KR100308535B1 - Polyester resin composition and method for producing the same - Google Patents

Polyester resin composition and method for producing the same Download PDF

Info

Publication number
KR100308535B1
KR100308535B1 KR1019980033835A KR19980033835A KR100308535B1 KR 100308535 B1 KR100308535 B1 KR 100308535B1 KR 1019980033835 A KR1019980033835 A KR 1019980033835A KR 19980033835 A KR19980033835 A KR 19980033835A KR 100308535 B1 KR100308535 B1 KR 100308535B1
Authority
KR
South Korea
Prior art keywords
reaction
aliphatic
molecular weight
polyester
weight
Prior art date
Application number
KR1019980033835A
Other languages
Korean (ko)
Other versions
KR19980082074A (en
Inventor
정현수
이재왕
김동훈
전정남
이석우
Original Assignee
김석태
주식회사 이래화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김석태, 주식회사 이래화학 filed Critical 김석태
Priority to KR1019980033835A priority Critical patent/KR100308535B1/en
Publication of KR19980082074A publication Critical patent/KR19980082074A/en
Application granted granted Critical
Publication of KR100308535B1 publication Critical patent/KR100308535B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Abstract

PURPOSE: Provided is a polyester resin composition which has mechanical properties such as melt viscosity requisite for numerous cast processing for moldings and sufficient tear strength requisite for moldings, and a method for producing the same. CONSTITUTION: The polyester resin composition is prepared by the steps of (i) subjecting aliphatic(including cycloaliphatic) dicarboxylic acid(or its anhydride) comprising adipic acid and 0.1-50 wt.%(based on a theoretical weight of polyester) of monomers containing one or two and more hydroxyl group, amine group, and carboxylic group as a functional group to any one or two and more reactions selected from condensation, esterification, and transesterification reactions at 160-240deg.C, (ii) adding aliphatic(including cycloaliphatic) glycol comprising at least any one selected from 1,4-butane diol and ethylene glycol to product obtained from the (i) and subjecting them to esterification or transesterification reaction at 200-220deg.C, and (iii) polycondensing a product obtained from the (ii) at the temperature of 210-270deg.C and degree of vacuum of 0.005-10 torr to produce a high molecular polyester.

Description

[발명의 명칭][Name of invention]

폴리에스테르 수지 조성물 및 그 제조방법Polyester resin composition and its manufacturing method

[발명의 상세한 설명]Detailed description of the invention

[발명의 목적][Purpose of invention]

[발명이 속하는 기술분야 및 그 분야의 종래기술][Technical field to which the invention belongs and the prior art in that field]

본 발명은 폴리에스테르 수지 조성물 및 그 제조방법에 관한 것으로서, 특히 종래의 지방족 폴리에스테르에 있어서 인열강도 부족으로 인하여 발생했던 쓰레기봉투나 쇼핑백 등으로의 실용화에 대한 어려움을 해소함과 아울러 생분해성을 갖는 고분자량의 폴리에스테르 수지 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a polyester resin composition and a method for manufacturing the same, and in particular, the conventional aliphatic polyester has a biodegradability and solves the difficulty of practical use as a trash bag or shopping bag caused by the lack of tear strength. A high molecular weight polyester resin composition and a method for producing the same.

섬유, 성형품, 필름 등의 다양한 용도로 사용되고 있는 대표적인 폴리에스테르 수지는 테레프탈산과 에틸렌글리콜, 또는 테레프탈산과 1,4-부탄디올의 축중합반응에 의하여 생산되는 고분자량 방향족 폴리에스테르 수지이며, 여기서 고분자량 폴리에스테르는 수평균 분자량이 10,000 이상인 폴리머를 말한다. 그러나, 상기 방향족 폴리에스테르 수지는 폐기 후 자연 생태계 내에서 분해되지 않고 오랫동안 남아 심각한 환경오염 문제를 야기하였다.Representative polyester resins used in various applications such as fibers, molded articles and films are high molecular weight aromatic polyester resins produced by condensation polymerization of terephthalic acid and ethylene glycol or terephthalic acid and 1,4-butanediol, wherein high molecular weight poly Ester refers to a polymer having a number average molecular weight of 10,000 or more. However, the aromatic polyester resins do not decompose in the natural ecosystem after disposal and have remained for a long time causing serious environmental pollution problems.

한편, 지방족 폴리에스테르가 생분해성을 가지고 있다는 점은 이미 알려져 있고(Journal of Macromol. SCI-Chem., A-23(3), 1986, 393~409 참조), 현재 의료용 재료, 농·어업용 재료 및 포장재료 등에 일부 응용되고 있으며, 그 밖의 실용화 연구가 집행되고 있다.On the other hand, it is already known that aliphatic polyesters are biodegradable (see Journal of Macromol. SCI-Chem., A-23 (3), 1986, 393-409), and are currently used for medical materials, agricultural and fishery materials, and Some applications have been made in packaging materials, and other practical researches have been carried out.

그러나, 기존의 지방족 폴리에스테르는 주쇄의 유연한 구조와 낮은 결정성 때문에 융점이 낮고 용융시 열안정성이 낮아 열분해가 쉬우며, 융용흐름지수가 높아 성형가공이 용이하지 못할 뿐 아니라, 인장강도 및 인열강도 등의 물성이 불량하므로 용도가 제한된다는 문제점이 있었다. 이러한 지방족 폴리에스테르를 실용화하려면 수평균 분자량을 3만 이상으로 올려야 하나, 통상 알려진 축중합반응 시스템에서는 지방족 폴리에스테르의 수평균 분자량을 15,000이상으로 올리기 어려웠다.However, due to the flexible structure and low crystallinity of the main chain, the existing aliphatic polyester has low melting point and low thermal stability during melting, which is easy to thermally decompose, and it is not easy to form processing due to the melt flow index, as well as tensile strength and tearing steel. There is a problem that the use is limited because of poor physical properties such as. In order to put the aliphatic polyester into practical use, the number average molecular weight must be raised to 30,000 or more, but it is difficult to raise the number average molecular weight of the aliphatic polyester to 15,000 or more in a commonly known condensation polymerization system.

이러한 문제점을 해결하기 위한 하나의 방법으로서, 반응온도, 진공도 및 촉매조건을 적절히 조절하는 것에 의하여 수평균 분자량이 3만 이상인 고분자량 지방족 폴리에스테르 수지를 합성하는 방법이 대한민국 공개특허공보 제95-758호에 개시되어 있다. 그러나, 이 방법에 의해 제조된 지방족 폴리에스테르 수지는 중량평균 분자량이 낮고, 열에 상당히 민감하여 성형성이 상당히 떨어졌다.As one method for solving this problem, a method of synthesizing a high molecular weight aliphatic polyester resin having a number average molecular weight of 30,000 or more by appropriately adjusting the reaction temperature, vacuum degree and catalyst conditions is disclosed in Korean Patent Application Laid-Open No. 95-758. It is disclosed in the call. However, the aliphatic polyester resins produced by this method have a low weight average molecular weight, are extremely sensitive to heat, and have poor moldability.

다른 종래예로서 대한민국 공개특허공보 제95-14171호에는, 3가 이상의 다가알코올 또는 3가 이상의 다가 카르복실산의 단량체(monomer)를 폴리에스테르 제조시 첨가함으로써 고분자량 지방족 폴리에스테르를 제조하는 방법이 개시되어 있다. 이 방법에 의하면, 상기 단량체를 반응계에 도입함으로써 반응시간을 단축하고, 분자량 분포를 확산시켜 성형성을 향상할 수 있었다. 그러나, 저분자량의 폴리에스테르가 급격히 증가되어 인장강도 등의 물성이 저하되므로 실용화가 어려울 뿐만 아니라, 겔화될 우려가 높아 반응성을 조절하기가 어렵다는 문제점이 있었다.As another conventional example, Korean Patent Laid-Open Publication No. 95-14171 discloses a method for producing a high molecular weight aliphatic polyester by adding a monomer of trivalent or higher polyhydric alcohol or trivalent or higher polyhydric carboxylic acid during polyester production. Is disclosed. According to this method, by introducing the monomer into the reaction system, the reaction time can be shortened, the molecular weight distribution can be diffused, and the moldability can be improved. However, since the low molecular weight polyester is rapidly increased to decrease the physical properties such as tensile strength, it is not only practical to use, but also has a problem of high gelation, which makes it difficult to control the reactivity.

지방족 폴리에스테르의 수평균 분자량을 올리는 또 다른 방법이 대한민국 공개특허공보 제95-25072호에 개시되어 있는데, 이 공개공보를 참조하면, (1)지방족(환상 지방족을 포함) 글리콜과, (2)지방족(환상 지방족을 포함) 디카르복실산(또는 그 산 무수물)을 주성분으로 하고, 소량의 (3) 삼가 이상의 다가 알코올 또는 삼가 이상의 다가 카르복실산(또는 그의 산 무수물) 단량체의 존재하 또는 비존재하에 탈수반응 및 탈 글리콜 반응시켜서 얻어지는 수평균 분자량 15,000~20,000정도의 지방족 폴리에스테르에, 추가로 커플링제인 이소시아네이트를 반응시켜서 얻어진 고분자량 지방족 폴리에스테르 조성물이 개시되어 있다. 이 방법에 의해 얻어지는 지방족 폴리에스테르 수지의 수평균 분자량은 20,000~70,000정도였다. 그러나, 이 방법에 의하면 반응시간이 오래 걸리기 때문에 생산성이 떨어지고, 분자량을 올리기 위하여 사용되는 커플링제인 이소시아네이트는 인체에 극히 유해하므로 작업상의 주의를 요한다는 문제점이 있었다.Another method of raising the number average molecular weight of aliphatic polyester is disclosed in Korean Patent Application Laid-Open No. 95-25072, which refers to (1) aliphatic (including cyclic aliphatic) glycols, and (2) Presence or ratio of aliphatic (including cyclic aliphatic) dicarboxylic acids (or acid anhydrides) as a main component and a small amount of (3) trivalent or more polyhydric alcohols or trivalent or higher polyhydric carboxylic acid (or acid anhydrides) monomers The high molecular weight aliphatic polyester composition obtained by making the isocyanate which is a coupling agent react with the aliphatic polyester of the number average molecular weight 15,000-20,000 obtained by dehydration reaction and the deglycol reaction in presence is further disclosed. The number average molecular weight of the aliphatic polyester resin obtained by this method was about 20,000-70,000. However, according to this method, since the reaction time is long, productivity decreases, and the isocyanate which is a coupling agent used to increase the molecular weight is extremely harmful to the human body.

상기한 바와 같이 종래에는 고분자량의 지방족 폴리에스테르 수지를 제조하기 위하여 지방족 폴리에스테르 제조시에 커플링제인 이소시아네이트를 첨가하거나, 다가 알코올 또는 다가 카르복실산과 같은 다관능성 단량체를 첨가하는 방법등이 사용되어 왔다. 그러나, 이렇게 제조된 지방족 폴리에스테르는 생산성, 물성, 성형성 등에 대한 문제점을 가지고 있었다.As described above, in order to prepare a high molecular weight aliphatic polyester resin, a method of adding isocyanate, which is a coupling agent, or a polyfunctional monomer such as polyhydric alcohol or polyhydric carboxylic acid is used in preparing the aliphatic polyester. come. However, the aliphatic polyester thus prepared had problems with productivity, physical properties, moldability, and the like.

[발명이 이루고자 하는 기술적 과제][Technical problem to be achieved]

본 발명의 목적은 실용화하기에 충분한 고분자량을 갖는 생분해성 폴리에스테르 수지 조성물 및 그 제조방법을 제공하는 것이다.It is an object of the present invention to provide a biodegradable polyester resin composition having a high molecular weight sufficient for practical use and a method for producing the same.

본 발명의 다른 목적은 사출성형, 중공성형, 필름성형 등의 각종 성형가공에 필요한 용융점도와 그 성형품의 실용상 요구되는 충분한 인열강도 등의 기계적 특성을 갖는 폴리에스테르 수지 조성물 및 그 제조방법을 제공하는 것이다.Another object of the present invention is to provide a polyester resin composition having mechanical properties such as melt viscosity required for various molding processes such as injection molding, blow molding, film molding, and the like, and sufficient tear strength required for practical use of the molded article, and a manufacturing method thereof. It is.

[발명의 구성 및 작용][Configuration and Function of Invention]

본 발명에 따르면 (1) 아디프산을 포함하는 지방족(환상 지방족을 포함) 디카르복실산(또는 그 무수물)과, (2) 1,4-부탄디올과 에틸렌글리콜 중 선택된 어느 하나 이상을 포함하는 지방족(환상 지방족을 포함) 글리콜을 주성분으로 하고, 이론량의 폴리에스테르 중량대비 0,1~30중량%의 (3) 관능기로서 수산기, 아민기 및 카르복실기를 각각 하나 또는 둘 이상 포함하는 단량체 존재 하에서 축합반응, 에스테르화반응, 그리고 에스테르 교환반응 중 선택된 어느 하나 또는 둘 이상의 반응을 거친 후 중축합반응시켜서 얻어지는 폴리에스테르 수지 조성물이 제공된다.According to the present invention, (1) an aliphatic (including cyclic aliphatic) dicarboxylic acid (or anhydride thereof) containing adipic acid, and (2) at least one selected from 1,4-butanediol and ethylene glycol In the presence of a monomer containing aliphatic (including cyclic aliphatic) glycol as a main component and each containing one or more hydroxyl groups, amine groups and carboxyl groups as functional groups of 0,1 to 30% by weight relative to the theoretical weight of polyester. Provided is a polyester resin composition obtained by subjecting one or two or more reactions selected from a condensation reaction, an esterification reaction, and a transesterification reaction to a polycondensation reaction.

상기 폴리에스테르 수지를 제조시 저분자량의 폴리에스테르의 급격한 증가 및 겔화를 막기 위하여 바람직하게는 상기 디카르복실산과 상기 단량체를 먼저 투입하여 축합반응, 에스테르화반응, 그리고 에스테르 교환반응 중 선택된 어느 한 반응을 실시하여 물 또는 메탄올을 유출시킨 후, 생성된 반응생성물과 상기 글리콜을 에스테르화반응 또는 에스테르 교환반응시키고, 이어서 상기 반응생성물을 중축합(polycondensation)반응시킴으로써 고분자량의 폴리에스테르수지를 제조하게 되는 것을 특징으로 한다.In order to prevent the rapid increase and gelation of low molecular weight polyester during the preparation of the polyester resin, preferably, any one of condensation reaction, esterification reaction and transesterification reaction is performed by first adding the dicarboxylic acid and the monomer. After distilling out water or methanol, the resulting reaction product and the glycol are esterified or transesterified, followed by polycondensation reaction of the reaction product to produce a high molecular weight polyester resin. It is characterized by.

본 발명의 폴리에스테르 수지 조성물에 관하여 좀 더 구체적으로 설명하면, 주성분으로서 아디프산을 포함하는 지방족(환상 지방족을 포함) 디카르복실산(또는 그 무수물)과, 1,4-부탄디올과 에틸렌글리콜 중 선택된 어느 하나 이상을 포함하는 지방족(환상 지방족을 포함) 글리콜을 사용하고, 바람직하게는 ① 아디프산 단독성분과 1,4-부탄디올 단독성분; ② 아디프산 단독성분과 에틸렌글리콜 단독성분 ③아디프산 단독성분과 1,4-부탄디올 및 기타 글리콜(탄소수가 2~3 및 5~10인 알킬렌기(환상 알킬렌기를 포함)를 갖는 글리콜)의 혼합성분; ④ 아디프산 및 기타 디카르복실산(탄소수가 2~3 및 5~10인 알킬렌기(환상 알킬렌기를 포함)를 갖는 디카복실산)과 1,4-부탄디올의 단독성분 중 선택된 어느 하나를 사용한다. 이 때, 상기 ③의 경우에는 상기 1,4-부탄디올과 기타 글리콜의 비율이 85:15내지 100:0이고, ④의 경우에는 상기 아디프산과 기타 디카르복실산의 비율이 90:10 내지 100:0임을 특징으로 한다.The polyester resin composition of the present invention will be described in more detail. An aliphatic (including cyclic aliphatic) dicarboxylic acid (or anhydride thereof) containing adipic acid as a main component, 1,4-butanediol and ethylene glycol Aliphatic (including cyclic aliphatic) glycols containing any one or more selected from the group consisting of: adipic acid monocomponent and 1,4-butanediol monocomponent; ② adipic acid monocomponent and ethylene glycol monocomponent ③ adipic acid monocomponent, 1,4-butanediol and other glycols (glycols having alkylene groups (including cyclic alkylene groups) having 2 to 3 and 5 to 10 carbon atoms) Mixed components of; ④ Using any one selected from adipic acid and other dicarboxylic acids (dicarboxylic acid having 2 to 3 and 5 to 10 alkylene groups (including cyclic alkylene groups) and 1,4-butanediol) do. In this case, in the case of ③, the ratio of 1,4-butanediol and other glycols is 85:15 to 100: 0, and in case of ④, the ratio of adipic acid and other dicarboxylic acids is 90:10 to 100. It is characterized by: 0.

그리고, 본 발명에 첨가되는 상기 단량체로서는 관능기로서 수산기, 아민기 및 카르복실기를 각각 하나 또는 둘 이상 포함하는 단량체를 사용하며, 그 바람직한 예로서는 3-amino-4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid, 2-amino-5-hydroxybenzoic acid, aminosalicylic acid, 3-chloro-L-tyrosine, L-3-(3,4-dihydroxyphenyl)alanine 등이 있고, 이들 중 선택된 어느 하나 또는 둘 이상의 혼합물이 본 발명의 단량체로서 사용된다.As the monomer added to the present invention, a monomer containing one or two or more hydroxyl groups, amine groups and carboxyl groups may be used as a functional group. Examples thereof include 3-amino-4-hydroxybenzoic acid and 4-amino-3-hydroxybenzoic. acid, 2-amino-5-hydroxybenzoic acid, aminosalicylic acid, 3-chloro-L-tyrosine, L-3- (3,4-dihydroxyphenyl) alanine, and the like, and any one or a mixture of two or more thereof selected from the present invention It is used as a monomer of.

또한, 본 발명에 따르면 상기 지방족 폴리에스테르 수지의 제조방법이 제공되는데, 상기 제조방법은 3단계 반응으로 구성되어 있으며, 이하 단계별로 나누어 설명하기로 한다.In addition, according to the present invention is provided a method for producing the aliphatic polyester resin, the production method is composed of a three-step reaction, will be described below divided by step.

본 발명의 폴리에스테르 수지를 제조하기 위한 제1단계 반응에서, 아디프산을 포함하는 지방족(환상 지방족을 포함) 디카르복실산(또는 그 무수물)과 관능기로서 수산기, 아민기 및 카르복실기를 각각 하나 또는 둘 이상 포함하는 단량체를 투입하여 160~240℃의 온도로 축합반응, 에스테르화반응, 그리고 에스테르 교환반응 중 선택된 어느 하나 또는 둘 이상의 반응을 실시하여 생성되는 물 또는 메탄올을 유출시킨다. 이 때, 상기 반응온도가 160℃미만이면 물 또는 메탄올이 이탈되기 어렵고, 반면 240℃를 초과하면 상기 반응물들이 탄화되거나 비산될 우려가 있으므로 반응온도조절에 유의한다. 그리고, 상기 단량체의 첨가량은 이론량의 폴리에스테르 중량대비 0.1∼30중량% 정도가 바람직하며, 그 첨가량이 0.1중량% 미만이면 반응시간이 길어질 뿐만 아니라 물성이 저하되고, 반면 상기 첨가량이 30중량%를 초과하면 생분해 속도가 지연되고 융점이 너무 높아져 성형과정에서 문제를 야기할 뿐만 아니라 비용도 상승한다. 이 과정에서 진행되는 화학반응을 하기의 반응식 1에 나타내었고, 이 때 상기 디카르복실산으로서는 아디프산을, 상기 단량체로서는 아민기, 수산기 및 카르복실기를 각각 하나씩 포함하는 4-아미노-3-하이드록시벤조산을 사용한 예를 나타내었다.In the first stage reaction for producing the polyester resin of the present invention, an aliphatic (including cyclic aliphatic) dicarboxylic acid (or anhydride thereof) containing adipic acid and a hydroxyl group, an amine group, and a carboxyl group are each one as a functional group. Alternatively, by adding a monomer containing two or more, water or methanol produced by condensation reaction, esterification reaction, and transesterification reaction at a temperature of 160-240 ° C. or two or more reactions is discharged. At this time, if the reaction temperature is less than 160 ℃ water or methanol is difficult to escape, whereas if it exceeds 240 ℃, the reaction products may be carbonized or scattered, so pay attention to the reaction temperature control. In addition, the addition amount of the monomer is preferably about 0.1 to 30% by weight relative to the theoretical weight of the polyester, if the addition amount is less than 0.1% by weight not only the reaction time is long, but also the physical properties are lowered, while the addition amount is 30% by weight Beyond this, the rate of biodegradation is delayed and the melting point is too high, causing problems in the molding process and increasing costs. The chemical reaction proceeding in this process is shown in Scheme 1 below, wherein the dicarboxylic acid is adipic acid, and the monomer is 4-amino-3-hydride containing one amine group, one hydroxyl group and one carboxyl group. An example using oxybenzoic acid is shown.

단, 상기 반응식 1에서 n은 정수로서 1~50이다. 상기 디카르복실산 성분이 단량체 성분에 비하여 그 첨가량이 많으므로 상기 반응생성물의 양말단에는 상기 디카르복실산이 결합되며, 상기 반응에 의하여 수평균 분자량은 200~10,000인 반응생성물이 생성되고, 그 후에도 반응계 내에 미반응 디카르복실산 성분이 남아 있게 된다.However, in Reaction Formula 1, n is 1 to 50 as an integer. Since the dicarboxylic acid component is more added than the monomer component, the dicarboxylic acid is bonded to the sock end of the reaction product, and the reaction produces a reaction product having a number average molecular weight of 200 to 10,000. Thereafter, the unreacted dicarboxylic acid component remains in the reaction system.

그 다음으로, 제2단계 반응에서는 상기 제1단계 반응생성물에 1,4-부탄디올과 에틸렌글리콜 중 선택된 어느 하나 이상을 포함하는 지방족(환상 지방족을 포함) 글리콜을 투입하여 200~220℃의 온도로 에스테르화 반응 또는 에스테르 교환 반응을 실시하여 생성되는 물 또는 메탄올을 완전히 유출시킨다. 이 과정에서 진행되는 화학반응을 하기의 반응식 2 및 3에 나타내었고, 이 때 상기 글리콜로서는 1,4-부탄디올을 사용한 예를 나타내었다. 그리고, 하기의 반응식 2는 상기 반응식 1의 반응생성물과 지방족(환상 지방족을 포함) 글리콜의 화학반응을, 반응식 3은 상기 제1단계 반응의 반응계에 남아 있는 미반응 지방족(환상 지방족을 포함) 디카르복실산(또는 그 무수물)과 지방족(환상 지방족을 포함) 글리콜의 에스테르화 반응을 나타낸 것이다.Next, in the second stage reaction, aliphatic (including cyclic aliphatic) glycol containing any one or more selected from 1,4-butanediol and ethylene glycol is added to the first stage reaction product at a temperature of 200 to 220 ° C. The esterification reaction or the transesterification reaction is carried out to completely discharge the water or methanol produced. The chemical reaction proceeding in this process is shown in the following schemes 2 and 3, wherein the glycol is shown an example using 1,4-butanediol. In addition, Scheme 2 below shows a chemical reaction between the reaction product of Scheme 1 and aliphatic (including cyclic aliphatic) glycol, and Scheme 3 shows unreacted aliphatic (including cyclic aliphatic) remaining in the reaction system of the first stage reaction. The esterification reaction of a carboxylic acid (or anhydride thereof) with an aliphatic (including cyclic aliphatic) glycol is shown.

상기 반응식 2 및 반응식 3은 반응계 내에서 진행되는 화학반응의 대표적인 일례만을 나타낸 것이며, n은 반응식 1에서와 같이 정수로서 1~50이고, m은 정수로서 180~400이다.Reaction Schemes 2 and 3 show only representative examples of chemical reactions that proceed in the reaction system, n is 1 to 50 as an integer as in Scheme 1, and m is 180 to 400 as an integer.

이 때, 상기 글리콜과 상기 제1단계에 투입되었던 디카르복실산의 반응몰비의 범위는 1:1.1~1:2이며, 상기 몰비가 1:1.1미만이면 반응성이 떨어지고, 색상에 영향을 주며, 반면 1:2를 초과하면 비용이 많이 든다. 따라서, 상기 화합물의 몰비는 1:1.4의 비율인 것이 바람직하다.At this time, the reaction molar ratio of the glycol and the dicarboxylic acid introduced in the first step ranges from 1: 1.1 to 1: 2. When the molar ratio is less than 1: 1.1, the reactivity decreases and affects color. On the other hand, exceeding 1: 2 is expensive. Therefore, it is preferable that the molar ratio of the said compound is 1: 1.4.

마지막으로, 제3단계 반응에서는 상기 제2단계 반응생성물인 폴리에스테르를 210~270℃의 온도 및 0.005~10torr의 진공도로 60~200분 동안 중축합하여 고분자량화 된 폴리에스테르를 생성한다. 즉, 앞서 설명한 제1단계에서 생성된 반응생성물 및 미반응 디카르복실산 성분이 각각 상기 반응식 2 및 반응식 3 과 같은 화학반응을 거친 후, 계속적으로 물, 메탄올, 또는 글리콜 등을 유출하면서 연속적으로 인접분자와 반응하여 수평균 분자량이 30,000~70,000이고, 중량평균 분자량이 160,000~600,000인 폴리에스테르 수지를 형성한다.Finally, in the third step reaction, the polyester, which is the second step reaction product, is polycondensed for 60 to 200 minutes at a temperature of 210 to 270 ° C. and a vacuum of 0.005 to 10 torr to produce a high molecular weight polyester. That is, after the reaction product and the unreacted dicarboxylic acid component generated in the first step described above have undergone chemical reactions as in Scheme 2 and Scheme 3, respectively, they are continuously discharged with water, methanol, or glycol. Reaction with adjacent molecules forms a polyester resin having a number average molecular weight of 30,000 to 70,000 and a weight average molecular weight of 160,000 to 600,000.

한편, 본 발명에 따르면 상기 제2단계 에스테르화 반응 또는 에스테르 교환 반응의 초기 또는 말기에 촉매가 첨가될 수 있는데, 그 첨가량은 전체조성물 중량대비 0.02중량%~2중량%이다. 상기 첨가량이 0.02중량% 미만이면 이론량의 물, 메탄올 또는 글리콜을 유출시키기 어렵고, 상기 물, 메탄올 또는 글리콜의 이론량을 유출하는데 상당한 시간이 걸리며, 반면 상기 촉매의 첨가량이 2중량%를 초과하면 이론량의 물, 메탄올 또는 글리콜은 쉽게 유출되나 색상에 영향을 줄 수 있다. 이 때, 사용되는 촉매로서는 Ti, Ge, Zu, Fe, Mu2, Co, Zr 등이 포함된 금속화합물 중 선택된 어느 하나 또는 둘 이상의 혼합촉매를 사용하고, 바람직하게는 티타네이트, 안티모네이트, 틴옥사이드가 포함된 유기 금속화합물을 사용하며, 더욱 바람직하게는 테트라부틸티타네이트, 칼슘아세테이트, 안티모니옥사이드, 디부틸틴옥사이드, 아연아세테이트, 안티모니아세테이트, 안티모니글리콜레이트, 테트라프로필티타네이트 중 선택된 어느 하나 또는 둘 이상의 혼합촉매가 사용된다.Meanwhile, according to the present invention, a catalyst may be added at the beginning or the end of the second stage esterification reaction or transesterification reaction, the addition amount of which is 0.02% by weight to 2% by weight relative to the total composition weight. When the addition amount is less than 0.02% by weight, it is difficult to pour out the theoretical amount of water, methanol or glycol, and it takes a considerable time to pour out the theoretical amount of the water, methanol or glycol, while when the addition amount of the catalyst exceeds 2% by weight The theoretical amount of water, methanol or glycol is easily spilled but can affect color. At this time, any catalyst selected from metal compounds containing Ti, Ge, Zu, Fe, Mu 2 , Co, Zr and the like is used as the catalyst to be used, and preferably titanate, antimonate, An organometallic compound containing tin oxide is used, more preferably in tetrabutyl titanate, calcium acetate, antimony oxide, dibutyl tin oxide, zinc acetate, antimonia acetate, antimony glycolate, tetrapropyl titanate Any one or two or more mixed catalysts selected are used.

또한, 상기 제2단계 에스테르화 반응 또는 에스테르 교환반응의 초기 또는 말기에 상기 안정제가 첨가될 수 있는데, 그 첨가량이 전체조성물 중량대비 0.02중량%~2중량%이다. 상기 첨가량은 0.02중량% 미만이면 안정제로서 효과를 얻을 수 없고, 색상이 나빠지게 되며, 반면 상기 안정제의 첨가량이 2중량%를 초과하면 반응속도가 길어지고 고분자량의 폴리에스테르를 얻기가 어렵게 된다. 따라서, 바람직한 상기 안정제의 첨가량은 0.22중량%이며, 상기 안정제로서는 트리메틸포스페이트, 포스페릭산, 트리페닐포스페이트 등과 같은 포스페이트 계통의 안정제 중 선택된 어느 하나 또는 둘 이상의 혼합 안정제가 사용된다.In addition, the stabilizer may be added at the beginning or the end of the second stage esterification reaction or transesterification reaction, the addition amount is 0.02% to 2% by weight of the total composition. If the added amount is less than 0.02% by weight, the effect as a stabilizer is not obtained, the color becomes worse, whereas if the added amount of the stabilizer exceeds 2% by weight, the reaction rate becomes long and it is difficult to obtain a high molecular weight polyester. Therefore, the addition amount of the stabilizer is preferably 0.22% by weight, and any one or two or more mixed stabilizers selected from phosphate-based stabilizers such as trimethyl phosphate, phospheric acid, triphenyl phosphate and the like are used as the stabilizer.

요컨대, 본 발명의 폴리에스테르 수지는 3단계의 반응을 거치면서 고분자량화 된 중합체이며, 상기 폴리에스테르 수지의 수평균 분자량은 30,000~70,000이고, 중량평균분자량이 160,000~600,000이며, 융점은 45~60℃이고, 그리고 용융지수는 0.1~50(190℃, 2,160g)이다.In other words, the polyester resin of the present invention is a high molecular weight polymer through a three-step reaction, the number average molecular weight of the polyester resin is 30,000 ~ 70,000, the weight average molecular weight is 160,000 ~ 600,000, the melting point is 45 ~ 60 ℃, and the melt index is 0.1 ~ 50 (190 ℃, 2160g).

또한, 본 발명에 따른 폴리에스테르 수지는 인열강도가 우수하므로 종래에 인열강도 부족으로 인해 발생했던 실용화에의 제약을 해소할 수 있다. 예컨대, 기존의 지방족 폴리에스테르 수지로 쓰레기봉투 및 쇼핑백 등을 제조하여 사용하면 잘 찢어지므로 어려움이 많았으나 본 발명에 따른 폴리에스테르는 분자 내에 존재하는 아민기에 의하여 인열강도가 향상되어 실용화가 가능해졌다.In addition, since the polyester resin according to the present invention has excellent tear strength, it is possible to solve the limitation on practical use that has occurred due to the lack of tear strength in the past. For example, it is difficult to manufacture and use a garbage bag and a shopping bag with an existing aliphatic polyester resin, so it is difficult to tear, but the polyester according to the present invention has improved tearing strength by an amine group present in a molecule, thereby enabling practical use. .

이하, 본 발명에 관하여 실시예를 이용하여 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail using examples.

[실시예 1]Example 1

500㎖ 삼각플라스크를 질소로 치환하고 나서, 아디프산 146g, 4-아미노-3-하이드록시벤조산 4g을 첨가하고 온도를 서서히 승온시키면서 에스테르화 반응시켜 물을 유출시킨다. 이 때, 온도가 200℃일 때 고정시키고 이론량의 물을 완전히 유출시킨 후, 상기 500㎖ 삼각플라스크에 에틸렌글리콜 90g, 촉매로서 테트라부틸티타네이트 0.1g을 첨가하여 질소 기류 중에서 승온을 하고, 200℃에서 2시간동안 반응하여 이론량의 물을 유출시킨다. 그리고 나서, 촉매로서 안티몬 아세테이트 0.1g, 디부틸틴옥사이드 0.2g, 테트라부틸티타네이트 0.07g, 안정제로서는 트리메틸포스페이트 0.2g을 첨가하였다. 계속해서, 온도를 상승시키고 온도가 245℃에서 0.3Torr의 감압하에서 140분 동안 축중합 반응을 실시하였다. 이때 채취된 시료는 용융지수(190℃, 2160g)가 3, 수평균 분자량 37,000, 중량평균 분자량 390,000 이고, DSC법에 측정된 융점은 45℃이었다.The 500 ml Erlenmeyer flask was replaced with nitrogen, and then 146 g of adipic acid and 4 g of 4-amino-3-hydroxybenzoic acid were added, followed by esterification while gradually raising the temperature to allow water to flow out. At this time, after fixing at a temperature of 200 ° C. and completely flowing out the theoretical amount of water, 90 g of ethylene glycol and 0.1 g of tetrabutyl titanate as a catalyst were added to the 500 ml Erlenmeyer flask, and the temperature was raised in a nitrogen stream. The reaction is carried out for 2 hours at < RTI ID = 0.0 > Then, 0.1 g of antimony acetate, 0.2 g of dibutyl tin oxide, 0.07 g of tetrabutyl titanate, and 0.2 g of trimethyl phosphate were added as a stabilizer. Then, the temperature was raised and the polycondensation reaction was performed for 140 minutes at 245 degreeC under reduced pressure of 0.3 Torr. The sample collected at this time had a melt index (190 ° C., 2160 g) of 3, a number average molecular weight of 37,000, a weight average molecular weight of 390,000, and a melting point of 45 ° C. measured by the DSC method.

[실시예 2]Example 2

500㎖ 삼각플라스크를 질소로 치환하고 나서, 아디프산 146g, aminosalicylicacid 2g을 첨가하고 온도를 서서히 승온시키면서 에스테르화 반응시켜 물을 유출시킨다. 이 때, 온도가 200℃일 때 고정시키고 이론량의 물을 완전히 유출시킨 후, 상기 500㎖ 삼각플라스크에 에틸렌글리콜 90g, 촉매로서 테트라부틸티타네이트 0.1g을 첨가하여 질소 기류 중에서 승온을 하고, 200℃에서 2시간동안 반응하여 이론량의 물을 유출시킨다. 그리고 나서, 촉매로서 안티몬 아세테이트 0.1g, 디부틸틴옥사이드 0.2g, 테트라부틸티타네이트 0.07g, 안정제로서는 트리메틸포스페이트 0.2g을 첨가하였다. 계속해서, 온도를 상승시키고 온도가 245℃에서 0.3Torr의 감압하에서 200분 동안 축중합 반응을 실시하였다. 이때 채취된 시료는 용융지수(190℃, 2160g)가 5, 수평균 분자량 37,400, 중량평균 분자량 250,000이고, DSC법에 측정된 융점은 45℃이었다.The 500 ml Erlenmeyer flask was replaced with nitrogen, and then 146 g of adipic acid and 2 g of aminosalicylicacid were added, followed by esterification while gradually raising the temperature to allow water to flow out. At this time, after fixing at a temperature of 200 ° C. and completely flowing out the theoretical amount of water, 90 g of ethylene glycol and 0.1 g of tetrabutyl titanate as a catalyst were added to the 500 ml Erlenmeyer flask, and the temperature was raised in a nitrogen stream. The reaction is carried out for 2 hours at < RTI ID = 0.0 > Then, 0.1 g of antimony acetate, 0.2 g of dibutyl tin oxide, 0.07 g of tetrabutyl titanate, and 0.2 g of trimethyl phosphate were added as a stabilizer. Subsequently, the temperature was raised and the polycondensation reaction was carried out at 245 ° C. under a reduced pressure of 0.3 Torr for 200 minutes. The sample thus obtained had a melt index (190 ° C, 2160g) of 5, a number average molecular weight of 37,400, a weight average molecular weight of 250,000, and a melting point of 45 ° C measured by the DSC method.

[실시예 3]Example 3

500㎖ 삼각플라스크를 질소로 치환하고 나서, 아디프산 132.6g, 숙신산 11.8g,2-amino-5-hydroxybenzoicacid 3g을 첨가하고 온도를 서서히 승온시키면서 에스테르화 반응시켜 물을 유출시킨다. 이 때, 온도가 200℃일 때 고정시키고 이론량의 물을 완전히 유출시킨 후, 상기 500㎖ 삼각플라스크에 1,4-부탄디올 130g, 촉매로서 테트라부틸티타네이트 0.1g을 첨가하여 질소 기류 중에서 승온을 하고, 200℃에서 2시간동안 반응하여 이론량의 물을 유출시킨다. 그리고 나서, 촉매로서 안티몬 아세테이트 0.1g, 디부틸틴옥사이드 0.2g, 테트라부틸티타네이트 0.07g, 안정제로서는 트리메틸포스페이트 0.2g을 첨가하였다. 계속해서, 온도를 상승시키고 온도가 245℃에서 0.3Torr의 감압하에서 190분 동안 축중합 반응을 실시하였다. 이 때 채취된 시료는 용융지수(190℃, 2160g)가 8, 수평균 분자량 410,000, 중량평균 분자량 290,000이고, DSC법에 측정된 융점은 50℃이었다.After replacing the 500 ml Erlenmeyer flask with nitrogen, 132.6 g of adipic acid, 11.8 g of succinic acid, and 3 g of 2-amino-5-hydroxybenzoic acid were added, and the esterification reaction was carried out while gradually raising the temperature to allow water to flow out. At this time, after fixing at a temperature of 200 ° C. and completely flowing out the theoretical amount of water, 130 g of 1,4-butanediol and 0.1 g of tetrabutyl titanate as a catalyst were added to the 500 ml Erlenmeyer flask to increase the temperature in a nitrogen stream. Then, the reaction is carried out at 200 ° C. for 2 hours to allow the theoretical amount of water to flow out. Then, 0.1 g of antimony acetate, 0.2 g of dibutyl tin oxide, 0.07 g of tetrabutyl titanate, and 0.2 g of trimethyl phosphate were added as a stabilizer. Then, the temperature was raised and the polycondensation reaction was performed for 190 minutes at 245 degreeC under reduced pressure of 0.3 Torr. The sample collected at this time had a melt index (190 ° C, 2160g) of 8, a number average molecular weight of 410,000, and a weight average molecular weight of 290,000, and the melting point measured by the DSC method was 50 ° C.

[실시예 4]Example 4

500㎖ 삼각플라스크를 질소로 치환하고 나서, 아디프산 146g, 3-chloro-l-tyrogzne 4g을 첨가하고 온도를 서서히 승온시키면서 에스테르화 반응시켜 물을 유출시킨다. 이 때, 온도가 200℃일 때 고정시키고 이론량의 물을 완전히 유출시킨 후, 상기 500㎖ 삼각플라스크에 1,4-부탄디올 130g, 촉매로서 테트라부틸티타네이트 0.1g을 첨가하여 질소 기류 중에서 승온을 하고, 200℃에서 2시간동안 반응하여 이론량의 물을 유출시킨다. 그리고 나서, 촉매로서 안티몬 아세테이트 0.1g, 디부틸틴옥사이드 0.2g, 테트라부틸티타네이트 0.07g, 안정제로서는 트리메틸포스페이트 0.2g을 첨가하였다. 계속해서, 온도를 상승시키고 온도가 245℃에서 0.3Torr의 감압하에서 160분 동안 축중합 반응을 실시하였다. 이때 채취된 시료는 용융지수(190℃, 2160g)가 4, 수평균 분자량 347,000, 중량평균 분자량 380,000이고, DSC법에 측정된 융점은 59℃이었다.The 500 ml Erlenmeyer flask was replaced with nitrogen, and then 146 g of adipic acid and 4 g of 3-chloro-l-tyrogzne were added, followed by esterification while gradually raising the temperature to allow water to flow out. At this time, after fixing at a temperature of 200 ° C. and completely flowing out the theoretical amount of water, 130 g of 1,4-butanediol and 0.1 g of tetrabutyl titanate as a catalyst were added to the 500 ml Erlenmeyer flask to increase the temperature in a nitrogen stream. Then, the reaction is carried out at 200 ° C. for 2 hours to allow the theoretical amount of water to flow out. Then, 0.1 g of antimony acetate, 0.2 g of dibutyl tin oxide, 0.07 g of tetrabutyl titanate, and 0.2 g of trimethyl phosphate were added as a stabilizer. Then, the temperature was raised and polycondensation reaction was performed for 160 minutes at 245 degreeC under reduced pressure of 0.3 Torr. The sample thus collected had a melt index (190 ° C, 2160g) of 4, a number average molecular weight of 347,000, a weight average molecular weight of 380,000, and a melting point of 59 ° C measured by the DSC method.

[실시예 5]Example 5

500㎖ 삼각플라스크를 질소로 치환하고 나서, 아디프산 146g, 3-아미노-4-하이드록시벤조산 3g을 첨가하고 온도를 서서히 승온시키면서 에스테르화 반응시켜 물을 유출시킨다. 이 때, 온도가 200℃일 때 고정시키고 이론량의 물을 완전히 유출시킨 후, 상기 500㎖ 삼각플라스크에 1,4-부탄디올 130g, 촉매로서 테트라부틸티타네이트 0.1g을 첨가하여 질소 기류 중에서 승온을 하고, 200℃에서 2시간동안 반응하여 이론량의 물을 유출시킨다. 그리고 나서, 촉매로서 안티몬 아세테이트 0.1g, 디부틸틴옥사이드 0.2g, 테트라부틸티타네이트 0.07g, 안정제로서는 트리메틸포스페이트 0.2g을 첨가하였다. 계속해서, 온도를 상승시키고 온도가 245℃에서 0.3Torr의 감압하에서 170분 동안 축중합 반응을 실시하였다. 이때 채취된 시료는 용융지수(190℃, 2160g)가 11, 수평균 분자량 35,300, 중량평균 분자량217,000이고, DSC법에 측정된 융점은 59℃이었다.The 500 ml Erlenmeyer flask was replaced with nitrogen, and then 146 g of adipic acid and 3 g of 3-amino-4-hydroxybenzoic acid were added, followed by esterification while gradually raising the temperature to allow water to flow out. At this time, after fixing at a temperature of 200 ° C. and completely flowing out the theoretical amount of water, 130 g of 1,4-butanediol and 0.1 g of tetrabutyl titanate as a catalyst were added to the 500 ml Erlenmeyer flask to increase the temperature in a nitrogen stream. Then, the reaction is carried out at 200 ° C. for 2 hours to allow the theoretical amount of water to flow out. Then, 0.1 g of antimony acetate, 0.2 g of dibutyl tin oxide, 0.07 g of tetrabutyl titanate, and 0.2 g of trimethyl phosphate were added as a stabilizer. Then, the temperature was raised and polycondensation reaction was performed for 170 minutes at 245 degreeC under reduced pressure of 0.3 Torr. The sample collected at this time had a melt index (190 ° C, 2160g) of 11, a number average molecular weight of 35,300, and a weight average molecular weight of 217,000, and the melting point measured by the DSC method was 59 ° C.

[비교예 1]Comparative Example 1

500㎖ 삼각플라스크를 질소로 치환하고 나서 1,4-부탄디올 108g, 숙신산 118g을 투입하였다. 질소기류 중에서 승온을 하고, 140~200℃에서 5시간 또 질소를 정지하여 20~2mmHg의 감압하에 1.5시간에 걸쳐 축합에 의한 에스테르화 반응을 실시하였다.After replacing the 500 ml Erlenmeyer flask with nitrogen, 108 g of 1,4-butanediol and 118 g of succinic acid were added thereto. The temperature was raised in a nitrogen stream, and nitrogen was stopped at 140 to 200 ° C. for 5 hours, and esterification reaction was carried out by condensation over 1.5 hours under a reduced pressure of 20 to 2 mmHg.

이 때, 채취된 시료의 수평균 분자량이 4,900, 또 중량평균분자량이 11,200이었다.At this time, the number average molecular weight of the sample collected was 4,900, and the weight average molecular weight was 11,200.

계속해서, 상압의 질소기류하에 촉매 테트라이소프로필티탄 0.2g을 첨가하였다. 그리고, 온도를 상승시켜 220℃의 온도에서 15~0.2mmHg의 감압하에 6시간, 탈 글리콜 반응을 실시하였다. 채취된 시료는 수평균 분자량이 16,100이고, 또는 중량평균분자량이 44,100이었다. 상기 시료의 DSC법에 측정된 융점은 118℃이다.Subsequently, 0.2 g of catalyst tetraisopropyltitanium was added under an atmospheric nitrogen stream. And the temperature was raised and the deglycol reaction was performed for 6 hours under reduced pressure of 15-0.2 mmHg at the temperature of 220 degreeC. The sample collected had a number average molecular weight of 16,100 or a weight average molecular weight of 44,100. Melting | fusing point measured by the DSC method of the said sample is 118 degreeC.

[비교예 2]Comparative Example 2

500㎖ 삼각플라스크를 질소로 치환하고 나서 에틸렌글리콜 92g, 숙신산 118g, 촉매 테트라부틸티타네이트 0.07g을 투입하였다. 질소기류 중에서 승온을 하고, 200℃에서 2시간 또 질소를 정지하여 20~2mmHg의 감압하에 0.5시간에 걸쳐 축합에 의한 에스테르화 반응을 실시하였다.After replacing the 500 ml Erlenmeyer flask with nitrogen, 92 g of ethylene glycol, 118 g of succinic acid, and 0.07 g of catalyst tetrabutyl titanate were added thereto. The temperature was raised in a nitrogen stream, and nitrogen was stopped at 200 ° C. for 2 hours to carry out esterification by condensation over 0.5 hours under a reduced pressure of 20 to 2 mmHg.

계속해서, 상압의 질소기류하에 촉매 테트라부틸티타네이트 0.07g, 디부틸틴옥사이드 0.45g, 안정제인 트리메틸포스페이트 0.2g을 첨가하였다. 온도를 상승시켜 250℃의 온도에서 15~0.2mmHg의 감압하에 18시간동안 탈 글리콜 반응을 실시하였다. 채취된 시료는 수평균 분자량이 9,000, 또는 중량평균분자량이 32,000이었다. 상기 시료의 DSC법에 측정된 융점은 100℃이다.Subsequently, 0.07 g of catalyst tetrabutyl titanate, 0.45 g of dibutyl tin oxide, and 0.2 g of trimethyl phosphate as stabilizers were added under a nitrogen stream at atmospheric pressure. The deglycol reaction was performed for 18 hours under reduced pressure of 15-0.2 mmHg at the temperature of 250 degreeC. The sample collected had a number average molecular weight of 9,000 or a weight average molecular weight of 32,000. Melting | fusing point measured by the DSC method of the said sample is 100 degreeC.

[비교예 3]Comparative Example 3

500㎖ 삼각플라스크를 질소로 치환하고 나서 1,4-부탄디올 108g, 아디프산 21.9g, 숙신산 100.3g을 투입하였다. 질소기류 중에서 승온을 하고, 200℃에서 2시간 또 질소를 정지하여 20~2mmHg의 감압하에 0.5시간에 걸쳐 축합에 의한 에스테르화 반응을 실시하였다.After replacing the 500 ml Erlenmeyer flask with nitrogen, 108 g of 1,4-butanediol, 21.9 g of adipic acid and 100.3 g of succinic acid were added thereto. The temperature was raised in a nitrogen stream, and nitrogen was stopped at 200 ° C. for 2 hours to carry out esterification by condensation over 0.5 hours under a reduced pressure of 20 to 2 mmHg.

계속해서, 상압의 질소기류하에 촉매 테트라이소프로필티탄 0.07g, 디부틸틴옥사이드 0.45g, 안정제인 트리메틸포스페이트를 첨가하였다. 온도를 상승시켜 250℃의 온도에서 15~0.2mmHg의 감압하에 3.2시간, 탈 글리콜 반응을 실시하였다. 채취된 시료는 수평균 분자량이 31,000, 또는 중량평균 분자량이 84,000이었다. 상기 시료의 DSC법에 측정된 융점은 95℃이다.Subsequently, 0.07 g of catalyst tetraisopropyltitanium, 0.45 g of dibutyl tin oxide, and trimethyl phosphate as a stabilizer were added under a nitrogen stream at atmospheric pressure. The temperature was raised and deglycol reaction was performed for 3.2 hours under reduced pressure of 15-0.2 mmHg at the temperature of 250 degreeC. The sample collected had a number average molecular weight of 31,000 or a weight average molecular weight of 84,000. Melting | fusing point measured by the DSC method of the said sample is 95 degreeC.

[비교예 4][Comparative Example 4]

500㎖ 삼각플라스크를 질소로 치환하고 나서 에틸렌글리콜 92g, 숙신산 118g, 글리세린 0.5g, 촉매 테트라부틸티타네이트 0.07g을 투입하였다. 질소기류 중에서 승온을 하고, 200℃에서 2시간 또 질소를 정지하여 20~2mmHg의 감압하에 0.5시간에 걸쳐 축합에 의한 에스테르화 반응을 실시하였다.After replacing the 500 ml Erlenmeyer flask with nitrogen, 92 g of ethylene glycol, 118 g of succinic acid, 0.5 g of glycerin, and 0.07 g of catalytic tetrabutyl titanate were added thereto. The temperature was raised in a nitrogen stream, and nitrogen was stopped at 200 ° C. for 2 hours to carry out esterification by condensation over 0.5 hours under a reduced pressure of 20 to 2 mmHg.

계속해서, 상압의 질소기류하에 촉매 테트라부틸티타네이트 0.07g, 디부틸틴옥사이드 0.45g, 안정제 트리메틸포스페이트 0.25g, 테트라이소프로필티탄 0.2g을 첨가하였다. 온도를 상승시켜 250℃의 온도에서 15~0.2mmHg의 감압하에 2.5시간, 탈 글리콜 반응을 실시하였다. 채취된 시료는 수평균 분자량이 27,000, 또는 중량평균 분자량이 221,000이었다. 상기 시료의 DSC법에 측정된 융점은 99℃이다.Subsequently, 0.07 g of catalyst tetrabutyl titanate, 0.45 g of dibutyl tin oxide, 0.25 g of stabilizer trimethyl phosphate, and 0.2 g of tetraisopropyl titanium were added under an atmospheric nitrogen stream. The temperature was raised and deglycol reaction was performed for 2.5 hours under reduced pressure of 15-0.2 mmHg at the temperature of 250 degreeC. The sample collected had a number average molecular weight of 27,000 or a weight average molecular weight of 221,000. Melting | fusing point measured by the DSC method of the said sample is 99 degreeC.

본 발명에 따른 방법을 이용하여 실시예 1 내지 5의 방법으로 폴리에스테르수지를 제조하고, 종래의 방법에 따라 제조한 폴리에스테르 수지와 비교하여 그 조성물의 함량 및 그에 따른 분석결과를 하기의 표 2에 나타내었다. 그리고, 본 발명에서는 융점은 퍼킨엘머 DSC를 사용하여 승온속도를 분당 10℃로 하여 측정하였고, 용융지수(MELT INDEX)는 KS법에 따라 190℃에서 2,160g 하중으로 측정하였다. 또한, 분자량은 GPC로 측정하였다.To prepare a polyester resin by the method of Examples 1 to 5 using the method according to the invention, compared to the polyester resin prepared according to the conventional method the content of the composition and the analysis results according to the following Table 2 Shown in In the present invention, the melting point was measured using a PerkinElmer DSC at a heating rate of 10 ° C. per minute, and the melt index (MELT INDEX) was measured at 2,160 g load at 190 ° C. according to the KS method. In addition, molecular weight was measured by GPC.

상기 표 2에서 알 수 있듯이, 본 발명에 따른 폴리에스테르 수지 조성물은 수평균 분자량 및 중량평균 분자량이 높고, 용융지수가 낮으며, 인열강도 등의 물성이 우수함을 알 수 있다.As can be seen in Table 2, it can be seen that the polyester resin composition according to the present invention has a high number average molecular weight and a weight average molecular weight, a low melt index, and excellent physical properties such as tear strength.

[발명의 효과][Effects of the Invention]

본 발명에 의하면 디카르복실산 성분과 단량체를 먼저 반응을 시킨 후, 그 반응생성물에 글리콜을 첨가하여 다시 에스테르화반응 또는 에스테르 교환반응을 거쳐 중축합시키는 3단계반응을 거침으로써 실용화하기에 충분한 고분자량을 갖는 생분해성 폴리에스테르 수지 조성물 및 그 제조방법이 제공된다.According to the present invention, the dicarboxylic acid component and the monomer are reacted first, and then, glycol is added to the reaction product, followed by a three step reaction of polycondensation through esterification or transesterification. A biodegradable polyester resin composition having a molecular weight and a method for producing the same are provided.

상기한 바와 같은 단계로 반응물들을 첨가하여 반응시킴으로써 종래에 다관능성 단량체(monomer)를 상기 디카르복실산 및 상기 글리콜과 함께 첨가함으로 인해 발생했던 저분자량의 폴리에스테르의 급격한 증가 및 겔화의 문제를 해소할 수 있다.By adding and reacting the reactants in the steps described above, the problem of abrupt increase and gelation of low molecular weight polyester, which is conventionally caused by adding a polyfunctional monomer together with the dicarboxylic acid and the glycol, is solved. can do.

또한, 본 발명에 따른 폴리에스테르 수지는 인열강도가 우수하므로 종래에 인열강도 부족으로 인해 발생했던 실용화에의 제약을 해소할 수 있다. 예컨대, 기존의 지방족 폴리에스테르 수지로 쓰레기봉투 및 쇼핑백 등을 제조하여 사용하면 잘 찢어지므로 어려움이 많았으나 본 발명에 따른 폴리에스테르는 분자 내에 존재하는 아민기에 의하여 인열강도가 향상되어 실용화가 가능해졌다.In addition, since the polyester resin according to the present invention has excellent tear strength, it is possible to solve the limitation on practical use that has occurred due to the lack of tear strength in the past. For example, it is difficult to manufacture and use a garbage bag and a shopping bag with an existing aliphatic polyester resin, so it is difficult to tear, but the polyester according to the present invention has improved tearing strength by an amine group present in a molecule, thereby enabling practical use. .

이렇게 생분해성을 갖는 폴리에스테르가 실용화됨으로서 폐기시 미생물에 의해 분해되어 최종적으로 이산화탄소와 물로 남아 기존 지구환경오염의 주범인 플라스틱의 문제를 해결할 수 있다.As such biodegradable polyester is put to practical use, it is decomposed by microorganisms at the time of disposal and finally remains as carbon dioxide and water, thereby solving the problem of plastic, which is the main culprit of global environmental pollution.

Claims (2)

(1) 아디프산을 포함하는 지방족(환상 지방족을 포함) 디카르복실산(또는 그 무수물)과, (2)1,4-부탄디올과 에틸렌글리콜 중 선택된 어느 하나 이상을 포함하는 지방족(환상 지방족을 포함) 글리콜을 주성분으로 하고, 이론량의 폴리에스테르 중량대비 0.1 ~ 50중량%의 (3) 관능기로서 수산기, 아민기 및 카르복실기를 각각 하나 또는 둘 이상 포함하는 단량체 존재 하에서 축합반응, 에스테르화반응, 그리고 에스테르 교환반응 중 선택된 어느 하나 또는 둘 이상의 반응을 거친 후 중축합반응시켜서 얻어지는 수평균분자량이 30,000 ~ 70,000이고, 중량평균분자량이 160,000 ~ 600,000이며, 융점이 45~60℃이고, 용융점도(190℃, 2,160g)가 0.1~50이며, 상기 단량체로서 3-amino-4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid, 2-amino-5-hydroxybenzoic acid, aminosalicylic acid, 3-chloro-L-tyrosine, L-3-(3,4-dihydroxyphenyl)alanine 중 선택된 어느 하나 또는 둘 이상의 혼합물이 사용됨을 특징으로 하는 폴리에스테르 수지 화합물.(1) aliphatic (including cyclic aliphatic) containing adipic acid; (2) aliphatic (cyclic aliphatic) containing any one or more selected from 1,4-butanediol and ethylene glycol; Condensation reaction and esterification reaction in the presence of a monomer containing glycol as a main component and each having at least one hydroxyl group, an amine group and a carboxyl group as functional groups of 0.1 to 50% by weight relative to the theoretical weight of polyester. And the number average molecular weight obtained by the polycondensation reaction after one or two or more selected from the transesterification reaction, the weight average molecular weight is 160,000 ~ 600,000, the melting point is 45 ~ 60 ℃, melt viscosity ( 190 ℃, 2160g) is 0.1-50, and as the monomer 3-amino-4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid, 2-amino-5-hydroxybenzoic acid, aminosalicylic acid, 3-chloro-L -tyrosine, L-3- (3,4-d Polyester resin compound, characterized in that any one or a mixture of two or more selected from ihydroxyphenyl) alanine is used. (1) 아디프산을 포함하는 지방족(환상 지방족을 포함) 디카르복실산(또는 그 무수물)과, 이론량의 폴리에스테르 중량대비 0.1 ~ 50중량%의 (2) 관능기로서 수산기, 아민기 및 카르복실기를 각각 하나 또는 둘 이상 포함하는 단량체를 투입하여 160~240℃의 온도로 축합반응, 에스테르화반응, 그리고 에스테르 교환반응 중 선택된 어느 하나 또는 둘 이상의 반응을 실시하는 제1단계와, 상기 제1단계 반응생성물에 1,4-부탄디올과 에틸렌글리콜 중 선택된 어느 하나 이상을 포함하는 지방족(환상 지방족 포함) 글리콜을 투입하여 200~220℃의 온도로 에스테르화 반응 또는 에스테르 교환반응을 실시하는 제2단계와, 상기 제2단계 반응생성물인 폴리에스테르를 210~270의 온도 및 0.005~10torr의 진공도로 중축합(polycendensation)하여 고분자량화된 폴리에스테르를 생성하는 제3단계로 구성됨을 특징으로 하는 폴리에스테르 수지 제조방법.(1) an aliphatic (including cyclic aliphatic) dicarboxylic acid (or anhydride thereof) containing adipic acid, and 0.1 to 50% by weight of (2) functional groups as the functional weight of a hydroxyl group, an amine group, and A first step of conducting any one or two or more reactions selected from condensation reaction, esterification reaction, and transesterification reaction at a temperature of 160 to 240 ° C. by adding a monomer containing one or two or more carboxyl groups, and the first Step 2 A second step of performing an esterification reaction or a transesterification reaction at a temperature of 200-220 ° C. by adding an aliphatic (including cyclic aliphatic) glycol including any one or more selected from 1,4-butanediol and ethylene glycol to the reaction product. And a third polycondensation of the polyester, which is the second step reaction product, at a temperature of 210 to 270 and a vacuum of 0.005 to 10 torr, to produce a high molecular weight polyester. Polyester resin manufacturing method characterized in that consisting of steps.
KR1019980033835A 1998-08-20 1998-08-20 Polyester resin composition and method for producing the same KR100308535B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980033835A KR100308535B1 (en) 1998-08-20 1998-08-20 Polyester resin composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980033835A KR100308535B1 (en) 1998-08-20 1998-08-20 Polyester resin composition and method for producing the same

Publications (2)

Publication Number Publication Date
KR19980082074A KR19980082074A (en) 1998-11-25
KR100308535B1 true KR100308535B1 (en) 2001-11-30

Family

ID=37530583

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980033835A KR100308535B1 (en) 1998-08-20 1998-08-20 Polyester resin composition and method for producing the same

Country Status (1)

Country Link
KR (1) KR100308535B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498811B1 (en) * 2002-07-08 2005-07-01 주식회사 이래화학 Biodegradable aliphatic polyester resin composition and preparation thereof
KR20040045505A (en) * 2002-11-23 2004-06-02 임호 Week acidic liquid soap and method for preparation thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295071A (en) * 1992-04-15 1993-11-09 Showa Highpolymer Co Ltd Production of aliphatic polyester having high molecular weight
KR950014171A (en) * 1993-11-03 1995-06-15 박흥기 Aliphatic Copolyester and Method for Making the Same
JPH07330881A (en) * 1994-06-03 1995-12-19 Showa Highpolymer Co Ltd Production of biogegradable cyclic aliphatic polyester
KR970010814A (en) * 1995-08-18 1997-03-27 김준웅 Thermoplastic Aliphatic Polyester Copolymer Resin with Excellent Tear Strength and Manufacturing Method Thereof
KR19980082076A (en) * 1998-08-20 1998-11-25 김석태 Polyester resin composition and its manufacturing method
KR19980082073A (en) * 1998-08-20 1998-11-25 김석태 Polyester resin composition and its manufacturing method
KR19980082075A (en) * 1998-08-20 1998-11-25 김석태 Polyester resin composition and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295071A (en) * 1992-04-15 1993-11-09 Showa Highpolymer Co Ltd Production of aliphatic polyester having high molecular weight
KR950014171A (en) * 1993-11-03 1995-06-15 박흥기 Aliphatic Copolyester and Method for Making the Same
JPH07330881A (en) * 1994-06-03 1995-12-19 Showa Highpolymer Co Ltd Production of biogegradable cyclic aliphatic polyester
KR970010814A (en) * 1995-08-18 1997-03-27 김준웅 Thermoplastic Aliphatic Polyester Copolymer Resin with Excellent Tear Strength and Manufacturing Method Thereof
KR19980082076A (en) * 1998-08-20 1998-11-25 김석태 Polyester resin composition and its manufacturing method
KR19980082073A (en) * 1998-08-20 1998-11-25 김석태 Polyester resin composition and its manufacturing method
KR19980082075A (en) * 1998-08-20 1998-11-25 김석태 Polyester resin composition and its manufacturing method

Also Published As

Publication number Publication date
KR19980082074A (en) 1998-11-25

Similar Documents

Publication Publication Date Title
KR100366484B1 (en) Copolyester resin composition and a process of preparation thereof
KR100366483B1 (en) Copolyester resin composition and a process of preparation thereof
AU682017B2 (en) Thermoplastic biodegradable resins and a process of preparation thereof
KR100257817B1 (en) Polyester resin composition and its preparation method
KR100308535B1 (en) Polyester resin composition and method for producing the same
CN115403749A (en) Degradable poly (butylene adipate/terephthalate-co-glycollic acid) copolyester and preparation method thereof
KR20200062615A (en) A preparation method of High molecular weight aliphatic carbonate and aromatic ester copolymer resin
KR19980082075A (en) Polyester resin composition and its manufacturing method
KR19980082076A (en) Polyester resin composition and its manufacturing method
JP3263728B2 (en) Method for producing high molecular weight aliphatic polyester polymer
KR20000019013A (en) Polyester resin composition and its manufacturing method
Lei et al. Synthesis of high molecular weight polylactic acid from aqueous lactic acid co-catalyzed by tin (II) chloride dihydrate and succinic anhydride
KR20010045677A (en) Composition of biodegradable polyester resin containing lactic acid
KR100498811B1 (en) Biodegradable aliphatic polyester resin composition and preparation thereof
KR20020051580A (en) Preparation method of melt extrusion coated paper using aliphatic polyester resin
KR20000019016A (en) Polyester resin composition and its preparing process
KR20000019017A (en) Composition of polyester resin and method for manufacturing thereof
KR20000019014A (en) Polyester resin composition and its manufacturing method
KR100330380B1 (en) Thermoplastic aliphatic polyester resin and process for producing the same
KR20050075926A (en) Preparation and composition of biodegradable aliphatic polyester
KR100330379B1 (en) Thermoplastic aliphatic polyester resin with excellent transparency and its manufacturing method
KR20000019015A (en) Composition of polyester resin and method for manufacturing thereof
KR20000019018A (en) Polyester resin composition and process for production thereof
KR20000019010A (en) Polyester resin composition and preparation thereof
JP3342570B2 (en) Method for producing polyethylene succinate

Legal Events

Date Code Title Description
G15R Request for early opening
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130703

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140611

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160624

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170627

Year of fee payment: 17

EXPY Expiration of term