KR100213812B1 - Removal method of sulfur and nitrogen with low temperature plasma reactor - Google Patents

Removal method of sulfur and nitrogen with low temperature plasma reactor Download PDF

Info

Publication number
KR100213812B1
KR100213812B1 KR1019970007855A KR19970007855A KR100213812B1 KR 100213812 B1 KR100213812 B1 KR 100213812B1 KR 1019970007855 A KR1019970007855 A KR 1019970007855A KR 19970007855 A KR19970007855 A KR 19970007855A KR 100213812 B1 KR100213812 B1 KR 100213812B1
Authority
KR
South Korea
Prior art keywords
reactor
temperature plasma
low temperature
condenser
desulfurization
Prior art date
Application number
KR1019970007855A
Other languages
Korean (ko)
Other versions
KR19980072869A (en
Inventor
송영훈
신완호
김석준
장길홍
Original Assignee
박운서
한국중공업주식회사
서상기
재단법인한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박운서, 한국중공업주식회사, 서상기, 재단법인한국기계연구원 filed Critical 박운서
Priority to KR1019970007855A priority Critical patent/KR100213812B1/en
Priority to CN98107708A priority patent/CN1088390C/en
Priority to JP10045336A priority patent/JP2839028B2/en
Publication of KR19980072869A publication Critical patent/KR19980072869A/en
Application granted granted Critical
Publication of KR100213812B1 publication Critical patent/KR100213812B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 저온 플라즈마 반응기를 이용하여 아황산가스 및 질소산화물을 산화시켜 최종적으로 암모니아로 중성염을 생성시키는 저온 플라즈마 탈황탈질 방법에 있어서, 저온 플라즈마 반응기내부에 응축기를 설치하고, 배연가스에 포함된 수분을 응축기 표면에 응축시켜 염의 생성 및 중성화를 촉진하는 것을 특징으로 하는 저온 플라즈마 탈황탈질 방법에 관한 것이다. 본 발명에 의하면, 분무식 스프레이와 반응기 전단의 열교환기를 동시에사용하는 종래의 저온 플라즈마 탈황탈질법에서의 문제점들, 즉 저온부식의 우려가 높고, 설비투자비용이 크며, 2차 폐수가 발생되는 등의 문제점들이해결될 뿐아니라 탈황탈질율도 현저히 향상된다.The present invention provides a low-temperature plasma desulfurization and denitrification method for oxidizing sulfur dioxide and nitrogen oxide using a low-temperature plasma reactor to finally produce neutral salts with ammonia, wherein a condenser is installed in the low-temperature plasma reactor, and the moisture contained in the flue gas. Is condensed on the condenser surface to promote salt generation and neutralization. According to the present invention, there are problems in the conventional low temperature plasma desulfurization and denitrification using a spray spray and a heat exchanger at the front end of the reactor at the same time, that is, there is a high risk of low temperature corrosion, a large capital investment cost, secondary wastewater, etc. Not only solve the problems, but also significantly improve the desulfurization and denitrification rate.

Description

응축기가 설치된 저온플라즈마 반응기를 이용한 탈황탈질 방법Desulfurization and Denitrification Method Using Low Temperature Plasma Reactor with Condenser

제1도는 종래의 저온플라즈마 반응기를 나타낸 도면이고,1 is a view showing a conventional low temperature plasma reactor,

제2도는 본 발명의 방법에 이용되는 저온플라즈마 반응기를 나타낸 도면이고,2 is a view showing a low temperature plasma reactor used in the method of the present invention,

제3도는 본 발명의 방법에 이용되는 다수의 응축기가 설치된 저온플라즈마 반응기의 횡단면도이다.3 is a cross sectional view of a low temperature plasma reactor equipped with a plurality of condensers used in the process of the present invention.

제4도는 본 발명의 실시예 1에 따른 실험결과를 나타낸 그래프이다.4 is a graph showing the experimental results according to Example 1 of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 열교환기 2 : 저온 플라즈마 반응기1: heat exchanger 2: low temperature plasma reactor

3, 3' : 전극봉 4 : 스프레이노즐3, 3 ': electrode 4: spray nozzle

5 : 펄스전력발생기 6 : 전기집진기5: pulse power generator 6: electrostatic precipitator

7 : 배연가스흡입기 8 : 직류전력발생기7: flue gas inhaler 8: DC power generator

9 : 응축기 10 : 냉각수공급기9: condenser 10: cooling water supply

본 발명은 화력발전소, 제철소, 일반 사업장에서 배출되는 배연가스에 포함된 아황산가스(SO2) 및 질소산화물(NOX)을 동시에 제거하는 저온 플라즈마 공법에 관한 것으로, 보다 상세하게는 저온 플라즈마 반응기내에 응축기를 설치함으로써 탈황탈질율의 향상, 저온부식 방지, 운전온도 범위.확대, 운전비용 절감, 2차 폐수 발생억제 및 반응기의 소형화 등의 효과를 얻을 수 있는 개선된 탈황탈질방법에 관한 것이다.The present invention relates to a low temperature plasma process for simultaneously removing sulfur dioxide (SO 2 ) and nitrogen oxides (NO X ) contained in flue gas emitted from thermal power plants, steel mills, and general workplaces. The present invention relates to an improved desulfurization and denitrification method which can achieve desulfurization denitrification rate, prevention of low temperature corrosion, operation temperature range and expansion, operation cost reduction, control of secondary wastewater generation and miniaturization of reactor.

기존의 탈황탈질방법에 사용된 저온 플라즈마 공법에 의하면, 제1도에 나타낸 저온 플라즈마 반응기를 이용하여 다음과 같은 과정을 거쳐 배연가스내의 아황산가스 및 질소산화물을 제거한다.According to the low temperature plasma method used in the conventional desulfurization and denitrification method, sulfur dioxide and nitrogen oxides in the flue gas are removed by the following process using the low temperature plasma reactor shown in FIG.

1) 산업용 보일러에서 배출된 배연가스를 반응기 전단의 열교환기(1)를 거쳐 배연가스의 온도를 110℃ 이하로 낮추어 반응기(2)에 공급한다.1) The flue gas discharged from the industrial boiler is supplied to the reactor 2 by lowering the temperature of the flue gas to 110 ° C. or lower through the heat exchanger 1 in front of the reactor.

2) 반응기(2)에서 배연가스 온도는 스프레이노즐(4)을 통한 물의 분무에 의해 80℃ 이하로 다시 낮추어 진다.2) The flue gas temperature in the reactor 2 is lowered below 80 ° C. by spraying water through the spray nozzle 4.

3) 전극봉과 집진판으로 구성된 산업용 집진기와 유사한 형태를 갖는 저온 플라즈마 반응기에 펄스전력발생기(5)를 통해 양극을 갖는 고전압 펄스전력을 공급하면 양극 스트리머코로나가 발생되고, 이와 동시에 강력한 전자들로 반응기내의 공간이 채워지게 된다.3) When the high-voltage pulse power having the anode is supplied to the low temperature plasma reactor having a similar shape to the industrial dust collector composed of the electrode and the dust collecting plate through the pulse power generator 5, the anode streamer corona is generated, and at the same time, the reactor is filled with strong electrons. The space inside is filled.

4) 반응기(2)내의 전자들은 배연가스의 주된 기체분자인 산소, 수증기, 질소 등과 충돌하여 산화력이 강한 래디칼을 발생하고, 이들 래디칼은 아황산가스 및 질산화합물을 에어로졸상의 산성염으로 변환시키게 된다.4) The electrons in the reactor 2 collide with the main gas molecules of the flue gas such as oxygen, water vapor and nitrogen to generate radicals with strong oxidizing power, and these radicals convert sulfur dioxide and nitrate compounds into aerosolic acid salts.

5) 산성염의 에어졸은 크기가 성장하는 한편, 반응기에 주입된 암모니아와 반응하여 1마이크로 미터 크기인 입자상의 중성염이 되어 전기집진기(6)로 집진된다.5) While the aerosol of acid salt grows in size, it reacts with ammonia injected into the reactor and becomes a particulate neutral salt of 1 micrometer in size and is collected by the electrostatic precipitator 6.

이러한 기존의 저온 플라즈마 공법에 의한 탈황탈질방법의 운전전력을 결정하는 중요한 과정중의 하나는 산성염 및 중성염의 생성과정이고, 이 과정을 촉진하기 위해 반응기에 공급되는 배연가스의 온도를 반응기 입구에 설치된 열교환기 및 반응기 내에서의 물의 분무에 의해 80℃ 하로 낮추거나, 분무된 물에염이 흡수되도록 하고 있다.One of the important processes to determine the operating power of the conventional desulfurization and denitrification method by the low temperature plasma process is the production of acid salts and neutral salts, and the temperature of the flue gas supplied to the reactor to facilitate this process is installed at the reactor inlet. The spraying of water in the heat exchanger and the reactor allows the water to be lowered to 80 ° C. or to absorb the salt in the sprayed water.

그러나 상기한 기존방법에서와 같이 배연가스의 운전온도를 80℃ 이하로 저하시켜 반응기에 공급할 경우 1) 아황산가스가 황산으로 변해 반응기의 저온부식을 가속하고, 2) 일반적으로 대용량의 배연가스를 반응기전단의 열교환기를 통해 온도를 저하시키는데 소요되는 비용이 크다는 문제점이 제기된다. 또한, 스프레이노즐을 통한 물의 분무를 이용하여 반응기내에서 염의 생성과정을 촉진시킬 경우, 1) 분무된 물의 분포가 비균일하여 염의 생성이 공간에 따라 불규칙하고, 2) 스프레이 노즐의 부식으로 인한 물공급의 정지가 따르며, 3) 비산된 액적에 의한 반응기의 부식이 초래되며, 4) 물의 분무에 따른 2차 폐수가 발생되고, 5) 분무에 필요한 공간으로 인해 반응기의 체적이 증가하게 된다.However, when supplying the flue gas to the reactor by lowering the operation temperature of the flue gas to 80 ℃ or less as in the conventional method described above 1) sulfur dioxide gas is changed to sulfuric acid to accelerate the low-temperature corrosion of the reactor, 2) generally a large amount of flue gas reactor The problem arises in that the cost of lowering the temperature through the heat exchanger at the front end is high. In addition, in the case of promoting the salt production process in the reactor by spraying water through the spray nozzle, 1) the distribution of the sprayed water is non-uniform, so that the salt production is irregular according to the space, and 2) water due to corrosion of the spray nozzle. A stoppage of the supply is followed, 3) corrosion of the reactor by scattered droplets, 4) secondary wastewater from spraying of water, and 5) volume of the reactor due to the space required for spraying.

본 발명은 이상과 같은 기존 방법의 제반 문제점을 해결하기 위하여 열교환기를 통해 배연가스의 온도를 낮추거나 반응기내에 물을 분무하는 대신에, 제2도에 도시된 바와 같이 반응기내부에 응축긱 설치된저온 플라즈마 반응기를 이용하여 탈황탈질을 수행하는 것을 특징으로 한다.The present invention, instead of lowering the temperature of the flue gas through the heat exchanger or spraying water in the reactor to solve the problems of the existing method as described above, as shown in Figure 2 low temperature plasma installed in the reactor condensation It is characterized by performing desulfurization and denitrification using a reactor.

본 발명에 따른 탈황탈질방법에 의하면, 산업용 보일러등에서 배출된 배연가스를 저온 플라즈마 반응기(2)로 공급하면, 반응기(2)내로 공급된 배연가스중의 수분이 반응기내에 설치된 응축기(9)의 표면에서 응축되어, 응축된 액적 또는 액막에서 염의 생성 및 중성화가 일어난다. 이때 응축기에는 냉각수 공급기(10)로 부터 냉각수가 계속 공급된다.According to the desulfurization and denitrification method according to the present invention, when the flue gas discharged from an industrial boiler or the like is supplied to a low temperature plasma reactor 2, the surface of the condenser 9 provided with moisture in the flue gas supplied into the reactor 2 is installed in the reactor. Condensation in the salt formation and neutralization occurs in the condensed droplets or film. At this time, the cooling water is continuously supplied from the cooling water supply 10 to the condenser.

본 발명에 사용되는 저온 플라즈마 반응기에 있어서, 응축기의 설치조건은 다음과 같다.In the low temperature plasma reactor used in the present invention, the installation conditions of the condenser are as follows.

1) 응축기의 크기는 반응기의 단면을 지나는 배연가스의 수분을 충분히 응축시킬 수 있기 위해서 반응기의 단면을 거의 가릴 수 있을 정도로 크며, 2) 응축기는 제2도에 나타낸 바와 같이 반응기내의 각 전극봉 유니트의 후단에 설치되며, 3) 응축기는 반응기의 크기에 따라 1 유니트 혹은 여러 유니트를 다단으로 설치할 수 있다.1) The size of the condenser is large enough to cover almost the cross section of the reactor in order to sufficiently condense the moisture of the flue gas passing through the cross section of the reactor, and 2) the condenser is shown in FIG. It is installed at the rear stage. 3) The condenser can be installed in one stage or several units depending on the size of the reactor.

반응기의 크기가 클 경우, 응축기의 수가 많을수록 탈황탈질 성능이 향상되므로 반응기의 크기에 따라 응축기의 크기 및 설치갯수를 적절히 조절할 수 있다. 그런데, 반응기내로 공급된 배연가스의 온도를 전체적으로 수십도 이상 저하시킬 정도로 응축기의 크기가 크거나 설치갯수가 많거나 혹은 냉각수량이 많으면 오히려 저온 플라즈마 탈황탈질 시스템의 성능향상을 기대할 수 없고, 또한 응축기의 설치로 인해 압력손실이 커질 경우에도 소요동력이 증가되어 경제성이 떨어진다. 따라서 반응기의 내부온도가 110℃ 이하로 저하되지 않으며, 압력손실이 100mmA가 넘지 않는 상태에서 배연가스 내의 수분을 응축시킬 수 있도록 응축기의 크기, 설치갯수, 냉각수 공급량 등을 적절히 조절하는 것이 바람직하다.When the size of the reactor is large, as the number of condensers increases, the desulfurization and denitrification performance is improved, so that the size and number of installations of the condenser can be properly adjusted. However, if the size of the condenser is large, the number of installations, or the amount of cooling water is large enough to reduce the temperature of the flue gas supplied into the reactor as a whole by more than several tens of degrees, the performance improvement of the low temperature plasma desulfurization denitrification system cannot be expected. Even if the pressure loss increases due to the installation of the condenser, the required power is increased and economic efficiency is low. Therefore, the internal temperature of the reactor is not lowered to less than 110 ℃, it is preferable to properly adjust the size of the condenser, the number of installation, the amount of cooling water, etc. to condense the water in the flue gas in a state in which the pressure loss does not exceed 100mmA.

그리고, 종래의 저온 플라즈마 반응기(제1도)의 경우 냉각수 스프레이가 전극봉 유니트의 전단에 설치되는 것과는 달리, 본 발명에서 응축기를 전극봉 유니트의 후단에 설치하는 이유는 전극봉에서 발생된 전자들이 아황산가스와 질소산화물을 산성염으로 변환시킨 후, 이들 산성염을 응축기에서 중성염으로 바꿔주기 위해서이다.And, in the case of the conventional low temperature plasma reactor (FIG. 1), unlike the cooling water spray is installed in the front of the electrode unit, in the present invention, the reason for installing the condenser at the rear end of the electrode unit is that the electrons generated in the electrode and the sulfurous acid gas After the conversion of nitrogen oxides to acid salts, these acid salts are converted into neutral salts in the condenser.

즉, 응측기가 전극봉 유니트의 전단에 설치될 경우 응축기가 산성염을 만날 수없기 때문에 산성염을 중성염으로 바꿔주는 응축기의 역할이 불가능하게 된다.That is, when the condenser is installed at the front end of the electrode unit, the condenser cannot meet acid salts, so that the role of the condenser for converting acid salts into neutral salts becomes impossible.

이상과 같이 응축기가 설치된 저온플라즈마 반응기를 이용하는 본 발명의 탈황탈질 방법의 장점은 다음과 같다.Advantages of the desulfurization and denitrification method of the present invention using a low temperature plasma reactor equipped with a condenser as described above are as follows.

1) 종래에는 염의 생성을 촉진하기위해 반응기 전단의 열교환기와 분무시스템이 사용되었으나, 본 발명의 방법에서는 반응기내부의 응축기만으로 그 기능이 대체된다.1) Conventionally, a heat exchanger and a spray system in front of a reactor are used to promote salt production, but in the method of the present invention, the function is replaced by only a condenser in the reactor.

2) 본 발명에서 반응기내에 응축기가 설치된 목적은 배연가스온도를 저하시키는 것이 아니라, 배연가스내의 수분을 국부적으로 응축시키는데 있으므로 반응기의 운전온도는 종래 80℃ 이하에서 110℃ 이상으로 상승되어 반응기의 저온부식에 대한 우려가 제거된다.2) In the present invention, the purpose of the condenser installed in the reactor is not to lower the flue gas temperature, but to locally condense the moisture in the flue gas, so the operating temperature of the reactor is raised from 110 ° C. or higher to less than 110 ° C. in the conventional low temperature of the reactor. Corrosion concerns are eliminated.

3) 공간적으로 물의 분포가 비균일한 분무 스프레이에 대신하여 응축기 표면에서 고르게 분포된 액적 또는 액막에서 염의 흡수반응이 일어나므로 성능이 향상된다.3) Performance is improved because the absorption of salt occurs in droplets or film evenly distributed on the surface of condenser instead of spray spray with non-uniform distribution of water.

4) 다량의 물이 필요한 분무시스템에서는 2차 폐수가 발생되나, 본 발명의 방법에서는 반응기에 추가로 물이 공급되지 않으므로 2차 폐수가 발생되지 않는다.4) Secondary wastewater is generated in a spray system requiring a large amount of water, but the secondary wastewater is not generated in the method of the present invention because no additional water is supplied to the reactor.

5) 분무시스템은 많은 공간을 필요로 하는 반면에 본 발명에서 적용된 응축기는 반응기의 체적을 최소화시킬 수 있다.5) While the spray system requires a lot of space, the condenser applied in the present invention can minimize the volume of the reactor.

6) 응축기가 없는 종래의 저온플라즈마 탈황탈질 시스템을 이용한 경우에 비하여 탈황탈질율이 현저히 향상된다.6) The desulfurization denitrification rate is remarkably improved as compared with the conventional low temperature plasma desulfurization denitrification system without a condenser.

이하 실시예를 통하여 본 발명을 설명한다.The present invention will be described through the following examples.

[실시예 1]Example 1

본 실시예는 플라즈마 탈황탈질 파일럿 플랜트의 제작이전에 플라즈마 반응기내에서의 응축현상이 NOx 제거성능이 미치는영향을 파악하기 위하여 소형반응기에서 실험한 것이다.In this example, experiments were conducted in a small reactor to determine the effect of NOx removal performance on the condensation in the plasma reactor prior to fabrication of the plasma desulfurization denitrification pilot plant.

플라즈마 반응기내에 응축기가 설치된 경우와 응축기가 설치되지 않은 경우에 NOX제거율을 비교하기 위하여 시간당 가스처리량이 20Nm3인 소형 플라즈마 반응기에서 초기 NOx 농도 200ppm, 펄스반복율 60Hz, 펄스폭 1000nsec의 조건하에서 실험을 수행하였다.If the case and the condenser as a condenser in the plasma reactor is installed is not installed in the test under the initial NOx concentration of 200ppm, pulse repetition rate of 60Hz, the conditions of a pulse width 1000nsec hourly gas throughput in 20Nm 3 and compact the plasma reactor in order to compare the NO X removal rate Was performed.

결과는 제4도에 나타낸 바와 같다.The results are shown in FIG.

제4도에 나타난 바와 같이, 플라즈마 반응기내에 응축기가 있는 경우에는 응축기가 없는 경우에 비해 NOx 제거율이 훨씬 높았으며, 반응기에 인가된 전압을 최고 50kV로 높여도 응축기가 없는 경우에는 NOx 제거율이 15% 수준에 불과하였다.As shown in FIG. 4, the NOx removal rate was much higher with the condenser in the plasma reactor than without the condenser, and the NOx removal rate was 15% without the condenser even when the voltage applied to the reactor was increased up to 50 kV. It was just a level.

따라서 본 실시예의 실험결과, 플라즈마 반응기내에 응축기를 설치할 경우 NOx 제거율을 현저히 향상시킬 수 있음을 확인할 수 있었다.Therefore, as a result of the experiment of the present embodiment, it was confirmed that the NOx removal rate can be significantly improved when the condenser is installed in the plasma reactor.

[실시예 2]Example 2

본 실시예는 본 발명에서와 같이 응축기가 설치된 플라즈마 반응기를 이용한 경우와 응축기가 설치되지 않은 플라즈마 반응기를 이용한 경우에 탈황탈질효과를 비교하기 위한 것이다.This embodiment is to compare the desulfurization and denitrification effect when using a plasma reactor equipped with a condenser as in the present invention and a plasma reactor without a condenser installed.

응축기가 설치된 플라즈마 탈황탈질 파일럿 플랜트(본 발명)와 응축기가 설치되지 않은 파일럿 플랜트(이태리 국립전력회사 실험)에서 하기 표1에 나타낸 조건으로 탈황탈질실험을 수행하였고, 그 결과는 표1에 나타낸 바와 같다.In the plasma desulfurization denitrification pilot plant (conventional invention) equipped with the condenser and the pilot plant without the condenser (Italy national power company experiment), desulfurization denitrification experiment was performed under the conditions shown in Table 1 below, and the results are shown in Table 1. same.

Figure kpo00002
Figure kpo00002

상기 표1에서 알수 있듯이, 동일한 전압을 공급한 경우에 응축기가 설치된 플랜트는 응축기가 설치되지 않은 플랜트에 비하여 탈황탈질율이 상대적으로 높았고, 운전소요저력이 적었으며, 운전온도가 높아 반응기의 저온부식의 우려를 배제할 수 있었다.As can be seen from Table 1, in the case of supplying the same voltage, the desulfurization denitrification rate was relatively high, the operating power was low, and the operating temperature was high. Concerns could be ruled out.

Claims (3)

저온 플라즈마 반응기를 이용하여 아황산가스 및 질소산화물을 산화시켜 최종적으로 암모니아로 중성염을 생성시키는 저온 플라즈마 탈황탈질 방법에 있어서, 저온 플라즈마 반응기내부의 각 전극봉 유니트의 후단에 응축기를 설치하고, 배연가스에 포함된 수분을 응축기 표면에 응축시켜 염의 생성 및 중성화를 촉진하는 것을 특징으로 하는 저온 플라즈마 탈황탈질방법.In the low temperature plasma desulfurization and denitrification method in which sulfur dioxide and nitrogen oxides are oxidized using a low temperature plasma reactor to finally generate neutral salts with ammonia, a condenser is installed at the rear end of each electrode unit in the low temperature plasma reactor, A low temperature plasma desulfurization and denitrification method comprising condensing moisture contained on a condenser surface to promote salt generation and neutralization. 제1항에 있어서, 응축기는 저온 플라즈마 반응기내부에1유니트 또는 2이상의 유니트가 설치되는 것을 특징으로 하는 저온 플라즈마 탈황탈질방법.The low temperature plasma desulfurization and denitrification method according to claim 1, wherein the condenser has one unit or two or more units installed in the low temperature plasma reactor. 제1항에 있어서, 반응기의 운전온도를 110℃ 이상으로 상승시켜 반응기의 저온부식을 방지하는 것을 특징으로 하는 저온 플라즈마 탈황탈질방법.The low temperature plasma desulfurization and denitrification method as claimed in claim 1, wherein the operating temperature of the reactor is increased to 110 ° C. or higher to prevent low temperature corrosion of the reactor.
KR1019970007855A 1997-03-08 1997-03-08 Removal method of sulfur and nitrogen with low temperature plasma reactor KR100213812B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019970007855A KR100213812B1 (en) 1997-03-08 1997-03-08 Removal method of sulfur and nitrogen with low temperature plasma reactor
CN98107708A CN1088390C (en) 1997-03-08 1998-02-25 Process for desulfurization and denitrification by use of low-temperature plasma reactor equipped with condenser
JP10045336A JP2839028B2 (en) 1997-03-08 1998-02-26 Desulfurization and denitrification method and desulfurization and denitrification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970007855A KR100213812B1 (en) 1997-03-08 1997-03-08 Removal method of sulfur and nitrogen with low temperature plasma reactor

Publications (2)

Publication Number Publication Date
KR19980072869A KR19980072869A (en) 1998-11-05
KR100213812B1 true KR100213812B1 (en) 1999-08-02

Family

ID=19499191

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970007855A KR100213812B1 (en) 1997-03-08 1997-03-08 Removal method of sulfur and nitrogen with low temperature plasma reactor

Country Status (3)

Country Link
JP (1) JP2839028B2 (en)
KR (1) KR100213812B1 (en)
CN (1) CN1088390C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847396A (en) * 2012-04-19 2013-01-02 绍兴文理学院 Coal-fired flue gas plasma purification device and purification method thereof
KR101300194B1 (en) * 2011-08-29 2013-08-26 한국기계연구원 Pulsed plasma reactor With Cooling Heat Exchanger

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529209B2 (en) * 1999-12-22 2010-08-25 パナソニック株式会社 Gas cracker
KR100481398B1 (en) * 2001-04-11 2005-04-07 (주)케이.씨.텍 Method of Treating Perfluoro-Carbon Compound Gas And Apparatus For Treating Thereof
KR100479468B1 (en) * 2001-10-31 2005-03-30 (주) 오클린 A processing apparatus of food garbage
KR20030067241A (en) * 2002-02-07 2003-08-14 주식회사 유민이엔씨 Method and Apparatus for excluding dioxin and fly ash using high temperature plasma
KR100987978B1 (en) * 2008-10-27 2010-10-18 (주)트리플코어스코리아 Appratus and method for gas scrubbing
CN102219274B (en) * 2011-03-30 2012-08-22 东南大学 Evaporation apparatus for wastewater discharged from flue gas desulphurization process
KR101567746B1 (en) * 2015-06-16 2015-11-09 박정봉 Apparatus for treating exhaust gas
CN111389196B (en) * 2020-03-24 2022-02-15 安吉旺能再生资源利用有限公司 Flue gas low-temperature plasma co-processing method and system
CN111514709A (en) * 2020-04-12 2020-08-11 蔚复来(浙江)科技股份有限公司 Garbage odor deodorizing and dehumidifying device and method
CN113769551B (en) * 2021-09-28 2023-07-28 中国华能集团清洁能源技术研究院有限公司 Low-temperature desulfurization and denitrification method and system for biomass power plant flue gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692237B2 (en) * 1989-02-09 1997-12-17 株式会社明電舎 NOx denitration method in exhaust gas and exhaust gas treatment device
JPH04122417A (en) * 1990-09-11 1992-04-22 Mitsubishi Heavy Ind Ltd Exhaust gas treating device
JPH07213859A (en) * 1994-02-09 1995-08-15 Mitsubishi Heavy Ind Ltd Waste gas treating device
CN1114236A (en) * 1995-04-10 1996-01-03 华中理工大学 Discharging catalytic reduction process for desulphurizing smoke and apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300194B1 (en) * 2011-08-29 2013-08-26 한국기계연구원 Pulsed plasma reactor With Cooling Heat Exchanger
CN102847396A (en) * 2012-04-19 2013-01-02 绍兴文理学院 Coal-fired flue gas plasma purification device and purification method thereof

Also Published As

Publication number Publication date
JPH10249151A (en) 1998-09-22
KR19980072869A (en) 1998-11-05
CN1203829A (en) 1999-01-06
JP2839028B2 (en) 1998-12-16
CN1088390C (en) 2002-07-31

Similar Documents

Publication Publication Date Title
KR100213812B1 (en) Removal method of sulfur and nitrogen with low temperature plasma reactor
US6132692A (en) Barrier discharge conversion of SO2 and NOx to acids
CN109985505B (en) Waste gas treatment process for traditional Chinese medicine plaster production
CN109876585B (en) Traditional chinese medicine plaster production exhaust gas treatment system
CN102553406B (en) Denitration method and device combining direct-current corona discharge with catalytic oxidation
CN103990359A (en) Method and device for purifying nitric oxide and fog particles in wet desulphurization aerial fog by low-temperature plasma
CN110917826A (en) Pulse corona plasma flue gas desulfurization and denitrification device with medicament peak clipping function
CN113304591A (en) Method and system for purifying flue gas of carbon roasting furnace
US11712658B2 (en) Environmental equipment and power generation system using same
CN107497265A (en) The integrated fume cleaning system and method for ozone cooperative microwave-excitation flying dust induced radical
WO2020098574A1 (en) Method and apparatus for purifying waste incineration flue gas
CN102847430B (en) System and technology for cleaning flue gas
CN204018028U (en) A kind of high-efficient wet-type electric precipitation purifier of wet-method desulfurized fume
CN1559651A (en) Exbaust gas purification method and device by pulse corona dicharging method
CN1600409A (en) Method for removing multipollutant in flue gas by combining free radical showering and absorption of alkali liquor
CN103446837B (en) Wet desulfurization system with electrostatic humidifier and anode demister
CN203507747U (en) Wet-process desulfurization system provided with electrostatic humidifying device
CN217431353U (en) Flue gas purification system of carbon roasting furnace
CN212440689U (en) Rectification grid type desulfurization and denitrification and acid mist removal device
CN107638784A (en) Single column circulating fluid bed boiler desulfurization dedusting deep purifying is equipped
KR102057851B1 (en) Exhaustion Gas Cleaning System for Thermal Power Plant
JP2018030090A (en) Particle removal device
Brown et al. Eliminating a sulfuric acid mist plume from a wet caustic scrubber on a petroleum coke calciner
CN2675234Y (en) Dry method impulse corona discharge fume purifier
US8182776B2 (en) Process for operating a fossil fuel fired power plant

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130520

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20160308

Year of fee payment: 18

EXPY Expiration of term