WO2014030827A1 - Method for preparing biodegradable polyester copolymer resin - Google Patents

Method for preparing biodegradable polyester copolymer resin Download PDF

Info

Publication number
WO2014030827A1
WO2014030827A1 PCT/KR2013/004157 KR2013004157W WO2014030827A1 WO 2014030827 A1 WO2014030827 A1 WO 2014030827A1 KR 2013004157 W KR2013004157 W KR 2013004157W WO 2014030827 A1 WO2014030827 A1 WO 2014030827A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
dicarboxylic acid
aliphatic
compound
copolymer resin
Prior art date
Application number
PCT/KR2013/004157
Other languages
French (fr)
Korean (ko)
Inventor
염정
강경돈
윤기철
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Publication of WO2014030827A1 publication Critical patent/WO2014030827A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a method for producing a biodegradable polyester copolymer resin. More specifically, in order to supplement the aliphatic dihydroxy compounds that may be consumed in the elevated temperature step of the ester reaction in the preparation of the biodegradable polyester copolymer resin, a small amount of aliphatic dihydroxy compound is added at the end of the ester reaction to make the unreacted product react.
  • the present invention relates to a method for producing a biodegradable polyester copolymer resin which induces formation of a complete oligomer to reach sufficient physical properties.
  • Biodegradable resin is a synthetic resin developed as a new material that does not cause environmental pollution by being decomposed into water and carbon dioxide or water and methane by microorganisms existing in nature such as bacteria, algae and mold.
  • Biodegradable resins commonly used with cellulose-based polymers and starches are aliphatic polyesters such as polylactic acid (PLA), polybutylene succinate (PBS), polyethylene succinate (PES), and polycaprolactone (PCL). It is a resin produced from.
  • PLA polylactic acid
  • PBS polybutylene succinate
  • PES polyethylene succinate
  • PCL polycaprolactone
  • aliphatic polyester resins are excellent in biodegradability but have a disadvantage in that they lack mechanical properties. Therefore, a method of preparing a biodegradable resin in the form of an aliphatic-aromatic copolymer by synthesizing an aromatic monomer in the preparation of the biodegradable resin to complement the mechanical strength of the aliphatic polyester resin has been developed.
  • PBAT poly (butylene adipate-co-terephthalate)
  • the PBAT is prepared by removing the methanol generated by first condensation polymerization of dimethyl terephthalate as an aromatic monomer and 1,4-butanediol as an aliphatic monomer, followed by additionally adding adipic acid to remove water generated by condensation polymerization. can do.
  • dimethyl terephthalate is commonly used as an aromatic monomer.
  • Dimethyl terephthalate has the advantage that the reaction can be easily induced even at a reaction temperature of less than 180 °C.
  • the cost burden of the manufacturing process is large because of the high price.
  • terephthalic acid has no melting point and has a property of sublimation at high temperature.
  • terephthalic acid is present in 1,4-butanediol (BDO), which is used as a representative aliphatic monomer in the biodegradable polyester resin manufacturing process, in a slurry state below 225 ° C under normal pressure, and at a temperature of 225 ° C or higher.
  • BDO 1,4-butanediol
  • a reaction temperature of 225 ° C. or higher is required to induce a uniform reaction between terephthalic acid and 1,4-butanediol.
  • the aliphatic dihydroxy compound in order to prevent the conversion of the aliphatic dihydroxy compound, is first reacted with an aliphatic dicarboxylic acid compound such as adipic acid which can be reacted at a relatively low temperature, and then aromatic dicarboxylic acid such as terephthalic acid. The compound is reacting.
  • an aliphatic dicarboxylic acid compound such as adipic acid which can be reacted at a relatively low temperature
  • aromatic dicarboxylic acid such as terephthalic acid
  • the PBAT is still 1,4 at a temperature increase step up to a reaction temperature at which an aromatic monomer, such as terephthalic acid, which requires high temperature reaction conditions after the reaction of 1,4-butadiol and adipic acid is introduced, may proceed with the esterification reaction.
  • an aromatic monomer such as terephthalic acid
  • adipic acid which requires high temperature reaction conditions after the reaction of 1,4-butadiol and adipic acid is introduced
  • the present inventors added a small amount of 1,4-butanediol at the end of the esterification reaction to compensate for the lack of 1,4-butanediol due to the conversion of THF in the step of raising the temperature of the ester reaction in the biodegradable polyester copolymer resin manufacturing process.
  • the present invention was completed by revealing that unreacted terephthalic acid can be reacted to induce the formation of a complete oligomer.
  • the problem to be solved by the present invention is to provide a method for producing a biodegradable polyester copolymer resin that can achieve sufficient physical properties by reacting all unreacted aromatic monomers during the ester reaction to induce the formation of a complete oligomer.
  • the esterification reaction comprises a primary esterification reaction and a secondary esterification reaction that proceeds at a higher temperature than the first reaction, and the aliphatic dihydroxy compound is further added during the secondary esterification reaction. It provides a method for producing an ester copolymer resin.
  • an aliphatic dihydroxy compound, an aliphatic dicarboxylic acid compound and an aromatic dicarboxylic acid compound may be simultaneously added to proceed with primary and secondary esterification reactions.
  • an aliphatic dihydroxy compound and an aliphatic dicarboxylic acid compound may be added during the primary esterification reaction, and an aromatic dicarboxylic acid compound may be added during the secondary esterification reaction to proceed with the reaction.
  • the additionally added aliphatic dihydroxy compound is preferably in the range of 0.05 to 0.5 moles relative to 1 mole based on the total amount of aliphatic and aromatic dicarboxylic acids, and further addition of the aliphatic dihydroxy compound is carried out during the secondary esterification reaction. It is preferred to be introduced at the time when the effluent does not come out.
  • the aliphatic dihydroxy compound is 1,2-ethanediol, 1,3-propanediol, 1,2-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,4-butanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethylranol and neopentyl glycol and mixtures thereof.
  • the aliphatic dicarboxylic acid compound is a compound represented by the following formula (1), anhydride or derivative thereof:
  • n is from 2 to 12.
  • the aromatic dicarboxylic acid compound is phthalic acid (phthalic acid, PA), phthalic anhydride (isophthalic acid (IPA), terephthalic acid (TPA), naphthalene-2,6-dicar It is preferably one or more selected from the group consisting of acids (naphthalene-2,6-dicarboxylic acid), anhydrides and derivatives thereof.
  • the first reaction proceeds first at a temperature in the range of 160 ⁇ 185 °C
  • the second reaction is preferably proceeded sequentially at a temperature in the range of 225 ⁇ 250 °C.
  • the poly-condensation reaction of the aliphatic-aromatic oligomer obtained by the first and second reaction in the method for producing a biodegradable polyester copolymer resin according to the present invention at 220-250 ° C., a vacuum degree of less than 2 torr for 40 to 300 minutes It is preferred to further comprise a step.
  • the present invention provides a small amount at the end of the secondary esterification reaction to compensate for 1,4-butanediol lost in the conversion of THF in the elevated temperature step for the secondary esterification reaction in the preparation of the biodegradable polyester copolymer resin. Additional 1,4-butanediol may be added to react the aromatic dicarboxylic acid not reacted with 1,4-butanediol to induce the formation of a complete oligomer.
  • the copolymer finally obtained by effectively controlling the unreacted aromatic dicarboxylic acid can reach sufficient physical properties.
  • an aliphatic dihydroxy compound, an aliphatic dicarboxylic acid compound, and an aromatic dicarboxylic acid compound are esterified to prepare an oligomer in the process of preparing a biodegradable polyester copolymer resin, but the temperature of the secondary esterification reaction is increased.
  • Biodegradable to form a complete oligomer by controlling the unreacted aromatic dicarboxylic acid compound by adding an aliphatic dihydroxy compound at the end of the second esterification reaction to supplement the aliphatic dihydroxy compound lost in the step. It relates to a method for producing a polyester copolymer resin.
  • the copolymer is an aliphatic-aromatic polyester obtained by reaction of an aliphatic dihydroxy compound with an aliphatic and aromatic dicarboxylic acid compound.
  • the present invention includes esterifying an aliphatic dihydroxy compound, an aliphatic dicarboxylic acid compound, and an aromatic dicarboxylic acid compound to form an oligomer, wherein the esterification reaction is a primary ester. And a secondary esterification reaction proceeding at a higher temperature than the primary reaction and the primary reaction, wherein the aliphatic dihydroxy compound is added during the secondary esterification reaction to provide a method for preparing a biodegradable polyester copolymer resin. do.
  • the aliphatic dihydroxy compound, the aliphatic dicarboxylic acid compound, and the aromatic dicarboxylic acid compound may be simultaneously added to proceed with the primary and secondary esterification reactions, or the aliphatic dihydroxy compound and the aliphatic dicarboxyl compound.
  • the aromatic dicarboxylic acid compound may be added to the second esterification reaction.
  • any aliphatic dihydroxy compound used as a starting material in the preparation of aliphatic-aromatic polyester biodegradable resins can be used without limitation.
  • aliphatic dihydroxy compounds which are likely to be converted in a high temperature reaction they may be advantageously used, and in particular, diols having 2 to 6 carbon atoms, especially 1,2-ethanediol, 1,3-propanediol, 1,2-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,4-butanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethylranol and neopentyl glycol or mixtures thereof Preferred, and particularly preferably 1,4-butanediol.
  • the aliphatic dicarboxylic acid compound those generally used in the art may be used, and a relatively low temperature reaction is more preferable.
  • the aliphatic dicarboxylic acid compound may be a compound represented by the following formula (1), anhydrides or derivatives thereof.
  • n is from 2 to 12.
  • n is used in 2 to 8.
  • aliphatic dicarboxylic acid compounds include succinic acid (SA), glutaric acid (GA) or adipic acid (AA), as well as anhydrides and derivatives thereof.
  • phthalic acid phthalic acid
  • PA phthalic acid
  • IPA isophthalic acid
  • TPA terephthalic acid
  • the monomer especially an aromatic dicarboxylic acid compound in which an esterification reaction with an aliphatic dihydroxy compound is induced at a high temperature can be advantageously used.
  • terephthalic acid As an example of an aromatic dicarboxylic acid compound, terephthalic acid (PTA) has the advantage of being inexpensive compared to dimethyl terephthalate (DMT), which is usually used as an aromatic monomer, while the reaction is performed at a temperature below 185 ° C. Unlike possible dimethyl terephthalates, it is only possible to induce uniform esterification reactions with aliphatic dihydroxy compounds at temperatures above 225 ° C.
  • DMT dimethyl terephthalate
  • BDO 1,4-butanediol
  • THF tetrahydrofuran
  • an aliphatic dihydroxy compound is added at the end of the secondary esterification reaction to induce the formation of a complete oligomer.
  • reacting the aliphatic dihydroxy compound and the aliphatic dicarboxylic acid compound first can minimize the amount of the aliphatic dihydroxy compound present in the monomer state, and thus, the aliphatic dihydride in the high temperature reaction with the aromatic dicarboxylic acid. It is possible to reduce the amount of conversion of the oxy compound.
  • the two carboxylic acids included in the aliphatic dicarboxylic acid compound undergo esterification with the hydroxyl group included in the aliphatic dihydroxy compound.
  • the aliphatic dicarboxylic acid compound may be fixed by combining an aliphatic dihydroxy compound with respect to the aliphatic dihydroxy compound, by adjusting the equivalent amount with respect to the aliphatic dihydroxy compound, and also the aliphatic dihydroxy compound. This can be fixed in combination.
  • 1,4-butanediol used as an example of an aliphatic dihydroxy compound in the present invention reacts with adipic acid to form an oligomer of AA-BDO form or an oligomer of BDO-AA-BDO form.
  • the primary esterification reaction in which the reaction between the aliphatic dihydroxy compound and the aliphatic dicarboxylic acid compound is predominant is performed when the water flowing out of the esterification reaction reaches the effluent theoretically calculated and no more effluent occurs ( That is, the amount of water corresponding to the total number of moles of carboxylic acid contained in the aliphatic dicarboxylic acid compound) is terminated.
  • the primary esterification reaction is preferably carried out at a temperature range of 160 to 185 °C
  • the secondary esterification reaction is higher than the primary esterification reaction proceeds at a temperature range of 225 to 250 °C.
  • PTA terephthalic acid
  • the temperature of the secondary reaction is preferably in the range of 225 to 250 ° C.
  • aliphatic dihydroxy compounds such as 1,4-butanediol are converted to tetrahydrofuran (THF) at a temperature of 190 ° C. or higher, so that the secondary reaction proceeds with aromatic dicarboxylic acid. Since the 1,4-butanediol which should form the oligomer is converted, the aromatic dicarboxylic acid may remain unreacted, and in order to react this unreacted aromatic dicarboxylic acid, at the end of the secondary reaction, A small amount of aliphatic dihydroxy compound such as 4-butanediol is added to induce complete oligomer formation.
  • THF tetrahydrofuran
  • the amount of the aliphatic dihydroxy compound to be added may be selected in consideration of the conversion rate of the aliphatic dihydroxy compound, preferably in the range of 0.05 mol to 0.5 mol relative to 1 mol based on the total amount of aliphatic and aromatic dicarboxylic acid Will be added within.
  • the amount of the aliphatic dihydroxy compound to be added may be selected in consideration of the conversion rate of the aliphatic dihydroxy compound, preferably in the range of 0.05 mol to 0.5 mol relative to 1 mol based on the total amount of aliphatic and aromatic dicarboxylic acid Will be added within.
  • less than 0.05 mole does not appear an additional input effect, when more than 0.5 mole deviates from the purpose of the present invention to minimize the amount of 1,4-butanediol used.
  • addition time is preferably added at a time when the condenser effluent no longer comes out after the second reaction.
  • the amount of the aliphatic dihydroxy compound may be used within the range required in the intended esterification reaction, and may be added in an amount of 1.0 mole or more with respect to 1 mole of the fatty acid and the aromatic dicarboxylic acid compound, preferably 1.3 moles or more will be added.
  • the aliphatic dicarboxylic acid compound and the aromatic dicarboxylic acid compound are preferably used in a molar ratio of 0.4 to 0.9: 0.1 to 0.6 in terms of biodegradability, and more preferably used in a molar ratio of 0.52: 0.48. If biodegradability is not required, the aliphatic dicarboxylic acid and the compound and the aromatic dicarboxylic acid compound can be reacted in more various molar ratios.
  • the primary and secondary reactions can be carried out continuously or batchwise under atmospheric pressure.
  • a biodegradable resin having desired properties can be obtained by increasing the molecular weight through a polycondensation reaction or a chain extension reaction.
  • the present invention polycondensates the aliphatic-aromatic oligomers obtained from the first and second reactions for 40 to 300 minutes at a vacuum in a vacuum of less than 2 torr and at a temperature in the range of 220 to 250 ° C.
  • Such polycondensation reactions are intended to cause reactions between oligomer levels generated from the first and second reactions or between polymers that have not yet reached the desired molecular weight. Since the polycondensation reaction must proceed through the functional group, it proceeds in the reaction conditions of vacuum and high temperature. The reaction time of the polycondensation reaction may be adjusted according to the amount of the catalyst to be described later and the input method.
  • a chain extension reaction is carried out by adding a chain extender.
  • a chain extender a polyisocyanate compound, an aromatic amine compound, or the like is used.
  • the chain extender may be used in an amount of 0.1 to 5 parts by weight based on the copolymer.
  • polyisocyanate compound 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, hexamethylene diisocyanate and triphenylmethane
  • aromatic amine compound examples include 3,5-diethyl-2,4-diaminotoluene and 3,5-diethyl-2,6-dia Lonza's DETDA80 product, which contains 20 to 80 parts by weight of minotoluene, can be used.
  • a compound (branching agent) having a bivalent or higher polyvalent functional group is optionally added for branching reaction, thereby increasing the molecular weight and At the same time it is possible to produce polymers of branching structure.
  • branching agent at least one polyfunctional compound selected from the group consisting of a trifunctional or higher polyhydric alcohol, a trifunctional or higher polyhydric carboxylic acid or its anhydride, a trifunctional or higher functional hydroxy carboxylic acid, and a trifunctional or higher polyvalent amine can be used.
  • a preferred amount of branching agent may be used in an amount of 0.1 to 3 g per mole of aliphatic and aromatic dicarboxylic acid compound.
  • the use of the branching agent or the amount of the branching agent is a factor that greatly affects the physical properties of the biodegradable resin represented by the melt flow index and the tensile / tear strength. Therefore, in the present invention, as a means for controlling the physical properties of the resin, the use of the branching agent and the amount of use of the branching agent in the respective reaction steps of the resin production is determined.
  • a catalyst or a heat stabilizer may be used to improve the efficiency of the reaction by promoting the reactions and inducing a stable reaction.
  • the catalysts include calcium acetate, manganese acetate, magnesium acetate, zinc acetate, monobutyl tin oxide, dibutyl tin oxide, monobutyl hydroxy tin oxide, octyl tin, dibutyl tin dichloride, tetraphenyl tin, tetrabutyl tin, Tetrabutyl titanate, tetramethyl titanate, tetraisopropyl titanate and tetra (2-ethylhexyl) titanate can be used, preferably tetrabutyl titanate (Ti (OC4H9) 4) or Vertec® VEXP 0641 (titanium). organic catalysts such as type catalyst and Johnson Matthey). The preferred amount of catalyst is to use 0.1 to 1.5 g based on 1 mole of aliphatic and aromatic dicarboxylic acid compounds.
  • the thermal stabilizer may further include a phosphorus compound such as triphenyl phosphate or trimethyl phosphate to react.
  • the phosphorus compound acts to keep the reaction stable by preventing decomposition by heat when the molecular weight increase reaction proceeds at a high temperature.
  • reaction product obtained from the above-mentioned primary and secondary ester reactions was polycondensation reaction (PC) for 135 minutes at 230 degreeC and the vacuum degree below 1 torr, and biodegradable resin was obtained.
  • reaction product obtained from the primary and secondary esterification reactions was subjected to polycondensation reaction (PC) for 135 minutes at a vacuum degree of 243 ° C. and less than 1 torr to obtain a biodegradable resin.
  • a biodegradable resin was obtained in the same manner as in Example 1, except that 1,4-butanediol was not added additionally.
  • a biodegradable resin was obtained in the same manner as in Example 1, except that 45 mol was added at the beginning instead of adding 1,4-butanediol.
  • THF conversion rate The THF content generated during ester reaction was measured by gas chromatography.
  • Weight average molecular weight After preparing 0.1% by weight of chloroform solution to the resin, using a GPC (Gel Permeation Chromatography) (Agilent, HP 1100) was measured at a flow rate of 1ml / min at 35 °C.
  • GPC Gel Permeation Chromatography
  • the biodegradable polyester copolymer resin according to the present invention has a molecular weight of 140,000 to 170,000 higher than the comparative example, the formation of the oligomer was made completely You can check it.
  • the step of generating the most THF in the table is a temperature raising step from 200 ° C to 230 ° C.
  • THF conversion rate is superior to the ester reaction rate in the temperature increase step, while THF occurs in the second esterification step, but esterification is superior, so as to compensate for the BOD lost in the temperature increase step as in the present invention.
  • the final ester reaction can be completed by adding BOD at the end of the primary esterification reaction.

Abstract

The present invention relates to a method for preparing biodegradable polyester copolymer resin. The method according to the present invention comprises the steps of forming an oligomer through an esterification reaction of an aliphatic dihydroxy compound, an aliphatic dicarboxylic acid compound, and an aromatic dicarboxylic acid compound, wherein the esterification reaction includes a first esterification reaction and a second esterification reaction carried out at a higher temperature than that of the first reaction, and the aliphatic dihydroxy compound is additionally introduced during the second esterification reaction. According to the method of the present invention, unreacted aromatic dicarboxylic acid is effectively controlled, and thus a complete oligomer can be formed by supplementing the insufficient aliphatic dihydroxy compound in the temperature raising step. Thus, the polymer can have sufficient physical properties.

Description

생분해성 폴리에스테르 공중합체 수지의 제조방법Method for preparing biodegradable polyester copolymer resin
본 발명은 생분해성 폴리에스테르 공중합체 수지의 제조방법에 관한 것이다. 보다 상세하게는 생분해성 폴리에스테르 공중합체 수지의 제조시 에스테르 반응의 승온 단계에서 소모될 수 있는 지방족 디히드록시 화합물을 보완하기 위하여 에스테르 반응 말미에 소량의 지방족 디히드록시 화합물을 추가 투입하여 미반응물을 제어함으로써 완전한 올리고머의 형성을 유도하여 충분한 물성에 도달하게 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법에 관한 것이다.The present invention relates to a method for producing a biodegradable polyester copolymer resin. More specifically, in order to supplement the aliphatic dihydroxy compounds that may be consumed in the elevated temperature step of the ester reaction in the preparation of the biodegradable polyester copolymer resin, a small amount of aliphatic dihydroxy compound is added at the end of the ester reaction to make the unreacted product react. The present invention relates to a method for producing a biodegradable polyester copolymer resin which induces formation of a complete oligomer to reach sufficient physical properties.
생분해성 수지는 박테리아, 조류, 곰팡이와 같은 자연에 존재하는 미생물에 의해 물과 이산화탄소 또는 물과 메탄 가스로 분해되어 환경오염 문제를 일으키지 않는 새로운 소재로서 개발된 합성수지를 말한다.Biodegradable resin is a synthetic resin developed as a new material that does not cause environmental pollution by being decomposed into water and carbon dioxide or water and methane by microorganisms existing in nature such as bacteria, algae and mold.
셀룰로오스 계열의 고분자, 전분류와 함께 범용적으로 사용되는 생분해성 수지는 폴리락트산(PLA), 폴리부틸렌숙시네이트(PBS), 폴리에틸렌 숙시네이트(PES), 폴리카프로락톤(PCL) 등 지방족 폴리에스테르로부터 제조되는 수지이다.Biodegradable resins commonly used with cellulose-based polymers and starches are aliphatic polyesters such as polylactic acid (PLA), polybutylene succinate (PBS), polyethylene succinate (PES), and polycaprolactone (PCL). It is a resin produced from.
이들 지방족 폴리에스테르 수지는 생분해성은 우수하나 기계적 물성이 부족하다는 단점이 있다. 따라서 지방족 폴리에스테르 수지의 기계적 강도를 보완해 주기 위해 생분해성 수지의 제조 과정에 방향족 모노머를 포함시켜 합성시킴으로써 지방족-방향족 공중합체 형태의 생분해성 수지를 제조하는 방법이 개발되었다.These aliphatic polyester resins are excellent in biodegradability but have a disadvantage in that they lack mechanical properties. Therefore, a method of preparing a biodegradable resin in the form of an aliphatic-aromatic copolymer by synthesizing an aromatic monomer in the preparation of the biodegradable resin to complement the mechanical strength of the aliphatic polyester resin has been developed.
이와 같이 지방족-방향족 공중합체 형태의 생분해성 수지로 대표적인 것이 폴리(부틸렌 아디페이트-코-테레프탈레이트)(PBAT)이다. 상기 PBAT는 방향족 모노머로서 디메틸 테레프탈레이트와 지방족 모노머로서 1,4-부탄디올을 먼저 축중합 반응시켜 발생하는 메탄올을 제거한 뒤, 추가적으로 아디프산을 넣고 축중합 반응시켜 발생하는 물을 제거하는 방법으로 제조할 수 있다.Representative of such biodegradable resins in the form of aliphatic-aromatic copolymers is poly (butylene adipate-co-terephthalate) (PBAT). The PBAT is prepared by removing the methanol generated by first condensation polymerization of dimethyl terephthalate as an aromatic monomer and 1,4-butanediol as an aliphatic monomer, followed by additionally adding adipic acid to remove water generated by condensation polymerization. can do.
이때 방향족 모노머로서 통상 사용되는 것이 디메틸 테레프탈레이트(dimethyl terephthalate, DMT)이다. 디메틸 테레프탈레이트는 180℃이하의 반응 온도에서도 반응이 가능하여 반응을 쉽게 유도할 수 있다는 장점을 갖는다. 그러나, 고가라는 점 때문에 제조공정의 비용적 부담이 크다는 문제점이 있다.In this case, dimethyl terephthalate (DMT) is commonly used as an aromatic monomer. Dimethyl terephthalate has the advantage that the reaction can be easily induced even at a reaction temperature of less than 180 ℃. However, there is a problem that the cost burden of the manufacturing process is large because of the high price.
이에 디메틸 테레프탈레이트보다 저렴한 방향족 모노머를 사용하여 공중합체를 제조하고자 하는 노력이 계속되어 왔다. 대표적인 예로서 방향족 디카르복실산인 테레프탈산(terephthalic acid, PTA)을 공중합체의 합성 반응에 이용하는 방법이 제시되었다. Accordingly, efforts have been made to prepare copolymers using aromatic monomers which are cheaper than dimethyl terephthalate. As a representative example, a method of using terephthalic acid (PTA), which is an aromatic dicarboxylic acid, in a synthesis reaction of a copolymer has been proposed.
그러나 상기와 같은 테레프탈산은 디메틸 테레프탈레이트와는 달리 용융점이 없고 고온에서 승화되는 성질이 있다. 또한, 테레프탈산은 생분해성 폴리에스테르 수지 제조과정에서 대표적인 지방족 모노머로 사용되는 1,4-부탄디올(1,4-butanediol, BDO)에는 상압하에서 225℃ 미만에서는 슬러리 상태로 존재하다가, 225℃ 이상의 온도에서 에스테르 반응이 일어나면서 투명한 용액상태로 변하게 되기 때문에, 테레프탈산과 1,4-부탄디올과의 균일한 반응을 유도하기 위해서는 225℃ 이상의 반응 온도가 요구된다. 그러나, 1,4-부탄디올의 경우 산성 조건하에서 190℃의 온도에 이르면 테트라하이드로퓨란(tetrahydrofuran, THF)으로 변환되어 버리기 때문에, 테레프탈산과 같은 고온의 반응 조건이 요구되는 방향족 모노머와의 공중합체 제조과정에서 테트라하이드로퓨란으로 변환되는 양을 감안하여 과량으로 1,4-부탄디올이 사용되어야 한다는 문제점이 있다. However, unlike the dimethyl terephthalate, such terephthalic acid has no melting point and has a property of sublimation at high temperature. In addition, terephthalic acid is present in 1,4-butanediol (BDO), which is used as a representative aliphatic monomer in the biodegradable polyester resin manufacturing process, in a slurry state below 225 ° C under normal pressure, and at a temperature of 225 ° C or higher. As the ester reaction occurs and becomes a transparent solution, a reaction temperature of 225 ° C. or higher is required to induce a uniform reaction between terephthalic acid and 1,4-butanediol. However, since 1,4-butanediol is converted into tetrahydrofuran (THF) when the temperature reaches 190 ° C under acidic conditions, copolymers with aromatic monomers requiring high temperature reaction conditions such as terephthalic acid are required. In consideration of the amount converted to tetrahydrofuran in the 1,4-butanediol must be used in excess.
본 발명에서는 이러한 지방족 디히드록시 화합물의 변환을 막기 위해 지방족 디히드록시 화합물을 비교적 저온에서 반응이 가능한 아디프산과 같은 지방족 디카르복실산 화합물과 먼저 반응시킨 후, 테레프탈산과 같은 방향족 디카르복실산 화합물을 반응시키고 있다.In the present invention, in order to prevent the conversion of the aliphatic dihydroxy compound, the aliphatic dihydroxy compound is first reacted with an aliphatic dicarboxylic acid compound such as adipic acid which can be reacted at a relatively low temperature, and then aromatic dicarboxylic acid such as terephthalic acid. The compound is reacting.
그러나, 여전히 상기 PBAT는 1,4-부타디올과 아디프산의 반응 후에 고온의 반응 조건이 요구되는 테레프탈산과 같은 방향족 모노머가 투입되어 에스테르화 반응이 진행될 수 있는 반응 온도까지 승온 단계에서 1,4-부탄디올의 THF로의 변환으로 인한 1,4-부탄디올의 부족으로 미반응된 테레프탈산이 다량 존재하는 문제점이 있다.However, the PBAT is still 1,4 at a temperature increase step up to a reaction temperature at which an aromatic monomer, such as terephthalic acid, which requires high temperature reaction conditions after the reaction of 1,4-butadiol and adipic acid is introduced, may proceed with the esterification reaction. There is a problem in that a large amount of unreacted terephthalic acid exists due to a lack of 1,4-butanediol due to conversion of butanediol to THF.
특히 승온단계에서 에스테르화 반응이 일어나는 온도까지 시간이 길어질수록 발생하는 THF의 양이 증가하게 되어, 1,4-부탄디올 양이 부족하게 되므로, 최종 축중합 단계에서 충분한 중합도를 얻을 수 없다.In particular, the longer the time up to the temperature at which the esterification reaction occurs in the temperature increase step, the amount of THF generated increases, and the amount of 1,4-butanediol is insufficient, so that sufficient degree of polymerization cannot be obtained in the final condensation polymerization step.
따라서 테레프탈산 에스테르화 단계에서 승온속도를 증가시키기 위한 설비가 필요하므로 비용이 발생하게 되고 반응기내 코일을 설치하게 되면 교반시 반응물의 유동을 방해하게 되어 반응성이 떨어질 수 있다.Therefore, since a facility for increasing the temperature increase rate is required in the terephthalic acid esterification step, the cost is generated, and if the coil is installed in the reactor, it may interfere with the flow of the reactant when stirring, thereby decreasing the reactivity.
이에 본 발명자들은 생분해성 폴리에스테르 공중합체 수지 제조과정에서, 에스테르 반응의 승온 단계에서 THF의 변환으로 부족되는 1,4-부탄디올을 보완하기 위하여 에스테르화 반응 말미에 소량의 1,4-부탄디올을 추가 투입하여 미반응된 테레프탈산을 모두 반응시켜 완전한 올리고머의 형성을 유도할 수 있음을 밝히고 본 발명을 완성하였다.Accordingly, the present inventors added a small amount of 1,4-butanediol at the end of the esterification reaction to compensate for the lack of 1,4-butanediol due to the conversion of THF in the step of raising the temperature of the ester reaction in the biodegradable polyester copolymer resin manufacturing process. The present invention was completed by revealing that unreacted terephthalic acid can be reacted to induce the formation of a complete oligomer.
본 발명이 해결하고자 하는 과제는 에스테르 반응시 미반응 방향족 모노머를 모두 반응시켜 완전한 올리고머의 형성을 유도함으로써 충분한 물성에 도달할 수 있는 생분해성 폴리에스테르 공중합체 수지의 제조방법을 제공하는 것이다.The problem to be solved by the present invention is to provide a method for producing a biodegradable polyester copolymer resin that can achieve sufficient physical properties by reacting all unreacted aromatic monomers during the ester reaction to induce the formation of a complete oligomer.
상기 과제를 해결하기 위하여, 본 발명은In order to solve the above problems, the present invention
지방족 디히드록시 화합물, 지방족 디카르복실산 화합물 및 방향족 디카르복실산 화합물을 에스테르화 반응시켜 올리고머를 형성하는 단계를 포함하고,Esterifying the aliphatic dihydroxy compound, aliphatic dicarboxylic acid compound and aromatic dicarboxylic acid compound to form an oligomer,
여기서 상기 에스테르화 반응은 1차 에스테르화 반응과 1차 반응보다 고온에서 진행되는 2차 에스테르화 반응을 포함하고, 상기 지방족 디히드록시 화합물은 2차 에스테르화 반응 동안 추가 투입되는 것인 생분해성 폴리에스테르 공중합체 수지의 제조방법을 제공한다.Wherein the esterification reaction comprises a primary esterification reaction and a secondary esterification reaction that proceeds at a higher temperature than the first reaction, and the aliphatic dihydroxy compound is further added during the secondary esterification reaction. It provides a method for producing an ester copolymer resin.
본 발명에 따른 생분해성 폴리에스테르 공중합체 수지의 제조방법에서, 지방족 디히드록시 화합물, 지방족 디카르복실산 화합물 및 방향족 디카르복실산 화합물을 동시에 투입하여 1차 및 2차 에스테르화 반응을 진행할 수 있으며, 또한, 1차 에스테르화 반응시에 지방족 디히드록시 화합물과 지방족 디카르복실산 화합물이 투입되고, 2차 에스테르화 반응시에 방향족 디카르복실산 화합물을 투입하여 반응을 진행할 수 있다.In the method for producing a biodegradable polyester copolymer resin according to the present invention, an aliphatic dihydroxy compound, an aliphatic dicarboxylic acid compound and an aromatic dicarboxylic acid compound may be simultaneously added to proceed with primary and secondary esterification reactions. In addition, an aliphatic dihydroxy compound and an aliphatic dicarboxylic acid compound may be added during the primary esterification reaction, and an aromatic dicarboxylic acid compound may be added during the secondary esterification reaction to proceed with the reaction.
상기 추가 투입되는 지방족 디히드록시 화합물은 지방족 및 방향족 디카르복실산 총량 기준 1몰 대비 0.05 내지 0.5몰의 범위 내인 것이 바람직하고, 상기 지방족 디히드록시 화합물의 추가 투입은 2차 에스테르화 반응 동안 응축기 유출액이 나오지 않는 시점에 투입되는 것이 바람직하다.The additionally added aliphatic dihydroxy compound is preferably in the range of 0.05 to 0.5 moles relative to 1 mole based on the total amount of aliphatic and aromatic dicarboxylic acids, and further addition of the aliphatic dihydroxy compound is carried out during the secondary esterification reaction. It is preferred to be introduced at the time when the effluent does not come out.
바람직하게, 상기 지방족 디히드록시 화합물은 1,2-에탄디올, 1,3-프로판디올, 1,2-부탄디올, 1,6-헥산디올, 1,4-헥산디올, 1,4-부탄디올, 1,4-시클로헥산디올, 1,4-시클로헥산디메틸란올 및 네오펜틸 글리콜 및 이들의 혼합물로 이루어진 군에서 선택되는 것이다.Preferably, the aliphatic dihydroxy compound is 1,2-ethanediol, 1,3-propanediol, 1,2-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,4-butanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethylranol and neopentyl glycol and mixtures thereof.
바람직하게, 상기 지방족 디카르복실산 화합물은 하기 화학식 1로 표현되는 화합물, 그 무수물 또는 유도체인 것이다:Preferably, the aliphatic dicarboxylic acid compound is a compound represented by the following formula (1), anhydride or derivative thereof:
[화학식 1][Formula 1]
HOOC-(CH2)n-COOHHOOC- (CH2) n-COOH
상기 식에서 n은 2 내지 12이다.Wherein n is from 2 to 12.
또한, 상기 방향족 디카르복실산 화합물은 프탈산(phthalic acid, PA), 무수 프탈산(phthalic anhydride), 이소프탈산(isophthalic acid, IPA), 테레프탈산(terephthalic acid, TPA), 나프탈렌-2,6-디카르복실산(naphthalene-2,6-dicarboxylic acid), 이들의 무수물 및 유도체로 이루어진 그룹에서 선택되는 1종 이상인 것이 바람직하다.In addition, the aromatic dicarboxylic acid compound is phthalic acid (phthalic acid, PA), phthalic anhydride (isophthalic acid (IPA), terephthalic acid (TPA), naphthalene-2,6-dicar It is preferably one or more selected from the group consisting of acids (naphthalene-2,6-dicarboxylic acid), anhydrides and derivatives thereof.
또한, 상기 1차 반응은 160~185℃ 범위의 온도에서 먼저 진행되고, 2차 반응은 225~250℃ 범위의 온도에서 순차적으로 진행되는 것이 바람직하다.In addition, the first reaction proceeds first at a temperature in the range of 160 ~ 185 ℃, the second reaction is preferably proceeded sequentially at a temperature in the range of 225 ~ 250 ℃.
아울러, 본 발명에 따른 생분해성 폴리에스테르 공중합체 수지의 제조방법에서 상기 1차 및 2차 반응에 의해 얻어진 지방족-방향족 올리고머를 220~250℃, 2torr 미만의 진공도에서 40~300분간 중축합 반응시키는 단계를 추가로 포함하는 것이 바람직하다.In addition, the poly-condensation reaction of the aliphatic-aromatic oligomer obtained by the first and second reaction in the method for producing a biodegradable polyester copolymer resin according to the present invention at 220-250 ° C., a vacuum degree of less than 2 torr for 40 to 300 minutes It is preferred to further comprise a step.
또한, 상기 중축합 반응 후 사슬 연장제를 투입하여 반응시키는 단계를 추가로 포함하는 것이 바람직하다.In addition, it is preferable to further include the step of reacting by adding a chain extender after the polycondensation reaction.
본 발명의 효과는 다음과 같다.The effects of the present invention are as follows.
첫 번째, 본 발명은 생분해성 폴리에스테르 공중합체 수지의 제조시 2차 에스테르화 반응을 위한 승온 단계에서 THF의 변환으로 유실되는 1,4-부탄디올을 보완하기 위하여 2차 에스테르화 반응 말미에 소량의 1,4-부탄디올을 추가 투입하여 1,4-부탄디올과 반응되지 못한 방향족 디카르복실산을 반응시켜 완전한 올리고머의 형성을 유도할 수 있다.First, the present invention provides a small amount at the end of the secondary esterification reaction to compensate for 1,4-butanediol lost in the conversion of THF in the elevated temperature step for the secondary esterification reaction in the preparation of the biodegradable polyester copolymer resin. Additional 1,4-butanediol may be added to react the aromatic dicarboxylic acid not reacted with 1,4-butanediol to induce the formation of a complete oligomer.
두 번째, 미반응 방향족 디카르복실산을 효과적으로 제어하여 최종적으로 얻어지는 공중합체가 충분한 물성에 도달할 수 있다.Second, the copolymer finally obtained by effectively controlling the unreacted aromatic dicarboxylic acid can reach sufficient physical properties.
본 발명은 생분해성 폴리에스테르 공중합체 수지의 제조과정에서 지방족 디히드록시 화합물, 지방족 디카르복실산 화합물 및 방향족 디카르복실산 화합물을 에스테르화 반응시켜 올리고머를 형성시키되, 2차 에스테르화 반응의 승온 단계에서 유실되는 지방족 디히드록시 화합물을 보충하기 위하여 2차 에스테르화 반응 말미에 지방족 디히드록시 화합물을 추가 투입하여 미반응되는 방향족 디카르복실산 화합물을 제어하여 완전한 올리고머를 형성할 수 있는 생분해성 폴리에스테르 공중합체 수지의 제조방법에 관한 것이다. In the present invention, an aliphatic dihydroxy compound, an aliphatic dicarboxylic acid compound, and an aromatic dicarboxylic acid compound are esterified to prepare an oligomer in the process of preparing a biodegradable polyester copolymer resin, but the temperature of the secondary esterification reaction is increased. Biodegradable to form a complete oligomer by controlling the unreacted aromatic dicarboxylic acid compound by adding an aliphatic dihydroxy compound at the end of the second esterification reaction to supplement the aliphatic dihydroxy compound lost in the step. It relates to a method for producing a polyester copolymer resin.
상기 공중합체는 지방족 디히드록시 화합물과 지방족 및 방향족 디카르복실산 화합물의 반응으로 얻어지는 지방족-방향족 폴리에스테르이다.The copolymer is an aliphatic-aromatic polyester obtained by reaction of an aliphatic dihydroxy compound with an aliphatic and aromatic dicarboxylic acid compound.
보다 구체적으로, 본 발명은 지방족 디히드록시 화합물, 지방족 디카르복실산 화합물, 및 방향족 디카르복실산 화합물을 에스테르화 반응시켜 올리고머를 형성하는 단계를 포함하고, 여기서 상기 에스테르화 반응은 1차 에스테르화 반응과 1차 반응보다 고온에서 진행되는 2차 에스테르화 반응을 포함하고, 상기 지방족 디히드록시 화합물은 2차 에스테르화 반응 동안 추가 투입되는 것인 생분해성 폴리에스테르 공중합체 수지의 제조방법을 제공한다.More specifically, the present invention includes esterifying an aliphatic dihydroxy compound, an aliphatic dicarboxylic acid compound, and an aromatic dicarboxylic acid compound to form an oligomer, wherein the esterification reaction is a primary ester. And a secondary esterification reaction proceeding at a higher temperature than the primary reaction and the primary reaction, wherein the aliphatic dihydroxy compound is added during the secondary esterification reaction to provide a method for preparing a biodegradable polyester copolymer resin. do.
여기서, 지방족 디히드록시 화합물, 지방족 디카르복실산 화합물, 및 방향족 디카르복실산 화합물을 동시에 투입하여 1차 및 2차 에스테르화 반응을 진행할 수 있으며, 또는 지방족 디히드록시 화합물과 지방족 디카르복실산 화합물을 투입하여 1차 에스테르화 반응을 진행한 후, 방향족 디카르복실산 화합물을 투입하여 2차 에스테르화 반응을 진행할 수 있다.Here, the aliphatic dihydroxy compound, the aliphatic dicarboxylic acid compound, and the aromatic dicarboxylic acid compound may be simultaneously added to proceed with the primary and secondary esterification reactions, or the aliphatic dihydroxy compound and the aliphatic dicarboxyl compound. After the acid compound is added to carry out the first esterification reaction, the aromatic dicarboxylic acid compound may be added to the second esterification reaction.
본 발명에서 상기 지방족 디히드록시 화합물로 사용될 수 있는 것은 지방족-방향족 폴리에스테르 생분해성 수지의 제조에서 출발물질로 사용되는 지방족 디히드록시 화합물이라면 제한 없이 사용가능하다. 특히 고온의 반응에서 변환되어 버릴 가능성이 큰 지방족 디히드록시 화합물의 경우 유리하게 사용될 수 있고, 구체적으로 탄소 원자수 2 내지 6의 디올, 특히 1,2-에탄디올, 1,3-프로판디올, 1,2-부탄디올, 1,6-헥산디올, 1,4-헥산디올, 1,4-부탄디올, 1,4-시클로헥산디올, 1,4-시클로헥산디메틸란올 및 네오펜틸 글리콜 또는 그의 혼합물이 바람직하며, 특히 바람직하게는 1,4-부탄디올이다. As the aliphatic dihydroxy compound in the present invention, any aliphatic dihydroxy compound used as a starting material in the preparation of aliphatic-aromatic polyester biodegradable resins can be used without limitation. Particularly in the case of aliphatic dihydroxy compounds which are likely to be converted in a high temperature reaction, they may be advantageously used, and in particular, diols having 2 to 6 carbon atoms, especially 1,2-ethanediol, 1,3-propanediol, 1,2-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,4-butanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethylranol and neopentyl glycol or mixtures thereof Preferred, and particularly preferably 1,4-butanediol.
또한, 상기 지방족 디카르복실산 화합물로는 이 분야에 일반적으로 사용되는 것이 사용될 수 있으며, 비교적 저온 반응이 가능한 것이 보다 바람직하다. 구체적으로 상기 지방족 디카르복실산 화합물로는 하기 화학식 1로 표현되는 화합물, 그의 무수물 또는 유도체를 사용할 수 있다.In addition, as the aliphatic dicarboxylic acid compound, those generally used in the art may be used, and a relatively low temperature reaction is more preferable. Specifically, the aliphatic dicarboxylic acid compound may be a compound represented by the following formula (1), anhydrides or derivatives thereof.
[화학식 1][Formula 1]
HOOC-(CH2)n-COOHHOOC- (CH2) n-COOH
상기 식에서 n은 2 내지 12이다. 바람직하게 상기 n은 2 내지 8의 것을 사용한다. Wherein n is from 2 to 12. Preferably n is used in 2 to 8.
이러한 지방족 디카르복실산 화합물의 구체적 예로는 숙신산(succinic acid, SA), 글루타르산(glutaric acid, GA) 또는 아디프산(adipic acid, AA) 또한 이들의 무수물 및 유도체가 가능하게 사용된다.Specific examples of such aliphatic dicarboxylic acid compounds include succinic acid (SA), glutaric acid (GA) or adipic acid (AA), as well as anhydrides and derivatives thereof.
본 발명에서는 상기 방향족 디카르복실산 화합물로서 프탈산(phthalic acid, PA), 무수 프탈산(phthalic anhydride), 아이소프탈산(isophthalic acid, IPA), 테레프탈산(terephthalic acid, TPA) 나프탈렌-2,6-디카르복실산(naphthalene-2,6-dicarboxylic acid), 이들의 무수물 또는 유도체를 사용하였지만 이에 한정되는 것은 아니며, 지방족 폴리에스테르의 단일 중합체로 이루어지는 생분해성 수지의 기계적 물성을 향상시키기 위한 목적으로 사용되는 방향족 모노머로서, 특히 고온에서 지방족 디히드록시 화합물과의 에스테르화 반응이 유도되는 방향족 디카르복실산 화합물이라면 유리하게 사용될 수 있다.In the present invention, phthalic acid (phthalic acid, PA), phthalic anhydride, isophthalic acid (IPA), terephthalic acid (TPA) naphthalene-2,6-dicar as the aromatic dicarboxylic acid compound. Aromatics used for the purpose of improving the mechanical properties of biodegradable resins consisting of homopolymers of aliphatic polyesters, including but not limited to acids (naphthalene-2,6-dicarboxylic acid), anhydrides or derivatives thereof. As the monomer, especially an aromatic dicarboxylic acid compound in which an esterification reaction with an aliphatic dihydroxy compound is induced at a high temperature can be advantageously used.
방향족 디카르복실산 화합물의 일 실시예로서 테레프탈산(terephthalicacid, PTA)은 통상 방향족 모노머로 사용되는 디메틸 테레프탈레이트(dimethyl terephthalate, DMT)에 비해 저가라는 장점이 있는 반면, 185℃ 이하의 온도에서도 반응이 가능한 디메틸 테레프탈레이트와 달리, 225℃ 이상의 온도에서 비로소 지방족 디히드록시 화합물과의 균일한 에스테르화 반응을 유도할 수 있다.As an example of an aromatic dicarboxylic acid compound, terephthalic acid (PTA) has the advantage of being inexpensive compared to dimethyl terephthalate (DMT), which is usually used as an aromatic monomer, while the reaction is performed at a temperature below 185 ° C. Unlike possible dimethyl terephthalates, it is only possible to induce uniform esterification reactions with aliphatic dihydroxy compounds at temperatures above 225 ° C.
그러나 본 발명에서 지방족 디히드록시 화합물의 일 실시예로 사용하는 1,4-부탄디올(1,4-butanediol, BDO)의 경우에는 190℃ 이상의 온도에서 테트라하이드로퓨란(tetrahydrofuran, THF)으로 변환되기 때문에, 2차 반응을 위한 승온 단계에서 변환된다.However, in the case of 1,4-butanediol (BDO) used as an example of an aliphatic dihydroxy compound in the present invention, since it is converted to tetrahydrofuran (THF) at a temperature of 190 ° C. or higher. In the temperature rising step for the secondary reaction.
본 발명에서는 이러한 지방족 디히드록시 화합물의 변환을 보완하기 위하여, 2차 에스테르화 반응 말미에 지방족 디히드록시 화합물을 추가 투입하여 완전한 올리고머의 형성을 유도한다.In the present invention, to supplement the conversion of the aliphatic dihydroxy compound, an aliphatic dihydroxy compound is added at the end of the secondary esterification reaction to induce the formation of a complete oligomer.
한편, 지방족 디히드록시 화합물과 지방족 디카르복실산 화합물을 먼저 반응시키는 것은 모노머 상태로 존재하는 지방족 디히드록시 화합물의 양을 최소화 할 수 있으므로, 이후 방향족 디카르복실산과의 고온 반응에서 지방족 디히드록시 화합물이 변환되는 양을 감소시킬 수 있다.On the other hand, reacting the aliphatic dihydroxy compound and the aliphatic dicarboxylic acid compound first can minimize the amount of the aliphatic dihydroxy compound present in the monomer state, and thus, the aliphatic dihydride in the high temperature reaction with the aromatic dicarboxylic acid. It is possible to reduce the amount of conversion of the oxy compound.
상기 지방족 디카르복실산 화합물에 포함된 2개의 카르복실산은 지방족 디히드록시 화합물에 포함된 히드록시기와 에스테르화 반응을 한다. 이때 지방족 디카르복실산 화합물은 지방족 디히드록시 화합물에 대해 당량을 조절함으로써, 1 지방족 디카르복실산 화합물에 대해 1 지방족 디히드록시 화합물이 결합하여 고정될 수 있으며, 또한 2 지방족 디히드록시 화합물이 결합하여 고정될 수 있다.The two carboxylic acids included in the aliphatic dicarboxylic acid compound undergo esterification with the hydroxyl group included in the aliphatic dihydroxy compound. At this time, the aliphatic dicarboxylic acid compound may be fixed by combining an aliphatic dihydroxy compound with respect to the aliphatic dihydroxy compound, by adjusting the equivalent amount with respect to the aliphatic dihydroxy compound, and also the aliphatic dihydroxy compound. This can be fixed in combination.
구체적으로, 본 발명에서 지방족 디히드록시 화합물의 일 실시예로 사용되는 1,4-부탄디올은 아디프산과 반응하여 AA-BDO 형태의 올리고머 또는 BDO-AA-BDO 형태의 올리고머를 형성한다.Specifically, 1,4-butanediol used as an example of an aliphatic dihydroxy compound in the present invention reacts with adipic acid to form an oligomer of AA-BDO form or an oligomer of BDO-AA-BDO form.
상기 지방족 디히드록시 화합물과 지방족 디카르복실산 화합물과의 반응이 우세한 1차 에스테르화 반응은 그 에스테르화 반응으로부터 유출되는 물이 이론적으로 계산되는 유출량에 도달되어 더 이상 유출수가 발생하지 않는 시점(즉, 지방족 디카르복실산 화합물에 포함된 카르복실산의 총 몰수에 해당되는 물의 양)에서 종료시킨다.The primary esterification reaction in which the reaction between the aliphatic dihydroxy compound and the aliphatic dicarboxylic acid compound is predominant is performed when the water flowing out of the esterification reaction reaches the effluent theoretically calculated and no more effluent occurs ( That is, the amount of water corresponding to the total number of moles of carboxylic acid contained in the aliphatic dicarboxylic acid compound) is terminated.
상기 1차 에스테르화 반응은 160 내지 185℃의 온도 범위에서 진행되는 것이 바람직하며, 1차 에스테르화 반응보다 고온인 2차 에스테르화 반응은 225 내지 250℃의 온도 범위에서 진행시킨다. 구체적으로, 방향족 디카르복실산 화합물로서 테레프탈산(PTA)을 사용할 경우에는 225℃ 이상의 온도에서 에스테르화 반응이 균일하게 진행되므로 2차 반응의 온도는 225~250℃ 범위로 하는 것이 바람직하다.The primary esterification reaction is preferably carried out at a temperature range of 160 to 185 ℃, the secondary esterification reaction is higher than the primary esterification reaction proceeds at a temperature range of 225 to 250 ℃. Specifically, when terephthalic acid (PTA) is used as the aromatic dicarboxylic acid compound, since the esterification reaction proceeds uniformly at a temperature of 225 ° C or higher, the temperature of the secondary reaction is preferably in the range of 225 to 250 ° C.
상기 설명된 바와 같이, 1,4-부탄디올과 같은 지방족 디히드록시 화합물의 경우에는 190℃ 이상의 온도에서 테트라하이드로퓨란(tetrahydrofuran, THF)으로 변환되기 때문에, 2차 반응이 진행되면서 방향족 디카르복실산과 올리고머를 형성해야 할 1,4-부탄디올이 변환되기 때문에, 방향족 디카르복실산이 미반응되어 남아 있을 수 있으며, 이 미반응된 방향족 디카르복실산을 반응시키기 위해, 2차 반응의 말미에서 1,4-부탄디올과 같은 지방족 디히드록시 화합물을 소량 추가 투입하여 완전한 올리고머 형성을 유도한다.As described above, aliphatic dihydroxy compounds such as 1,4-butanediol are converted to tetrahydrofuran (THF) at a temperature of 190 ° C. or higher, so that the secondary reaction proceeds with aromatic dicarboxylic acid. Since the 1,4-butanediol which should form the oligomer is converted, the aromatic dicarboxylic acid may remain unreacted, and in order to react this unreacted aromatic dicarboxylic acid, at the end of the secondary reaction, A small amount of aliphatic dihydroxy compound such as 4-butanediol is added to induce complete oligomer formation.
이 경우, 추가 투입되는 지방족 디히드록시 화합물의 양은 지방족 디히드록시 화합물의 전환율을 고려하여 선택될 수 있으며, 바람직하게는 지방족 및 방향족 디카르복실산 총량 기준 1몰 대비 0.05몰 내지 0.5몰의 범위 내에서 추가 투입되는 것이다. 여기서, 0.05몰보다 적을 경우 추가 투입효과가 나타나지 않으며, 0.5몰보다 많을 경우 1,4-부탄디올의 사용량을 최소화 하고자 하는 본 발명의 취지에 벗어난다.In this case, the amount of the aliphatic dihydroxy compound to be added may be selected in consideration of the conversion rate of the aliphatic dihydroxy compound, preferably in the range of 0.05 mol to 0.5 mol relative to 1 mol based on the total amount of aliphatic and aromatic dicarboxylic acid Will be added within. Here, if less than 0.05 mole does not appear an additional input effect, when more than 0.5 mole deviates from the purpose of the present invention to minimize the amount of 1,4-butanediol used.
또한, 추가 투입되는 시기는 2차 반응후 응축기 유출액이 더 이상 나오지 않는 시점에 투입되는 것이 바람직하다.In addition, the addition time is preferably added at a time when the condenser effluent no longer comes out after the second reaction.
상기 지방족 디히드록시 화합물의 사용량은 목적으로 하는 에스테르화 반응에서 요구되는 범위 내에서 사용될 수 있으며, 지방산 및 방향족 디카르복실산 화합물의 1몰에 대하여 1.0몰 이상으로 투입될 수 있으며, 바람직하게는 1.3몰 이상으로 투입되는 것이다. 지방족 디카르복실산 화합물과 방향족 디카르복실산 화합물은 0.4 ~ 0.9 : 0.1 ~ 0.6의 몰비로 사용되는 것이 생분해성이라는 측면에서 바람직하며, 보다 바람직하게는 0.52 : 0.48의 몰비로 사용되는 것이다. 생분해성이 요구되지 않는 경우, 지방족 디카르복실산과 화합물과 방향족 디카르복실산 화합물은 보다 다양한 몰비로 반응될 수 있다.The amount of the aliphatic dihydroxy compound may be used within the range required in the intended esterification reaction, and may be added in an amount of 1.0 mole or more with respect to 1 mole of the fatty acid and the aromatic dicarboxylic acid compound, preferably 1.3 moles or more will be added. The aliphatic dicarboxylic acid compound and the aromatic dicarboxylic acid compound are preferably used in a molar ratio of 0.4 to 0.9: 0.1 to 0.6 in terms of biodegradability, and more preferably used in a molar ratio of 0.52: 0.48. If biodegradability is not required, the aliphatic dicarboxylic acid and the compound and the aromatic dicarboxylic acid compound can be reacted in more various molar ratios.
상기 1차 및 2차 반응은 상압 하에서 연속식 또는 배치(batch)식으로 수행될 수 있다.The primary and secondary reactions can be carried out continuously or batchwise under atmospheric pressure.
본 발명은 상기 1차 및 2차 반응에 의해 지방족-방향족 폴리에스테르 공중합체를 수득한 다음에는 이후 중축합 반응 또는 사슬 연장 반응을 통해 분자량을 증가시킴으로써 원하는 물성을 갖는 생분해성 수지를 얻을 수 있다.According to the present invention, after the aliphatic-aromatic polyester copolymer is obtained by the first and second reactions, a biodegradable resin having desired properties can be obtained by increasing the molecular weight through a polycondensation reaction or a chain extension reaction.
바람직하게 본 발명은 1, 2차 반응으로부터 얻어지는 지방족-방향족 올리고머에 2 torr 미만의 진공 상태 및 220~250℃ 범위의 온도에서 40~300분간 중축합 반응시킨다.Preferably, the present invention polycondensates the aliphatic-aromatic oligomers obtained from the first and second reactions for 40 to 300 minutes at a vacuum in a vacuum of less than 2 torr and at a temperature in the range of 220 to 250 ° C.
상기와 같은 중축합 반응은 1, 2차 반응으로부터 생성된 올리고머 수준 또는 아직 바람직한 분자량에 이르지 못한 중합체들 사이에 반응을 일으키기 위한 것으로, 이를 위해서는 중합체 말단 또는 중합체 사슬에 포함되어 있는 반응하지 않고, 남아있는 관능기를 통한 축중합 반응을 진행시켜야 하므로, 진공 및 고온의 반응 조건에서 진행시킨다. 상기 중축합 반응의 반응 시간은 후술될 촉매의 사용량 및 투입 방법에 따라 조절될 수 있다.Such polycondensation reactions are intended to cause reactions between oligomer levels generated from the first and second reactions or between polymers that have not yet reached the desired molecular weight. Since the polycondensation reaction must proceed through the functional group, it proceeds in the reaction conditions of vacuum and high temperature. The reaction time of the polycondensation reaction may be adjusted according to the amount of the catalyst to be described later and the input method.
또한 본 발명에서는 상기 1, 2차 반응으로부터 얻어지는 지방족-방향족 폴리에스테르 공중합체를 중축합 반응시킨 것을 둘 이상 연결하기 위하여 사슬 연장제를 투입하여 반응시키는 사슬 연장 반응을 진행한다. 상기 사슬 연장제로는 다가 이소시아네이트 화합물, 방향족 아민계 화합물 등을 사용한다. 바람직하게 사슬 연장제는 공중합체에 대하여 0.1~5중량부로 사용할 수 있다. In addition, in the present invention, in order to connect two or more poly-condensation reactions of the aliphatic-aromatic polyester copolymer obtained from the first and second reactions, a chain extension reaction is carried out by adding a chain extender. As the chain extender, a polyisocyanate compound, an aromatic amine compound, or the like is used. Preferably the chain extender may be used in an amount of 0.1 to 5 parts by weight based on the copolymer.
다가 이소시아네이트 화합물로는 2,4-톨루엔 디이소시아네이트, 2,6-톨루엔 디이소시아네이트, 디페닐메탄 디이소시아네이트, 크실릴렌 디이소시아네이트, 1,5-나프틸렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트 및 트리페닐메탄 트리이소시아네이트로 이루어지는 그룹에서 선택되는 1종 이상을 사용할 수 있고, 방향족 아민계 화합물로는 특히 3,5-디에틸-2,4-디아미노톨루엔과 3,5-디에틸-2,6-디아미노톨루엔이 20:80의 중량부로 혼합되어 있는 론자(Lonza)社의 DETDA80 제품을 사용할 수 있다.As the polyisocyanate compound, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, hexamethylene diisocyanate and triphenylmethane One or more selected from the group consisting of triisocyanates can be used, and examples of the aromatic amine compound include 3,5-diethyl-2,4-diaminotoluene and 3,5-diethyl-2,6-dia Lonza's DETDA80 product, which contains 20 to 80 parts by weight of minotoluene, can be used.
본 발명에서는 상기 1차 에스테르화 반응, 2차 에스테르화 반응, 중축합 반응 및 사슬 연장 반응에서는 임의로 분지 반응을 위해 선택적으로 2가 이상의 다가 관능기를 가지는 화합물(분지제)을 투입하여 분자량의 증가와 동시에 분지 구조(branching structure)의 중합체를 제조할 수 있다.In the present invention, in the first esterification reaction, the second esterification reaction, the polycondensation reaction and the chain extension reaction, a compound (branching agent) having a bivalent or higher polyvalent functional group is optionally added for branching reaction, thereby increasing the molecular weight and At the same time it is possible to produce polymers of branching structure.
상기 분지제로는 3관능 이상의 다가 알콜, 3관능 이상의 다가 카르복실산 또는 그 무수물 및 3관능 이상의 히드록시 카르복실산, 3관능 이상의 다가 아민으로 이루어진 군에서 선택된 1종 이상의 다관능성 화합물을 사용할 수 있다. 바람직한 분지제의 사용량은 지방족 및 방향족 디카르복실산 화합물 1몰에 대하여 0.1 내지 3g 사용할 수도 있다.As the branching agent, at least one polyfunctional compound selected from the group consisting of a trifunctional or higher polyhydric alcohol, a trifunctional or higher polyhydric carboxylic acid or its anhydride, a trifunctional or higher functional hydroxy carboxylic acid, and a trifunctional or higher polyvalent amine can be used. . A preferred amount of branching agent may be used in an amount of 0.1 to 3 g per mole of aliphatic and aromatic dicarboxylic acid compound.
본 발명에서 상기 분지제의 사용 유무 또는 그 사용량은 융용흐름지수, 인장/인열강도 등으로 나타나는 생분해성 수지의 물성에 큰 영향을 미치는 인자이다. 따라서 본 발명에서는 수지의 물성을 조절하기 위한 일 수단으로서 수지 제조의 상기 각 반응 단계에서 분지제의 사용 유무 및 사용량을 결정한다.In the present invention, the use of the branching agent or the amount of the branching agent is a factor that greatly affects the physical properties of the biodegradable resin represented by the melt flow index and the tensile / tear strength. Therefore, in the present invention, as a means for controlling the physical properties of the resin, the use of the branching agent and the amount of use of the branching agent in the respective reaction steps of the resin production is determined.
또한, 본 발명에서는 상기 반응들의 촉진 및 안정적인 반응 유도로 반응의 효율을 향상시키기 위해 촉매 또는 열안정제를 사용할 수 있다.In addition, in the present invention, a catalyst or a heat stabilizer may be used to improve the efficiency of the reaction by promoting the reactions and inducing a stable reaction.
상기 촉매로는 칼슘아세테이트, 망간아세테이트, 마그네슘아세테이트, 징크아세테이트, 모노부틸산화주석, 디부틸산화주석, 산화모노부틸히드록시주석, 옥틸화주석, 이염화디부틸주석, 테트라페닐주석, 테트라부틸주석, 테트라부틸티타네이트, 테트라메틸티타네이트, 테트라이소프로필티타네이트 및 테트라(2-에틸헥실)티타네이트가 사용될 수 있으며, 바람직하게 테트라부틸 티타네이트(Ti(OC4H9)4) 또는 Vertec®VEXP 0641(titanium type catalyst, Johnson Matthey) 등의 유기 티타늄 촉매를 사용한다. 바람직한 촉매의 사용량은 지방족 및 방향족 디카르복실산 화합물 1몰을 기준으로 0.1 내지 1.5g을 사용하는 것이다.The catalysts include calcium acetate, manganese acetate, magnesium acetate, zinc acetate, monobutyl tin oxide, dibutyl tin oxide, monobutyl hydroxy tin oxide, octyl tin, dibutyl tin dichloride, tetraphenyl tin, tetrabutyl tin, Tetrabutyl titanate, tetramethyl titanate, tetraisopropyl titanate and tetra (2-ethylhexyl) titanate can be used, preferably tetrabutyl titanate (Ti (OC4H9) 4) or Vertec® VEXP 0641 (titanium). organic catalysts such as type catalyst and Johnson Matthey). The preferred amount of catalyst is to use 0.1 to 1.5 g based on 1 mole of aliphatic and aromatic dicarboxylic acid compounds.
상기 열안정제로는 트리페닐 포스페이트 또는 트리메틸 포스페이트 등의 인화합물을 추가로 포함시켜 반응시킬 수 있다. 상기 인화합물은 분자량 증가 반응이 고온에서 진행될 때 열에 의한 분해를 방지하여 반응을 안정되게 유지시켜 주는 작용을 한다.The thermal stabilizer may further include a phosphorus compound such as triphenyl phosphate or trimethyl phosphate to react. The phosphorus compound acts to keep the reaction stable by preventing decomposition by heat when the molecular weight increase reaction proceeds at a high temperature.
이하 실시예를 통해 본 발명을 상세히 설명한다. 그러나 이는 발명의 이해를 용이하게 하기 위한 것일 뿐, 본 발명이 이에 한정되는 것으로 이해되어서는 안된다.The present invention will be described in detail through the following examples. However, this is only for facilitating the understanding of the present invention, and the present invention should not be construed as being limited thereto.
실시예 1Example 1
20L반응기에 39mol의 1,4-부탄디올(BDO)과 15.6mol의 아디프산(AA), 테트라부틸 티타네이트 9g, 트리페닐 포스페이트 3g, 분지제로서 사과산을 9g을 혼합한 후 175℃에서 1차 에스테르화 반응시켰다. 상기 1차 에스테르화 반응으로부터 유출되는 물이 이론적으로 계산되는 유출량에 도달되는 시점에서 반응을 종결시켰다.In a 20 L reactor, 39 mol of 1,4-butanediol (BDO), 15.6 mol of adipic acid (AA), 9 g of tetrabutyl titanate, 3 g of triphenyl phosphate, and 9 g of malic acid as a branching agent were mixed. The esterification reaction was carried out. The reaction was terminated when the water flowing out of the first esterification reaction reached the theoretically calculated flow rate.
다음으로 반응기에 14.4mol의 테레프탈산(PTA)을 투입한 후 80분에 걸쳐 230℃로 승온시키면서 2차 반응을 진행시켰다. 이어서 2차 반응이 시작된 후 응축기에서 유출액이 나오지 않는 시점에 6mol의 1,4-부탄디올을 추가 투입하여 반응을 진행시켰다. 반응은 더 이상 유출액이 발생하지 않고, 반응기 콘덴서의 상부 온도가 90℃이하로 떨어지는 시점에서 종결하였다. Next, 14.4 mol of terephthalic acid (PTA) was added to the reactor, followed by a secondary reaction while raising the temperature to 230 ° C. over 80 minutes. Subsequently, after the second reaction started, 6 mol of 1,4-butanediol was further added at the time when the effluent did not come out of the condenser. The reaction was terminated when no effluent occurred anymore and the top temperature of the reactor condenser dropped below 90 ° C.
이어서 상기 1, 2차 에스테르 반응(ES)으로부터 수득되는 반응물을 230℃, 1torr 미만의 진공도에서 135분간 중축합 반응(PC)시켜 생분해성 수지를 얻었다.Subsequently, the reaction product obtained from the above-mentioned primary and secondary ester reactions (ES) was polycondensation reaction (PC) for 135 minutes at 230 degreeC and the vacuum degree below 1 torr, and biodegradable resin was obtained.
실시예 2Example 2
20L 반응기에 39mol의 1,4-부탄디올(BDO), 15.6mol의 아디프산(AA), 및 14.4mol의 테레프탈산(PTA)을 투입하고, 테트라부틸 티타네이트 9g, 트리페닐 포스페이트 3g, 분지제로서 사과산을 9g을 혼합한 후 180℃에서 1차 에스테르화 반응시켰다. 상기 1차 에스테르화 반응으로부터 응축기를 통해 유출되는 물이 이론적으로 계산되는 유출량에 도달되고 더 이상 유출수가 발생하지 않는 시점에서 반응을 종결시켰다. 이어서 반응기의 온도를 80분에 걸쳐 230℃로 승온시키면서 2차 에스테르화 반응을 진행시켰다. 이어서 2차 반응이 시작된 후 유출액이 나오지 않는 시점에 6mol의 1,4-부탄디올을 추가 투입하여 반응을 진행시켰다. 반응은 더 이상 응축기에서 유출액이 발생하지 않고, 반응기 콘덴서의 상부 온도가 90℃이하로 떨어지는 시점에서 종결하였다. 39 mol of 1,4-butanediol (BDO), 15.6 mol of adipic acid (AA), and 14.4 mol of terephthalic acid (PTA) were charged to a 20-L reactor, and 9 g of tetrabutyl titanate, 3 g of triphenyl phosphate, and a branching agent were added. 9 g of malic acid was mixed and subjected to a primary esterification reaction at 180 ° C. The reaction was terminated when the water flowing out of the primary esterification reaction through the condenser reached the theoretically calculated effluent and no more effluent occurred. Subsequently, the secondary esterification reaction was advanced, raising the temperature of the reactor to 230 degreeC over 80 minutes. Subsequently, 6 mol of 1,4-butanediol was further added at the time when the effluent did not come out after the start of the secondary reaction to proceed with the reaction. The reaction was terminated when no more effluent was generated in the condenser and the top temperature of the reactor condenser dropped below 90 ° C.
이어서 상기 1, 2차 에스테르화 반응(ES)으로부터 수득되는 반응물을 243℃, 1torr 미만의 진공도에서 135분간 중축합 반응(PC)시켜 생분해성 수지를 얻었다.Subsequently, the reaction product obtained from the primary and secondary esterification reactions (ES) was subjected to polycondensation reaction (PC) for 135 minutes at a vacuum degree of 243 ° C. and less than 1 torr to obtain a biodegradable resin.
비교예 1Comparative Example 1
1,4-부탄디올을 추가 투입하지 않는 것만 제외하고, 실시예 1과 동일하게 반응시켜 생분해성 수지를 얻었다.A biodegradable resin was obtained in the same manner as in Example 1, except that 1,4-butanediol was not added additionally.
비교예 2Comparative Example 2
1,4-부탄디올을 추가 투입하지 않는 대신 처음부터 45mol을 첨가하는 것만 제외하고, 실시예 1과 동일하게 반응시켜 생분해성 수지를 얻었다.A biodegradable resin was obtained in the same manner as in Example 1, except that 45 mol was added at the beginning instead of adding 1,4-butanediol.
시험예 1Test Example 1
상기 실시예 1 및 비교예 1 내지 2에서 얻은 생분해성 수지에 대한 다음과 같은 물성을 평가하여 그 결과를 하기 표 1에 나타내었다.The following physical properties of the biodegradable resins obtained in Example 1 and Comparative Examples 1 and 2 were evaluated, and the results are shown in Table 1 below.
THF전환율 : 에스테르 반응시 발생하는 THF 함량은 가스 크로마토그래피를 이용하여 측정하였다 THF conversion rate : The THF content generated during ester reaction was measured by gas chromatography.
중량평균분자량 : 수지에 대하여 0.1중량%의 클로로포름 용액을 제조한 후, GPC(Gel Permeation Chromatography)(Agilent, HP 1100)를 이용하여 35℃에서 1ml/min의 유속으로 측정하였다. Weight average molecular weight : After preparing 0.1% by weight of chloroform solution to the resin, using a GPC (Gel Permeation Chromatography) (Agilent, HP 1100) was measured at a flow rate of 1ml / min at 35 ℃.
표 1
Figure PCTKR2013004157-appb-T000001
Table 1
Figure PCTKR2013004157-appb-T000001
상기 표 1를 통해 확인될 수 있는 바와 같이, 본 발명에 따른 생분해성 폴리에스테르 공중합체 수지는 분자량이 비교예에 비하여 높은 14만 내지 17만 사이인 것으로 미루어, 올리고머의 형성이 완전하게 이루어졌음을 확인할 수 있다.As can be confirmed through Table 1, the biodegradable polyester copolymer resin according to the present invention has a molecular weight of 140,000 to 170,000 higher than the comparative example, the formation of the oligomer was made completely You can check it.
표 2
Figure PCTKR2013004157-appb-T000002
TABLE 2
Figure PCTKR2013004157-appb-T000002
상기 표에서 THF가 가장 많이 발생하는 단계는 200℃에서 230℃까지의 승온단계임을 알 수 있다. 상기 승온단계에서는 에스테르 반응속도보다는 THF 변환 속도가 우세한 반면, 2차 에스테르화 반응단계에서는 THF가 발생하지만 에스테르화 반응이 더 우세하기 때문에 본 발명에서와 같이 승온단계에서 유실된 BOD를 보충하기 위하여 2차 에스테르화 반응 말미에 BOD를 추가 투입함으로써 최종 에스테르 반응을 완성시킬 수 있다.It can be seen that the step of generating the most THF in the table is a temperature raising step from 200 ° C to 230 ° C. THF conversion rate is superior to the ester reaction rate in the temperature increase step, while THF occurs in the second esterification step, but esterification is superior, so as to compensate for the BOD lost in the temperature increase step as in the present invention. The final ester reaction can be completed by adding BOD at the end of the primary esterification reaction.

Claims (11)

  1. 지방족 디히드록시 화합물, 지방족 디카르복실산, 및 방향족 디카르복실산 화합물을 에스테르화 반응시켜 올리고머를 형성하는 단계를 포함하고,Esterifying the aliphatic dihydroxy compound, aliphatic dicarboxylic acid, and aromatic dicarboxylic acid compound to form an oligomer,
    여기서 상기 에스테르화 반응은 1차 에스테르화 반응과 1차 반응보다 고온에서 진행되는 2차 에스테르화 반응을 포함하고, 상기 2차 에스테르화 반응 동안 지방족 디히드록시 화합물이 추가 투입되는 것인 생분해성 폴리에스테르 공중합체 수지의 제조방법.Wherein the esterification reaction comprises a primary esterification reaction and a secondary esterification reaction proceeding at a higher temperature than the primary reaction, and an additional aliphatic dihydroxy compound is added during the secondary esterification reaction. Method for producing ester copolymer resin.
  2. 제1항에 있어서,The method of claim 1,
    상기 1차 에스테르화 반응은 상기 지방족 디히드록시 화합물, 상기 지방족 디카르복실산 화합물 및 상기 방향족 디카르복실산 화합물을 동시에 투입하여 진행하는 것을 특징으로 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법.The primary esterification reaction is a method for producing a biodegradable polyester copolymer resin, characterized in that the aliphatic dihydroxy compound, the aliphatic dicarboxylic acid compound and the aromatic dicarboxylic acid compound at the same time is carried out.
  3. 제1항에 있어서,The method of claim 1,
    상기 지방족 디히드록시 화합물과 지방족 디카르복실산 화합물은 1차 에스테르화 반응시에 투입되고, 방향족 디카르복실산 화합물은 2차 에스테르화 반응시에 투입되어 에스테르화 반응이 진행되는 것을 특징으로 하는 생분해성 폴리에스테르 공중합체의 제조방법.The aliphatic dihydroxy compound and aliphatic dicarboxylic acid compound is added during the first esterification reaction, the aromatic dicarboxylic acid compound is added during the secondary esterification reaction characterized in that the esterification proceeds Method for producing biodegradable polyester copolymer.
  4. 제1항에 있어서,The method of claim 1,
    상기 추가 투입되는 지방족 디히드록시 화합물은 지방족 및 방향족 디카르복실산 총량 기준 1몰 대비 0.05 내지 0.5몰의 범위 내에서 투입되는 것을 특징으로 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법.The additionally added aliphatic dihydroxy compound is a method for producing a biodegradable polyester copolymer resin, characterized in that added in the range of 0.05 to 0.5 mole relative to 1 mole based on the total amount of aliphatic and aromatic dicarboxylic acid.
  5. 제1항에 있어서,The method of claim 1,
    상기 지방족 디히드록시 화합물의 추가 투입은 2차 반응 후 응축기 유출액이 더 이상 나오지 않는 시점에 투입되는 것을 특징으로 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법.The addition of the aliphatic dihydroxy compound is a method of producing a biodegradable polyester copolymer resin, characterized in that the input after the second reaction when the condenser effluent no longer comes out.
  6. 제1항에 있어서,The method of claim 1,
    상기 지방족 디히드록시 화합물은 1,2-에탄디올, 1,3-프로판디올, 1,2-부탄디올, 1,6-헥산디올, 1,4-헥산디올, 1,4-부탄디올, 1,4-시클로헥산디올, 1,4-시클로헥산디메틸란올 및 네오펜틸 글리콜 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법.The aliphatic dihydroxy compound is 1,2-ethanediol, 1,3-propanediol, 1,2-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,4-butanediol, 1,4 -Cyclohexanediol, 1,4-cyclohexanedimethylranol and neopentyl glycol and a mixture thereof, the method for producing a biodegradable polyester copolymer resin.
  7. 제1항에 있어서,The method of claim 1,
    상기 지방족 디카르복실산 화합물은 하기 화학식 1로 표현되는 화합물, 그 무수물 또는 유도체인 것을 특징으로 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법:The aliphatic dicarboxylic acid compound is a compound represented by the following formula (1), an anhydride or a derivative thereof, the method for producing a biodegradable polyester copolymer resin, characterized in that:
    [화학식 1][Formula 1]
    HOOC-(CH2)n-COOHHOOC- (CH2) n-COOH
    상기 식에서 n은 2 내지 12이다.Wherein n is from 2 to 12.
  8. 제1항에 있어서, The method of claim 1,
    상기 방향족 디카르복실산 화합물은 프탈산(phthalic acid, PA), 무수 프탈산(phthalic anhydride), 아이소프탈산(isophthalic acid, IPA), 테레프탈산(terephthalic acid, TPA), 나프탈렌-2,6-디카르복실산(naphthalene-2,6-dicarboxylic acid), 이들의 무수물 및 유도체로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법. The aromatic dicarboxylic acid compound is a phthalic acid (PA), phthalic anhydride (phthalic anhydride), isophthalic acid (IPA), terephthalic acid (terephthalic acid (TPA), naphthalene-2,6-dicarboxylic acid (naphthalene-2,6-dicarboxylic acid), a method for producing a biodegradable polyester copolymer resin, characterized in that at least one selected from the group consisting of anhydrides and derivatives thereof.
  9. 제1항에 있어서,The method of claim 1,
    상기 1차 반응을 160~185℃ 범위의 온도에서 먼저 진행하고, 2차 반응을 225~250℃ 범위의 온도에서 순차적으로 진행하는 것을 특징으로 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법.The first reaction proceeds first at a temperature in the range of 160 ~ 185 ℃, the second reaction proceeds sequentially at a temperature in the range of 225 ~ 250 ℃ characterized in that the method for producing a biodegradable polyester copolymer resin.
  10. 제1항에 있어서,The method of claim 1,
    상기 1차 및 2차 반응에 의해 얻어진 지방족-방향족 폴리에스테르 공중합체를 220~250℃, 2torr 미만의 진공도에서 40~300분간 중축합 반응시키는 단계를 추가로 포함하는 것을 특징으로 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법.Biodegradable polyester, characterized in that further comprising the step of polycondensation reaction of the aliphatic-aromatic polyester copolymer obtained by the first and second reaction at 220 ~ 250 ℃, less than 2torr for 40 to 300 minutes Method of producing copolymer resin.
  11. 제10항에 있어서,The method of claim 10,
    상기 중축합 반응 후 사슬 연장제를 투입하여 반응시키는 단계를 추가로 포함하는 것을 특징으로 하는 생분해성 폴리에스테르 공중합체 수지의 제조방법.Method for producing a biodegradable polyester copolymer resin, characterized in that further comprising the step of reacting by adding a chain extender after the polycondensation reaction.
PCT/KR2013/004157 2012-08-22 2013-05-10 Method for preparing biodegradable polyester copolymer resin WO2014030827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0091849 2012-08-22
KR1020120091849A KR20140026677A (en) 2012-08-22 2012-08-22 Method of preparation for biodegradable co-polyester resin

Publications (1)

Publication Number Publication Date
WO2014030827A1 true WO2014030827A1 (en) 2014-02-27

Family

ID=50150103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004157 WO2014030827A1 (en) 2012-08-22 2013-05-10 Method for preparing biodegradable polyester copolymer resin

Country Status (3)

Country Link
KR (1) KR20140026677A (en)
TW (1) TWI606091B (en)
WO (1) WO2014030827A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072935A (en) * 2019-12-18 2020-04-28 浙江恒澜科技有限公司 Heat-resistant biodegradable polyester and preparation method thereof
CN112920388A (en) * 2021-01-27 2021-06-08 唐山睿安科技有限公司 Biodegradable aliphatic-aromatic copolyester and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220242814A1 (en) * 2019-09-27 2022-08-04 Lg Chem, Ltd. Method for producing diester-based material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990009593A (en) * 1997-07-10 1999-02-05 김석태 Biodegradable Co-polyester Resin Composition and its Manufacturing Method
KR100254695B1 (en) * 1993-12-24 2000-05-01 조민호 Copolyester resin and its preparation method
JP2001098061A (en) * 2000-09-04 2001-04-10 Agency Of Ind Science & Technol Biodegradable polyester
KR20010055721A (en) * 1999-12-11 2001-07-04 김석태 Copolyester resin composition and a process of preparation thereof
KR100349595B1 (en) * 1998-06-03 2002-10-19 주식회사 엘지화학 Process for producing biodegradable copolyester
KR20120012930A (en) * 2010-08-03 2012-02-13 웅진케미칼 주식회사 Biodegradable polyester and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100254695B1 (en) * 1993-12-24 2000-05-01 조민호 Copolyester resin and its preparation method
KR19990009593A (en) * 1997-07-10 1999-02-05 김석태 Biodegradable Co-polyester Resin Composition and its Manufacturing Method
KR100349595B1 (en) * 1998-06-03 2002-10-19 주식회사 엘지화학 Process for producing biodegradable copolyester
KR20010055721A (en) * 1999-12-11 2001-07-04 김석태 Copolyester resin composition and a process of preparation thereof
JP2001098061A (en) * 2000-09-04 2001-04-10 Agency Of Ind Science & Technol Biodegradable polyester
KR20120012930A (en) * 2010-08-03 2012-02-13 웅진케미칼 주식회사 Biodegradable polyester and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072935A (en) * 2019-12-18 2020-04-28 浙江恒澜科技有限公司 Heat-resistant biodegradable polyester and preparation method thereof
CN112920388A (en) * 2021-01-27 2021-06-08 唐山睿安科技有限公司 Biodegradable aliphatic-aromatic copolyester and preparation method thereof

Also Published As

Publication number Publication date
TWI606091B (en) 2017-11-21
KR20140026677A (en) 2014-03-06
TW201408724A (en) 2014-03-01

Similar Documents

Publication Publication Date Title
WO2014021543A1 (en) Method for manufacturing biodegradable copolymer by split-injecting aromatic dicarboxylic acid compound
WO2012105770A2 (en) Polyester resin composition and a production method therefor
WO2014027736A1 (en) Method for preparing biodegradable aliphatic-aromatic polyester copolymer resin with improved hydrolysis resistance
WO2012134152A2 (en) Polyester resin resulting from the copolymerisation of lactic acid and isosorbide, and a production method therefor
WO2013032140A2 (en) Production method for a biodegradable polyester copolymer resin
KR20140076354A (en) Method for continuous production of biodegradable aliphatic/aromatic polyester copolymer
WO2014030827A1 (en) Method for preparing biodegradable polyester copolymer resin
WO2016068433A1 (en) Method for producing biodegradable polyester resin and biodegradable resin produced therefrom
JP5530490B2 (en) Transparent copolyester, method for preparing transparent copolyester, and article comprising transparent copolyester
KR20180046117A (en) Method of manufacturing biodegradable polyester resin
KR101792080B1 (en) Manufacturing method of elution type knitted fabric
WO2020032399A1 (en) Polyester resin and preparation method therefor
WO2020101131A1 (en) Functional resin composition comprising biomass-derived component
WO2016093395A1 (en) Biodegradable polyester resin and foam obtained therefrom
KR102365425B1 (en) Biodegradable resin composition having improved mechanical property, formability, and weatherproof and method for manufacturing the same
WO2017111261A1 (en) Method for preparing biodegradable polyester resin, and biodegradable polyester resin prepared by method
JP2000212266A (en) Preparation of flame-retardant polyester
WO2021086037A1 (en) Biodegradable copolymer polyester resin comprising anhydrosugar alcohol and anhydrousugar alcohol-alkylene glycol and method for preparing same
CN116589668A (en) Degradable copolyester, preparation method and product thereof
WO2021066512A1 (en) Polyester resin including diester compound and anhydrosugar alcohol, and method for preparing same
KR20220052191A (en) Biodegradable resin composition from natural materials having improved mechanical property and formability and method for manufacturing the same
JPH0131537B2 (en)
JPS61168626A (en) Production of copolyester resin
JPS6243416A (en) Production of polyester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830464

Country of ref document: EP

Kind code of ref document: A1