KR0168280B1 - Method for the treatment of inorganic sludge from fenton treatment process - Google Patents

Method for the treatment of inorganic sludge from fenton treatment process Download PDF

Info

Publication number
KR0168280B1
KR0168280B1 KR1019960007548A KR19960007548A KR0168280B1 KR 0168280 B1 KR0168280 B1 KR 0168280B1 KR 1019960007548 A KR1019960007548 A KR 1019960007548A KR 19960007548 A KR19960007548 A KR 19960007548A KR 0168280 B1 KR0168280 B1 KR 0168280B1
Authority
KR
South Korea
Prior art keywords
fenton
tank
sludge
supernatant
wastewater
Prior art date
Application number
KR1019960007548A
Other languages
Korean (ko)
Other versions
KR970065435A (en
Inventor
이승무
임재호
Original Assignee
김학봉
반월염색사업협동조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김학봉, 반월염색사업협동조합 filed Critical 김학봉
Priority to KR1019960007548A priority Critical patent/KR0168280B1/en
Publication of KR970065435A publication Critical patent/KR970065435A/en
Application granted granted Critical
Publication of KR0168280B1 publication Critical patent/KR0168280B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

본 발명은 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법에 관한 것으로서, 특히 폐수(5)를 펜톤반응조(6)에서 펜톤시약(15)(16)으로 산화반응시키고, pH조정 및 응집조(7)와 침전조(8)를 거치면서 펜톤무기슬러지(19)와 상등수(18)로 고액분리한 후, 상기 펜톤무기슬러지(19)는 농축조(9)에 농축폐기하고, 상등수(18)는 방류하는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법에 있어서, 상기 농축조(9)에서 농축된 펜톤무기슬러지(19)를 슬러지용해조(10)로 이송한 후, 황산(21)을 투입하여 슬러지용해액(20)으로 용해하는 단계와; 상기 슬러지용해액(20)을 응집조(11)에서 고분자응집제(22)와 반응시킨 후, 고액분리조(12)에서 고액 분리하는 단계와; 상기 고액분리조(12)에서 고액 분리된 1차상등액(24)을 Fe 환원조(13)에서 황산(26) 및 환원제(27)와 반응시켜 2차환원상등액(25)으로 환원하는 단계와; 상기 2차환원상등액(25)을 분리조(14)에서 2가철염(29)과 잔류 철(28)로 분리하고, 상기 2가철염(29)은 펜톤시약(15)으로 재활용하도록 펜톤반응조(6)에 회수하는 단계로 구성되는 것을 특징으로 하는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법에 관한 것이다.The present invention relates to a method for treating Fenton inorganic sludge generated in the Fenton treatment process of hardly degradable wastewater, in particular, the wastewater (5) is oxidized in the Fenton reaction tank (6) to Fenton reagent (15) (16), pH adjustment And solid-liquid separation of the Fenton inorganic sludge (19) and the supernatant water (18) while passing through the coagulation tank (7) and the settling tank (8), the Fenton inorganic sludge (19) is concentrated in a concentration tank (9), and the supernatant water ( 18) is a method for treating Fenton inorganic sludge generated in the Fenton treatment process of discharged hardly degradable wastewater, wherein the concentrated Fenton inorganic sludge 19 is transferred to the sludge dissolution tank 10, and then sulfuric acid Inputting (21) to dissolve the sludge solution (20); Reacting the sludge dissolution solution 20 with the polymer coagulant 22 in the flocculation tank 11, and then solid-liquid separation in the solid-liquid separation tank 12; Reducing the primary supernatant 24 solid-separated from the solid-liquid separation tank 12 with a sulfuric acid 26 and a reducing agent 27 in a Fe reduction tank 13 to reduce the secondary supernatant 25; The secondary reducing supernatant (25) is separated into a ferric salt (29) and residual iron (28) in a separation tank (14), and the ferric salt (29) is recycled into a Fenton reagent (15). It relates to a method for treating Fenton inorganic sludge generated in the Fenton treatment process of the hardly decomposable wastewater, characterized in that the step of recovering.

Description

난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법Fenton Inorganic Sludge Treatment Process

제1도는 종래기술에 따른 난분해성 폐수처리방법의 공정도.1 is a process chart of a difficult-degradable wastewater treatment method according to the prior art.

제2도는 본 발명에 따른 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법에 대한 공정도.2 is a process chart for a method for treating Fenton inorganic sludge generated in the Fenton treatment process of the hardly degradable wastewater according to the present invention.

제3도는 Fe-Fe(Ⅱ)-Fe(Ⅲ)계에 대하여 pH가 변할 때에 전위의 변화를 나타내는 전위-pH도표.3 is a potential-pH plot showing the change in potential when the pH is changed with respect to the Fe-Fe (II) -Fe (III) system.

제4도는 pH 변화에 따른 FeT회수량을 나타내는 그래프.4 is a graph showing the Fe T recovery amount according to the pH change.

제5도는 반응시간의 변화에 따른 FeT회수량(pH 1.5)을 나타내는 그래프이다.5 is a graph showing Fe T recovery amount (pH 1.5) according to the change of reaction time.

본 발명은 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법에 관한 것으로서, 특히 난분해성 폐수의 고도처리방법중 펜톤(Fenton)공정에서 발생되는 펜톤무기슬러지에 함유되어 있는 철분(Fe)을 회수함으로써 슬러지의 양을 최소화할 수 있는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법에 관한 것이다.The present invention relates to a method for treating Fenton inorganic sludge generated in the Fenton treatment process of hardly decomposable wastewater, in particular, iron contained in the Fenton inorganic sludge generated in the Fenton process among the high treatment methods of hardly digestible wastewater (Fe The present invention relates to a method for treating Fenton inorganic sludge generated in the Fenton treatment process of hardly degradable wastewater which can minimize the amount of sludge.

일반적으로, 각종 난분해성 오염물질을 함유하고 있는 폐수는 제1도에 도시한 바와같이 폐수의 질과 농도 등을 균일하게 조절하는 물리적 처리단계(1)와 폐수속의 미생물로 분해 가능한 유기물질(BOD)을 미생물로 분해시키는 생물학적 처리단계(2)를 거친다.In general, wastewater containing various hardly degradable contaminants has a physical treatment step (1) to uniformly control the quality and concentration of the wastewater as shown in FIG. ) Is subjected to a biological treatment step (2) to decompose into microorganisms.

또한, 난분해성 폐수는 생물학적 처리단계(2)를 거친 후 과산화수소와 철염을 사용하는 펜톤산화법으로 강력 산화시켜 폐수에 함유되어 있는 난분해성의 오염물질을 산화 분해시킨 후 응집시키는 화학적 처리단계(3)와, 각 처리단계에서 상등액과 슬러지를 별도로 분리하는 고액분리단계(4)를 거친다.In addition, the biodegradable wastewater is subjected to a biological treatment step (2) and then strongly oxidized by the Fenton oxidation method using hydrogen peroxide and iron salt to oxidize and decompose the hardly degradable contaminants contained in the waste water (3). And, in each treatment step is subjected to a solid-liquid separation step (4) for separating the supernatant and sludge separately.

그리고 유입폐수의 오염도 특성에 따라 생물학적 처리단계(2)와 화학적 처리단계(3)의 처리순서를 바꾸어 처리할 수도 있다.The treatment sequence of the biological treatment step (2) and the chemical treatment step (3) may be treated according to the pollution degree of the influent wastewater.

이때, 난분해성 물질을 함유하고 있는 각종 폐수를 펜톤공정(Fenton Process)으로 처리하는 경우에는 많은 양의 철염이 촉매로 사용되므로 발생되는 슬러지 속에도 다량의 철분이 함유되어 있어 유기성슬러지와 달리 소각처리가 불가능하므로 단순 매립처분을 하게 되는데, 이 매립방법은 슬러지의 양이 소량인 경우에나 적용되고, 발생되는 무기슬러지의 양이 매우 다량인 경우에는 매립지의 수명단축 및 처분비용 과다 등에 많은 어려움이 따르게 된다.In this case, when various wastewater containing hardly decomposable substances are treated by the Fenton process, a large amount of iron salt is used as a catalyst, and thus a large amount of iron is contained in the sludge generated. As this is impossible, the landfill is simply disposed. This method is applied only when the amount of sludge is small, and when the amount of inorganic sludge generated is very large, it causes a lot of difficulties such as shortening the lifetime of the landfill and excessive disposal cost. .

본 발명은 상기와 같은 종래의 문제점을 해결하여 무기슬러지 속에 함유되어 있는 다량의 철분을 자원화 및 재활용을 할 수 있고, 이로써 슬러지의 양을 최소화하여 매립지의 수명연장 및 처분비용 과다의 문제점을 제거한 난분해성 폐수의 펜톤처리 공정에서 발생되는 펜톤무기슬러지의 처리방법을 제공함에 그 목적이 있다.The present invention solves the above-mentioned problems and can recycle and recycle a large amount of iron contained in the inorganic sludge, thereby minimizing the amount of sludge to eliminate the problem of extending the life of landfill and excessive disposal cost It is an object of the present invention to provide a method for treating Fenton inorganic sludge generated in the Fenton treatment process of degradable wastewater.

상기의 목적을 달성하기 위하여 본 발명은 폐수를 펜톤반응조에서 펜톤시약으로 산화반응시키고, pH조정 및 응집조와 침전조를 거치면서 펜톤무기슬러지와 상등수로 고액분리한 후, 상기 펜톤무기슬러지는 농축조에서 농축폐기하고, 상등수는 방류하는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법에 있어서, 상기 농축조에서 농축된 펜톤무기슬러지를 슬러지용해조로 이송한 후, 황산을 투입하여 슬러지용해액으로 용해하는 단계와; 상기 슬러지용해액을 응집조에서 고분자응집제와 반응시킨 후, 고액분리조에서 고액 분리하는 단계와; 상기 고액분리조에서 고액 분리된 1차상등액을 Fe 환원조에서 황산 및 환원제와 반응시켜 2차환원상등액으로 환원하는 단계와; 상기 2차 환원상등액을 분리조에서 2가철염과 잔류 철로 분리하고, 상기 2가 철염은 펜톤시약으로 재활용하도록 펜톤반응조에 회수하는 단계로 구성되는 것을 특징으로 하는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법을 제공한다.In order to achieve the above object, the present invention oxidizes wastewater from a Fenton reaction tank to a Fenton reagent, and after solid-liquid separation of Fenton inorganic sludge and supernatant water through pH adjustment and flocculation tank and precipitation tank, the Fenton inorganic sludge is concentrated in a concentration tank. In the method for treating Fenton inorganic sludge generated in the Fenton treatment process of the refractory wastewater discharged, the supernatant is discharged. Dissolving; Reacting the sludge solution with a polymer coagulant in an agglomeration tank, and then separating solid-liquid in a solid-liquid separation tank; Reacting the primary supernatant liquid-separated in the solid-liquid separation tank with sulfuric acid and a reducing agent in a Fe reduction tank to reduce the secondary supernatant to a secondary reducing supernatant; Separating the secondary reducing supernatant into a ferric salt and residual iron in a separation tank, the divalent iron salt is generated in the Fenton treatment process of the hardly decomposable wastewater, characterized in that for recovering to the Fenton reaction tank to be recycled with Fenton reagent Provided is a method for treating Fenton inorganic sludge.

도면을 참조하여 본 발명을 상세히 설명한다.The present invention will be described in detail with reference to the drawings.

제2도는 본 발명에 따른 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법에 대한 공정도이다.2 is a process chart for the treatment method of fenton inorganic sludge generated in the Fenton treatment process of the hardly degradable wastewater according to the present invention.

난분해성 폐수의 생화학적처리에서 배출되는 활성오니 처리수 또는 물리적 처리단계에서 배출되는 처리수인 폐수(5)는 저장탱크에 보관되었다가 정량펌프에 의해 산화반응조(Fenton반응조)(6)에 유입되고, Fenton 산화반응에 의해 펜톤무기슬러지가 발생된다.Activated sludge treated water discharged from the biochemical treatment of hardly degradable wastewater or wastewater treated as the discharged water from the physical treatment stage (5) was stored in a storage tank and introduced into an oxidation reaction tank (Fenton reaction tank) 6 by a metering pump. Fenton inorganic sludge is generated by the Fenton oxidation reaction.

여기서, 1894년 H.J.H Fenton에 의하여 발표된 Fenton 산화반응은 2가 철이온(15)과 과산화수소(16)를 이용한 유기물의 산화반응으로서, 아래의 식(1),(2),(3)과 같이 수산화철염(Fenton 슬러지)을 발생시키어 폐수중의 난분해성 유기물을 분해하게 된다.Herein, the Fenton oxidation reaction published by HJH Fenton in 1894 is an oxidation reaction of an organic material using divalent iron ions (15) and hydrogen peroxide (16), as shown in Equations (1), (2) and (3) below. Iron hydroxide (Fenton sludge) is generated to decompose the hardly decomposable organic matter in the wastewater.

또한, Fenton산화반응 후에 폐수(5)는 pH조정 및 응집조(7)에 저장되고, pH조정 및 응집조(7)에서는 NaOH(17)를 주입하여 PH가 약 6∼8정도 되도록 교반기를 이용하여 교반하면서 고분자 응집제(22)를 소량 주입하여 응집이 빠른 시간 내에 이루어지도록 한다.In addition, after the Fenton oxidation reaction, the wastewater 5 is stored in the pH adjusting and flocculating tank 7, and in the pH adjusting and flocculating tank 7, NaOH (17) is injected to use a stirrer so that the pH is about 6-8. Injecting a small amount of the polymer flocculant 22 while stirring to achieve the aggregation within a short time.

이때, 폐수내에 용존되어 있는 철은 대부분 수산화철로 석출되어 응집된다.At this time, most of the iron dissolved in the waste water precipitates with iron hydroxide and aggregates.

여기서, pH조정 및 응집조(7)를 거치면서 펜톤슬러지가 응집된 혼합폐수는 침전조(8)로 보내져서 응집된 펜톤슬러지가 침강되면서 슬러지(19)와 상등수(18)로 고액분리되며, 이때 상등수(18)는 방류되고, 슬러지(19)는 슬러지 배출펌프를 사용하여 배출시킨다.Here, the mixed wastewater in which the Fenton sludge is aggregated through the pH adjustment and the coagulation tank 7 is sent to the settling tank 8, and the solidified liquid is separated into the sludge 19 and the supernatant 18 while the coagulated Fenton sludge is settled. The supernatant 18 is discharged and the sludge 19 is discharged using a sludge discharge pump.

한편, 침전조(8)에서 배출된 슬러지(19)는 농축조(9)에 저장 농축되고, 슬러지 펌프를 사용하여 농축조(9)의 농축된 슬러지를 슬러지 용해조(10)에 저장시킨 후, 이 용해조에 황산(21)을 투입하여 슬러지를 용해시키며, 이때 용해가 원활이 이루어지도록 교반기를 사용한다.On the other hand, the sludge 19 discharged from the settling tank 8 is stored and concentrated in the thickening tank 9, and after storing the concentrated sludge of the thickening tank 9 in the sludge dissolving tank 10 using a sludge pump, Sulfuric acid (21) is added to dissolve the sludge, in which case a stirrer is used to facilitate the dissolution.

그리고, 슬러지용해조(10)에서 용해된 슬러지는 응집조(11)에서 주입된 고분자 응집제(22)에 의해 응집된 후, 고액분리조(12)에 이송되어 상등액(24)과 폐슬러지(23)로 고액분리된다.The sludge dissolved in the sludge dissolution tank 10 is agglomerated by the polymer flocculant 22 injected from the flocculation tank 11, and then transferred to the solid-liquid separation tank 12 to transfer the supernatant 24 and the waste sludge 23. Solid-liquid separated.

여기서, 상등액(24)은 3가 철상태로 펜톤반응조(6)로 회수되어 펜톤시약(15)으로 재활용되며, 분리된 폐슬러지(23)는 침전조(8)의 슬러지량보다 현저히 적은 용량의 슬러지로 탈수되어 폐기 매립된다.Here, the supernatant 24 is recovered to the Fenton reaction tank (6) in the trivalent iron state and recycled to the Fenton reagent (15), the separated waste sludge (23) is sludge having a significantly smaller capacity than the sludge amount of the sedimentation tank (8). Dehydrated and landfilled for disposal.

그러나, 고액분리조(12)에서 펜톤반응조(6)로 회수되는 상등액(24)은 3가 철염이기 때문에 펜톤시약(15)으로 재사용시 펜톤의 처리효율이 다소 저하된다.However, since the supernatant 24 recovered from the solid-liquid separation tank 12 to the Fenton reaction tank 6 is a trivalent iron salt, the treatment efficiency of Fenton is somewhat lowered when reused with the Fenton reagent 15.

따라서, 고액분리조(12)의 1차상등액(24)을 Fe 환원조(13)에 저장하고, 이 환원조에 황산(26) 및 환원제(철)(27)를 투입하면 1차상등액(24)의 3가 철염은 2가 철염으로 환원되어 환원상등액(25)이 되고, 이 환원 상등액중 2가 철염은 분리조(14)에서 분리되어 펜톤반응조(6)로 회수되어 펜톤시약(15)으로 재사용하게 되는데, 이 때 일반적인 환원 이론반응식은 다음과 같다.Therefore, when the primary supernatant 24 of the solid-liquid separation tank 12 is stored in the Fe reduction tank 13 and sulfuric acid 26 and the reducing agent (iron) 27 are introduced into the reduction tank 12, the primary supernatant 24 is supplied. The trivalent iron salt of is reduced to the divalent iron salt to form a reducing supernatant (25), the divalent iron salt in the reduced supernatant is separated in the separation tank (14), recovered in the Fenton reaction tank (6) and reused as Fenton reagent (15) In this case, the general reduction theory is as follows.

여기서, 환원 상등액(25)은 분리조(14)에서 2가 철염(29)과 잔류 Fe(28)로 분리되고, 이 잔류 Fe(28)은 Fe 환원조(13)에 회수되어 고액분리조(12)에서 배출되는 1차상등액(24)을 환원하는 환원제로 재활용하게 된다.Here, the reducing supernatant 25 is separated into the divalent iron salt 29 and the residual Fe 28 in the separation tank 14, and the residual Fe 28 is recovered in the Fe reduction tank 13 to obtain a solid-liquid separation tank ( The primary supernatant 24 discharged from 12 is recycled as a reducing agent.

그리고, 상기의 식에서 3가의 철을 2가의 철로 환원시키기 위한 환원제로는 Zn, Cd, Cu, Hg, Ag 등의 금속과 염화제일주석, 과산화수소, 요오드산, 유화수소, 아황산가스, 발생기수소 등이 있으나, 환원제로서 철을 사용하는 것이 공정상에도 유리하고, 폐수의 처리수에서 중금속 배출허용기준에 제한을 받지 않는다.In the above formula, the reducing agent for reducing trivalent iron to divalent iron includes metals such as Zn, Cd, Cu, Hg, Ag, tin chloride, hydrogen peroxide, iodic acid, hydrogen sulfide, sulfurous acid gas, hydrogen generator, and the like. However, the use of iron as a reducing agent is also advantageous in the process and is not restricted by the heavy metal emission limit in wastewater.

한편, 제3도는 Fe-Fe(Ⅱ)-Fe(Ⅲ)계에 대하여 pH가 변할 때에 전위의 변화를 나타내는 전위-pH도표(Potential pH Diagram)이다.3 is a potential-pH diagram (Potential pH Diagram) showing the change in potential when the pH is changed with respect to the Fe-Fe (II) -Fe (III) system.

제3도에서 선위의 점은 해당하는 pH에서 그 양편에 있는 물질의 활성도가 1인 상태의 전위이다.In FIG. 3, the dot on the line is the potential at which the activity of the material on either side is 1 at the corresponding pH.

즉, 선1에서는 Fe(OH)3→ Fe3++ 3OH- That is, in line 1, Fe (OH) 3 → Fe 3+ + 3OH

Fe(OH)3의 용해도적 KSP=3.98×10-38이므로 KSP=[Fe3+][OH]3, [Fe3+]=1에서는 [OH-]=3.41×10-13이므로 pOH=12.5이며, pH + pOH = 14에서 pH = 1.5로써 슬러지 회수시 최적용해가 된다.Solubility ever K of Fe (OH) 3 SP = 3.98 × 10 -38 Because K SP = [Fe 3+] [ OH] 3, [Fe 3+] = In 1 [OH -] = 3.41 × 10 -13 because pOH = 12.5 and pH = 1.5 at pH + pOH = 14 for optimal sludge recovery.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

펜톤무기슬러지의 용해를 위한 산의 농도를 pH 1.3∼1.8의 범위까지 변화시켜 가며 H2SO4의 주입량 및 상등액의 FeT농도를 측정해보면 제4도에 도시한 바와같이 pH 1.5를 기점으로 Fe의 용해가 현저히 이루어짐을 알 수 있다.When the concentration of acid for dissolution of Fenton inorganic sludge was changed to a range of pH 1.3 to 1.8, the amount of H 2 SO 4 injected and the concentration of Fe T in the supernatant were measured. As shown in FIG. It can be seen that the dissolution of remarkably.

따라서, 본 발명에서는 펜톤무기슬러지의 용해를 위한 산의 농도를 철의 용해도측면에서 경제적인 pH 1.3∼1.7의 범위로 제한하였다.Therefore, in the present invention, the concentration of acid for dissolving the Fenton inorganic sludge is limited to the range of economic pH 1.3-1.7 in terms of solubility of iron.

그리고, 펜톤 슬러지의 단위농도를 pH 1.5로 유지하면서 반응시간을 30분에서 120분까지 변화시켜 가면서 상등액의 FeT를 분석해 보면 제5도에 도시한 바와같이 90분이 지나면서 완만하게 증가함을 나타내어 펜톤무기슬러지의 용해시간을 90분 이내 유지하는 것이 경제적으로 바람직함을 알 수 있다.In addition, analysis of the Fe T of the supernatant while maintaining the unit concentration of the Fenton sludge at pH 1.5 while changing the reaction time from 30 minutes to 120 minutes indicated that it gradually increased after 90 minutes as shown in FIG. It can be seen that it is economically desirable to maintain the dissolution time of the Fenton inorganic sludge within 90 minutes.

또한, 본 발명을 난분해성 폐수의 펜톤처리 공정에 적용하는 경우 펜톤무기슬러지의 철회수율은 80∼85%, 슬러지 감량율은 62∼67% 정도로 높게 나타난다.In addition, when the present invention is applied to the Fenton treatment process of hardly degradable wastewater, the recovery rate of Fenton inorganic sludge is 80 to 85%, and the sludge reduction rate is about 62 to 67%.

한편, FeCl2와 재생철염을 혼합하여 Fenton 산화처리를 할 경우 이하 표 1 및 표 2에 나타낸 바와같이 FeCl2대 재생철염의 혼합비는 6 : 4가 가장 양호하고, 순수한 FeCl2에 의해서 단독 Fenton 산화처리를 할 경우와 비교할 때 90% 이상의 효율을 나타내어 환경기준치 이내로 처리된다.On the other hand, when Fenton oxidation treatment by mixing FeCl 2 and the regenerated iron salt, as shown in Table 1 and Table 2 below, the mixing ratio of FeCl 2 to the regenerated iron salt is 6: 4, the best Fenton oxidation by pure FeCl 2 Compared with the case of treatment, it shows the efficiency more than 90% and it is processed within the environmental standard value.

여기서, 2차재생액(FeCl: 2차재생철염R2=6 : 4)이 1차재생액(FeCl: 1차재생철염R1=6:4)보다 Fe회수율 및 Sludge 감량율에서 약 5% 증가한 것으로 나타나는데 이는 1차재생액을 사용하는 펜톤무기슬러지에 존재하는 황산염슬러지로 인해 용해가 쉽게 이루어진 것으로 추정되고, 또한 슬러지의 고형분 농도의 차이에도 그 원인을 찾을 수 있다.Here, the secondary regeneration solution (FeCl: secondary regenerated iron salt R2 = 6: 4) was increased by about 5% in Fe recovery rate and sludge loss rate than the primary regeneration solution (FeCl: primary regenerated iron salt R1 = 6: 4). It is assumed that dissolution is easily caused by sulfate sludge present in Fenton inorganic sludge using primary regeneration solution, and the cause of the difference in the solid concentration of sludge may be found.

그리고, 잔존슬러지(23)의 적정처리를 위하여 가성소다(50%)를 21,280mg/ℓ정도 주입하여 pH 5.0으로 중화시킨 후 잉여 Fenton Sludge(pH: 6.0∼6.5)로 희석 처리하여 탈수시키면 pH는 약 5.5∼6.0으로 탈수기 가동에는 영향을 끼치지 않지만, 폐슬러지중에 유기물질이 60∼70% 잔존되어 Cake 여포 탈리시 문제를 야기할 수 있음을 추측 가능하다.In order to titrate the remaining sludge 23, caustic soda (50%) is injected at 21,280 mg / l, neutralized to pH 5.0, and diluted with excess Fenton Sludge (pH: 6.0 to 6.5) to dehydrate. Although it does not affect the operation of the dehydrator at about 5.5 to 6.0, it can be estimated that 60 to 70% of organic matter remains in the waste sludge, which may cause problems when the cake follicle is removed.

한편, 3가철용액(24)을 황산(26)과 환원제(27)로 환원하는 Fe환원조(13)에서는 산의 농도를 pH 1.3∼1.7로 유지하면서 Fe /Fe ion의 반응비를 0.5∼1로 하여 반응시간을 60분 이내로 유지하는 것이 바람직하다.On the other hand, in the Fe reduction tank 13 in which the trivalent iron solution 24 is reduced with sulfuric acid 26 and a reducing agent 27, Fe is maintained at a pH of 1.3 to 1.7. / Fe It is preferable to keep the reaction time within 60 minutes by setting the reaction ratio of ions to 0.5 to 1.

상술한대로 본 발명을 가동하여 난분해성 폐수인 염색폐수를 펜톤처리 공정으로 처리할 경우 일간 30,000㎥(슬러지 발생량 20Ton D.S/day)의 폐수처리시 일간 1,911,000원이 절감되어 월 25일 가동으로 기준하여 월 47,775,000원, 연간 573,300,000원이 절감될 것으로 추정되며, 초기 설비투자액(3억5천만원)의 회수기간은 약 8개월이 걸릴 것으로 계산된다.When the present invention is operated as described above, when the dye wastewater, which is hardly decomposable wastewater, is treated by the Fenton treatment process, the wastewater treatment of 30,000m 3 (sludge amount 20Ton DS / day) per day is reduced by 1,911,000 won per day, which is the monthly operation on the basis of the 25th operation. It is estimated that the savings of 47,775,000 won and 573,300,000 won per year are expected, and the recovery period of the initial facility investment (350 million won) will take about eight months.

본 발명은 난분해성 폐수의 펜톤처리 공정에서 발생되는 펜톤무기슬러지를 재활용함으로써 폐슬러지의 양을 줄이고, 이로써 매립에 따른 문제점을 제거할 수 있으며, Fenton 시약의 비용을 절감할 수 있는 효과를 제공한다.The present invention reduces the amount of waste sludge by recycling the Fenton inorganic sludge generated in the Fenton treatment process of difficult-decomposable wastewater, thereby eliminating the problem of landfill, and provides the effect of reducing the cost of the Fenton reagent .

Claims (4)

폐수(5)를 펜톤반응조(6)에서 펜톤시약(15)(16)으로 산화반응시키고, pH조정 및 응집조(7)와 침전조(8)를 거치면서 펜톤무기슬러지(19)와 상등수(18)로 고액분리한 후, 상기 펜톤무기슬러지(19)는 농축조(9)에서 농축폐기하고, 상등수(18)는 방류하는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법에 있어서, 상기 농축조(9)에서 농축된 펜톤무기슬러지(19)를 슬러지용해조(10)에서 황산(21)을 투입하여 슬러지용해액(20)으로 용해하는 단계와; 상기 슬러지용해액(20)을 응집조(11)에서 고분자응집제(22)와 반응시킨 후, 고액분리조(12)에서 3가철용액(24)과 슬러지(23)로 고액분리하는 단계와; 상기 3가철용액(24)을 Fe환원조(13)에서 황산(26) 및 환원제(27)와 반응시켜 2차환원상등액(25)으로 환원하는 단계와; 상기 2차환원상등액(25)을 분리조(14)에서 2가철염(29)과 잔류철(28)로 분리하고, 상기 2가철염(29)을 펜톤반응조(6)로 회수하여 펜톤시약(15)으로 재활용하는 단계로 구성되는 것을 특징으로 하는 난분해성 폐수의 펜톤처리 공정에서 발생되는 펜톤무기슬러지의 처리방법.The wastewater (5) is oxidized from the Fenton reactor (6) to the Fenton reagent (15) (16), and the Fenton inorganic sludge (19) and the supernatant (18) are subjected to pH adjustment and coagulation tank (7) and precipitation tank (8). In the method for treating Fenton inorganic sludge generated in the Fenton treatment process of the hardly decomposable wastewater, the Fenton inorganic sludge 19 is concentrated and disposed of in a concentration tank 9, and the supernatant water 18 is discharged after solid-liquid separation. Dissolving the Fenton inorganic sludge (19) concentrated in the concentration tank (9) into a sludge dissolution solution (20) by introducing sulfuric acid (21) in the sludge dissolution tank (10); Reacting the sludge dissolution solution 20 with the polymer coagulant 22 in the flocculation tank 11, and then solid-liquid separation into the trivalent iron solution 24 and the sludge 23 in the solid-liquid separation tank 12; Reacting the trivalent iron solution 24 with the sulfuric acid 26 and the reducing agent 27 in a Fe reduction bath 13 to reduce the secondary reducing supernatant 25; The secondary reducing supernatant (25) is separated into a ferric salt (29) and residual iron (28) in a separation tank (14), and the ferric salt (29) is recovered in a Fenton reaction tank (6) to obtain a Fenton reagent ( 15) Fenton inorganic sludge treatment method generated in the Fenton treatment process of difficult-decomposable wastewater, characterized in that the step of recycling. 제1항에 있어서, 상기 슬러지용해조(10)에서 산의 농도를 pH 1.3∼1.7로 유지하고, 용해시간을 90분 이내로 유지하는 것을 특징으로 하는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법.The fenton inorganic sludge generated in the Fenton treatment process of hardly decomposable wastewater according to claim 1, wherein the acid concentration is maintained at pH 1.3 to 1.7 and the dissolution time is maintained within 90 minutes in the sludge dissolution tank 10. Treatment method. 제1항에 있어서, 상기 Fe환원조(13)에서 산의 농도를 pH 1.3∼1.7로 유지하면서 Fe3+/FeTion의 반응비를 0.5∼1로 하여 반응시간을 60분 이내로 유지하는 것을 특징으로 하는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법.The method according to claim 1, wherein the Fe reduction tank 13 maintains the acid concentration at pH 1.3-1.7 while maintaining the reaction time of Fe 3+ / Fe T ion at 0.5-1, and maintaining the reaction time within 60 minutes. Fenton inorganic sludge treatment method generated in the Fenton treatment process of difficult-decomposable wastewater. 제1항에 있어서, 상기 잔류철(28)을 Fe환원조(13)로 회수하여 환원제(27)로서 재활용하는 것을 특징으로 하는 난분해성 폐수의 펜톤처리공정에서 발생되는 펜톤무기슬러지의 처리방법.The method of claim 1, wherein the residual iron (28) is recovered in a Fe reduction tank (13) and recycled as a reducing agent (27).
KR1019960007548A 1996-03-20 1996-03-20 Method for the treatment of inorganic sludge from fenton treatment process KR0168280B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960007548A KR0168280B1 (en) 1996-03-20 1996-03-20 Method for the treatment of inorganic sludge from fenton treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960007548A KR0168280B1 (en) 1996-03-20 1996-03-20 Method for the treatment of inorganic sludge from fenton treatment process

Publications (2)

Publication Number Publication Date
KR970065435A KR970065435A (en) 1997-10-13
KR0168280B1 true KR0168280B1 (en) 1999-01-15

Family

ID=19453515

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960007548A KR0168280B1 (en) 1996-03-20 1996-03-20 Method for the treatment of inorganic sludge from fenton treatment process

Country Status (1)

Country Link
KR (1) KR0168280B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107140804A (en) * 2017-03-06 2017-09-08 天津壹新环保工程有限公司 Fenton sludge treatment method and device for recycling ferric salt

Also Published As

Publication number Publication date
KR970065435A (en) 1997-10-13

Similar Documents

Publication Publication Date Title
US5051191A (en) Method to detoxify sewage sludge
JP5215578B2 (en) Water treatment method and water treatment apparatus
CN111099713A (en) Fenton reaction method for recycling iron-based catalyst
KR20180002431A (en) The Disposal system of dyeing wastewater
KR100707975B1 (en) Treatment method for livestock waste water including highly concentrated organic materials
JP2506032B2 (en) Wastewater treatment method
USH1852H (en) Waste treatment of metal plating solutions
KR19990026365A (en) Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis
JP2006110482A (en) Method and system for treating liquid organic waste
KR0168280B1 (en) Method for the treatment of inorganic sludge from fenton treatment process
KR100343637B1 (en) Treatment of leachate
KR100208477B1 (en) Method for treating industrial waste water by flocculation and oxidation
EP0723938A2 (en) Method for treating water
JP2695104B2 (en) Advanced treatment method for treated water of activated sludge
JPS5976593A (en) Treatment of chemical washing waste liquor containing edta
JPS6339309B2 (en)
CA1257019A (en) Method of cyanide destruction
KR20130086598A (en) Reducing ironsalt processing method of dyeing wastewater
KR800000190B1 (en) Treating method for waste plating-water
KR100226514B1 (en) Method for the treatment of pulp industrial waste water
JP2946481B2 (en) Method for removing chemical oxygen demand from wastewater by electrolysis and oxidation
JP3195514B2 (en) Coagulation settling equipment
KR100225693B1 (en) Nonbiodegradable organic material treatment process
JPH1142401A (en) Flocculating and setting equipment
KR100231950B1 (en) Sewage treatment process and apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130916

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20150915

Year of fee payment: 18

EXPY Expiration of term