KR940009418B1 - Process for preparation of polyester with biodegradation - Google Patents

Process for preparation of polyester with biodegradation

Info

Publication number
KR940009418B1
KR940009418B1 KR1019900022052A KR900022052A KR940009418B1 KR 940009418 B1 KR940009418 B1 KR 940009418B1 KR 1019900022052 A KR1019900022052 A KR 1019900022052A KR 900022052 A KR900022052 A KR 900022052A KR 940009418 B1 KR940009418 B1 KR 940009418B1
Authority
KR
South Korea
Prior art keywords
polyester
reaction
polymer
aromatic
aromatic polyester
Prior art date
Application number
KR1019900022052A
Other languages
Korean (ko)
Other versions
KR920012154A (en
Inventor
이정상
Original Assignee
주식회사코오롱
하기주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사코오롱, 하기주 filed Critical 주식회사코오롱
Priority to KR1019900022052A priority Critical patent/KR940009418B1/en
Publication of KR920012154A publication Critical patent/KR920012154A/en
Application granted granted Critical
Publication of KR940009418B1 publication Critical patent/KR940009418B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule

Abstract

The biodegradable polyester copolymer having tensile strength of 100-350 kg/cm2 and elongation of 250-500 % is prepared by: (A) polymerizing an aromatic polyester with 80-110 DP at 230-270 deg.C by an ester exchange reaction; (B) copolymerization aromatic (I) and aliphatic (II) polyester that has a composition ratio of 50(I):50(II) - 90:10.

Description

생분해성을 가지는 폴리에스테르의 제조방법Method for producing a biodegradable polyester

본 발명은 에스테르의 교환반응을 이용한 생분해성을 가지는 폴리머의 제조방법에 관한 것이다. 더욱 구체적으로는 인장강도가 100-350㎏/㎠이며, 신도가 250-500%인 생분해성을 가지는 폴리에스테르의 제조방법에 관한 것이다.The present invention relates to a method for producing a biodegradable polymer using the exchange reaction of the ester. More specifically, the present invention relates to a method for producing a biodegradable polyester having a tensile strength of 100-350 kg / cm 2 and an elongation of 250-500%.

일반적으로 지방족 폴리에스테르의 경우 생분해성이 있으나, 융점이 낮고 내열성 및 기계적 강도 등의 물성이 나빠 이용이 제한되고 있고, 반면에 방향족 폴리에스테르의 경우 물성은 양호하나 생분해성이 없는 것으로 알려져 있다. 최근 환경오염이 심각한 문제로 대두되고 특히 생태계 내에서 쉽게 분해되지 않는 인공고분자류가 생태계 내에 다량 축적됨에 따라 미관을 해치는 등 여러 가지 문제점이 제거되고 있다. 이러한 문제점을 해결하기 위하여 최근 폴리에틸렌과 전분 등을 혼합하여 생태계 내에서 신속하게 분해될 수 있는 고분자를 제조하고자 하는 시도가 진행되어 왔으며 여러 종류의 생분해성 고분자가 실제 이용되고 있는 상황이다. 이러한 시도의 일환으로 현재 다방면에서 널리 이용되고 있는 상황이다. 이러한 시도의 일환으로 현재 다방면에서 널이 이용되고 있는 폴리에스테르류를 이용한 생분해성 고분자의 합성이 연구되어 왔다. 그 일례를 보면, 방향족 폴리에스테르를 가열, 용융한 후 지방족 폴리에스테르를 촉매와 함께 첨가하여 교반하면서 반응하면 전형적 에스테르 교환반응이 일어나 생분해성이 있는 랜덤 코폴리머가 형성되며, 생성된 코폴리머의 물성은 방향족 폴리에스테르의 함량에 좌우된다고 되어 왔다.["Journal of applied polymer science" Vol. 26, (1981), p. 441-448]. 그러나 이러한 방법으로 랜덤 코폴리머를 제조할 경우 폴리에스테르의 열분해가 일어나 원하는 중합도와 물성을 얻기가 힘들고 물성을 얻기 위해 방향족 폴리에스테르류의 함량을 증가시킬 경우 생분해성이 떨어지는 문제점에 부딪히게 된다.In general, aliphatic polyester is biodegradable, but its use is limited because of its low melting point and poor physical properties such as heat resistance and mechanical strength, whereas aromatic polyester is known to have good physical properties but no biodegradability. Recently, environmental pollution is a serious problem, and various problems are removed, especially as artificial polymers, which are not easily decomposed in the ecosystem, accumulate in the ecosystem and thus damage the aesthetics. In order to solve these problems, attempts have recently been made to produce polymers that can be rapidly decomposed in an ecosystem by mixing polyethylene and starch, and various biodegradable polymers are actually used. As part of this attempt, the situation is now widely used in various fields. As part of this attempt, the synthesis of biodegradable polymers using polyesters, which are currently used in many ways, has been studied. As an example, when aromatic polyester is heated and melted, aliphatic polyester is added together with a catalyst and reacted while stirring to form a typical transesterification reaction to form a biodegradable random copolymer. Has been said to depend on the content of aromatic polyesters. ["Journal of applied polymer science" Vol. 26, (1981), p. 441-448]. However, when the random copolymer is prepared in this way, thermal decomposition of polyester occurs, so that it is difficult to obtain desired polymerization degree and physical properties, and when the content of aromatic polyesters is increased to obtain physical properties, the biodegradability is encountered.

본 발명의 목적은 물성을 향상시키기 위하여 방향족 폴리에스테르류의 함량을 증가시키지 않고 방향족 폴리에스테르류의 중합도가 조절된 생분해성의 폴리에스테르 랜덤 코폴리머의 제조방법을 제공하는 데 있다.It is an object of the present invention to provide a method for producing a biodegradable polyester random copolymer having a controlled polymerization degree of aromatic polyesters without increasing the content of aromatic polyesters in order to improve physical properties.

본 발명에서의 폴리며 조성물은 방향족 폴리에스테르 50-90중량부분과 지방족 폴리에스테르 10-50중량부분으로 방향족 폴리에스테르의 중합도가 50-150정도인 것을 특징으로 하고 있다. 바람직한 방향족 폴리에스테르의 중합도는 80-110정도를 포함한다.Polygon composition in the present invention is characterized in that the polymerization degree of the aromatic polyester in 50-90 parts by weight of aromatic polyester and 10-50 parts by weight of aliphatic polyester is about 50-150. Preferred degrees of polymerization of the aromatic polyester include about 80-110 degrees.

본 발명을 상세히 설명하면 이미 중합된 폴리에스테르를 용융하여 에스테르 교환반응을 일으키지 않고 먼저 방향족 폴리에스테르를 모노머로부터 중합하여 바람직한 중합도에 이르게 한 후 지방족 폴리에스테르를 투입하여 급속히 융용시켜 촉매존재하에서 교반하며 반응시켜 에스테르 교환반응을 일으켜 지방족과 방향족이 랜덤하게 분포된 생분해성을 지닌 폴리에스테르 폴리머를 얻는 것을 특징으로 하고 있다.When explaining the present invention in detail, the first polymerized aromatic polyester is polymerized from the monomer to reach the desired degree of polymerization without melting the polymerized polyester and causing transesterification, and then aliphatic polyester is rapidly melted to stir in the presence of a catalyst. It is characterized by obtaining a biodegradable polyester polymer having a random distribution of aliphatic and aromatics by transesterification.

좀더 상세히 설명하면 방향족 폴리에스테르의 제조에 사용되는 부틸렌 테레프탈레이트, 에틸렌 테레프탈레이트 등을 에틸렌 글리콜과 중량대 부피의 2:7-7:1로 일반적으로 에스테르 중합에 이용되는 촉매의 존재하에서 원하는 중합도에 이를 때까지 반응시키고 다시 폴리카프롤락톤 등의 생분해성이 좋은 지방족 폴리에스테르를 적당량 투입하여 에스테르 교환반응을 일으켜 랜덤하게 지방족과 방향족이 분포된 코폴리머를 얻는다.More specifically, butylene terephthalate, ethylene terephthalate, and the like used in the preparation of aromatic polyesters have a desired degree of polymerization in the presence of ethylene glycol and a catalyst generally used for ester polymerization in a weight-to-volume ratio of 2: 7-7: 1. The reaction is carried out until the reaction is carried out, and a suitable amount of biodegradable aliphatic polyester such as polycaprolactone is added to cause a transesterification reaction to obtain a copolymer in which aliphatic and aromatic are randomly distributed.

본 발명에 의해 제조된 폴리머는 전술한 기존의 방식과 비교할 때 방향족 폴리에스테르의 함량이 낮더라도 유사한 물성을 보이며 함량비가 유사할 때는 분해성과 물성이 우수하다.The polymer produced by the present invention shows similar physical properties even when the content of the aromatic polyester is low compared to the conventional method described above, and when the content ratio is similar, the degradability and physical properties are excellent.

본 발명에서 이용되는 모노머 및 지방족 폴리에스테르의 제조법은 이미 공지되어 있다.The preparation of monomers and aliphatic polyesters used in the present invention is already known.

또한 모노머로부터 방향족 폴리에스테르를 제조하는 방법도 이미 공지되어 있는 사실이다. 좀 더 나은 물성의 폴리머를 제조하기 위한 조건으로는 방향족 폴리에스텔의 중합온도는 200-300℃, 바람직하게는 230-270℃가 적합하며, 중합시간은 1-3시간, 바람직하게는 1.5-2.5시간이 적합하다. 교반 속도는 40-50rpm이 적당하고 지방족 폴리에스테르의 투입후에서는 반응온도를 190-220℃로 내리는 것이 좀 더 좋은 물성의 폴리머를 얻을 수 있다.It is also a known fact to prepare aromatic polyesters from monomers. As a condition for preparing a polymer having better physical properties, the polymerization temperature of the aromatic polyester is suitably 200-300 ° C., preferably 230-270 ° C., and the polymerization time is 1-3 hours, preferably 1.5-2.5. Time is right. The stirring speed is 40-50 rpm, and after the addition of the aliphatic polyester, it is possible to obtain a better physical polymer by lowering the reaction temperature to 190-220 ° C.

에스테르 교환반응의 촉매로는 무수초산 아연이 적합하며 반응시간은 0.5-1.5시간, 바람직하게는 50-90분이 적합하다.Zinc acetate anhydride is suitable as a catalyst for the transesterification reaction, and the reaction time is 0.5-1.5 hours, preferably 50-90 minutes.

사용되는 지방족 폴리에스테르의 수평균 분자량은 20,000-50,000이 적합하며, 25,000-40,000이 특히 좋다. 에스테르 교환반응이 완료된 후 중합물은 수용액에 토출하여 응고시킨다.The number average molecular weight of the aliphatic polyester used is suitably 20,000-50,000, and 25,000-40,000 is especially preferable. After the transesterification reaction is completed, the polymer is discharged into an aqueous solution to coagulate.

본 발명의 제조방법에 따라 제조된 폴리머는 인장강도가 100-350㎏/㎠, 신도가 250-500% 사이로 나타나 종래의 방법에 의해 얻어진 폴리머의 인장강도 70-200㎏/㎠, 신도 200-370%보다 물성이 양호하며, 생분해성은 더욱 양호하다.Polymer prepared according to the present invention has a tensile strength of 100-350㎏ / ㎠, elongation is 250-500%, tensile strength of the polymer obtained by the conventional method 70-200㎏ / ㎠, elongation 200-370 Physical properties are better than% and biodegradability is better.

본 발명에 의하여 제조된 폴리머의 생분해성은 지방분해효소에 의해 용해되는 속도로 평가하였다. 반응용액으로는 100마이크로몰의 인산 완충용액을 사용하였고, 지방족 폴리에스테르의 양이 20밀리그람이 되도록 하여 폴리머 분말을 첨가하였다. 여기에 진균의 일종인 리조푸스속의 지방분해효소 0.2밀리그람을 첨가하고 총 반응액 부피를 1ml로 한 후 37℃에서 16시간 교반하면서 반응시켰다. 반응후 반응액을 여과하여 여과액중 수용성의 총 탄소량을 측정하여 생분해율을 결정하였다. 수용성의 탄소량은 지방족 폴리에스테르에서만 생성된 것으로 가정하였다.Biodegradability of the polymers prepared according to the invention was evaluated at the rate of dissolution by lipase. 100 micromolar phosphate buffer was used as the reaction solution, and the polymer powder was added so that the amount of aliphatic polyester was 20 milligrams. To this was added 0.2 milligrams of lipolytic enzyme of the genus Rizopus, and the total reaction solution volume was 1 ml, followed by stirring at 37 ° C. for 16 hours. After the reaction, the reaction solution was filtered to determine the biodegradation rate by measuring the total amount of water soluble carbon in the filtrate. It was assumed that the amount of water-soluble carbon was produced only in aliphatic polyester.

생분해율은 다음의 식에 의하여 결정하였다.Biodegradation rate was determined by the following equation.

생분해율=[수용액 중의 총 탄소량/20(mg)]×100Biodegradation rate = [total carbon content in aqueous solution / 20 (mg)] × 100

본 발명을 실시예 및 비교실시예에 의하여 설명하면 다음과 같다.When explaining the present invention by Examples and Comparative Examples.

[실시예 1]Example 1

부틸렌 테레프탈레이트 1㎏, 에틸렌 글리콜 50ml, 무수초산 아연 300mg을 용량 2L의 소형 중합관에 투입하고 반응온도 250℃에서 50rpm으로 교반하며 1.5시간동안 반응을 진행시켜 중합도 90으로 한 후 폴리카프롤락톤 500g을 투입하고 반응온도를 200℃로 내리면서 40rpm에서 1시간 반응을 진행시켰다. 반응 후 중합액을 토출하여 물 속에서 응고시키면서 미반응된 모노머를 추출하였다. 제조한 폴리머의 물성과 생분해성을 표 1에서 나타냈다.1 kg of butylene terephthalate, 50 ml of ethylene glycol, and 300 mg of anhydrous zinc acetate were added to a small polymerization tube with a capacity of 2 L, and stirred at 50 rpm at a reaction temperature of 250 ° C. for 1.5 hours to give a polymerization degree of 90 and then polycaprolactone. 500 g was added and the reaction proceeded at 40 rpm for 1 hour while the reaction temperature was decreased to 200 ° C. After the reaction, the polymerization liquid was discharged to solidify in water to extract the unreacted monomer. Table 1 shows the physical properties and biodegradability of the prepared polymer.

종래의 방법을 이용하여 폴리부틸렌 테레프탈레이트 1.5㎏과 폴리카프롤락톤 500g을 용량 2L의 소형 중합관에 투입하고 무수초산 아연 300mg을 가하여 250℃에서 50rpm으로 교반하며 1.5시간동안 반응시키고 반응온도를 200℃로 내린 후 1시간동안 반응을 진행시켰다. 반응후 중합물을 토출하여 물 속에서 응고시켰다. 제조한 폴리머의 물성과 생분해성을 표 1에 나타냈다.Using a conventional method, 1.5 kg of polybutylene terephthalate and 500 g of polycaprolactone were added to a small polymerization tube with a capacity of 2 L, 300 mg of zinc anhydride was added thereto, stirred at 250 rpm at 50 ° C. for 1.5 hours, and the reaction temperature was decreased. The reaction was carried out for 1 hour after falling to 200 ° C. After the reaction, the polymer was discharged to coagulate in water. Table 1 shows the physical properties and biodegradability of the prepared polymer.

[표 1]TABLE 1

[실시예 2]Example 2

에틸렌 테레프탈레이트 0.5㎏, 에틸렌 글리콜 250ml, 무수초산 아연 200mg을 용량 2L의 소형 중합관에 투입하고 반응온도 230℃에서 교반하면서 1시간동안 반응을 진행시켜 중합도 100으로 한 후 폴리카프롤락톤 500g을 투입하고 온도를 210℃로 내리면서 30분간 40rpm으로 교반하면서 반응을 진행시켰다. 반응후 중합물을 토출하여 물 속에서 응고시키면서 미반응된 모노머를 추출하였다. 제조한 폴리머의 물성과 생분해성을 표 2에 나타냈다.0.5 kg of ethylene terephthalate, 250 ml of ethylene glycol and 200 mg of zinc acetate were added to a small polymerization tube with a capacity of 2 L, the reaction proceeded for 1 hour while stirring at a reaction temperature of 230 ° C. to a polymerization degree of 100, and then 500 g of polycaprolactone was added. The reaction was proceeded while stirring at 40 rpm for 30 minutes while lowering the temperature to 210 ℃. After the reaction, the polymer was discharged to solidify in water to extract the unreacted monomer. Table 2 shows the physical properties and biodegradability of the prepared polymer.

[비교실시예 2]Comparative Example 2

종래의 방법을 이용하여 폴리에틸렌 테레프탈레이트 0.7㎏, 폴리카프롤락톤 500g을 용량 2L의 소형 중합관에 투입하고 무수초산 아연 200mg을 가하여 반응온도를 230℃에서 50rpm으로 교반하면서 1시간 동안 반응을 진행시키고 온도를 200℃로 내리면서 30분동안 40rpm으로 교반하며 반응을 진행시켰다. 반응후 중합물을 토출하여 물 속에서 응고시켰다. 제조한 폴리머의 물성과 생분해성을 표 2에 나타냈다.0.7 kg of polyethylene terephthalate and 500 g of polycaprolactone were added to a small polymerization tube having a capacity of 2 L by using a conventional method, and 200 mg of anhydrous zinc acetate was added thereto, and the reaction was allowed to proceed for 1 hour while stirring the reaction temperature at 50 ° C. at 230 ° C. The reaction proceeded while stirring at 40 rpm for 30 minutes while lowering the temperature to 200 ℃. After the reaction, the polymer was discharged to coagulate in water. Table 2 shows the physical properties and biodegradability of the prepared polymer.

[표 2]TABLE 2

Claims (2)

방향족 폴리에스테르와 지방족 폴리에스테르의 램덤 코폴리머를 제조함에 있어서, 통상의 에스테르 교환반응 촉매 존재하, 방향족 폴리에스테르 모노머로부터 중합온도 230-270℃에서 먼저 중합하여 중합도 80-110으로 하고, 계속하여 반응온도를 190-220℃로 내린 후, 중합된 방향족 폴리에스테르 : 투입되는 지방족 폴리에스테르 중량비가 50 : 50-90 : 10이 되도록 지방족 폴리에스테르를 첨가, 용융시켜 에스테르 교환반응을 일으킴을 특징으로 하는 코폴리머의 제조방법.In preparing a random copolymer of an aromatic polyester and an aliphatic polyester, the polymer is first polymerized at an polymerization temperature of 230-270 ° C. from an aromatic polyester monomer in the presence of a conventional transesterification catalyst to a polymerization degree of 80-110, and then the reaction is continued. After lowering the temperature to 190-220 ℃, polymerized aromatic polyester: added aliphatic polyester so that the weight ratio of the introduced aliphatic polyester is 50: 50-90: 10 and melted to cause a transesterification reaction Method for producing a polymer. 제 1 항에 있어서, 방향족 폴리에스테르는 부틸렌 테레프탈레이트 또는 에틸렌 테레프탈레이트에서 선택된 방향족 폴리에스테르 모노머와 에틸렌 글리콜을 중합한 것이고, 지방족 폴리에스테르를 폴리카프롤락톤임을 특징으로 하는 코폴리머의 제조방법.The method of claim 1, wherein the aromatic polyester is obtained by polymerizing ethylene glycol with an aromatic polyester monomer selected from butylene terephthalate or ethylene terephthalate, and the aliphatic polyester is polycaprolactone.
KR1019900022052A 1990-12-27 1990-12-27 Process for preparation of polyester with biodegradation KR940009418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900022052A KR940009418B1 (en) 1990-12-27 1990-12-27 Process for preparation of polyester with biodegradation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900022052A KR940009418B1 (en) 1990-12-27 1990-12-27 Process for preparation of polyester with biodegradation

Publications (2)

Publication Number Publication Date
KR920012154A KR920012154A (en) 1992-07-25
KR940009418B1 true KR940009418B1 (en) 1994-10-13

Family

ID=19308673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900022052A KR940009418B1 (en) 1990-12-27 1990-12-27 Process for preparation of polyester with biodegradation

Country Status (1)

Country Link
KR (1) KR940009418B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160269A3 (en) * 2000-05-30 2002-01-23 Nippon Shokubai Co., Ltd. Biodegradable recycled polyester resin and production process therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160269A3 (en) * 2000-05-30 2002-01-23 Nippon Shokubai Co., Ltd. Biodegradable recycled polyester resin and production process therefor
US6730709B2 (en) 2000-05-30 2004-05-04 Nippon Shokubai Co., Ltd. Biodegradable recycled polyester resin and production process therefor

Also Published As

Publication number Publication date
KR920012154A (en) 1992-07-25

Similar Documents

Publication Publication Date Title
Corneillie et al. PLA architectures: the role of branching
Li et al. Biodegradable brush-like graft polymers from poly (d, l-lactide) or poly (d, l-lactide-co-glycolide) and charge-modified, hydrophilic dextrans as backbone—Synthesis, characterization and in vitro degradation properties
Kricheldorf et al. Polylactones. 35. Macrocyclic and stereoselective polymerization of. beta.-D, L-butyrolactone with cyclic dibutyltin initiators
JP3554282B2 (en) Medical biodegradable ternary block copolymer and method for producing the same
Eguiburu et al. Functionalization of poly (L-lactide) macromonomers by ring-opening polymerization of L-lactide initiated with hydroxyethyl methacrylate-aluminium alkoxides
Nakayama et al. Synthesis and degradability of a novel aliphatic polyester: poly (β-methyl-δ-valerolactone-co-L-lactide)
Perego et al. Copolymers of l‐and d, l‐lactide with 6‐caprolactone: synthesis and characterization
JPH06298921A (en) Macromonomer and its polymer
Fukuzaki et al. Synthesis of biodegradable copoly (L-lactic acid/aromatic hydroxy acids) with relatively low molecular weight
Fukuzaki et al. Synthesis of biodegradable poly (l‐lactic acid‐co‐d, l‐mandelic acid) with relatively low molecular weight
Çakır et al. Multiblock copolymers of polyamide 6 and diepoxy propylene adipate obtained by solid state polymerization
KR940009418B1 (en) Process for preparation of polyester with biodegradation
Lee et al. Synthesis and enzymatic degradability of an aliphatic/aromatic block copolyester: poly (butylene succinate)-multi-poly (butylene terephthalate)
KR100254695B1 (en) Copolyester resin and its preparation method
EP3873952A1 (en) Branched polymers
Löfgren et al. Synthesis and characterization of high molecular weight poly (1, 5-dioxepan-2-one) with narrow molecular weight distribution
JP2003522823A (en) Biodegradable disposable syringe
Lenz et al. Anionic and coordination polymerization of 3‐butyrolactone
JP3744800B2 (en) Biodegradable polymers with reactive substituents
Nivasu et al. Synthesis, UV photo‐polymerization and degradation study of PEG containing polyester polyol acrylates
Chiellini et al. Multifunctional bioerodible/biodegradable polymeric materials
KR960015446B1 (en) Copolyester resin and method for manufacturing the same
JP3374530B2 (en) Method for producing aliphatic polyester copolymer
KR0121998B1 (en) Thermoplastic biodegrable resin and method for making thereof
JPH0616790A (en) Aliphatic polyester and its production

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970303

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee