%)BO (mol%) 실시예 1Example 1 62.962.9 14.514.5 22.622.6 2.62.6 8787 130130 N.Bb.NB b . 53.153.1 1One 실시예 2Example 2 63.463.4 13.713.7 22.922.9 3.63.6 8989 137137 N.B.N.B. 51.651.6 1One 실시예 3Example 3 65.965.9 11.011.0 23.123.1 3.03.0 9595 156156 N.B.N.B. 39.939.9 22 실시예 4Example 4 75.875.8 10.810.8 16.416.4 4.24.2 102102 210210 N.B.N.B. 18.918.9 22 실시예 5Example 5 90.190.1 4.54.5 5.45.4 3.13.1 108108 284284 N.B.N.B. 11.711.7 33 비교예 1Comparative Example 1 100100 00 00 3.53.5 114114 354354 300300 5.15.1 44 비교예 2Comparative Example 2 93.193.1 6.96.9 00 3.73.7 105105 263263 620620 7.87.8 22 비교예 3Comparative Example 3 74.174.1 00 25.925.9 5.55.5 110110 258258 N.B.N.B. 9.89.8 33 비교예 4Comparative Example 4 96.096.0 1.61.6 2.42.4 3.63.6 111111 312312 347347 8.68.6 44

a. BS : 부틸렌숙시네이트, BT : 부틸렌테레프탈레이트, BO : 부틸렌옥사이드 (테트라메틸렌에테르)의 공중합체내의 함량.a. BS: Butylene succinate, BT: Butylene terephthalate, BO: Content of the butylene oxide (tetramethylene ether) in the copolymer.

b. N.B. : no break, 신율 900% 이상.b. N.B. : no break, extension rate over 900%.

본 발명은 생분해성이 유지되면서 기계적 강도와 신율 및 충격 강도가 우수한 공중합 폴리에스테르를 제공한다.The present invention provides a copolymer polyester having excellent mechanical strength, elongation and impact strength while maintaining biodegradability.

Claims (23)

생분해성을 갖는 3원 공중합 폴리에스테르를 제조함에 있어서,In the production of a biodegradable ternary copolymerizable polyester, a) 지방족 2가 카르복실산과 방향족 2가 카르복실산을 지방족 2가 알코올 및 폴리테트라메틸에테르글리콜과 에스테르 반응시키는 단계;a) esterifying an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid with an aliphatic divalent alcohol and a polytetramethyl ether glycol; b) 에스테르 반응 생성물에 촉매를 투입하는 단계; 및b) introducing a catalyst into the ester reaction product; And c) 촉매를 함유하는 혼합물을 고온, 고진공하에서 축중합하는 단계c) polycondensation of the mixture containing the catalyst under high temperature and high vacuum 를 포함하는 공중합 폴리에스테르의 제조 방법.≪ / RTI > 제 1항에 있어서,The method according to claim 1, 지방족 2가 카르복실산이 옥살산, 말론산, 숙신산, 글루타린산, 아디픽산, 서베릭산, 세바식산 중에서 선택되는 공중합 폴리에스테르의 제조 방법.Wherein the aliphatic dicarboxylic acid is selected from oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, saperic acid and sebacic acid. 제 1항에 있어서,The method according to claim 1, 방향족 2가 카르복실산이 테레프탈산, 이소프탈산, 2,6-나프탈렌카르본산, 1,4-나프탈렌디카르본산 중에서 선택되는 공중합 폴리에스테르의 제조 방법.Wherein the aromatic dicarboxylic acid is selected from terephthalic acid, isophthalic acid, 2,6-naphthalenecarboxylic acid and 1,4-naphthalenedicarboxylic acid. 제 1항에 있어서,The method according to claim 1, 지방족 2가 알코올이 에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 1,4-사이클로헥산디메탄올 중에서 선택되는 삼원 공중합 폴리에스테르의 제조 방법.Wherein the aliphatic divalent alcohol is selected from the group consisting of ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and 1,4-cyclohexanedimethanol ≪ / RTI > 제 1항에 있어서,The method according to claim 1, 폴리테트라메틸렌에테르글리콜의 분자량이 800∼1200인 공중합 폴리에스테르의 제조 방법.Wherein the polytetramethylene ether glycol has a molecular weight of 800 to 1200. 제 1항에 있어서,The method according to claim 1, 촉매가 테트라 이소프로필티타네이트, 테트라부틸티타네이트, 테트라에틸티타네이트, 테트라메틸티타네이트 중에서 선택되는 공중합 폴리에스테르의 제조 방법.Wherein the catalyst is selected from tetraisopropyl titanate, tetrabutyl titanate, tetraethyl titanate, and tetramethyl titanate. 제 6항에 있어서,The method according to claim 6, 촉매의 사용량이 2가 카르복실산에 대하여 0.01∼0.5 중량 %인 공중합 폴리에스테르의 제조 방법.Wherein the amount of the catalyst to be used is 0.01 to 0.5 wt% with respect to the divalent carboxylic acid. 제 1항에 있어서,The method according to claim 1, 축중합 단계에서의 진공도가 1토르(torr) 이하인 방법.Wherein the degree of vacuum in the condensation polymerization step is less than or equal to 1 torr. 제 1항에 있어서, 축중합 단계에서의 중합 온도가 200 내지 300 ℃인 방법.The method according to claim 1, wherein the polymerization temperature in the condensation polymerization step is 200 to 300 占 폚. 제 1항에 있어서,The method according to claim 1, 에스테르 반응시키는 단계에서 페놀계 화합물과 황계 화합물을 안정제로 투입하는 공중합 폴리에스테르의 제조 방법.Wherein the phenol compound and the sulfur compound are added as stabilizers in the step of esterification. 제 10항에 있어서,11. The method of claim 10, 안정제인의 폐놀계 화합물과 황계 화합물 투입량이 2가 카르복실산에 대하여 각각 0.04∼0.8 중량 %인 공중합 폴리에스테르의 제조 방법.Wherein the amounts of the phenolic compound and the sulfur compound in the stabilizer are 0.04 to 0.8 wt% based on the divalent carboxylic acid, respectively. 생분해성을 갖는 3원 공중합 폴리에스테르를 제조함에 있어서,In the production of a biodegradable ternary copolymerizable polyester, a) 지방족 2가 카르복실산과 지방족 2가 알코올을 에스테르 반응시키는 단 계;a) a step of ester-reacting an aliphatic dicarboxylic acid and an aliphatic divalent alcohol; b) 에스테르 반응 생성물에 촉매와 함께 폴리부틸렌테레프탈레이트-폴리테트 라메틸렌에테르글리콜 공중합체를 투입하는 단계; 및b) introducing polybutylene terephthalate-polytetramethylene ether glycol copolymer with the catalyst into the ester reaction product; And c) 촉매를 함유하는 혼합물을 고온, 고진공하에서 축중합하는 단계c) polycondensation of the mixture containing the catalyst under high temperature and high vacuum 를 포함하는 공중합 폴리에스테르의 제조 방법.≪ / RTI > 제 12항에 있어서,13. The method of claim 12, 지방족 2가 카르복실산이 옥살산, 말론산, 숙신산, 글루타린산, 아디픽산, 서베릭산, 세바식산 중에서 선택되는 공중합 폴리에스테르의 제조 방법.Wherein the aliphatic dicarboxylic acid is selected from oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, saperic acid and sebacic acid. 제 12항에 있어서,13. The method of claim 12, 폴리부틸렌테레프탈레이트-폴리테트라메틸렌에테르글리콜 공중합체중의 테트라메틸렌에테르 단위가 공중합체내에 50∼80 몰 % 인 공중합 폴리에스테르의 제조 방법.Wherein the tetramethylene ether unit in the polybutylene terephthalate-polytetramethylene ether glycol copolymer is contained in the copolymer in an amount of 50 to 80 mol%. 제 12항에 있어서,13. The method of claim 12, 지방족 2가 알코올이 에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 1,4-사이클로헥산디메탄올 중에서 선택되는 삼원 공중합 폴리에스테르의 제조 방법.Wherein the aliphatic divalent alcohol is selected from the group consisting of ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol and 1,4-cyclohexanedimethanol ≪ / RTI > 제 12항에 있어서,13. The method of claim 12, 촉매가 테트라 이소프로필티타네이트, 테트라부틸티타네이트, 테트라에틸티타네이트, 테트라메틸티타네이트 중에서 선택되는 공중합 폴리에스테르의 제조 방법.Wherein the catalyst is selected from tetraisopropyl titanate, tetrabutyl titanate, tetraethyl titanate, and tetramethyl titanate. 제 16항에 있어서,17. The method of claim 16, 촉매의 사용량이 2가 카르복실산에 대하여 0.01∼0.5 중량 %인 공중합 폴리에스테르의 제조 방법.Wherein the amount of the catalyst to be used is 0.01 to 0.5 wt% with respect to the divalent carboxylic acid. 제 12항에 있어서,13. The method of claim 12, 축중합 단계에서의 진공도가 1토르(torr) 이하인 방법.Wherein the degree of vacuum in the condensation polymerization step is less than or equal to 1 torr. 제 12항에 있어서,13. The method of claim 12, 축중합 단계에서의 온도가 200 내지 300 ℃인 방법.And the temperature in the condensation polymerization step is 200 to 300 占 폚. 제 1항에 있어서,The method according to claim 1, 에스테르 반응시키는 단계에서 페놀계 화합물과 황계 화합물을 안정제로 투입하는 공중합 폴리에스테르의 제조 방법.Wherein the phenol compound and the sulfur compound are added as stabilizers in the step of esterification. 제 20항에 있어서,21. The method of claim 20, 안정제인의 폐놀계 화합물과 황계 화합물 투입량이 2가 카르복실산에 대하여 각각 0.04∼0.8 중량 %인 공중합 폴리에스테르의 제조 방법.Wherein the amounts of the phenolic compound and the sulfur compound in the stabilizer are 0.04 to 0.8 wt% based on the divalent carboxylic acid, respectively. 지방족 에스테르, 방향족 에스테르 및 테트라메틸렌에테르의 3가지 성분을 포함하는 생분해성 3원 공중합 폴리에스테르에 있어서,In the biodegradable ternary copolymerizable polyester comprising three components of aliphatic ester, aromatic ester and tetramethylene ether, 지방족 에스테르 단위가 60∼92 몰 %, 방향족 에스테르 단위가 3∼15몰 %, 테트라메틸렌에테르 단위가 5∼25 몰 % 임을 특징으로 하는 3원 공중합 폴리에스테르.Wherein the aliphatic ester unit is 60 to 92 mol%, the aromatic ester unit is 3 to 15 mol%, and the tetramethylene ether unit is 5 to 25 mol%. 생분해성 공중합 폴리에스테르와 전분의 블렌드에 있어서,In the blend of biodegradable copolyester and starch, 지방족 에스테르 단위가 60∼92 몰 %, 방향족 에스테르 단위가 3∼15몰 %, 테트라메틸렌에테르 단위가 5∼25 몰 % 임을 특징으로 하는 생분해성 공중합 폴리에스테르와 전분의 블렌드.Wherein the aliphatic ester unit is 60 to 92 mol%, the aromatic ester unit is 3 to 15 mol%, the tetramethylene ether unit is 5 to 25 mol%, and the blend of the starch and the biodegradable copolymerizable polyester.
KR1019980020628A 1998-06-03 1998-06-03 Process for producing biodegradable copolyester KR100349595B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980020628A KR100349595B1 (en) 1998-06-03 1998-06-03 Process for producing biodegradable copolyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980020628A KR100349595B1 (en) 1998-06-03 1998-06-03 Process for producing biodegradable copolyester

Publications (2)

Publication Number Publication Date
KR20000000780A KR20000000780A (en) 2000-01-15
KR100349595B1 true KR100349595B1 (en) 2002-10-19

Family

ID=19538300

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980020628A KR100349595B1 (en) 1998-06-03 1998-06-03 Process for producing biodegradable copolyester

Country Status (1)

Country Link
KR (1) KR100349595B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030827A1 (en) * 2012-08-22 2014-02-27 삼성정밀화학 주식회사 Method for preparing biodegradable polyester copolymer resin
KR20140031010A (en) * 2012-09-04 2014-03-12 삼성정밀화학 주식회사 Method for continuous production of biodegradable aliphatic/aromatic polyester copolymer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596996B1 (en) * 2000-02-21 2006-07-06 주식회사 새 한 Producing method of the biodecomposable aliphatic polyester copolymer
CN114654852A (en) * 2022-03-22 2022-06-24 中国纺织科学研究院有限公司 Low-cost biodegradable composite membrane capable of contacting with food and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055027A (en) * 1983-09-07 1985-03-29 Toray Ind Inc Polyester elastomer
JPH07157553A (en) * 1993-12-08 1995-06-20 Agency Of Ind Science & Technol Production of biodegradable polyester copolymer
JPH08100056A (en) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp Production of copolyester
JPH09272733A (en) * 1996-04-03 1997-10-21 Agency Of Ind Science & Technol Biodegradable polymer and its preparation
KR100254695B1 (en) * 1993-12-24 2000-05-01 조민호 Copolyester resin and its preparation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055027A (en) * 1983-09-07 1985-03-29 Toray Ind Inc Polyester elastomer
JPH07157553A (en) * 1993-12-08 1995-06-20 Agency Of Ind Science & Technol Production of biodegradable polyester copolymer
KR100254695B1 (en) * 1993-12-24 2000-05-01 조민호 Copolyester resin and its preparation method
JPH08100056A (en) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp Production of copolyester
JPH09272733A (en) * 1996-04-03 1997-10-21 Agency Of Ind Science & Technol Biodegradable polymer and its preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030827A1 (en) * 2012-08-22 2014-02-27 삼성정밀화학 주식회사 Method for preparing biodegradable polyester copolymer resin
KR20140031010A (en) * 2012-09-04 2014-03-12 삼성정밀화학 주식회사 Method for continuous production of biodegradable aliphatic/aromatic polyester copolymer
WO2014038774A1 (en) * 2012-09-04 2014-03-13 삼성정밀화학(주) Method for continuously preparing biodegradable aliphatic/aromatic polyester copolymer
KR101992391B1 (en) 2012-09-04 2019-09-30 (주)새한폴리머 Method for continuous production of biodegradable aliphatic/aromatic polyester copolymer

Also Published As

Publication number Publication date
KR20000000780A (en) 2000-01-15

Similar Documents

Publication Publication Date Title
EP0847411B1 (en) Pet copolyesters containing succinic and naphthalenedicarboxylic acid moieties having improved barrier properties
US9828485B2 (en) Biodegradable aliphatic-aromatic copolyesters, compositions thereof, methods of manufacture, and articles thereof
US5470941A (en) Thermoplastic biodegradable resins and a process of preparation thereof
US5959066A (en) Polyesters including isosorbide as a comonomer and methods for making same
US20010004665A1 (en) Copolyester resin composition and a process of preparation thereof
KR20110076977A (en) Aliphatic polyester
KR101801703B1 (en) Blend of polylactic acid resin and copolyester resin and articles using the same
CN114195997B (en) Biodegradable aliphatic-aromatic copolyester and synthesis method thereof
KR20190107562A (en) Polyester resin and preparation method of the same
KR101276100B1 (en) Biodegradable Copolyester Resin made from Biomass Resources
CN114621420A (en) Biodegradable aliphatic-aromatic copolyester and synthesis method thereof
US5445778A (en) Method for the production of aliphatic copolyester film
US4107150A (en) High impact terephthalate copolyesters using 1,4-butanediol and 1,4-cyclohexanedimethanol
KR100349595B1 (en) Process for producing biodegradable copolyester
KR100957951B1 (en) Alipathic polyester resin with high intensity and method of preparing thereof
US7342086B2 (en) Aliphatic polyester polyether copolymer, process for producing the same and aliphatic polyester composition using the copolymer
KR100368533B1 (en) Manufacturing method of biodegradable aliphatic polyester
JPH0739480B2 (en) Polyester / Polycarbonate Elastomer
KR20240041250A (en) Process for Preparing Biodegradable Polyester and Biodegradable Polyester Prepared Thereby
KR100200415B1 (en) Process for preparing biodegradable aliphatic copolyester
KR0121996B1 (en) Biodegrable aliphatic polyester resin composition and method for making thereof
KR100276105B1 (en) Preparation method of polytrimethylene terephthalate having good thermal stability and colorability
CN115572380A (en) Degradable polyester and preparation method, degradation method and application thereof
CN115260475A (en) High-ultraviolet shielding and strong-blocking biodegradable polyester and preparation method and application thereof
TW202340314A (en) Copolyester resin and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130730

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150716

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160803

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170718

Year of fee payment: 16

EXPY Expiration of term