KR0169882B1 - The process of rare earth permanent magnetic and alloy powder by hydrogenation and hot deformation - Google Patents

The process of rare earth permanent magnetic and alloy powder by hydrogenation and hot deformation Download PDF

Info

Publication number
KR0169882B1
KR0169882B1 KR1019960000138A KR19960000138A KR0169882B1 KR 0169882 B1 KR0169882 B1 KR 0169882B1 KR 1019960000138 A KR1019960000138 A KR 1019960000138A KR 19960000138 A KR19960000138 A KR 19960000138A KR 0169882 B1 KR0169882 B1 KR 0169882B1
Authority
KR
South Korea
Prior art keywords
rare earth
hot
hydrogenation
earth permanent
alloy
Prior art date
Application number
KR1019960000138A
Other languages
Korean (ko)
Other versions
KR970060270A (en
Inventor
양정필
안길수
송치용
Original Assignee
정몽원
만도기계주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정몽원, 만도기계주식회사 filed Critical 정몽원
Priority to KR1019960000138A priority Critical patent/KR0169882B1/en
Publication of KR970060270A publication Critical patent/KR970060270A/en
Application granted granted Critical
Publication of KR0169882B1 publication Critical patent/KR0169882B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0286Trimming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

본 발명은 수소화(Hydrogenatin)후 탈수소화 및 재결합시 열간변형에 의한 희토류계 영구자석 및 합금분말의 새로운 제조방법에 관한 것으로, 종래의 HDDR법을 개선하여 Co, Zr, Ga, Nb와 같은 이방성을 조장하는 합금원소를 첨가하지 않고도 비교적 고에너지의 수지자석에 사용되는 이방화된 금속분말의 제조방법에 관한 것으로, 수소를 이용하여 희토류계 영구자석 제조시 수소를 방출하는 과정(Desorption)과 초기의 결정구조로 돌아오는 재결합과정(Recombination)에서 합금에 열간 프레싱(Hot-pressing) 및 다이업셋팅(Die-upsetting)등과 같은 열간변형(Hot-Deformation)을 가함을 특징으로 하는 이방성이 강한 희토류계 자석 또는 합금분말의 제조방법.The present invention relates to a novel process for the preparation of rare earth permanent magnets and alloy powders by hot deformation during dehydrogenation and recombination after hydrogenation (Hydrogenatin), by improving the conventional HDDR method, such as Co, Zr, Ga, Nb The present invention relates to a method for producing anisotropic metal powders used for relatively high energy resin magnets without the addition of an alloying element. The process of desorption and initial release of hydrogen in the manufacture of rare earth permanent magnets using hydrogen Strong anisotropic rare earth magnet characterized by applying hot deformation such as hot-pressing and die-upsetting to the alloy during recombination back to the crystal structure Or a method for producing an alloy powder.

Description

수소화 및 열간변형에 의한 희토류계 영구자석과 합금 분말의 제조방법Manufacturing method of rare earth permanent magnet and alloy powder by hydrogenation and hot deformation

제1도는 수소를 이용한 희토류계 합금분말의 제조방법을 설명하는 공정계략도.1 is a process schematic diagram illustrating a method for producing a rare earth alloy powder using hydrogen.

제2도는 본 발명 희토류계 합금 분말의 결정구조.2 is a crystal structure of the rare earth-based alloy powder of the present invention.

제3도는 본 발명 희토류계 합금분말을 사용하여 고에너지의 영구자석을 만드는 열간 프레싱 장치의 실시예이다.3 is an embodiment of a hot pressing device for making a permanent magnet of high energy using the rare earth-based alloy powder of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 희토류합금 20 : 금형(MOLD)10: rare earth alloy 20: mold (MOLD)

30 : 펀치(PUNCH) 40 : 가열장치30: punch 40: heating device

50 : 챔버50: chamber

본 발명은 희토류계 영구자석(특히, Nd-Fe-B계 자석)의 새로운 제법으로 주목을 받고 있는 수소화(Hydrogenation) 및 탈수소화(Desorption) 반응을 이용한 희토류계 합금분말의 제조방법에 관한 것이다.The present invention relates to a method for producing a rare earth alloy powder using hydrogenation and dehydrogenation reactions, which are attracting attention as a novel process for rare earth permanent magnets (particularly, Nd-Fe-B magnets).

일반적으로 수소화 반응 및 탈수소화반응을 이용하는 희토류계 합금의 제법은 HDDR 프로세스(Hydrogenation-Disproportionation-Desorptionecombination PROCESS)라고 명명되고 있으며, 이 HDDR 프로세스는 4단계로 이루어지고 있으며, 그 과정을 Nd-Fe-B의 3원계 합금을 예로들어 설명하면 제1도와 같다.In general, the preparation of rare earth-based alloys using hydrogenation and dehydrogenation is called HDDR process (Hydrogenation-Disproportionation-Desorptionecombination PROCESS), and this HDDR process is composed of four steps. Referring to the ternary alloy of as an example as shown in FIG.

즉, Nd-Fe-B계 합금을 저온에서 수소중에 노출시키면, 합금내의 Nd2Fe14B상과 수소와 반응하여 각각 Nd2Fe14BH2.7과 NdH2.7상이 된다. 이때, 각 상내의 수소는 침입형 원소로 존재하고, 반응온도나 압력에 따라 그 양이 증가한다. 700℃ 이상의 온도에서 Nd2Fe14B상은 Fe, Fe2B와 NdH2.2상으로 분리되고, Nd-rich상은 NdH2.2가 된다(Disproportionation).That is, when the Nd-Fe-B alloy is exposed to hydrogen at low temperature, it reacts with the Nd 2 Fe 14 B phase and hydrogen in the alloy to form Nd 2 Fe 14 BH 2.7 and NdH 2.7 phase, respectively. At this time, hydrogen in each phase exists as an invasive element, and its amount increases with reaction temperature or pressure. At temperatures above 700 ° C., the Nd 2 Fe 14 B phase is separated into Fe, Fe 2 B and NdH 2.2 phases, and the Nd-rich phase becomes NdH 2.2 (Disproportionation).

이와 같이 분리된 합금을 85℃ 이상의 온도와 진공중에서 열처리하면 흡수된 수소가 방출되면서 Nd2Fe14B상의 핵이 생성되고 미세한 결정의 Nd2Fe14B상으로 재결합된다(Recombination).By this alloy as a separate heat treatment in the temperature and vacuum over 85 ℃ while emitting the absorbed hydrogen Nd 2 Fe 14 B is on the nucleus is generated and recombined into a fine crystal phase Nd 2 Fe 14 B (Recombination).

이와 같은 방법으로 얻어진 Nd-Fe-B계 합금은 결정립이 매우 미세하고 수소흡수시 발생한 균열로 인하여 높은 보자력의 분말을 손쉽게 얻을 수 있다. Nd-Fe-B 합금계의 경우, Nd-Fe-B 3차원 합금에서의 상기의 HDDR법에 의해 제조된 분말의 이방성은 매우 떨어지나, Nd-Fe-B 합금에 Co, Zr, Ga, Nb 등의 이방화 조장원소를 첨가함으로써 분말은 이방성을 갖게 되어 고에너지의 수지 자석 제조가 가능하게 된다.The Nd-Fe-B-based alloy obtained in this manner can easily obtain a high coercive powder due to very fine grains and cracks generated during hydrogen absorption. In the case of the Nd-Fe-B alloy system, the anisotropy of the powder produced by the above HDDR method in the Nd-Fe-B three-dimensional alloy is very poor, but Co, Zr, Ga, Nb, etc. The powder is made anisotropic by the addition of the anisotropic coarsening element, thereby making it possible to manufacture a high-energy resin magnet.

그러나, 수소를 이용한 이방성 분말 제조방법인 기존의 HDDR 법은 주로 등방성 또는 이방성의 수지 자석용 합금분말의 제조방법으로 사용되고 있다. 이때, HDDR 과정 후 분말 제조를 위한 분쇄, 수지 배합, 큐어링(Curing)등의 제조공정이 추가로 필요하다. 또한, 분쇄 후 열간변형(Hot deformation)과 소결(Sintering)에 의해서 고에너지의 자석을 제조할 수도 있는데 이 경우 HDDR공정 이외에도 일련의 열간 변형 또는 소결공정을 요한다. 따라서, HDDR 차체만으로는 고에너지의 이방성 벌크(BULK) 자석을 직접 제조할 수 없으며, HDDR에 의한 희토류계 자석의 제조는 그 공정이 복잡하고, 공정 관리가 어려워 기존의 소결법 및 급냉응고법에 비하여 상대적으로 비경제적이다.However, the conventional HDDR method, which is an anisotropic powder manufacturing method using hydrogen, is mainly used as a method for producing an isotropic or anisotropic alloy powder for resin magnets. At this time, after the HDDR process, a manufacturing process such as pulverization, resin compounding, curing, etc. for powder production is additionally required. In addition, a high energy magnet may be manufactured by hot deformation and sintering after grinding, in which case a series of hot deformation or sintering processes are required in addition to the HDDR process. Therefore, the HDDR body alone cannot directly produce high energy anisotropic bulk magnets, and the manufacture of rare earth magnets by HDDR is complicated and difficult to manage, which is relatively difficult compared to the conventional sintering and quench solidification methods. Uneconomical

또한, Nd-Fe-B계 합금의 경우 이방성 분말 제조시 Co, Zr, Ga, Nb와 같은 이방화 조장 합금원소를 첨가함으로써 이방화된 합금 분말을 얻는다. 따라서, 고가의 합금원소가 필요하고, 그 양을 적절히 조정해야 하는 등 제조공정이 복잡하고 제조원가가 높다. 또한, 이방화의 정도가 합금의 조성에 의해 결정되고, HDDR법에 의해서 이방성의 분말을 얻을 수 있는 함금계가 몇몇 이방화 조장원소를 포함한 극히 제한된 합금계라는 단점이 있었다.In addition, in the case of Nd-Fe-B-based alloys, anisotropic alloy powders are obtained by adding anisotropic coarse alloying elements, such as Co, Zr, Ga, and Nb, during the production of anisotropic powders. Therefore, an expensive alloying element is required and the manufacturing process is complicated and the manufacturing cost is high, such as the amount must be adjusted appropriately. In addition, the degree of anisotropy is determined by the composition of the alloy, there was a disadvantage that the alloy system capable of obtaining anisotropic powder by the HDDR method is an extremely limited alloy system containing some anisotropic element.

본 발명은 수소를 이용한 희토류계 합금 분말의 제조(HDDR PROCESS)시 고온에서 수소를 방출하는 과정(Desorption)과 초기의 조성 및 결정구조로 되돌아오는 과정(Recombination)에서 Nd-Fe-B계 합금에 열간프레싱(Hot-pressing) 및 다이업셋팅(Dir-upsetting)등의 열간변형(Hot deformation)을 가함으로써 이방성을 부여함과 동시에 이단계에서 고에너지의 자석을 직접 제조하는 것을 특징으로 한다.The present invention relates to the Nd-Fe-B-based alloy in the process of releasing hydrogen at high temperature during the manufacture of the rare earth alloy powder using hydrogen (Desorption) and returning to the initial composition and crystal structure (Recombination). Hot deformation is applied by applying hot deformation such as hot-pressing and die-upsetting, and at this stage, high-energy magnets are directly manufactured.

또한, 본 발명에 의해 이방성을 조장하는 합금원소를 첨가하지 않고도 비교적 고에너지의 수지자석에 사용되는 이방화된 합금 분말을 제조할 수 있다. 제3도는 본 발명에 사용될 수 있는 열간 프레싱 장치로 수소를 주입할 수 있으며, 진공분위기에서 열간 프레싱이 가능하다.In addition, according to the present invention, it is possible to produce an anisotropic alloy powder for use in a relatively high energy resin magnet without adding an alloy element that promotes anisotropy. FIG. 3 shows hydrogen can be injected into a hot pressing apparatus that can be used in the present invention, and hot pressing can be performed in a vacuum atmosphere.

본 발명을 Nd-Fe-B계 자석을 예를들어 설명하면 다음과 같다.Referring to the present invention, an Nd-Fe-B magnet is described as follows.

Nd-Fe-B계 자석의 자기적 특성은 3원계 금속간 화합물인 Nd2Fe14B상의 존재에 기인하고 있다. 제2도에 나타낸 것처럼 Nd2Fe14B상의 결정구조는 단위 격자당 68개의 원소로 이루어져 있으며, 단위 격자당 4개의 단위구조(Formular Unit)를 가진다. Nd2Fe14B상은 정방정계(Tetragonal)의 구조로써 c축으로 자화가 잘되는 자화 용이축을 가진다. 또한, Nd2Fe14B상은 Nd, Fe가 c축에 수직한 면에 집중되어 있으며, 이와 같은 면들이 c축 방향으로 적층되어 있는 형태이다.The magnetic properties of Nd-Fe-B magnets are due to the presence of the Nd 2 Fe 14 B phase, which is a ternary intermetallic compound. As shown in FIG. 2, the crystal structure of the Nd 2 Fe 14 B phase is composed of 68 elements per unit lattice, and has four unit units per unit lattice. Nd 2 Fe 14 B phase has a tetragonal structure and has an easy magnetization axis that is easily magnetized to the c-axis. In the Nd 2 Fe 14 B phase, Nd and Fe are concentrated on a surface perpendicular to the c-axis, and the surfaces are stacked in the c-axis direction.

따라서, Nd2Fe14B상의 핵생성 및 결정립성장 단계에서 압축응력을 가하면 이방향으로 c축이 정렬되는 것이 에너지적으로 안정하다. 따라서, 압축 응력 방향으로 c축이 정렬되려는 구동력이 생기게 되고, 결정의 c축이 압축방향과 가까운 결정립의 핵생성과 성장이 지배적이다. 따라서, 압축응력이 가해지는 방향으로 자화용이축, 즉 이방성을 갖는 Nd-Fe-B계 합금을 얻을 수 있다. 반대로 인장응력이 가해지면 인장응력이 가해지는 수직방향으로 포와손 비(Poisson ratio)에 비례하여 압축응력이 발생하고, 이 방향으로 c축이 정렬되는 것이 에너지적으로 안정하게 된다. Nd-Fe-B계 희토류계 자석 이외에도 Sm-Co 등의 희토류계 자석은 결정구조 자체가 이방성이 큰 구조를 이루어져 있어 같은 원리를 적용함으로써 이방성 희토류계 합금분말을 제조할 수 있다.Therefore, when the compressive stress is applied in the nucleation and grain growth phase of the Nd 2 Fe 14 B phase, it is energy stable that the c-axis is aligned in this direction. Therefore, a driving force is generated to align the c-axis in the compressive stress direction, and the nucleation and growth of grains close to the compressive direction of the c-axis of the crystal dominate. Therefore, an Nd-Fe-B based alloy having a biaxial axis for magnetization, that is, anisotropy in the direction in which the compressive stress is applied can be obtained. On the contrary, when tensile stress is applied, compressive stress occurs in proportion to the Poisson ratio in the vertical direction to which tensile stress is applied, and it becomes energy stable that the c-axis is aligned in this direction. In addition to the Nd-Fe-B-based rare earth magnets, rare earth magnets such as Sm-Co have a large anisotropy in their crystal structure, and thus anisotropic rare earth alloy powder can be produced by applying the same principle.

HDDR 프로세스 가운데 수소를 방출하는 과정(Desorption)과 초기의 결정 구조 및 조성으로 되돌아 오는 과정(Recombination)에서 열간변형(Hot deformation)을 가하면 다음과 같은 효과를 가진다.Hot deformation during HDD release and recombination of the initial crystal structure and composition has the following effects.

첫째, 본 발명은 HDDR과정중 수소를 방출하고(Desorption), 초기의 결정구조로 돌아오는 과정(Recombination)에서 열간프레싱(Hot-pressing) 및 다이업셋팅(Die-upsetting)등의 열간변형(Hot deformation)을 가하여 고보자력, 고에너지의 이방성 자석을 직접 제조함으로써 제조공정이 극히 단순하고, 제조원가가 매우 낮다.First, the present invention releases hydrogen during the HDDR process and hot deformation such as hot-pressing and die-upsetting in the process of returning to the initial crystal structure. By directly applying high magnetic force and high energy anisotropic magnets by deformation, the manufacturing process is extremely simple and the manufacturing cost is very low.

둘째, 기존의 수소를 이용한 희토류계 합금제조법인 HDDR에 있어서, Nd-Fe-B계 합금의 경우 분말의 이방성은 Zr, Ga, Co, Ga와 같은 이방화를 조장하는 합금 원소를 첨가함에 의해 얻어졌다. 그러나, 본 발명에서는 희토류계 합금의 결정 구조를 이용하므로, 그 적용 합금의 조성에 제한이 없으며, 기존의 HDDR 프로세서로는 이방성이 큰 분말을 얻을 수 없는 Nd-Fe-B 삼원계 합금에서도 이방성 합금분말을 제조할 수 있으며, 세째로는 고가의 합금 원소를 첨가하지 않고도 이방성이 큰 합금 분말의 제조가 가능하므로, 공정이 간단하고 제조원가가 저렴하며, 네째로는 본 발명은 Nd-Fe-B계 희토류 자석 뿐만아니라 Sm-Co계 자석등 주상(Main phase)의 결정구조가 이방성을 갖는 모든 희토류계, 자석에 적용할 수 있게 된다.Second, in the HDDR, which is a conventional rare earth alloy production method using hydrogen, in the case of Nd-Fe-B alloy, the anisotropy of powder is obtained by adding alloying elements that promote anisotropy such as Zr, Ga, Co, Ga lost. However, in the present invention, since the crystal structure of the rare earth-based alloy is used, there is no limitation in the composition of the applied alloy, and even in the Nd-Fe-B ternary alloy where a powder having a large anisotropy cannot be obtained by a conventional HDDR processor, the anisotropic alloy is used. Powder can be prepared, and thirdly, alloy powder with high anisotropy can be produced without adding expensive alloying elements, so that the process is simple and the manufacturing cost is low, and fourthly, the present invention is based on Nd-Fe-B system. Main phase crystal structures such as Sm-Co magnets as well as rare earth magnets can be applied to all rare earth magnets and magnets having anisotropy.

Claims (4)

수소를 이용하여 희토류계 영구자석 제조시, 수소를 방출하는 과정(Desorption)과 초기의 결정구조로 돌아오는 재결합과정(Recombination)에서 합금에 열간 프레싱(Hot-pressing) 및 다이업셋팅(Die-upsetting)등과 같은 열간변형(Hot-Deformation)을 가하여 이방성이 강한 자석을 직접 제조하는 수소화(Hydrogenation)후, 탈수소화(Desorption) 및 재결합(Recombination)시 열간변형(Hot-deformation)에 의한 희토류계 영구자석의 제조방법.Hot-pressing and die-upsetting of alloys in the process of releasing hydrogen and recombination into the initial crystal structure when manufacturing rare earth permanent magnets using hydrogen Rare-earth permanent magnet by hot-deformation during desorption and recombination after hydrogenation to directly manufacture magnets with strong anisotropy by applying hot-deformation such as Manufacturing method. 제1항에 있어서, 희토류계 영구자석의 조성은 하나 또는 그 이상의 희토류 원소, 하나 또는 그 이상의 천이금속으로 이루어져 있거나, 상기 조성에 붕소, 탄소, 질소 가운데 하나 또는 그 이상의 원소를 함유함을 특징으로 하는 수소화 및 열간변형에 의한 희토류계 영구자석의 제조방법.The composition of claim 1, wherein the rare earth permanent magnet is composed of one or more rare earth elements, one or more transition metals, or the composition contains one or more of boron, carbon, and nitrogen. Method for producing a rare earth permanent magnet by hydrogenation and hot deformation. 제1항에 있어서, 수소화 반응, 탈수소화 반응 및 열간변형등 제공정의 온도범위가 700~1000℃인 수소화 및 열간변형에 의한 희토류계 영구자석의 제조방법.The method for producing a rare earth permanent magnet by hydrogenation and hot deformation according to claim 1, wherein the temperature range of the providing tablet such as hydrogenation reaction, dehydrogenation reaction and hot deformation is 700 to 1000 ° C. 수소를 이용하여 희토류계 영구자석 제조시, 수소를 방출하는 과정과 초기의 결정구조로 돌아오는 재결합 과정에서 합금에 열간 프레싱 및 다이업셋팅등의 열간변형을 가하여 이방성이 강한 합금분말을 제조하는 수소화 후, 탈수소화 및 재결합시 열간변형에 의한 희토류계 합금분말의 제조방법.Hydrogenation to produce anisotropic alloy powders by applying hot deformation such as hot pressing and die-up setting to the alloy during the process of releasing hydrogen and recombination to return to the initial crystal structure when manufacturing rare earth permanent magnet using hydrogen After, dehydration and recombination method for producing rare earth alloy powder by hot deformation.
KR1019960000138A 1996-01-06 1996-01-06 The process of rare earth permanent magnetic and alloy powder by hydrogenation and hot deformation KR0169882B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960000138A KR0169882B1 (en) 1996-01-06 1996-01-06 The process of rare earth permanent magnetic and alloy powder by hydrogenation and hot deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960000138A KR0169882B1 (en) 1996-01-06 1996-01-06 The process of rare earth permanent magnetic and alloy powder by hydrogenation and hot deformation

Publications (2)

Publication Number Publication Date
KR970060270A KR970060270A (en) 1997-08-12
KR0169882B1 true KR0169882B1 (en) 1999-01-15

Family

ID=19449054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960000138A KR0169882B1 (en) 1996-01-06 1996-01-06 The process of rare earth permanent magnetic and alloy powder by hydrogenation and hot deformation

Country Status (1)

Country Link
KR (1) KR0169882B1 (en)

Also Published As

Publication number Publication date
KR970060270A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JPH01704A (en) Rare earth-iron permanent magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
WO1994005021A1 (en) Permanent magnet material containing a rare-earth element, iron, nitrogen and carbon
Schultz et al. Preparation and properties of mechanically alloyed rare earth permanent magnets
JPS62198103A (en) Rare earth-iron permanent magnet
KR0169882B1 (en) The process of rare earth permanent magnetic and alloy powder by hydrogenation and hot deformation
JPS6112001B2 (en)
JPH09148163A (en) Manufacture of r-t-b antisotropic bonded magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JP3504735B2 (en) Method for producing RTMN based anisotropic bonded magnet
US5076861A (en) Permanent magnet and method of production
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
CN116612973B (en) Preparation method of high-density neodymium iron nitrogen magnet
CN116110707B (en) Sintered Nd-Fe-B permanent magnet and preparation method thereof
Schultz et al. High coercivities in Sm-Fe-TM magnets
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JPS6230846A (en) Production of permanent magnet material
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JP2677498B2 (en) Method for manufacturing iron-rare earth-nitrogen permanent magnet material
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
Schultz Mechanically Alloyed Permanent Magnets
JPH11317305A (en) Anisotropic magnet powder
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee