KR100241306B1 - The manufacturing method for low temperature steel with hot working - Google Patents

The manufacturing method for low temperature steel with hot working Download PDF

Info

Publication number
KR100241306B1
KR100241306B1 KR1019950024809A KR19950024809A KR100241306B1 KR 100241306 B1 KR100241306 B1 KR 100241306B1 KR 1019950024809 A KR1019950024809 A KR 1019950024809A KR 19950024809 A KR19950024809 A KR 19950024809A KR 100241306 B1 KR100241306 B1 KR 100241306B1
Authority
KR
South Korea
Prior art keywords
temperature
steel
manufacturing
rolling
cooling
Prior art date
Application number
KR1019950024809A
Other languages
Korean (ko)
Other versions
KR970010983A (en
Inventor
성언식
소문섭
이길제
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019950024809A priority Critical patent/KR100241306B1/en
Publication of KR970010983A publication Critical patent/KR970010983A/en
Application granted granted Critical
Publication of KR100241306B1 publication Critical patent/KR100241306B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 열가공 제어압연(Thermo Mechanical Controlled Process)형 저온용 강재제조방법에 관한 것으로서, 특히 저온에서의 취성에 의한 균열과 전파에 내성이 우수하고, 대입열 용접시에도 용접 이음부에서 모재와 동등수준의 기계적 성질을 확보할 수 있는 열가공 제어압연형 저온용 강재의 제조방법에 관한 것이다.TECHNICAL FIELD The present invention relates to a method for manufacturing a low temperature steel material for thermal mechanical controlled rolling, and is particularly resistant to cracking and propagation due to brittleness at low temperatures. The present invention relates to a method for manufacturing a hot-rolled cold-rolled low temperature steel material capable of securing an equivalent level of mechanical properties.

본 발명에서는, 중량%로, C : 0.07~0.09%, Si : 0.20~0.30%, Mn : 1.35~1.50%, Al : 0.030~0.070%, P : ≤0.020%, S : ≤0.0050%를 함유하면서 탄소 당량{Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15}≤0.320%를 만족하는 범위에서 Ti : 0.010~0.020%, B : 0.00050~0.0020% 첨가하여 용강을 제조하는 단계와; 상기 용강을 연속 주조하여 얻은 강재를 중간제어온도 830~870℃ 및 잔압하율 40~60%, 압연종료온도 720~750℃ 조건에서 강압하 압연하는 단계와; 상기 압연하여 얻은 강재를 냉각개시온도 730~700℃, 냉각종료온도 550~520℃, 냉각속도 7~8℃/sec 조건에서 가속냉각처리하는 단계로 구성되는 것을 특징으로 하는 열가공 제어압연형 저온용 강재제조방법을 제공한다.In the present invention, by weight%, containing C: 0.07 to 0.09%, Si: 0.20 to 0.30%, Mn: 1.35 to 1.50%, Al: 0.030 to 0.070%, P: ≤0.020%, and S: ≤0.0050% In the range of satisfying carbon equivalent 당 Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15} ≤0.320%, Ti: 0.010 to 0.020%, B: 0.00050 to 0.0020% Adding to produce molten steel; Rolling down the steel obtained by continuously casting the molten steel at an intermediate control temperature of 830 to 870 ° C., a residual reduction ratio of 40 to 60%, and a rolling end temperature of 720 to 750 ° C .; Hot-rolled controlled low-temperature processing, characterized in that consisting of the step of accelerated cooling the steel obtained by the rolling at the cooling start temperature 730 ~ 700 ℃, cooling end temperature 550 ~ 520 ℃, cooling rate 7 ~ 8 ℃ / sec conditions Provides a method for manufacturing molten steel.

Description

열가공 제어압연형 저온용 강재 제조방법Method for manufacturing hot-rolled low-temperature steel

제1도는 LPG 탱크용 저온용 강재의 제조공정을 나타낸 도면.1 is a view showing a manufacturing process of low-temperature steel for LPG tank.

제2도는 탄소당량과 용접이음부의 저온 충격인성의 상관관계를 보이는 그래프도.2 is a graph showing the correlation between the carbon equivalent and the low temperature impact toughness of the welded joint.

제3도는 Ti 첨가량에 따른 TiN 입자의 분포를 나타낸 그래프도.3 is a graph showing the distribution of TiN particles according to the amount of Ti added.

제4도는 B 첨가량과 대입 열 용접이음부의 저온 충격인성의 상관 관계를 나타내는 그래프도이다.4 is a graph showing the correlation between the amount of B added and the low temperature impact toughness of the thermal welding joint.

본 발명은 열가공 제어압연(Thermo Mechanical Controlled Process)형 저온용 강재의 제조방법에 관한 것으로서, 특히 저온에서의 취성에 의한 균열과 전파에 대한 내성이 우수하고, 대입열 용접시에도 용접 이음부에서 모재와 동등수준의 기계적 성질을 확보할 수 있는 열가공 제어압연형 저온용 강재의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a thermo mechanical controlled process type low temperature steel, and particularly excellent in resistance to cracking and propagation due to brittleness at low temperatures, and in welding joints even in high heat input welding. The present invention relates to a method for manufacturing a hot-rolled low-temperature steel for controlling heat processing that can secure mechanical properties equivalent to that of a base metal.

석유 화학공업에 관련되는 액화가스(LPG) 저장 탱크 제작용 강판은 일반적으로 선급 규격에 명시되어 있으며, 특히 샤르피(Charpy) 충격인성 요구치는 모재와 용접부가 동일한 조건으로 요구된다.Steel plates for the production of liquefied gas (LPG) storage tanks related to the petrochemical industry are generally specified in the class specifications, and in particular Charpy impact toughness requirements are required under the same conditions for the base material and the weld.

다시 말하면 LPG 운반선의 탱크에 적용되는 강재의 품질 특성은 LPG의 액화온도(-46℃)를 감안하여 -51℃에서 충격인성을 보증하도록 요구되며, 저온에서의 취성파괴균열 발생 저항특성 및 전파 정지특성에 대한 요구치는 선박 제조업체의 경험치에 의존하고 있다. 여기서 표 1은 50kg/mm2급 LPG 운반선용 강재의 품질 요구 특성을 나타낸다.In other words, the quality characteristics of steel applied to the tank of LPG carrier are required to guarantee impact toughness at -51 ℃ in consideration of LPG liquefaction temperature (-46 ℃). The requirements for characteristics depend on the experience of the ship manufacturer. Table 1 shows the quality requirements of 50kg / mm 2 grade LPG carrier steels.

[표 1]TABLE 1

그러나 종래에는 선박 제조업체가 경험치를 바탕으로 자체 요구조건을 규정하여 사용했으며, 그 제조기술은 저온에서의 충격인성을 향상시키기 위해서 여러 가지 연구결과, 구리(Cu), 니켈(Ni)등의 저온인성 확보에 유리한 원소를 첨가하여 후판 공정에서 일반압연후 열처리에 의해 저온 충격인성이 우수한 강재의 생산이 가능하다고 알려져 있으나, 이는 오프 라인(Off Line) 제조에 의한 생산 공기의 지연 및 제조원가의 상승을 유발하고, 니오븀(Nb), 티타늄(Ti)의 합금원소를 이용하여 재결정 온도 구역을 확장시킴으로써 오스테나이트(Austenite)의 누적 압하에 의한 미세한 펄라이트(Pearlite)를 형성하지만 대입열 용접시 용접 이음부에 조대한 형태의 입자 형성으로 저온 충격 인성을 저하시키는 문제점이 발생한다.However, in the past, ship manufacturers used their own requirements based on the experience value, and the manufacturing technology has been researched to improve the impact toughness at low temperatures, and various research results have shown that low temperature toughness such as copper (Cu) and nickel (Ni) is used. It is known that it is possible to produce steel materials with excellent low temperature impact toughness by heat treatment after general rolling in the thick plate process by adding an element that is advantageous for securing. In addition, niobium (Nb) and titanium (Ti) alloy elements are used to expand the recrystallization temperature zone to form fine pearlite due to the cumulative reduction of austenite. Formation of particles in the form of a problem of low temperature impact toughness occurs.

본 발명은 상기와 같은 종래의 문제점을 해결하여 대입열 용접부의 저온 충격인성 및 우수한 파괴인성을 확보할 수 있는 TMCP형 저온용 강재 제조방법을 제공함에 그 목적이 있다.An object of the present invention is to provide a method for manufacturing a low temperature steel CPCP-type low temperature impact toughness and excellent fracture toughness to solve the conventional problems as described above.

상기 목적을 달성하기 위하여 본 발명에서는, 중량%로, C : 0.07~0.09%, Si : 0.20~0.30%, Mn : 1.35~1.50%, Al : 0.030~0.070%, P : 0.020% 이하, S : 0.0050% 이하를 함유하면서 탄소 당량{Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15}≤0.320%를 만족하는 범위에서 Ti : 0.010~0.020%, B : 0.00050~0.0020%를 첨가하여 용강을 제조하는 단계와; 상기 용강을 연속 주조하여 얻은 강재를 중간제어온도 830~870℃ 및 잔압하율 40~60%, 압연종료온도 720~750℃ 조건에서 강압하 압연하는 단계와; 상기 압연하여 얻은 강재를 냉각개시온도 730~700℃, 냉각종료온도 550~520℃, 냉각속도 7~8℃/sec 조건에서 가속냉각처리하는 단계로 구성되는 것을 특징으로 하는 열가공 제어 압연형 저온용 강재의 제조방법을 제공한다.In order to achieve the above object, in the present invention, in weight%, C: 0.07-0.09%, Si: 0.20-0.30%, Mn: 1.35-0.50%, Al: 0.030-0.070%, P: 0.020% or less, S: Ti: 0.010 to 0.020%, in a range of satisfying carbon equivalent 당 Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15} ≦ 0.320% while containing 0.0050% or less, B: adding 0.00050 to 0.0020% to prepare molten steel; Rolling down the steel obtained by continuously casting the molten steel at an intermediate control temperature of 830 to 870 ° C., a residual reduction ratio of 40 to 60%, and a rolling end temperature of 720 to 750 ° C .; Cold processing of the steel obtained by the rolling comprises a step of accelerated cooling treatment at a cooling start temperature 730 ~ 700 ℃, cooling end temperature 550 ~ 520 ℃, cooling rate 7 ~ 8 ℃ / sec conditions Provided is a method for manufacturing molten steel.

이하에서는 첨부 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 통상의 5대원소(C, Si, Mn, P, S)외에 Ti, B 등의 특수원소를 첨가시키고, 저온인성 및 우수한 용접성을 확보할 수 있도록 탄소 당량(Ceq)을 낮게 관리하였으며, 화학 성분의 각 목표치를 살펴보면 C : 0.08%, Mn : 1.45%, Si : 0.25%, Ti : 0.015%, B : 0.001%이고, 탄소 당량은 약 0.312%로서 일반 40kg/mm2급 강재와 유사한 수준으로 정한다.In the present invention, the addition of special elements such as Ti and B in addition to the five major elements (C, Si, Mn, P, S), and low carbon equivalent (Ceq) was managed to ensure low-temperature toughness and excellent weldability In the chemical targets, C: 0.08%, Mn: 1.45%, Si: 0.25%, Ti: 0.015%, B: 0.001%, and the carbon equivalent is about 0.312%, similar to that of a typical 40kg / mm grade 2 steel. Set it to the level.

여기서 제2도는 탄소당량(Ceq)에 따른 용접이음부의 저온 충격인성을 나타낸다.2 shows low-temperature impact toughness of the welded joint according to the carbon equivalent (Ceq).

상기한 각 화학 성분별 목표의 설정 사유를 이하 설명한다.The reason for setting the target for each chemical component described above will be described below.

탄소(C)의 경우 강도의 향상 기여도가 가장 큰 원소로서 첨가량의 증가에 비례하여 강도가 향상되지만 이와 더불어 충격인성이 저하하는 부작용이 있기 때문에 종래 수준과 유사한 약 0.07%내지 0.09% 수준으로 설정한다.In the case of carbon (C), the strength is the largest contributing factor, and the strength is increased in proportion to the increase in the amount added. However, since the impact toughness is reduced, the carbon (C) is set at about 0.07% to 0.09%, similar to the conventional level. .

규소(Si)는 항복강도를 향상시킴과 동시에 탈산작용을 하지만 과다 첨가시 SiO2계 개재물(Silicate)을 형성하여 저온에서의 취성균열 발생 및 인성을 저하시킬 수 있으며, 열간압연후 제품 표면에 스케일(Scale)의 형성을 유발하기 때문에 약 0.2% 내지 0.3% 수준으로 제한하고 있다.Silicon (Si) improves yield strength and deoxidizes simultaneously, but when excessively added, it forms SiO 2 -based inclusions (Silicate), which can reduce brittle cracking and toughness at low temperatures, and scales on the product surface after hot rolling. Since the formation of (Scale) is limited to about 0.2% to 0.3% level.

그리고 망간(Mn)은 강도와 인성을 동시에 향상시킬 수 있는 원소로서, 탄화물(Mn3C)을 형성하며, 열간압연시 변태온도(Ar3) 저하로 오스테나이트(Austenite)가 성장하지 않는 미재결정 영역을 확대시켜 미재결정역 누적 압하 증가에 따른 조직 미세화가 가능하고, 페라이트(Ferrite)입내에 미세 탄화물을 석출시킴으로써 페라이트를 현저하게 강화시켜 강도와 인성을 동시에 높여줄 수 있으나, 과다 첨가시 저온조직(Lath Martensite) 형성으로 연성과 저온인성을 저하시키고, 소량 첨가시 강도 확보가 불안정하기 때문에 저온인성 보증용 5kg/mm2급 강판의 망간 첨가량은 약 1.35% 내지 1.5%로 설정하게 된다.Manganese (Mn) is an element that can improve strength and toughness at the same time, forms carbide (Mn 3 C), and unrecrystallized crystals in which austenite does not grow due to a decrease in transformation temperature (Ar 3 ) during hot rolling. It is possible to refine the structure by increasing the area of the unrecrystallized cumulative reduction by increasing the area, and by reinforcing fine carbide in the ferrite mouth, the ferrite can be remarkably strengthened to increase the strength and toughness simultaneously. (Lath Martensite) is formed to reduce the ductility and low-temperature toughness, and when a small amount of addition is unstable to secure the strength, the manganese addition amount of 5kg / mm grade 2 steel sheet for low temperature toughness guarantee is set to about 1.35% to 1.5%.

또한, 인(P)은 강판의 저온 충격인성을 저해시키는 가장 큰 불순원소로서 연주 공정에서의 주조작업시 중심부에 편석(Segregation)되어 강재 가공시 라미네이션(Lamination)등의 결함이 내부 품질을 저하시키므로 0.02% 이하로 관리하고, 황(S)의 경우 인과 같이 강판의 품질을 저해하는 원소로서 연주공정 주조작업시 크랙(Crack) 발생 및 중심 편석을 유발하며, 과다 첨가시 망간(Mn)과 결합하여 개재물(MnS) 형상으로 강재의 두께 방향의 품질을 저해하므로 약 0.005% 이하가 최적조건이다.In addition, phosphorus (P) is the biggest impurity element that impairs the low temperature impact toughness of the steel sheet is segregated in the center part during casting in the casting process, so defects such as lamination during steel processing degrade the internal quality. 0.02% or less, sulfur (S) is an element that inhibits the quality of the steel sheet, such as phosphorus, causing cracks and segregation in the casting process casting process, combined with manganese (Mn) when excessively added The inclusion (MnS) shape inhibits the quality of the steel in the thickness direction, so about 0.005% or less is an optimal condition.

한편 알루미늄(Al)은 탈산원소로서, 결정립 미세화에 매우 유효하며, 함유량을 높게 할 경우 강재 전체에 고루 분포되어 고온에서 저온으로 냉각시 질소와 결합하는데 있어 확산 에너지를 요하지 않기 때문에 결합력이 강한 보론(B)보다도 질소와 결합이 용이하여 강재 내부에 충분한 양의 보론(B)을 잔존시켜 최종적으로 BC 화합물의 형성을 돕게되지만, 과다 첨가시 연주공정 주조후 슬라브(Slab)의 표면에 크랙을 발생시키므로 통상대비 높은 수준인 약 0.030% 내지 0.070%를 첨가한다.On the other hand, aluminum (Al) is a deoxidation element, which is very effective for refining grains, and when the content is high, it is evenly distributed throughout the steel, and does not require diffusion energy to bond with nitrogen when cooling from high temperature to low temperature. It is easier to bond with nitrogen than B), so that a sufficient amount of boron (B) remains in the steel material to finally help the formation of the BC compound. About 0.030% to 0.070%, which is higher than usual, is added.

티타늄(Ti)의 경우 주조작업시 고온에서 안정한 형태의 화합물(TiN)의 형성으로 오스테나이트의 조대화를 방지함으로써 페라이트 입자의 미세화에 기여하며, TiN은 통상 Ti : N=3.2 : 3.4 정도에서 완전 결합을 이루어 슬라브의 재가열 고정 및 대입열 용접시 고온에서 오스테나이트 결정입계에 석출물이 형성되어 초기 오스테나이트 결정압지의 성장을 억제하는 한편, 변태 진행시 페라이트의 핵생성 사이트(Site)로 작용하여 강도의 부분적 증가와 인성의 상당한 향상을 발생시키며, 이때 티타늄은 질소의 관리 범위를 감안하여 약 0.01% 내지 0.02%로 설정한다. 특히 제3도는 티타늄(Ti)의 첨가량에 따른 Ti 입자의 분포도이다.Titanium (Ti) contributes to the refinement of ferrite particles by preventing the coarsening of austenite by forming a compound (TiN) that is stable at high temperatures during casting, and TiN is usually complete at about Ti: N = 3.2: 3.4. By forming a precipitate at the austenite grain boundary at high temperatures during slab reheating fixing and high heat input welding, it inhibits the growth of the initial austenite crystal blotter, while acting as a nucleation site of ferrite during transformation. A partial increase in and a significant improvement in toughness occur, where titanium is set at about 0.01% to 0.02%, taking into account the management range of nitrogen. In particular, FIG. 3 is a distribution diagram of Ti particles depending on the amount of titanium (Ti) added.

여기서 본 발명에 의한 재료의 성분 설계상 주목적인 BC(Boron Carbide)의 형성을 위해 티타늄을 첨가하게 되는데, 제강 주조공정 및 용접 이음부에서 질소원자는 1차로 결합력이 가장 큰 티타늄과 결합하고, 미결합의 잉여 질소는 결합력 순서에 의해 2차로 보론(B)과 결합하므로 충분한 티타늄을 첨가하여 기계적 성질을 해치는 BN 화합물의 형성을 방지한다.Here, titanium is added to form BC (Boron Carbide), which is the main component of the material design of the present invention. In the steel casting process and the welded joint, the nitrogen atom is primarily bonded to titanium having the largest bonding force and not bonded. The excess nitrogen of the second bond with boron (B) in the order of binding force, so that sufficient titanium is added to prevent the formation of BN compounds that impair the mechanical properties.

그리고 보론(B)은 철(Fe), 질소와 결합되는 원소로서 연주공정에서의 슬라브 주조작업 및 대입열용접 열사이클 과정에서 보론 카바이드(BC)를 형성하는데, BC 화합물은 오스테나이트의 결정입계 및 입내에서 석출되어 변태시 페라이트의 핵생성 사이트(Site)로 작용됨으로써 미세한 페라이트를 형성하게 된다.Boron (B) is an element that is combined with iron (Fe) and nitrogen to form boron carbide (BC) during slab casting and high heat input welding heat cycle in the regeneration process, and the BC compound is a grain boundary of austenite and Precipitates in the mouth and acts as nucleation site (Site) of the ferrite during transformation, thereby forming a fine ferrite.

그러나 질소의 함유량이 높을 경우 티타늄과 결합 후 남아있는 자유질소가 보론(B)과 결합되면 BN 화합물이 형성하게 되어 입계취화등 기계적 성질에 악영향을 미치게 되므로 티타늄을 충분히 높은 함량으로 유지시킨다.However, if the nitrogen content is high, free nitrogen remaining after bonding with titanium combines with boron (B) to form a BN compound, which adversely affects mechanical properties such as intergranular embrittlement, thus maintaining titanium at a sufficiently high content.

따라서 제4도에 도시한 바와 같이, 본 발명에 의한 소재의 보론(B) 함유량은 대입열 용접이음부의 기계적 특성을 고려하여 약 0.0005% 내지 0.002% 정도로 유지한다.Therefore, as shown in Figure 4, the boron (B) content of the material according to the present invention is maintained at about 0.0005% to 0.002% in consideration of the mechanical properties of the high heat input welded joint.

본 발명에 따른 제조공정을 살펴보면, 저온인성 및 기계적 성질에 불리한 원소를 저감시키기 위해 용선 예비처리 단계에서 밀 스케일(Mill Scale) 투입에 의한 용선 교반처리로 탈인(P)작업을 실시하고, 카바이드(Carbide) 투입에 의한 탈황(S)작업을 실시한다.Looking at the manufacturing process according to the present invention, in order to reduce the low-temperature toughness and mechanical properties adverse elements in the molten iron pre-treatment step by performing the molten iron stirring process by the mill scale (Mill scale), the dephosphorization (P) operation, carbide ( Carry out desulfurization (S) work by adding carbide.

그리고 전로 조업 후 용강 내부의 개재물 및 불순원소 저감을 위해 진공 탈개스(RH-OB)처리를 실시하고, 내부 크랙(Crack), 중심 편석의 발생이 용이한 황성분의 저감 및 형상제어를 위해 칼슘(Ca) 첨가에 의한 파우더 인젝션(Powder Injection)작업을 실시한다.After the converter operation, vacuum degassing (RH-OB) treatment is performed to reduce inclusions and impurities in the molten steel, and calcium (C) is used to reduce sulfur content and shape control, which is easy to generate internal cracks and central segregation. Powder injection is performed by adding Ca).

또한 연주공정의 주조작업시에는 중심 편석의 발생을 억제하기 위해 전자교반처리(Electro Magnetic Stirring)를 실시한다.In addition, during the casting process of the casting process, electro magnetic stirring is performed to suppress the occurrence of central segregation.

한편 후판 제조공정을 살펴보면 기존의 일반압연후 조질 열처리(Quenching, Tempering) 공정으로 인한 생산공기의 지연, 제조 코스트(Cost)의 증가, 고합금 첨가에 의한 용접성 저하등 여러 가지의 문제점이 있기 때문에 본 발명에 의한 소재는 TMCP 압연에 의해 전술한 단점을 극복하고, 특히 저온 파괴인성의 향상을 위해 TMCP 압연시 저온 2상역(Austenite & Ferrite Region)에서의 강압하 압연을 적용하여 결합조직을 형성시키고, 유효 페라이트 결정립의 크기 감소등을 통해 취성 파괴균열에 대한 발생 저항특성 및 전파 정지특성을 개선시킨다.On the other hand, the heavy plate manufacturing process has various problems such as delay of production air, increase of manufacturing cost (Cost), and deterioration of weldability due to the addition of high alloy after conventional rolling and quenching and tempering processes. The material according to the invention overcomes the above-mentioned disadvantages by TMCP rolling, and in particular, in order to improve low-temperature fracture toughness, by applying rolling under low temperature two-phase (Austenite & Ferrite Region) during TMCP rolling to form a connective structure, By reducing the size of the effective ferrite grains, the resistance to generation and propagation stop characteristics against brittle fracture cracking are improved.

이하에서는 실시예에 의거 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

표 2는 본 발명에 의한 소재와 통상의 소재 사이에 화합 성분을 비교한 결과를 나타낸 것으로, 화학성분중 인(P), 황(S)은 강판 내부에 크랙(Crack)발생의 사이트(Site)로 작용하고 편석을 유발하기 때문에 주의깊게 관리하고, 중심 편석의 최소화를 위해 전자교반처리를 실시한다.Table 2 shows the results of comparing the compounding between the material according to the present invention and the conventional material, phosphorus (P), sulfur (S) among the chemical components of the crack (Site) generation site (Site) inside the steel sheet Carefully manages and conducts electronic stirring to minimize central segregation.

그리고 제1도는 본 발명에 따른 저온용강의 제조공정 및 공정별 주요 관리항목을 나타낸다.And Figure 1 shows the manufacturing process of the low-temperature molten steel according to the present invention and the main control items for each process.

[표 2]TABLE 2

또한 후판공정의 제어압연 조건은 표 3에 나타낸 바와 같이 본 발명에 의한 저온용강의 두께가 16mmt인 경우 중간제어온도 830℃, 잔압하율 50% 및 압연종료온도 730℃, 가속냉각 공정에서 730℃부터 520℃까지 냉각을 실시하고, 냉각속도는 통상의 TMCP 압연재와 유사한 7℃/sec 내지 8℃/sec를 적용한다.In addition, the control rolling conditions of the thick plate process is as shown in Table 3, when the thickness of the low-temperature molten steel according to the present invention is 16mmt, the intermediate control temperature 830 ℃, residual pressure reduction rate 50% and rolling finish temperature 730 ℃, 730 ℃ in accelerated cooling process To 520 ° C., and a cooling rate of 7 ° C./sec to 8 ° C./sec similar to that of a conventional TMCP rolled material is applied.

[표 3]TABLE 3

한편 다음의 표 4는 티타늄(Ti)과 보론(B)의 함량에 따른 대입열 용접부 품질특성(0.07C-1.40Mn-0.0050N)의 변화를 나타낸다.On the other hand, Table 4 shows the changes in the quality characteristics of the heat input welding part (0.07C-1.40Mn-0.0050N) according to the content of titanium (Ti) and boron (B).

[표 4]TABLE 4

상기 설명한 바와 같이 본 발명은 LPG 운반석의 저장 탱크 제작용 강재에 저온에서 취성파괴균열 및 전파에 대한 우수한 내성을 부여하고, 대입열 용접 용접이음부에 모재와 동등수준의 기계적 성질을 제공한다.As described above, the present invention imparts excellent resistance to brittle fracture cracking and propagation at low temperature to the steel for manufacturing the storage tank of the LPG carrier, and provides the same level of mechanical properties as the base material in the high heat input welded joint.

Claims (1)

중량%로, C : 0.07~0.09%, Si : 0.20~0.30%, Mn : 1.35~1.50%, Al : 0.030~0.070%, P : ≤0.020%, S : ≤0.0050%를 함유하면서 탄소 당량{Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15}≤0.320%를 만족하는 범위에서 Ti : 0.010~0.020%, B : 0.00050~0.0020% 첨가하여 용강을 제조하는 단계와; 상기 용강을 연속 주조하여 얻은 강재를 중간제어온도 830~870℃ 및 잔압하율 40~60%, 압연종료온도 720~750℃ 조건에서 강압하 압연하는 단계와; 상기 압연하여 얻은 강재를 냉각개시온도 730~700℃, 냉각종료온도 550~520℃, 냉각속도 7~8℃/sec 조건에서 가속냉각처리하는 단계로 구성되는 것을 특징으로 하는 열가공 제어압연형 저온용 강재의 제조방법.By weight%, C: 0.07 to 0.09%, Si: 0.20 to 0.30%, Mn: 1.35 to 1.50%, Al: 0.030 to 0.070%, P: ≤0.020%, S: ≤0.0050% = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15} ≤0.320% in the range of satisfying Ti: 0.010 ~ 0.020%, B: 0.00050 ~ 0.0020% Manufacturing step; Rolling down the steel obtained by continuously casting the molten steel at an intermediate control temperature of 830 to 870 ° C., a residual reduction ratio of 40 to 60%, and a rolling end temperature of 720 to 750 ° C .; Hot-rolled controlled low-temperature processing, characterized in that consisting of the step of accelerated cooling the steel obtained by the rolling at the cooling start temperature 730 ~ 700 ℃, cooling end temperature 550 ~ 520 ℃, cooling rate 7 ~ 8 ℃ / sec conditions Method of manufacturing molten steel.
KR1019950024809A 1995-08-11 1995-08-11 The manufacturing method for low temperature steel with hot working KR100241306B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950024809A KR100241306B1 (en) 1995-08-11 1995-08-11 The manufacturing method for low temperature steel with hot working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950024809A KR100241306B1 (en) 1995-08-11 1995-08-11 The manufacturing method for low temperature steel with hot working

Publications (2)

Publication Number Publication Date
KR970010983A KR970010983A (en) 1997-03-27
KR100241306B1 true KR100241306B1 (en) 2000-03-02

Family

ID=19423327

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950024809A KR100241306B1 (en) 1995-08-11 1995-08-11 The manufacturing method for low temperature steel with hot working

Country Status (1)

Country Link
KR (1) KR100241306B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765114B1 (en) * 2001-12-22 2007-10-08 주식회사 포스코 A method for manufacturing TMCP heavy plate using soft reduction
KR102663274B1 (en) * 2021-11-09 2024-05-03 주식회사 필메디 Drug multi-detection kit and drug detection method using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188742A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of steel for low temperature use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188742A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of steel for low temperature use

Also Published As

Publication number Publication date
KR970010983A (en) 1997-03-27

Similar Documents

Publication Publication Date Title
JP6198937B2 (en) HT550 steel sheet with ultra-high toughness and excellent weldability and method for producing the same
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
US4591396A (en) Method of producing steel having high strength and toughness
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
CN106755868B (en) A kind of low cost can Large Heat Input Welding high-strength and high ductility steel plate manufacturing method
EP1035222A1 (en) Continuous casting slab suitable for the production of non-tempered high tensile steel material
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPS58100625A (en) Production of high toughness high tensile steel plate having excellent weldability
JPH0941074A (en) Ultra-high tensile strength steel excellent in low temperature tougheness
JPS626730B2 (en)
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
KR100241306B1 (en) The manufacturing method for low temperature steel with hot working
CN112593155B (en) Anti-seismic, fire-resistant and weather-resistant steel plate for high-strength building structure and preparation method thereof
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH09302445A (en) Nickel-containing steel for low temperature use and its production
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP3244987B2 (en) High strength linepipe steel with low yield ratio
JP4742597B2 (en) Production method of non-tempered high strength steel
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021031

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee