KR0121998B1 - Thermoplastic biodegrable resin and method for making thereof - Google Patents

Thermoplastic biodegrable resin and method for making thereof

Info

Publication number
KR0121998B1
KR0121998B1 KR1019930010793A KR930010793A KR0121998B1 KR 0121998 B1 KR0121998 B1 KR 0121998B1 KR 1019930010793 A KR1019930010793 A KR 1019930010793A KR 930010793 A KR930010793 A KR 930010793A KR 0121998 B1 KR0121998 B1 KR 0121998B1
Authority
KR
South Korea
Prior art keywords
butanediol
biodegradable resin
mixture
thermoplastic biodegradable
weight
Prior art date
Application number
KR1019930010793A
Other languages
Korean (ko)
Other versions
KR950000758A (en
Inventor
전정남
황기호
조수일
김효열
채훈
Original Assignee
김준웅
주식회사선경인더스트리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김준웅, 주식회사선경인더스트리 filed Critical 김준웅
Priority to KR1019930010793A priority Critical patent/KR0121998B1/en
Publication of KR950000758A publication Critical patent/KR950000758A/en
Application granted granted Critical
Publication of KR0121998B1 publication Critical patent/KR0121998B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Abstract

The mixture of dimethylsuccinate and dimethylglutalate as bi-funcitonal carboxylic acid component was mixed with the mixture of 1,4 butanediol and ethyleneglycol in a mol. ratio of 1:1.4-1:2 in presence of 0.005-2 wt. % tetra butyltitanate to give a half product which is polycondensed in presence of 0.3-1.5 wt. % dibutyltitanate at 240-270 deg.C for 240-350 min to give a final product.

Description

열가소성 생분해성 수지 및 그 제조방법Thermoplastic Biodegradable Resin and Manufacturing Method Thereof

본 발명은 열가소성 생분해성 수지 조성물 및 그 제조방법에 관한 것으로, 더욱 상세하게는 수평균 분자량이 25.000~45.000 고유점도가 1.4이상이고, 용융흐름지수(MI, Melt Index)가 0~10이며, 융점이 90~120℃인 다음 일반식으로 표시되는 열가소성 생분해성 수지 및 그 제조방법에 관한 것이다.The present invention relates to a thermoplastic biodegradable resin composition and a method for producing the same, more specifically, the number average molecular weight is 25.000 ~ 45.000 intrinsic viscosity is 1.4 or more, the melt flow index (MI, Melt Index) is 0 ~ 10, melting point It relates to a thermoplastic biodegradable resin represented by the following general formula which is 90-120 degreeC, and its manufacturing method.

(상기 식에서, R1은 1,4-부탄디올 단독 또는 1,4 부탄디올과 에틸렌글리콜의 혼합모노머로부터 유도된 잔기, R2은 디메틸숙시네이트와 디메틸글루타레이트의 혼합모노머로부터 유도된 잔기, n은 130에서 250까지의 정수)(Wherein R 1 is 1,4-butanediol alone or a residue derived from a mixed monomer of 1,4 butanediol and ethylene glycol, R 2 is a residue derived from a mixed monomer of dimethylsuccinate and dimethylglutarate, n is Integer from 130 to 250)

최근의 사회환경적 추세를 살펴보면 세계적으로 환경오염이 심각한 사회문제로 대두되고 있으며, 특히 각종 용도에 사용되는 플라스틱이 난분해성(難分解性) 물질이기 때문에 이러한 플라스틱의 폐기물에 의해 자연환경이 날로 심각하게 파괴되어 가고 있고 따라서 이에 대한 규제가 전세계 각국에서 실시되거나 도입단계에 있다.Looking at the recent social and environmental trends, environmental pollution is a serious social problem in the world. Especially, since the plastic used for various uses is a hardly decomposable substance, the natural environment is seriously affected by such plastic waste. It is being destroyed so that regulations are being implemented or introduced in countries around the world.

한편, 일반적으로 지방족 폴리에스테르는 생분해성을 가지고 있기 때문에(Journal of Macromol. SCI-Chem., A23(3), 1986, 393~409), 현재 의료용 재료, 농어업용 재료 및 포장 재료 등에 응용되고 있거나 실용화 연구가 진행되고 있다. 그러나 기존의 지방족 폴리에스테르는 주쇄의 구조, 결정성 등의 문제 때문에 융점이 낮고 용융흐름지수가 높으며, 내열성 및 기계적 강도 등의 물성이 불량하여 용도가 제한되고 있는 실정이다.(RD Evalulation Report No.47 Chart 3).On the other hand, since aliphatic polyesters are generally biodegradable (Journal of Macromol. SCI-Chem., A23 (3), 1986, 393-409), they are currently applied to medical materials, agricultural materials and packaging materials, Practical research is in progress. However, existing aliphatic polyesters have low melting points, high melt flow indices, and poor physical properties such as heat resistance and mechanical strength due to problems in the structure and crystallinity of the main chain. (RD Evalulation Report No. 47 Chart 3).

기존에 지방족 폴리에스테르를 제조하는 방법으로는 일본 공개특허공보 평4-189822호 및 일본 공개특허공보 평4-189823호 등을 들 수 있는데 여기에서는 자체로서 융점이 낮고, 분자량 또한 20.000미만으로 낮아 용도 전개가 어렵기 때문에 이소시아네이트를 도입시키는 방법이 제안되었으나, 이 수지 또한 생분해성수지로의 용도 전개는 곤란하고, 또한 이소시아네이트를 사용하면 작업중의 인체에 유해할 뿐 아니라 성형 가공한 후 이소시아네이트를 사용하지 않은 지방족 폴리에스테르에 비해 에스테르 결합이 쉽게 절단하기 어려우므로 생분해성이 떨어지는 결과를 가져오게 된다.Conventional methods for producing aliphatic polyesters include Japanese Patent Application Laid-Open No. 4-189822 and Japanese Patent Application Laid-Open No. 4-189823, which have low melting points and low molecular weights of less than 20.000. Since it is difficult to develop, a method of introducing isocyanate has been proposed, but this resin is also difficult to develop into a biodegradable resin, and it is not only harmful to the human body during operation, but also aliphatic without isocyanate after molding. Compared to polyester, ester bonds are more difficult to cut, resulting in poor biodegradability.

이에 본 발명자들은 이소시아네이트를 사용하여 분자량을 올리는 방법을 사용하지 않고 이관응성 카르복실산 성분으로 숙신산과 이관능성 알코올 성분으로 에틸렌글리콜과 1,4-부탄디올을 직접 축중합하여 생분해성 지방족 폴리에스테르를 개발한 바 있다.(대한민국 특허출원 제 92-23688호 참조)Therefore, the present inventors developed a biodegradable aliphatic polyester by directly condensation of ethylene glycol and 1,4-butanediol as a difunctional carboxylic acid component and succinic acid as a difunctional carboxylic acid component without using a method of increasing the molecular weight using isocyanates. (See Korean Patent Application No. 92-23688).

그러나, 본 발명자들의 대한민국 특허출원 제 92-23688호에 의한 생분해성 지방족 폴리에스테르는 상기한 선행기술의 문제점을 상당히 해소한 것이나, 아직 물성적으로 다소 미흡한 점이 있는 것이었다.However, the biodegradable aliphatic polyester of the present inventors Korean Patent Application No. 92-23688 considerably solves the above-mentioned problems of the prior art, but it is still somewhat insufficient in physical properties.

따라서, 본 발명자들은 이를 개량하여 보다 우수한 물성을 갖는 생분해성 지방족 폴리에스테르에 대한 연구를 거듭하였으며, 그 결과 이관능성 산성분을 디메틸숙시네이트와 디메틸글루타레이트의 혼합물로 사용하는 경우 개량된 물성을 갖는 새로운 생분해성 지방족 폴리에스테르 수지를 제공할 수 있다는 사실을 발견하게 되었다.Therefore, the present inventors have improved and improved the biodegradable aliphatic polyester having better physical properties. As a result, the improved physical properties when the bifunctional acid component is used as a mixture of dimethyl succinate and dimethyl glutarate It has been discovered that the new biodegradable aliphatic polyester resins can be provided.

그러므로 본 발명에 의하면, 고유점도가 1.4 이상이고, 융점이 90~120℃이며, 분자량 25,000내지 45,000인 하기 일반식으로 표시되는 열가소성 생분해성 수지가 제공된다.Therefore, according to the present invention, a thermoplastic biodegradable resin represented by the following general formula having an intrinsic viscosity of 1.4 or more, a melting point of 90 to 120 ° C, and a molecular weight of 25,000 to 45,000 is provided.

(상기 식에서, R1은 1,4-부탄디올 단독 또는 1,4 부탄디올과 에틸렌글리콜의 혼합모노머로부터 유도된 잔기, R2은 디메틸숙시네이트와 디메틸글루타레이트의 혼합모노머로부터 유도된 잔기, n은 130에서 250까지의 정수)(Wherein R 1 is 1,4-butanediol alone or a residue derived from a mixed monomer of 1,4 butanediol and ethylene glycol, R 2 is a residue derived from a mixed monomer of dimethylsuccinate and dimethylglutarate, n is Integer from 130 to 250)

이하, 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따르는 열가소성 생분해성 지방족수지(Ⅰ)의 제조는 이관능성 카르복실산성분으로서 디메틸숙시네이트와 디메틸글루타레이트의 혼합모노머와 이관능성 알코올성분으로서 1,4-부탄디올과 에틸렌글리콜의 혼합모노머의 몰비를 1/1.4~1/2로 하여 에스테르 교환반응시키는 것을 포함한다. 이 때 몰비가 1/14미만인 경우 색상이 불량하고 반응성이 떨어지며, 1/2를 초과할 경우 반응성의 향상이 없이 제조원가가 높아진다.Preparation of the thermoplastic biodegradable aliphatic resin (I) according to the present invention is a mixed monomer of dimethyl succinate and dimethyl glutarate as a bifunctional carboxylic acid component and a mixed monomer of 1,4-butanediol and ethylene glycol as a difunctional alcohol component. And transesterification with a molar ratio of 1 / 1.4 to 1/2. At this time, if the molar ratio is less than 1/14, the color is poor and the reactivity is lowered. If the molar ratio exceeds 1/2, the manufacturing cost is increased without improving the reactivity.

그리고 에스테르 교환반응은 반응초기에 촉매를 첨가하고, 반응온도는 150~230℃의 범위로 하는 것이 바람직하다. 에스테르교환반응 말기 또는 축중합 초기에 촉매와 안정제를 첨가하여 얻어지는 생성물을 축중합 하였다. 이 때 축중합 온도는 240~270℃가 바람직한 바, 만일 축중합 온도가 240℃ 미만이면 반응시간이 너무 길어지고 270℃를 초과하면 열분해 및 색상이 불량해지는 문제가 발생한다. 또한 축중합시간은 촉매와 안정제의 양에 따라 차이가 있지만 240~350분 사이가 바람직하다. 이 때 중합시간은 그 시간이 길수록 분자량이 올라가는 바, 분자량을 올리는 데 필요한 정도로 조절할 수 있다.In the transesterification reaction, a catalyst is added at the beginning of the reaction, and the reaction temperature is preferably in the range of 150 to 230 ° C. The product obtained by adding a catalyst and a stabilizer at the end of the transesterification reaction or the beginning of the condensation polymerization was condensed. At this time, the condensation polymerization temperature is preferably 240 to 270 ° C. If the condensation polymerization temperature is less than 240 ° C., the reaction time becomes too long, and if the condensation polymerization temperature is higher than 270 ° C., there is a problem of thermal decomposition and poor color. In addition, the polycondensation time varies depending on the amount of catalyst and stabilizer, but is preferably between 240 and 350 minutes. At this time, the polymerization time can be adjusted to the extent necessary to increase the molecular weight as the molecular weight increases as the time increases.

본 발명에서 사용된 이관능성 카르복실산성분은 디메틸숙시네이트와 디메틸글루타레이트의 혼합물인 바, 그 혼합비는 중량비로 86 : 14~98 : 2가 적합하다. 이 때 디메틸글루타레이트의 양이 14중량%을 초과하면 융점 및 물성이 저하되고, 2중량% 미만의 경우에는 굴곡모듈러스가 증가하여 유연성이 저하하고, 결정성이 높아져서 분해효과가 저하하며, 고유점도 및, 용융흐름지수의 저하로 필름형성이 불량하고, 작업성이 저하하는 문제점이 있다.The bifunctional carboxylic acid component used in the present invention is a mixture of dimethyl succinate and dimethyl glutarate, and the mixing ratio thereof is suitably 86: 14 to 98: 2 by weight. At this time, if the amount of dimethyl glutarate exceeds 14% by weight, the melting point and physical properties are lowered, and when the amount of dimethyl glutarate is less than 2% by weight, the flexural modulus increases, the flexibility decreases, the crystallinity increases, and the decomposition effect decreases. There is a problem in that film formation is poor due to a decrease in viscosity and melt flow index, and workability is lowered.

본 발명에서 이관능성 알코올 성분은 1,4-부탄디올 단독 또는 1,4-부탄디올과 에틸렌글리콜의 혼합물인 바, 그 혼합비는 중량비로 65 : 35~100 : 0이 적합하다. 이 때 비율은 수지의 융점에 영향을 미치는 바, 에틸렌글리콜의 함량이 35중량%를 초과할 경우에는 융점이 너무 낮아져서 부적합하다.In the present invention, the difunctional alcohol component is 1,4-butanediol alone or a mixture of 1,4-butanediol and ethylene glycol, and the mixing ratio thereof is preferably 65:35 to 100: 0 by weight. At this time, the ratio affects the melting point of the resin, and when the content of ethylene glycol exceeds 35% by weight, the melting point is too low to be suitable.

또한 본 발명의 에스테르교환반응 초기에 첨가하는 촉매로는 테트라부틸티타네이트와 칼슘 아세테이트 혼합 및 단독 테트라부틸타네이트가 사용되며, 첨가량은 0.005~2중량%가 적합하다. 0.005중량% 미만을 첨가하면 메탄올을 유출시키기에 부족하고, 2중량% 초과시는 메탄올 유출을 너무 빠르게 하여 반응을 과다 촉진시키므로 색상이 나쁘게 된다.In addition, as a catalyst to be added at the beginning of the transesterification reaction of the present invention, tetrabutyl titanate, calcium acetate mixture and single tetrabutyl tanate are used, and the addition amount is preferably 0.005 to 2% by weight. If less than 0.005% by weight is added, it is insufficient to let methanol out, and if it exceeds 2% by weight, the methanol outflow is too fast to accelerate the reaction, resulting in poor color.

또한 에스테르교환반응 말기 또는 축중합시에 사용되는 촉매로는 디부틸틴옥사이드, 테트라부틸티타네이트, 테트라이소프로필티타네이트가 등을 하나 또는 둘 이상을 혼합하여 사용할 수 있으며, 첨가량은 0.3~1.5중량%가 적합하다. 만일 0.3중량% 미만을 사용하면 고유점도 및 분자량이 증가되지 않고 반응속도가 느리며, 1.5중량%을 초과 사용할 경우 반응은 빠르나 색상이 나빠진다.In addition, as a catalyst used at the end of the transesterification reaction or during the condensation polymerization, dibutyltin oxide, tetrabutyl titanate, tetraisopropyl titanate, or the like may be used, or a mixture of two or more thereof may be used. % Is suitable. If less than 0.3% by weight, the intrinsic viscosity and molecular weight does not increase, the reaction rate is slow, and when used in excess of 1.5% by weight, the reaction is faster but the color becomes worse.

그리고 이 때 수지의 색상측면을 고려하여 안정제를 투입해야 하는데, 본 발명에 사용하기 적합한 안정제의 예로는 네오펜틸-디아릴-옥시트리포스페이트, 트리페닐포스핀, 트리메틸포스페이트 등이 있으며, 그 중에서도 특히 트리메틸포스페이트가 유리하며, 그 사용량은 0.1~0.8중량%가 적당하다. 만일 사용량이 0.1중량% 미만이면 안정제로서 효과가 불충분하고, 0.8중량%를 초과할 때는 반응시간이 매우 길어지므로 색상등 물성이 저하될 우려가 있다.In this case, a stabilizer should be added in consideration of the color side of the resin. Examples of suitable stabilizers for use in the present invention include neopentyl-diaryl-oxytriphosphate, triphenylphosphine, trimethyl phosphate, and the like. Trimethyl phosphate is advantageous, and its amount is suitably 0.1 to 0.8% by weight. If the amount is less than 0.1% by weight, the effect is insufficient as a stabilizer, and when the amount exceeds 0.8% by weight, the reaction time becomes very long, and thus physical properties such as color may be deteriorated.

이와 같은 본 발명에 의해 제조된 열가소성 생분해성 수지는 생분해성이 우수할 뿐 아니라 제반 물성 또한 우수하기 때문에 환경오염을 방지할 수 있어서 의료용 재료, 농어업용 재료, 포장 재료 등 각종 산업분야에서의 수지 재료로 매우 유용하다.Since the thermoplastic biodegradable resin prepared according to the present invention is not only excellent in biodegradability but also excellent in general physical properties, it is possible to prevent environmental pollution and thus, resin materials in various industrial fields such as medical materials, agricultural and fishery materials, and packaging materials. Very useful as

이하 본 발명을 실시예를 통하여 더욱 구체적으로 설명하면 다음과 같다. 단, 본 발명이 실시예로 한정되는 것은 아니다. 또한, 하기 실시예 및 비교실시예에서, 생분해성 평가, 고유점도, 분자량 및 용융흐름성은 다음과 같은 방법으로 수행하였다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the examples. In addition, in the following Examples and Comparative Examples, biodegradability evaluation, intrinsic viscosity, molecular weight and melt flow properties were carried out in the following manner.

◇ 생분해성 … ASTM D-4300에 따라 실시. 우선 반응용액으로는 pH가 7.0인 100마이크로몰의 인산완충 용액을 사용하였으며, 이 용액에 제조된 지방족 폴리에스테르로 만든 40㎛ 두께의 필름을 100㎎ 첨가한 후 아스퍼지리우스 나이거(Asperilius Niger)를 0.2㎎을 첨가하여 총 반응액의 부피를 1ℓ로 하였다. 이 후 이 반응액을 37℃에서 60일 동안 150rpm으로 교반하면서 반응시킨 후 샘플(sample)을 채취해 분자량 변화로 생분해성을 평가한다.◇ Biodegradable… Conducted according to ASTM D-4300. First, a 100 micromolar phosphate buffer solution having a pH of 7.0 was used as the reaction solution, and 100 mg of a 40 μm-thick film made of aliphatic polyester was added to the solution, followed by Asperilius Niger. 0.2 mg was added to make the volume of the total reaction solution 1 l. Thereafter, the reaction solution was reacted with stirring at 150 rpm for 60 days at 37 ° C., and a sample was taken to evaluate biodegradability by molecular weight change.

◇ 고유점도 … 오르트클로로페놀을 이용하여 30℃에서 측정하고 융점은 승온속도를 분당 10℃로 하여 시차 주사열량분석기(DSC)로 측정.◇ intrinsic viscosity. The temperature was measured at 30 ° C using orchlorochlorophenol, and the melting point was measured by differential scanning calorimetry (DSC) at a rate of temperature increase of 10 ° C per minute.

◇ 수평균분자량 …오르토클로로페놀과 클로로포름의 혼합용매로 하여 겔크로마토그래피(GPC)로 측정.◇ Number average molecular weight. It was measured by gel chromatography (GPC) as a mixed solvent of orthochlorophenol and chloroform.

◇ 수평균분자량 감소율 … 하기 식으로 구함.◇ Number average molecular weight reduction rate. Obtained by the following formula.

◇ 용융흐름 지수 …120℃, 2,160g의 조건하에서 측정.◇ Melt flow index. It is measured under the conditions of 120 degreeC and 2160 g.

[실시예 1]Example 1

가열용융축합반응관 내에 디메틸글루타레이드 2.4g과 디메틸숙시네이트 71.2g이 혼합되어 있는 모노머 73.6g, 1,4-부탄디올 90.1g, 에틸렌글리콜 14.7g과 촉매인 테트라부틸티타네이트 0.03g과 칼슘아세테이트 0.001g을 혼합하고 온도를 210℃로 승온시켜 메탄올이 유출될 때까지 반응시킨다.Monomer 73.6g, 90.1g 1,4-butanediol, 14.7g ethylene glycol, 0.03g tetrabutyl titanate and calcium acetate The mixture is mixed with 0.001 g and the temperature is raised to 210 ° C. until the methanol is released.

에스테르교환반응이 끝난 후 촉매인 테트라부틸티타네이트 0.03g, 디부틸틴옥사이드 0.45g 및 안정제인 트리메틸포스페이트 0.2g을 에틸렌글리콜 또는 1,4-부탄디올에 슬러리하여 첨가한 다음, 230℃에서 상기 혼합물을 10분 동안 잘 혼합한 후 온도를 250℃로 서서히 승온시키면서 압력을 0.3㎜Hg로 하여 축중합을 한 다음 토출시켜 지방족 폴리에스테르를 얻었다.After the completion of the transesterification reaction, 0.03 g of tetrabutyl titanate, 0.45 g of dibutyl tin oxide, and 0.2 g of trimethyl phosphate as a stabilizer were added by slurry to ethylene glycol or 1,4-butanediol, and then the mixture was added at 230 ° C. After mixing well for 10 minutes, the temperature was gradually raised to 250 ° C. while the pressure was 0.3 mmHg, followed by condensation polymerization, followed by discharging to obtain aliphatic polyester.

[실시예 2 내지 5][Examples 2 to 5]

각 성분의 첨가량을 다음 표1과 같이 변경하였고, 또한 실시예 2, 3 및 5에서는 에스테르반응초기에 촉매로서 칼슘아세테이트를 사용하지 않고 테트라부틸티타네이트만 첨가한 것을 제외하고는 상기 실시예1과 동일한 절차를 반복하였다.The amount of each component was changed as shown in Table 1, and in Examples 2, 3, and 5, except that only tetrabutyl titanate was added without using calcium acetate as a catalyst in the initial stage of the ester reaction. The same procedure was repeated.

[비교예 1]Comparative Example 1

각 성분의 첨가량을 다음 표1과 같이 변경하였고, 에스테르 반응초기에 촉매로서 칼슘아세테이트를 사용하지 않고 테트라부틸티타네이트만 첨가한 것을 제외하고는 상기 실시예1과 동일한 절차를 반복하였다.The amount of each component was changed as shown in Table 1, and the same procedure as in Example 1 was repeated except that only tetrabutyl titanate was added without using calcium acetate as a catalyst in the initial stage of the ester reaction.

[비교예 2]Comparative Example 2

가열용융축합반응관 내에 숙신산 118g, 에틸렌글리콜 85g을 질소기류하에서 혼합하고 온도를 210℃까지 승온시켜 이론치의 물이 유출될 때까지 반응시킨다. 그 후 물이 완전히 유출되면 테트라부틸티타네이트 0.5g을 에틸렌글리콜에 슬러리하여 질소기류하에서 투입한다. 200℃에서 상기 혼합물을 약 10분 동안 잘 혼합한 후 온도를 220℃로 서서히 승온시키면서 압력을 0.3㎜Hg로 감압하여 축합반응을 진행시킨다. 그런 다음 5시간 동안 반응을 한 다음 토출시켜 지방족 폴리에스테르를 얻었다.118 g of succinic acid and 85 g of ethylene glycol are mixed in a nitrogen gas stream in a hot melt condensation reaction tube, and the temperature is raised to 210 ° C. until the water of theoretical value flows out. After that, when the water completely flows out, 0.5 g of tetrabutyl titanate is slurried in ethylene glycol and introduced under a nitrogen stream. After mixing the mixture well at 200 ° C. for about 10 minutes, the condensation reaction proceeds by reducing the pressure to 0.3 mmHg while gradually raising the temperature to 220 ° C. Then, the reaction was carried out for 5 hours and then discharged to obtain an aliphatic polyester.

[비교예 3]Comparative Example 3

가열용융축합반응관 내에 숙신산 118g, 1,4-부탄디올 127.5g을 질소기류하에서 혼합하여 온도를 210℃까지 승온시켜 이론치의 물이 유출될 때까지 반응시킨다. 그 후 물이 완전히 유출되면 테트라부틸티타네이트 0.5g을 1,4-부탄디올 슬러리하여 질소기류하에서 투입한다. 200℃에서 상기 혼합물을 약 10분 동안 잘 혼합한 후 온도를 220℃로 서서히 승온시키면서 압력을 0.3㎜Hg로 감압하여 축합반응을 진행시킨다. 그런 다음 5시간 동안 반응을 하고, 헥사메틸렌이소시아네이트 2g(OH/NCO 1/0.8)을 190℃에서 첨가하여 10분 동안 반응한 다음 토출시켜 지방족 폴리에스테르를 얻었다.118 g of succinic acid and 127.5 g of 1,4-butanediol are mixed in a heated melt condensation reaction tube under a nitrogen stream, and the temperature is raised to 210 ° C. until the water of theoretical value flows out. After that, when water is completely discharged, 0.5 g of tetrabutyl titanate is poured into a 1,4-butanediol slurry under nitrogen stream. After mixing the mixture well at 200 ° C. for about 10 minutes, the condensation reaction proceeds by reducing the pressure to 0.3 mmHg while gradually raising the temperature to 220 ° C. Then, the reaction was carried out for 5 hours, hexamethylene isocyanate 2g (OH / NCO 1 / 0.8) was added at 190 ℃ reacted for 10 minutes and then discharged to obtain an aliphatic polyester.

[비교예4]Comparative Example 4

상기 비고예3과 동일하게 실시하되 5시간 반응한 다음 토출하지 않고 페톨메탄디이소시아네이트 5g(OH/NCO 1/0.85)을 190℃에서 첨가한 다음 10분 동안 반응한 다음 토출시킨다.Remarks Example 3 was carried out in the same manner as in Example 3, but after the reaction for 5 hours, 5 g (OH / NCO 1 / 0.85) of petol methane diisocyanate was added at 190 ° C without being discharged, and then reacted for 10 minutes and then discharged.

상기 실시예 및 비교예의 각 성분의 첨가량, 반응시간 및, 물성을 다음 표1에 나타내었다.The addition amount, reaction time, and physical properties of each component of the Examples and Comparative Examples are shown in Table 1 below.

상기 표로부터 알 수 있는 바와 같이, 본 발명에 의하면 분자량 및 융점, 용융흐름지수와 고유점도면서 좋은 결과를 가져오며, 특히 비교예2는 분자량이 낮은 필름성형이 불가능하여 분자량 감소율을 측정할 수가 없었으며, 용융흐름지수가 7이하일 경우에만 블로잉(blowing) 사출을 할 수가 있다.As can be seen from the table, according to the present invention, the molecular weight and melting point, the melt flow index and the intrinsic viscosity have good results. Particularly, Comparative Example 2 was unable to form a low molecular weight film, and thus the molecular weight reduction rate could not be measured. Blowing injection is only possible when the melt flow index is less than 7.

Claims (7)

1,4-부탄디올 단독 또는 1,4-부탄디올과 에틸렌글리콜의 혼합물로부터 선택되는 이관능성 알코올성분과 디메틸숙시네이트와 디메틸글루타레이트의 혼합물인 이관능성 카르복실산 성분의 축중합에 의해 제조되며 고유점도가 1.4이상이고, 융점이 90~120℃이며, 분자량 25.000 내지 45.000인 하기 일반식으로 표시되는 열가소성 생분해성 수지 :It is prepared by condensation polymerization of difunctional carboxylic acid component, which is a difunctional alcohol component selected from 1,4-butanediol alone or a mixture of 1,4-butanediol and ethylene glycol, and a mixture of dimethylsuccinate and dimethylglutarate. Is 1.4 or more, the melting point is 90 ~ 120 ℃, molecular weight 25.000 to 45.000 thermoplastic biodegradable resin represented by the following general formula: 상기 식에서, R1은 1,4-부탄디올 단독 또는 1,4 부탄디올과 에틸렌글리콜의 혼합모노머로부터 유도된 잔기, R2은 디메틸숙시네이트와 디메틸글루타레이트의 혼합모노머로부터 유도된 잔기, n은 130에서 250까지의 정수.Wherein R 1 is a residue derived from 1,4-butanediol alone or a mixed monomer of 1,4 butanediol and ethylene glycol, R 2 is a residue derived from a mixed monomer of dimethylsuccinate and dimethylglutarate, n is 130 Integer from to 250. 고유점도가 1.4이상이고, 융점이 90~120℃이며 분자량 25,000 내지 45,000인 하기 일반식으로 표시되는 열가소성 생분해성 수지를 제조하는 방법에 있어서,In the method of manufacturing a thermoplastic biodegradable resin represented by the following general formula having an intrinsic viscosity of 1.4 or more, a melting point of 90 to 120 ° C and a molecular weight of 25,000 to 45,000, 상기 식에서, R1은 1,4-부탄디올 단독 또는 1,4 부탄디올과 에틸렌글리콜의 혼합모노머로부터 유도된 잔기, R2은 디메틸숙시네이트와 디메틸글루타레이트의 혼합모노머로부터 유도된 잔기, n은 130에서 250까지의 정수.Wherein R 1 is a residue derived from 1,4-butanediol alone or a mixed monomer of 1,4 butanediol and ethylene glycol, R 2 is a residue derived from a mixed monomer of dimethylsuccinate and dimethylglutarate, n is 130 Integer from to 250. 이관능성 카르복실산 성분으로 디메틸숙시네이트와 디메틸글루타레이트의 혼합물을 사용하고, 이관능성 알코올성분으로 1,4-부탄디올 단독 또는 1,4-부탄디올과 에틸렌글리콜의 혼합물을 사용하며, 촉매는 에스테르교환반응 초기에 0.005~2중량%, 에스테르교환반응 말기 또는 축중합시 0.~1.5중량%, 안정제는 0.1~0.8중량%를 첨가함을 특징으로 하는 열가소성 생분해성 수지의 제조방법.A mixture of dimethylsuccinate and dimethylglutarate is used as the difunctional carboxylic acid component, 1,4-butanediol alone or a mixture of 1,4-butanediol and ethylene glycol is used as the difunctional alcohol component, and the catalyst is an ester. 0.005 to 2% by weight at the beginning of the exchange reaction, 0. to 1.5% by weight at the end of the transesterification or condensation polymerization, 0.1 to 0.8% by weight stabilizer is a method for producing a thermoplastic biodegradable resin. 제2항에 있어서, 상기 이관능성 카르복실산은 디메틸숙시네이트와 디메틸글루타레이트가 86 : 14~98 : 2의 중량비로 혼합된 것임을 특징으로 하는 열가소성 생분해성 수지의 제조방법.The method of claim 2, wherein the bifunctional carboxylic acid is a method for producing a thermoplastic biodegradable resin, characterized in that dimethyl succinate and dimethyl glutarate are mixed in a weight ratio of 86: 14 ~ 98: 2. 제2항에 있어서, 상기 에스테르교환반응 초기에 사용되는 촉매는 테트라부틸티타 단독 또는 테트라부틸티타네이트와 칼슘아세테이트의 혼합물인 것을 특징으로 하는 열가소성 생분해성 수지의 제조 방법.The method for preparing a thermoplastic biodegradable resin according to claim 2, wherein the catalyst used at the beginning of the transesterification reaction is tetrabutyltita alone or a mixture of tetrabutyltitanate and calcium acetate. 제2항에 있어서, 상기 에스테르교환반응 말기 또는 축중합시 사용되는 촉매는 디부틸틴옥사이드, 테트라부틸티타네이트, 테트라이소프로필티타니에트 중에서 선택된 하나 또는 둘 이상인 것을 특징으로 하는 열가소성 생분해성 수지의 제조방법.[Claim 3] The thermoplastic biodegradable resin of claim 2, wherein the catalyst used at the end of the transesterification reaction or the polycondensation polymerization is at least one selected from dibutyl tin oxide, tetrabutyl titanate, and tetraisopropyl titanate. Manufacturing method. 제2항에 있어서, 상기 안정제는 트리메틸포스페이트인 것을 특징으로 하는 열가소성 생분해성 수지의 제조방법.The method of claim 2, wherein the stabilizer is trimethyl phosphate. 제2항에 있어서, 축중합 온도는 240~270℃임을 특징으로 하는 열가소성 생분해성 수지의 제조방법.The method for producing a thermoplastic biodegradable resin according to claim 2, wherein the polycondensation temperature is 240 to 270 ° C.
KR1019930010793A 1993-06-14 1993-06-14 Thermoplastic biodegrable resin and method for making thereof KR0121998B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930010793A KR0121998B1 (en) 1993-06-14 1993-06-14 Thermoplastic biodegrable resin and method for making thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930010793A KR0121998B1 (en) 1993-06-14 1993-06-14 Thermoplastic biodegrable resin and method for making thereof

Publications (2)

Publication Number Publication Date
KR950000758A KR950000758A (en) 1995-01-03
KR0121998B1 true KR0121998B1 (en) 1997-11-11

Family

ID=19357352

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930010793A KR0121998B1 (en) 1993-06-14 1993-06-14 Thermoplastic biodegrable resin and method for making thereof

Country Status (1)

Country Link
KR (1) KR0121998B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399716B2 (en) 1999-12-17 2002-06-04 Ire Chemical Ltd. Copolyester resin composition and a process of preparation thereof
US6713595B2 (en) 1999-12-11 2004-03-30 Ire Chemical Ltd. Copolyester resin composition and a process of preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713595B2 (en) 1999-12-11 2004-03-30 Ire Chemical Ltd. Copolyester resin composition and a process of preparation thereof
US6399716B2 (en) 1999-12-17 2002-06-04 Ire Chemical Ltd. Copolyester resin composition and a process of preparation thereof

Also Published As

Publication number Publication date
KR950000758A (en) 1995-01-03

Similar Documents

Publication Publication Date Title
KR0120326B1 (en) Thermoplastic biodegrable, and aliphatic polyester and method of making the same
KR100366484B1 (en) Copolyester resin composition and a process of preparation thereof
KR100366483B1 (en) Copolyester resin composition and a process of preparation thereof
US4205158A (en) Copolyetherester based on ethylene oxide-capped poly(propylene oxide) glycol and branching agent
WO2000011063A1 (en) A polyester resin and a process for preparing the same
WO2009094365A1 (en) Lactic acid based compositions with enhanced properties
US20040138405A1 (en) Preparation of bromine-containing hydroxy-functional copolymers
KR19990009593A (en) Biodegradable Co-polyester Resin Composition and its Manufacturing Method
KR0121998B1 (en) Thermoplastic biodegrable resin and method for making thereof
JP5530490B2 (en) Transparent copolyester, method for preparing transparent copolyester, and article comprising transparent copolyester
KR100254695B1 (en) Copolyester resin and its preparation method
KR100957951B1 (en) Alipathic polyester resin with high intensity and method of preparing thereof
US5268445A (en) Segmented copolyester amides
KR100330379B1 (en) Thermoplastic aliphatic polyester resin with excellent transparency and its manufacturing method
JP3363589B2 (en) Biodegradable aliphatic polyester composition
KR960007606B1 (en) Alipatic polyester resin and the method manufacturing the same
KR100330380B1 (en) Thermoplastic aliphatic polyester resin and process for producing the same
KR100308535B1 (en) Polyester resin composition and method for producing the same
KR0121996B1 (en) Biodegrable aliphatic polyester resin composition and method for making thereof
KR960016627B1 (en) Thermoplastic aliphatic polyester composite resin
JP2564463C (en)
KR19980082075A (en) Polyester resin composition and its manufacturing method
KR960011008B1 (en) Method for manufacturing polyester copolymer
KR940009418B1 (en) Process for preparation of polyester with biodegradation
KR19980082076A (en) Polyester resin composition and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120820

Year of fee payment: 16

EXPY Expiration of term