KR0173525B1 - Aluminum Solid Electrolytic Capacitors And Manufacturing Method Thereof - Google Patents

Aluminum Solid Electrolytic Capacitors And Manufacturing Method Thereof Download PDF

Info

Publication number
KR0173525B1
KR0173525B1 KR1019950028701A KR19950028701A KR0173525B1 KR 0173525 B1 KR0173525 B1 KR 0173525B1 KR 1019950028701 A KR1019950028701 A KR 1019950028701A KR 19950028701 A KR19950028701 A KR 19950028701A KR 0173525 B1 KR0173525 B1 KR 0173525B1
Authority
KR
South Korea
Prior art keywords
aluminum
precursor layer
solid electrolyte
layer
polypyrrole
Prior art date
Application number
KR1019950028701A
Other languages
Korean (ko)
Other versions
KR970017738A (en
Inventor
유남산
조준상
Original Assignee
변동준
삼영전자공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 변동준, 삼영전자공업주식회사 filed Critical 변동준
Priority to KR1019950028701A priority Critical patent/KR0173525B1/en
Publication of KR970017738A publication Critical patent/KR970017738A/en
Application granted granted Critical
Publication of KR0173525B1 publication Critical patent/KR0173525B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

가용성 전도성 고분자를 포함하는 폴리피롤복합막을 고체전해질층으로 하는 알루미늄 고체전해콘덴서를 제조하기 위하여 가용성 전도성 고분자인 폴리헥실치오펜을 합성하고, 상기 가용성 전도성 고분자를 용액함침법에 의해 산화알루미늄막 상부에 전구층으로 형성한 후,전해산화중합시의 양극으로 이용하여 고전도성을 갖는 폴리피롤 고체전해질층을 형성시켜 알루미늄 고체전해콘덴서를 제조한다.In order to manufacture an aluminum solid electrolytic capacitor using a polypyrrole composite film containing a soluble conductive polymer as a solid electrolyte layer, a polyhexylthiophene, a soluble conductive polymer, is synthesized, and the precursor is formed on the aluminum oxide film by a solution impregnation method. After forming a layer, a polypyrrole solid electrolyte layer having high conductivity is formed using an anode during electrolytic oxidation polymerization to prepare an aluminum solid electrolytic capacitor.

Description

알루미늄 고체전해 콘덴서 및 그 제조방법Aluminum Solid Electrolytic Capacitors And Manufacturing Method Thereof

제1도는 종래의 산화피막을 갖는 에칭된 알루미늄박 상부에 이산화 망간층이 전구층으로 형성되어 있는 것을 나타낸 단면도.1 is a cross-sectional view showing that a manganese dioxide layer is formed as a precursor layer on top of an etched aluminum foil having a conventional oxide film.

제2도는 종래의 산화피막을 갖는 에칭된 알루미늄박 상부에 화학산 화중합법에 의해 폴리피롤층이 형성되어 있는 것을 나타낸 단면도.2 is a cross-sectional view showing that a polypyrrole layer is formed by a chemical oxidation polymerization method on an etched aluminum foil having a conventional oxide film.

제3도는 본 발명에 따른 산화피막을 갖는 에칭된 알루미늄박 상부에 가용성 전도성 고분자가 전구층으로 형성되어 있는 것을 나타낸 단면도.3 is a cross-sectional view showing that a soluble conductive polymer is formed as a precursor layer on top of an etched aluminum foil having an oxide film according to the present invention.

제4도는 본 발명에 따라 제조된 알루미늄 고체전해 콘덴서 및 종래 기술의 알루미늄 고체전해 콘덴서의 주파수에 대한 임피던스 특성을 나타낸 그래프.4 is a graph showing the impedance characteristics with respect to the frequency of the aluminum solid electrolytic capacitor and aluminum solid electrolytic capacitor of the prior art prepared according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 산화 알루미늄박 2 : 이산화망간1: aluminum oxide foil 2: manganese dioxide

3 : 손상된 산화 알루미늄막 4 : 산화중합 폴리피롤3: damaged aluminum oxide film 4: polymerized polypyrrole

5 : 가용성 도전성 고분자5: soluble conductive polymer

6 : 비교예 1에 의해 제조된 콘덴서 소자의 주파수에 대한 임피던스 특성 곡선6: impedance characteristic curve with respect to the frequency of the capacitor | condenser element manufactured by the comparative example 1

7 : 실시예 1에 의해 제조된 콘덴서 소자의 주파수에 대한 임피던스 특성 곡선7: Impedance characteristic curve with respect to the frequency of the capacitor | condenser element manufactured by Example 1

8 : 실시예 2에 의해 제조된 콘덴서 소자의 주파수에 대한 임피던스 특성 곡선8: Impedance characteristic curve with respect to the frequency of the capacitor | condenser element manufactured by Example 2

본 발명은 알루미늄 고체전해 콘덴서 및 그 제조방법에 관한 것으로, 특히, 가용성 전도성 고분자를 콘덴서의 고체전해질 전구층으로 하여 콘덴서의 전기적 특성이 향상되도록 제조한 알루미늄 고체전해 콘덴서 및 그 제조방법에 관한 것이다.The present invention relates to an aluminum solid electrolytic capacitor and a method of manufacturing the same, and more particularly, to an aluminum solid electrolytic capacitor prepared by using a soluble conductive polymer as a solid electrolyte precursor layer of the capacitor to improve the electrical characteristics of the capacitor and a method of manufacturing the same.

일반적으로 알루미늄 고체전해 콘덴서의 구조는 전해 에칭된 알루미늄박상에 유전체 산화피막을 형성시키고, 상기 산화피막 상부에 전도성 고체전해질층을 도포하여 형성된 구조로서, 상기의 전도성 고체 전해질의 종류 및 형성방법에 따라 제조되는 고체전해 콘덴서의 전기적인 특성도 달라지게 된다.In general, an aluminum solid electrolytic capacitor has a structure formed by forming a dielectric oxide film on an electrolytically etched aluminum foil and applying a conductive solid electrolyte layer on the oxide film, depending on the type and formation method of the conductive solid electrolyte. The electrical characteristics of the manufactured solid electrolyte capacitors will also vary.

상기 알루미늄 고체전해 콘덴서에 사용되는 고체전해질은 무기 고체전해질과 유기 고체전해질로 나눌수 있으며, 상기의 유기 고체전해질은 다시 유기 반도체형과 고분자 전해질형으로 나누어 진다.The solid electrolyte used in the aluminum solid electrolyte capacitor may be divided into an inorganic solid electrolyte and an organic solid electrolyte, and the organic solid electrolyte is further divided into an organic semiconductor type and a polymer electrolyte type.

상기의 무기 고체 전해질의 대표적인 것으로 이산화망간과 이산화 납이 있으며, 탄탈륨 고체콘덴서의 경우에는 탄탈륨 소결체 내부에 질산망간 수용액을 함침시킨 후, 열분해에 의해 생성되는 이산화망간을 고체전해질층으로 이용한 탄탈륨 고체전해 콘덴서가 개발되어 실용화 되었으나, 알루미늄 박에 적용할 경우에는 제1도에 도시된 바와 같이 알루미늄 박 상부에 형성된 산화알루미늄막(1)의 일부분이 이산화망간(2)이 도포되면서 열분해에 의해 발생하는 가스로 인하여 부식되어 손상된 산화알루미늄막(3)이 된다.Representative inorganic solid electrolytes include manganese dioxide and lead dioxide, and in the case of a tantalum solid capacitor, a tantalum solid electrolyte capacitor using a manganese nitrate solution impregnated in a tantalum sintered body and then using manganese dioxide produced by pyrolysis as a solid electrolyte layer Although developed and put into practical use, when applied to aluminum foil, as shown in FIG. 1, a part of the aluminum oxide film 1 formed on the aluminum foil is corroded due to gas generated by pyrolysis as manganese dioxide 2 is applied. This results in a damaged aluminum oxide film 3.

다음으로 유기 고체전해질을 사용한 전구층으로 유기반도체인 테트라시아노퀴논디메탄(이하; TCNQ)착염을 사용할 수 있으며, 상기 TCNQ착염을 이용한 알루미늄 고체전해 콘덴서는 이미 개발되어 상품화되었으나 TCNQ역시 전도도가 그다지 높지 못하여 고주파 특성이 좋지 못하고 열용융함침법에 의해 형성되므로 제조상의 문제점 및 TCNQ의 열적안정성이 좋지 못하여 제품의 칩화가 어렵다는 문제점이 있다.Next, tetracyanoquinone dimethane (TCNQ) complex salt, which is an organic semiconductor, may be used as a precursor layer using an organic solid electrolyte, and an aluminum solid electrolyte capacitor using the TCNQ complex salt has already been developed and commercialized, but TCNQ also has very low conductivity. Since it is not high, the high frequency characteristics are not good and are formed by the hot melt impregnation method, so there is a problem in manufacturing and chipping of the product is difficult due to poor thermal stability of TCNQ.

또한, 전구층으로 사용되는 다른 유기 고체전해질로 고분자 고체 전해질인 폴리피롤이 대표적으로 사용되고 있는데, 전해산화중합법에 의해 생성되는 폴리피롤은 전도도가 102S/cm 이상으로 매우 높고 열적 안정성이 우수한 전도성 고분자로 알려져 있다. 따라서, 상기 폴리피롤을 고체전해질로 이용한 알루미늄 고체전해 콘덴서는 필름 콘덴서에 근접하는 고주파 특성을 나타내며 열적 안정성도 우수하여 제품의 칩화가 가능하다는 장점을 가지고 있다.In addition, polypyrrole, which is a polymer solid electrolyte, is typically used as another organic solid electrolyte used as a precursor layer. The polypyrrole produced by the electrolytic oxidation polymerization method has a high conductivity of 10 2 S / cm or more and a conductive polymer having excellent thermal stability. Known as Therefore, the aluminum solid electrolyte capacitor using the polypyrrole as a solid electrolyte has a high frequency characteristic close to the film capacitor and has an excellent thermal stability and thus has the advantage of chipping of the product.

그러나, 상기 높은 전도도를 갖는 폴리피롤은 전해산화중합법에 의해서만 형성할 수 있으며, 이때 생성되는 폴리피롤은 불용불융이라는 특징을 가지고 있다. 따라서, 부도체 산화알루미늄막의 상부에 직접 전해산화중합법에 의해 고체전해질층인 폴리피롤을 형성시키는 것이 불가능하게 되기 때문에 산화알루미늄막 상부에 폴리피롤을 전해 산화중합하기 위해서는 부도체 특성을 갖는 산화피막 상부에 전도성을 부여하여 전해산화중합을 실시할 전구층을 형성시킴으로서 우수한 소자를 제조할 수 있다.However, the polypyrrole having the high conductivity can be formed only by the electrolytic oxidation polymerization method, and the polypyrrole produced at this time is characterized by insoluble infusible. Therefore, it is impossible to form polypyrrole as a solid electrolyte layer on the upper portion of the non-conductive aluminum oxide film by electrolytic oxidation polymerization method. By forming a precursor layer to be subjected to electrolytic oxidation polymerization, an excellent device can be manufactured.

상기 폴리피롤을 전해산화중합하기 위한 전구층의 형성방법으로서 금속산화물층을 형성시키는 방법과 화학산화중합에 의하여 화학산화중합 폴리피롤층을 형성시키는 방법이 공지되어 있다.As a method of forming a precursor layer for electrolytic oxidation polymerization of the polypyrrole, a method of forming a metal oxide layer and a method of forming a chemical oxidation polymerization polypyrrole layer by chemical oxidation polymerization are known.

상기의 2 방법에 의해 생성되는 전구층의 전도도는 10-1∼100S/cm정도로 비교적 낮은 편이지만 부도체 특성을 갖는 산화알루미늄막에 전도성을 부여하여 폴리피롤의 전해산화중합시 전극으로의 역할은 가능하게 된다.The conductivity of the precursor layer produced by the above two methods is relatively low, such as 10 −1 to 10 0 S / cm, but the conductivity is given to the aluminum oxide film having non-conductor properties, and thus the role of polypyrrole as an electrode during electrolytic oxidation polymerization is It becomes possible.

그러나, 이산화망간을 전구층으로 사용할 경우에는 이산화망간의 생성시 열분해에 의해 발생되는 산화질소 가스등에 의해 산화알루미늄막이 손상되어 고체전해 콘덴서를 제조하더라도 소자의 용량손실 및 고주파특성의 약화등 콘덴서 소자의 전기적 특성을 저하시키는 문제가 발생한다.However, when manganese dioxide is used as a precursor layer, even when a solid oxide capacitor is manufactured by damaging the aluminum oxide film by nitrogen oxide gas generated by pyrolysis during the production of manganese dioxide, the electrical characteristics of the capacitor element such as capacity loss and weakening of high frequency characteristics Problem arises.

또한, 전구층이 화학산화중합에 의해 생성되는 폴리피롤을 이용할 경우에는 제2도에 도시된 바와 같이 산화알루미늄막(1) 상부에 분말형태의 화학산화중합 폴리피롤(4)이 형성되기 때문에 알루미늄박과의 접착력이 약하고, 에칭된 알루미늄박 내부로의 침투가 제대로 이루어지지 않아 고체전해 콘덴서를 제조하더라도 소자의 용량효율(제조된 소자용량/소자설계용량)의 감소와 고주파 특성의 한계점등 제조된 소자의 전기적 특성이 저하된다는 문제점이 제기되고 있다.In addition, when the precursor layer uses polypyrrole produced by chemical oxidation polymerization, a powdered chemical oxidation polymerization polypyrrole 4 is formed on the aluminum oxide film 1 as shown in FIG. Because of its weak adhesion and poor penetration into the etched aluminum foil, it is possible to reduce the device's capacity efficiency (manufactured device capacity / device design capacity) and limit the high frequency characteristics even if a solid electrolytic capacitor is manufactured. The problem is that the electrical characteristics are degraded.

일반적으로 전도도 및 열적 안전성이 우수한 전도성 고분자인 폴리치오펜, 폴리피롤 등은 폴리머상태에서는 불용성이라는 특징을 가지고 있어 가용화가 불가능하지만 이들의 분자쇄에 알킬기를 치환시켜 합성한 폴리알킬치오펜, 폴리알킬피롤, 폴리알킬퓨란, 폴리비닐렌페닐렌 등의 경우에 전도도는 폴리치오펜 또는 폴리피롤보다는 낮지만 유기용매등에 가용화가 가능하기 때문에 알루미늄 고체전해질층 제조시 산화알루미늄막 상부에 폴리피롤을 전해산화중합하기 위한 전구층으로서의 역할이 가능하게 된다.In general, polythiophene and polypyrrole, which are conductive polymers having excellent conductivity and thermal stability, are insoluble in the polymer state, so that they cannot be solubilized, but polyalkylthiophene and polyalkylpyrrole synthesized by replacing alkyl groups in their molecular chains. , Polyalkylfuran, polyvinylene phenylene, etc., the conductivity is lower than polythiophene or polypyrrole, but solubilization in organic solvents, so that the polypyrrole electrolytic polymerization of the aluminum oxide film in the production of aluminum solid electrolyte layer The role as a precursor layer becomes possible.

따라서, 본 발명은 상기의 문제점을 해결하기 위하여 가용성 전도성 고분자를 산화알루미늄막 상부에 전구층으로 형성하고, 상기 전구층 상부에 폴리피롤을 형성하여 알루미늄 고체전해 콘덴서를 제조함으로서 콘덴서의 전기적 특성을 향상시키는데 목적이 있다.Therefore, in order to solve the above problems, the soluble conductive polymer is formed as a precursor layer on the aluminum oxide film, and polypyrrole is formed on the precursor layer to manufacture an aluminum solid electrolytic capacitor, thereby improving the electrical characteristics of the capacitor. There is a purpose.

본 발명은 상기 목적을 달성하기 위하여 유전체 산화피막이 형성된 알루미늄박과 고체전해질로 구성되는 알루미늄 고체전해 콘덴서에 있어서, 상기 고체전해질이 가용성 전도성 고분자로 형성되는 전구층과 전해산화중합법에 의해 생성되는 폴리피롤의 복합막으로 구성되는 것을 특징으로 한다.In order to achieve the above object, the present invention provides an aluminum solid electrolytic capacitor comprising an aluminum foil and a solid electrolyte having a dielectric oxide film formed thereon, wherein the solid electrolyte is a precursor layer formed of a soluble conductive polymer and a polypyrrole produced by electrolytic oxidation polymerization. It is characterized by consisting of a composite membrane of.

또한, 상기의 알루미늄 고체전해 콘덴서의 제조방법에 있어서, 산화알루미늄막 상부에 전구층으로 가용성 비전도성 고분자를 형성한후, 화학도핑 또는 전해도핑에 의해 전도성을 부여하고, 상기 전도성을 갖는 전구층 상부에 폴리피롤을 전해산화중합법으로 형성하여 알루미늄 고체전해 콘덴서를 제조하는 것을 특징으로 하며, 또다른 방법으로 상기 가용성 비전도성 고분자 전구층이 형성된 알루미늄 박을 전해산화중합 용액내에서 전해산화중합을 실시하여 전구층의 전해도핑과 동시에 고전도성 폴리피롤층이 형성되도록 하여 알루미늄 고체 전해 콘덴서를 제조하는 것을 특징으로 한다.In the above method of manufacturing an aluminum solid electrolytic capacitor, after forming a soluble non-conductive polymer as a precursor layer on the aluminum oxide film, the conductivity is imparted by chemical doping or electrolytic doping, and the upper precursor layer has the conductivity. Forming polypyrrole in the electrolytic oxidation polymerization method to produce an aluminum solid electrolytic capacitor, and in another method, the aluminum foil formed with the soluble non-conductive polymer precursor layer is subjected to electrolytic oxidation polymerization in an electrolytic oxidation polymerization solution At the same time as the electrolytic doping of the precursor layer to form a high-conductivity polypyrrole layer is characterized by producing an aluminum solid electrolytic capacitor.

이하, 도면을 참조하로 하여 본 발명을 상세히 설명하기로 한다. 제3도는 본 발명에 따른 알루미늄 고체전해 콘덴서의 제조공정중 산화피막을 갖는 에칭된 알루미늄박 상부에 가용성 전도성고분자 전구층이 형성된 것을 나타낸 것으로, 알루미늄 고체전해 콘덴서의 전기적 특성을 향상시키기 위하여 가용성 전도성 고분자(5)를 합성하여 유기용매에 녹인 후, 용액함침방법 의해 산화알루미늄막(1) 상부에 가용성 전도성 고분자 전구층을 형성시킨다. 이때, 산화알루미늄막(1) 상부에 형성되는 전구층은 비전도성의 고분자이므로 전도성을 부여하기 위해서는 화학도핑 또는 전해도핑과정을 실시해야 하며, 상기의 한 예로서 도핑된 폴리알킬치오펜 전구층은 전도도가 100∼101S/cm정도로서 전해산화중합시 양극으로 이용하여 전해산화중합에 의해 고전도도를 갖는 폴리피롤 고체전해질층을 형성시킬 수 있다.Hereinafter, the present invention will be described in detail with reference to the drawings. Figure 3 shows that the soluble conductive polymer precursor layer is formed on the etched aluminum foil having an oxide film during the manufacturing process of the aluminum solid electrolytic capacitor according to the present invention, in order to improve the electrical properties of the aluminum solid electrolytic capacitor (5) is synthesized and dissolved in an organic solvent, and then a soluble conductive polymer precursor layer is formed on the aluminum oxide film 1 by a solution impregnation method. At this time, the precursor layer formed on the aluminum oxide film (1) is a non-conductive polymer, so in order to impart conductivity, chemical doping or electrolytic doping should be performed. As an example of the above, the doped polyalkylthiophene precursor layer The conductivity of about 10 0 to 10 1 S / cm can be used as an anode during electrolytic oxidation polymerization to form a polypyrrole solid electrolyte layer having high conductivity by electrolytic oxidation polymerization.

상기의 가용성 전도성 고분자 전구층에 전해산화중합법에 의한 폴리피롤을 형성하는 방법은 먼저, 산화알루미늄막 상부에 형성된 비전도성 고분자 전구층을 화학도핑 또는 전해도핑 방법에 의해 전도성을 부여한 후, 폴리피롤을 전해산화중합에 의해 형성시키는 방법이 있고, 또다른 방법으로는 비전도성 고분자 전구층이 도포된 알루미늄박을 전해산화중합 용액내에서 전해산화중합을 실시하게 되면 비전도성 고분자의 전해도핑과 동시에 전해산화중합이 진행되어 고전도성을 갖는 폴리피롤층이 형성되게 된다.In the method of forming polypyrrole by the electrolytic oxidation polymerization method on the soluble conductive polymer precursor layer, first, the conductivity is imparted to the nonconductive polymer precursor layer formed on the aluminum oxide film by chemical doping or electrolytic doping, and then the polypyrrole is electrolyzed. There is a method of forming by oxidative polymerization, and another method is electrolytic oxidation polymerization of an aluminum foil coated with a non-conductive polymer precursor layer in an electrolytic oxidation polymerization solution. This proceeds to form a polypyrrole layer having high conductivity.

상기의 두가지 방법에 의해 전구층인 가용성 전도성 고분자와 전해산화중합 폴리피롤의복합층을 고체전해질층으로 형성시키고, 카본과 은 페이스트를 순차적으로 도포하여 음극을 인출한 후, 수지밀봉 하여 알루미늄 고체전해 콘덴서를 제조한다.By the two methods described above, a composite layer of a soluble conductive polymer and an electrolytic oxidation-polymerized polypyrrole, which are precursor layers, is formed as a solid electrolyte layer, and carbon and silver paste are sequentially applied to draw a cathode, followed by resin sealing to seal an aluminum solid electrolytic capacitor. To prepare.

[실시예 1]Example 1

상기 방법의 실시예로써, 에칭된 알루미늄 양극박을 화성처리에 의해 산화알루미늄막을 형성시키고 폴리피롤을 전해산화중합시키기 위하여 상기의 산화알루미늄막 상부에 도전성을 갖는 전구층을 형성하기 위한 방법으로, 가용성 전도성 고분자인 폴리헥실치오펜이 녹아 있는 클로로포름 용액에 함침 후 건조하여 전구층을 형성하였다. 이때, 폴리헥실치오펜의 농도는 1∼10wt%로서 적당하게는 5wt%용액을 사용하였다. 본 실시예에서는 화학도핑에 의해 부도체의 전구층에 도전성을 부여하였으며 도판트로서는 삼염소철 무수물을 아세토니트릴에 용해하여 폴리헥실치오펜이 도포되어 있는 알루미늄박을 상기 용액에 담그는 방법을 이용하였다. 다음으로 전구층을 화학도핑한 후 미도핑된 폴리헥실치오펜을 제거하기 위하여 클로로포름으로 세척한 후 건조하고, 상기 화학도핑된 폴리헥실치오펜 전구층의 상부에 폴리피롤층을 전해산화중합법에 의해 형성시켰다. 다음으로 카본, 은 페이스트를 순차적으로 도포하고 음극을 인출한 후 수지밀봉하여 알루미늄 고체 전해콘덴서를 제조하였다.As an embodiment of the method, a method for forming a conductive precursor layer on top of the aluminum oxide film in order to form an aluminum oxide film by chemically treating the etched aluminum anode foil and electrolytic oxidation polymerization of polypyrrole, soluble conductivity After impregnating the chloroform solution in which the polymer polyhexylthiophene is dissolved, it was dried to form a precursor layer. At this time, the concentration of polyhexylthiophene was 1 to 10 wt%, and a 5 wt% solution was suitably used. In this embodiment, electroconductivity was imparted to the precursor layer of the insulator by chemical doping. As the dopant, an aluminum foil coated with polyhexylthiophene was dissolved in the solution by dissolving ferric trichloride anhydride in acetonitrile. Next, after chemically doping the precursor layer, it is washed with chloroform to remove the undoped polyhexylthiophene and dried, and a polypyrrole layer is formed on top of the chemically doped polyhexylthiophene precursor layer by electrolytic oxidation polymerization. Formed. Next, carbon and silver paste were sequentially applied, the cathode was taken out, and the resin was sealed to prepare an aluminum solid electrolytic capacitor.

[실시예 2]Example 2

또다른 실시예로서 상기의 실시예와 같은 방법으로 전구층인 폴리헥실치오펜을 형성시킨 후, 지지전해질을 함유한 폴리피롤 전해산화 중합용액내에서 정전류전해에 의해 폴리헥실치오펜의 전해도핑과 동시에 고전도성의 폴리피롤층을 형성하였다. 이때, 사용되는 지지전해질은 테트라에칠암모늄톨루엔설폰산나트륨을 사용하고 용매로서는 아세토니트릴을 이용하여 전해산화중합을 실시한다. 상기 중합 후 미도핑된 폴리헥실치오펜을 제거하기 위하여 클로로포름으로 세척한 후 건조하고, 카본과 은 페이스트를 순차적으로 도포하고 음극을 인출한 후, 수지밀봉하여 알루미늄 고체전해 콘덴서를 제조하였다.As another embodiment, after forming a polyhexylthiophene as a precursor layer in the same manner as in the above embodiment, the polyhexyl thiophene was electrolytically doped by electrostatic doping in a polypyrrole electrolytic polymerization solution containing a supporting electrolyte. A highly conductive polypyrrole layer was formed. At this time, the supporting electrolyte used is sodium tetraethylammonium toluene sulfonate, and acetonitrile is used as the solvent for electrolytic oxidation polymerization. After the polymerization, in order to remove the undoped polyhexylthiophene, washed with chloroform and dried, carbon and silver paste were sequentially applied, the negative electrode was taken out, and the resin was sealed to prepare an aluminum solid electrolytic capacitor.

[비교예 1]Comparative Example 1

종래 기술의 전구층 형성 방법으로 질산망간 수용액을 열분해 방법에 의해 금속산화물인 이산화망간층을 전구층으로 형성한 후, 전해 산화중합법에 의해 고전도성을 갖는 폴리피롤을 형성하고 이후 실시예 1과 같은 방법에 의해 알루미늄 고체전해콘덴서를 제조하였다.The manganese nitrate aqueous solution is thermally decomposed by the prior art precursor layer forming method, and then a manganese dioxide layer, which is a metal oxide, is formed as a precursor layer, and then polypyrrole having high conductivity is formed by electrolytic oxidation polymerization. An aluminum solid electrolytic capacitor was prepared by the above.

[비교예 2]Comparative Example 2

종래 기술의 전구층 형성방법으로 전구층을 화학산화중합에 의하여 생성되는 폴리피롤을 전구층으로 하고 상기 전구층을 양극으로 이용하여 전해산화중합에 의해 고전도성을 갖는 폴리피롤층을 형성하고 이후 실시예 1과 같은 방법에 의해 알루미늄 고체전해콘덴서를 제조하였다.According to the precursor layer forming method of the prior art, a polypyrrole layer formed by chemical oxidation polymerization is used as a precursor layer, and the precursor layer is used as an anode to form a polypyrrole layer having high conductivity by electrolytic oxidation polymerization. An aluminum solid electrolytic capacitor was prepared by the same method.

상기에서 상술한 바와 같은 실시예의 알루미늄 고체전해콘덴서와 종래의 알루미늄 고체전해콘덴서의 전기적인 특성은 표1에 나타낸 바와 같다.The electrical characteristics of the aluminum solid electrolytic capacitor of the embodiment as described above and the conventional aluminum solid electrolytic capacitor are shown in Table 1.

상기 표1에서 알 수 있듯이 본 발명에 의하여 제조된 실시예 1,2소자의 용량효율이 77.5∼87.5%로 높게 나타나고 용량손실은 1.5% 이하로 적게 나타나는 것을 알수 있으나, 종래의 이산화망간 전구층과 전해중합 폴리피롤층을 고체전해질층으로 하는 소자(비교예1)의 용량효율은 72.5%이고 열분해시 발생하는 산화질소 가스등에 의하여 알루미늄 산화막이 손상되어 용량손실이 5.0%로 비교적 높게 나타났다. 또한, 화학산화중합 폴리피롤 전구층과 전해중합 폴리피롤층을 고체전해질층으로 하는 소자(비교예2)의 용량효율은 62.5%로 가장 낮게 나타나는 것을 알 수 있다. 상기의 원인은 분말상태의 화학산화 중합 폴리피롤이 에칭된 알루미늄박의 내부로 양호하게 침투하지 못하였기 때문이다.As can be seen in Table 1, the capacity efficiency of the first and second devices manufactured according to the present invention is 77.5 to 87.5%, and the capacity loss is less than 1.5%. However, the conventional manganese dioxide precursor layer and the electrolytic The capacity efficiency of the device having the polymerized polypyrrole layer as a solid electrolyte layer (Comparative Example 1) was 72.5%, and the aluminum oxide film was damaged by nitric oxide gas generated during thermal decomposition, resulting in a relatively high capacity loss of 5.0%. In addition, it can be seen that the capacity efficiency of the device (Comparative Example 2) using the chemically oxidized polypyrrole precursor layer and the electrolytically polymerized polypyrrole layer as the solid electrolyte layer is the lowest at 62.5%. The reason for this is that the powdered chemical oxidation polymerized polypyrrole did not penetrate well into the etched aluminum foil.

또한, 제조된 소자의 주파수에 대한 임피던스 특성은, 제4도에 도시한 바와 같이, 이산화망간 전구층과 전해중합 폴리피롤층을 고체 전해질층으로 하는 비교예 1의 알루미늄 고체전해 콘덴서의 경우(곡선6)는 이산화망간을 형성할 때 열분해로 인해 발생하는 가스등에 의해 알루미늄 산화막이 손상되어 임피던스 값이 매우 증가한 것을 알 수 있다. 그러나 본 발명의 실시예 1 및 실시예 2에의해 제조된 가용성 전도성 고분자 전구층과 전해산화중합 폴리피롤층을 고체전해질 층으로 하는 알루미늄 고체전해 콘덴서의 경우는 곡선7(실시예 1) 및 곡선8(실시예 1)으로 나타난 바와 같이 우수한 고주파 특성을 나타내고 있음을 알 수 있다.In addition, the impedance characteristic with respect to the frequency of the manufactured device is, as shown in FIG. 4, in the case of the aluminum solid electrolytic capacitor of Comparative Example 1 in which the manganese dioxide precursor layer and the electropolymerized polypyrrole layer are used as the solid electrolyte layer (curve 6). When the manganese dioxide is formed, it can be seen that the aluminum oxide film is damaged by a gas generated due to pyrolysis, and thus the impedance value is greatly increased. However, in the case of the aluminum solid electrolytic capacitor using the soluble conductive polymer precursor layer and the electrolytic oxidation polymer polypyrrole layer prepared by Examples 1 and 2 of the present invention as the solid electrolyte layer, curves 7 (example 1) and curves 8 ( As shown in Example 1), it can be seen that it exhibits excellent high frequency characteristics.

이상에서와 같이 본 발명은 가용성 전도성 고분자를 합성하고 유기용매에 녹인 후 산화피막이 형성되어 있는 에칭된 알루미늄 박을 용액함침법에 의해 전구층을 손쉽게 형성시킬 수 있다. 상기 용액함침 방법에 의해 형성된 전구층은 비전도성의 고분자 상태이므로 전도성을 부여하기 위해 화학도핑 또는 전해도핑 처리를 할 필요성이 있다. 상기의 도핑된 전구층을 양극으로 이용하여 폴리피롤을 전해산화중합에 의해 형성시켜 고전도성의 고체전해질 복합층을 형성시킬 수 있으며 상기 발명에의해 형성되는 고체전해질층은 종래방법의 금속 산화물인 이산화망간 형성시의 산화알루미늄막의 손상문제가 발생하지 않으며, 화학산화중합 폴리피롤 전구층 형성시의 알루미늄 박과의 접착력 문제를 해결할 수 있고, 용액상태에서 에칭된 알루미늄 박에 침투 되므로 고체전해질이 손쉽게 알루미늄 박 내부로 침투가 되어 소자제조 후의 용량효율을 높일 수 있고, 고주파 특성이 우수하며 또한, 전구층의 형성을 용액함침 방법에 의하므로 제조공정이 간단해지는 장점이 있다.As described above, according to the present invention, the precursor layer may be easily formed by synthesizing a soluble conductive polymer, dissolving it in an organic solvent, and then etching solution of the etched aluminum foil having the oxide film formed therein. Since the precursor layer formed by the solution impregnation method is a non-conductive polymer state, it is necessary to perform chemical doping or electrolytic doping treatment to impart conductivity. By using the doped precursor layer as an anode, polypyrrole may be formed by electrolytic oxidation polymerization to form a highly conductive solid electrolyte composite layer. The problem of damage to the aluminum oxide film does not occur, and it is possible to solve the problem of adhesion with the aluminum foil when forming the chemical oxidation-polymerized polypyrrole precursor layer, and the solid electrolyte easily penetrates into the aluminum foil because it penetrates into the aluminum foil etched in solution. It can penetrate and increase the capacity efficiency after device fabrication, excellent high frequency characteristics, and the formation of the precursor layer by the solution impregnation method has the advantage of simplifying the manufacturing process.

Claims (4)

양극화성에 의하여 유전체 산화피막이 형성된 알루미늄박과 고체전해질로 구성되는 알루미늄 고체전해 콘덴서에 있어서, 상기 고체전해질이 가용성 전도성 고분자로 형성되는 전구층과 전해산화중합 폴리피롤 복합막으로 구성되는 것을 특징으로 하는 알루미늄 고체전해콘덴서.An aluminum solid electrolytic capacitor composed of an aluminum foil and a solid electrolyte having a dielectric oxide film formed by anodization, wherein the solid electrolyte is composed of a precursor layer formed of a soluble conductive polymer and an electrolytic oxidation polymer polypyrrole composite film. Electrolytic Capacitors. 제1항에 있어서, 상기 전구층인 가용성 전도성 고분자는 폴리알킬치오펜, 폴리알킬피롤, 폴리알킬퓨란, 폴리비닐렌페닐렌인 것을 특징으로 하는 알루미늄 고체전해 콘덴서.The aluminum solid electrolytic capacitor according to claim 1, wherein the soluble conductive polymer which is the precursor layer is polyalkylthiophene, polyalkylpyrrole, polyalkylfuran, polyvinylenephenylene. 유전체 산화피막이 형성된 알루미늄박과 고체전해질로 구성되는 알루미늄 고체전해 콘덴서의 고체전해질 형성방법에 있어서, 산화알루미늄막 상부에비전도성 고분자로 전구층을 형성하는 단계와, 상기 비전도성 고분자 전구층에 화학도핑 또는 전해도핑에 의해 전도성을 부여하는 단계와, 상기 전도성을 갖는 전구층 상부에 폴리피롤을 전해산화중합법으로 형성시키는 단계를 포함하는 것을 특징으로 하는 알루미늄 고체전해 콘덴서의 제조방법.A method for forming a solid electrolyte of an aluminum solid electrolytic capacitor comprising an aluminum foil and a solid electrolyte having a dielectric oxide film, the method comprising: forming a precursor layer of a nonconductive polymer on an aluminum oxide layer, and chemically doping the nonconductive polymer precursor layer. Or imparting conductivity by electrolytic doping, and forming polypyrrole on the precursor layer having conductivity by electrolytic oxidation polymerization. 유전체 산화피막이 형성된 알루미늄박과 고체전해질로 구성되는 알루미늄 고체전해 콘덴서의 고체전해질 형성방법에 있어서, 산화알루미늄막 상부에 비전도성 고분자로 전구층을 형성하는 단계와, 상기 비전도성 고분자 전구층이 형성된 알루미늄박을 전해산화중합용액에 내에서 전해산화중합을 실시하여 전구층에 전도성을 부여하는 동시에 고전도성 폴리피롤층을 형성하는 단계를 포함하는 것을 특징으로 하는 알루미늄 고체전해 콘덴서의 제조방법.A method for forming a solid electrolyte of an aluminum solid electrolyte capacitor comprising an aluminum foil having a dielectric oxide film and a solid electrolyte, the method comprising: forming a precursor layer of a nonconductive polymer on an aluminum oxide layer, and forming the nonconductive polymer precursor layer The electrolytic oxidation polymerization of the foil in the electrolytic oxidation polymerization solution to impart conductivity to the precursor layer and at the same time forming a highly conductive polypyrrole layer, characterized in that the manufacturing method of the aluminum solid electrolytic capacitor.
KR1019950028701A 1995-09-04 1995-09-04 Aluminum Solid Electrolytic Capacitors And Manufacturing Method Thereof KR0173525B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950028701A KR0173525B1 (en) 1995-09-04 1995-09-04 Aluminum Solid Electrolytic Capacitors And Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950028701A KR0173525B1 (en) 1995-09-04 1995-09-04 Aluminum Solid Electrolytic Capacitors And Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR970017738A KR970017738A (en) 1997-04-30
KR0173525B1 true KR0173525B1 (en) 1999-04-01

Family

ID=19425926

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950028701A KR0173525B1 (en) 1995-09-04 1995-09-04 Aluminum Solid Electrolytic Capacitors And Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR0173525B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765838B1 (en) * 2006-07-31 2007-10-10 주식회사 디지털텍 Method for stacked type of solid electrolytic aluminium condenser
KR100765840B1 (en) * 2006-07-31 2007-10-10 주식회사 디지털텍 Method for stacked type of solid electrolytic aluminium condenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765838B1 (en) * 2006-07-31 2007-10-10 주식회사 디지털텍 Method for stacked type of solid electrolytic aluminium condenser
KR100765840B1 (en) * 2006-07-31 2007-10-10 주식회사 디지털텍 Method for stacked type of solid electrolytic aluminium condenser

Also Published As

Publication number Publication date
KR970017738A (en) 1997-04-30

Similar Documents

Publication Publication Date Title
EP0895259B1 (en) Solid electrolytic capacitor using conducting polymers and method of making same
EP0274755B1 (en) Solid electrolytic capacitor
KR101770859B1 (en) Solid electrolyte capacitor
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
KR0173525B1 (en) Aluminum Solid Electrolytic Capacitors And Manufacturing Method Thereof
KR20000053593A (en) Method for producing a solid electrolytic capacitor
JP2000021687A (en) Capacitor and manufacture thereof
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JP4035639B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100753612B1 (en) Solid Electrolyte Capacitor and Method for Producing the Same
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP4075421B2 (en) Method for producing conductive composition and capacitor
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JP2853376B2 (en) Manufacturing method of capacitor
KR100753615B1 (en) Method of Manufacturing Solid Electrolytic Capacitor using Conductive Polymer
JP2002299182A (en) Aluminum solid electrolytic capacitor and method of manufacturing the same
JP3963561B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2901285B2 (en) Method for manufacturing solid electrolytic capacitor
JP4258619B2 (en) Manufacturing method of solid electrolytic capacitor
JP2632944B2 (en) Solid electrolytic capacitors
JP2003297672A (en) Method of manufacturing solid electrolytic capacitor
JPH06252002A (en) Manufacture of solid electrolytic capacitor
JP2810100B2 (en) Method for manufacturing solid electrolytic capacitor
KR20030030177A (en) Method of Manufacturing a Solid Electrolytic Capacitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121129

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20131016

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141008

Year of fee payment: 17

EXPY Expiration of term