KR0130382B1 - Metalizing method of semiconductor device - Google Patents

Metalizing method of semiconductor device

Info

Publication number
KR0130382B1
KR0130382B1 KR1019930023895A KR930023895A KR0130382B1 KR 0130382 B1 KR0130382 B1 KR 0130382B1 KR 1019930023895 A KR1019930023895 A KR 1019930023895A KR 930023895 A KR930023895 A KR 930023895A KR 0130382 B1 KR0130382 B1 KR 0130382B1
Authority
KR
South Korea
Prior art keywords
forming
layer
copper layer
copper
metal wiring
Prior art date
Application number
KR1019930023895A
Other languages
Korean (ko)
Inventor
장태석
박준영
Original Assignee
문정환
엘지반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문정환, 엘지반도체주식회사 filed Critical 문정환
Priority to KR1019930023895A priority Critical patent/KR0130382B1/en
Application granted granted Critical
Publication of KR0130382B1 publication Critical patent/KR0130382B1/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A fabrication method of metal wires is provided to improve step coverage using copper as metal wires having a mechanical hardness and tolerance of etching. The method comprises the steps of: forming an interlayer insulator(2) on a semiconductor substrate(1); forming a contact hole by selective etching the interlayer insulator(2); forming copper layer(3) on the resultant structure; forming a PR pattern(4); ion-implanting S2+ and O2+ ions into the exposed copper layer(3); forming CuSO4 layer(10) by RTA(rapid thermal annealing) the exposed copper layer(3); and forming a metal wire(3a) by etching the CuSO4 layer(10) to NH4OH solvent. Thereby, it is possible to easily form copper wire having mechanical hardness.

Description

반도체소자의 금속배선 형성방법Metal wiring formation method of semiconductor device

제1도는 종래의 배선 단면도.1 is a cross-sectional view of a conventional wiring.

제2도 (A) 내지 (B)는 본 발명의 배선형성 공정단면도.2 (A) to (B) are cross-sectional views of a wiring forming step of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반도체기판 2 : 층간절연막1: semiconductor substrate 2: interlayer insulating film

3 : 구리층 3a : 금속배선3: copper layer 3a: metal wiring

4 : 감광막패턴 10 : CuSO4층.4: photosensitive film pattern 10: CuSO 4 layer.

본 발명은 금속배선에 관한 것으로, 특히 구리를 이용하여 배선을 형성하는데 적당하도록 한 반도체소자의 금속배선 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to metal wiring, and more particularly, to a method for forming metal wiring of a semiconductor device suitable for forming wiring using copper.

이하, 첨부된 도면을 참조하여 종래의 금속배선 형성방법을 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, a conventional metal wiring forming method will be described.

제1도는 종래의 금속배선 형성단면도를 나타낸 것으로서 금속배선 형성공정은 먼저, 반도체기판(1)의 선택영역에 소자를 형성한 후, 소오스 및 드레인을 상층으로 연결하기 위한 트랜지스터의 게이트전극을 상측과 절연시키기 위한 절연물질로서 층간절연막(2)을 형성한 후, 상기 층간절연막(2)을 포토-에칭공정으로 선택적으로 패터닝하여 콘택홀을 형성하고, 전표면상에 배선용금속(Al) 또는 실리사이드 금속 등을 CVD(Chemical Vapor Deposition)법 또는 스퍼터링(Sputtering)법으로 형성한다.1 is a cross-sectional view of a conventional metal wiring forming process. In the metal wiring forming process, first, an element is formed in a selected region of a semiconductor substrate 1, and then a gate electrode of a transistor for connecting a source and a drain to an upper layer is connected with an upper side. After the interlayer insulating film 2 is formed as an insulating material for insulating, the interlayer insulating film 2 is selectively patterned by a photo-etching process to form a contact hole, and a wiring metal (Al) or a silicide metal or the like is formed on the entire surface. Is formed by CVD (Chemical Vapor Deposition) method or sputtering method.

이어, 배선용금속을 포토-에칭공정으로 패터닝하여 금속배선(20)을 형성한다.Subsequently, the wiring metal is patterned by a photo-etching process to form the metal wiring 20.

그러나, 상기와 같은 종래의 기술에서 금속배선(20)으로 알루미늄(Al)을 사용하는 경우, 알루미늄은 20℃에서의 고유저항이 2.62[㏁-㎝]로 높아 전기전도에 불리하고 인장강도 역시 17[kg/㎣]로 작아 반도체기판과 패키지 물질간의 열팽창계수의 차이가 커질 경우, 기계적 파괴를 일으킬 우려가 높고 자체팽창계수도 고순도의 알루미늄을 얻기 위해서는 비용이 많이 들고 불순물(예로서, Si, Cu)이 혼입되면 전도율이 직선적으로 저하된다.However, when aluminum (Al) is used as the metal wire 20 in the conventional technology as described above, aluminum has a high resistivity of 2.62 [㏁-cm] at 20 ° C., which is disadvantageous for electrical conductivity and also has a tensile strength of 17. If the difference in thermal expansion coefficient between the semiconductor substrate and the package material is small due to [kg / ㎣], there is a high possibility of causing mechanical breakdown, and the self-expansion coefficient is expensive to obtain aluminum of high purity and impurities (for example, Si, Cu ), The conductivity decreases linearly.

또한, 알루미늄은 타 금속과 접촉시 전기화학적 부식을 일으키며 인산(H3PO4)과도 반응하여 부식을 일으켜 단선될 뿐만 아니라 녹는점이 낮아 알루미늄을 사용하여 배선을 형성한 후, 후속공정온도가 저온으로 제한되는 등의 문제점이 있었다.In addition, aluminum causes electrochemical corrosion when contacted with other metals, and also reacts with phosphoric acid (H 3 PO 4 ) to cause corrosion, resulting in disconnection, and has a low melting point. There was a problem such as being limited.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 안출한 것으로서, 금속배선을 구리를 이용하여 형성함에 그 목적이 있다.The present invention has been made to solve the problems of the prior art as described above, the object is to form a metal wiring using copper.

이하에서 상기와 같은 목적을 실현하기 위해 본 발명의 실시예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to realize the above object.

제2도 (A) 내지 (B)는 본 발명의 실시예를 설명하기 위한 공정단면도를 나타낸 것으로 제2도 (A)와 같이 반도체기판(1)상에 소자를 제조한 후, 또는 1차 또는 2차금속배선을 형성한 후, 하층과 상측을 절연시키기 위해 전표면상에 절연물질로서 층간절연막(2)을 형성하고, 층간절연막(2)을 포토-에칭공정으로 선택된 영역을 패터닝하여 콘택홀을 형성한 후, 전표면상에 배선용금속으로서 구리층(3)을 CVD법 또는 스퍼터링법으로 증착한다.2 (A) to (B) show a process cross-sectional view for explaining an embodiment of the present invention, after fabricating an element on the semiconductor substrate 1 as shown in FIG. After forming the secondary metal wiring, an interlayer insulating film 2 is formed on the entire surface to insulate the lower layer and the upper side, and the contact hole is formed by patterning the region selected by the photo-etching process. After the formation, the copper layer 3 is deposited on the entire surface as a wiring metal by CVD or sputtering.

이어, 전표면상에 감광막을 도포하고 포토공정을 수행하여 콘택홀의 상측에 일정폭이 남고 양측에 일정폭이 남도록 패터닝하여 감광막패턴(4)을 형성한 후, 감광막이 제거되어 노출된 구리층(3)에 50Kev~5MeV의 주입에너지로 S2+를 1×1016Atom/㎝-3이상의 농도로 이온주입하고 이어, O2+를 4×1016Atom/㎝-3이상의 농도로 이온주입하거나 와 SO2 +를 SO2 2+이상의 농도로 이온주입한다.Subsequently, the photoresist is coated on the entire surface, and a photo process is performed to form a photoresist pattern 4 by forming a photoresist pattern 4 by forming a photoresist pattern on the upper side of the contact hole and leaving a predetermined width on both sides. ) S 2+ to an implantation energy of 50Kev ~ 5MeV 1 × 10 16Atom / ㎝ -3 concentration ion implantation is followed by more, 2+ O to 4 × 10 16Atom / ㎝ to -3 or more concentration ion implantation or the SO 2 in the + Is ion implanted at a concentration of at least SO 2 2+ .

이때 불순물이온이 주입된 구리층(3)에서는 Cu와 S 및 O가 비화학양론(Non Stoi-chometric)적으로 존재하게 된다.In this case, Cu, S, and O are non-stoichiometrically present in the copper layer 3 into which impurity ions are implanted.

그 다음, 감광막패턴(4)을 제거하고 샘플(Sample)을 RTA(Rapid Thermal Annealing)장치로 850~1000℃의 온도로 열처리한다.Next, the photoresist pattern 4 is removed and a sample is heat-treated at a temperature of 850 to 1000 ° C. with a rapid thermal annealing (RTA) device.

이때, 불순물 이온이 도핑된 구리층(3)이 CuSO4층(10)으로 바뀌어 형성되고, 반응에 대한, 잉여의 S, O원자는 SO2(이산화황) 또는 O2형태로 아웃게싱(Outgassing)이 된다.At this time, the copper layer 3 doped with impurity ions is formed by switching to CuSO 4 layer 10, and the excess S and O atoms for the reaction are outgassing in the form of SO 2 (sulfur dioxide) or O 2 . Becomes

이어, 제2도 (B)와 같이 CuSO4층(10)을 순수(D.I Water) 또는 NH4OH용액을 이용하여 제거하므로서 금속배선 (3a)을 형성한다.Subsequently, as illustrated in FIG. 2B, the CuSO 4 layer 10 is removed using DI water or NH 4 OH solution to form the metal wiring 3a.

여기서, CuSO4가 순수에 의해 제거되는 과정은 다음과 같다.Here, the process of removing CuSO 4 by pure water is as follows.

즉, CuSO4가 형성되어 있는 반도체기판을 H2O(D.I Water)에 위치시키면 CuSO4는 Cu12와 SO4 2로 해리되어 반도체기판에 형성되어 있는 CuSO4가 제거된다.That is, when the semiconductor substrate on which CuSO 4 is formed is placed in H 2 O (DI Water), CuSO 4 dissociates into Cu 12 and SO 4 2 to remove CuSO 4 formed on the semiconductor substrate.

또한, 순수가 아닌 다른 용액 즉, NH4OH용액에서는 CuSO4가 형성되어 있는 반도체기판을 위치시키면 NH4OH는 (NH4)2SO4와 Cu(OH)2로 분리되어 최종적으로 CuSO4가 제거된다.Also, in a solution other than pure water, that is, NH 4 OH solution, when the semiconductor substrate on which CuSO 4 is formed is placed, NH 4 OH is separated into (NH 4 ) 2 SO 4 and Cu (OH) 2 , and finally CuSO 4 is formed. Removed.

단, 상기 공정에서 구리층(3)은 1차금속배선과 2차금속배선 및 3차금속배선으로 이용될 수 있다.In the above process, the copper layer 3 may be used as a primary metal wiring, a secondary metal wiring, and a tertiary metal wiring.

그리고 상기 본 발명의 다른 실시예로서 구리층(3)을 형성하고 구리칭(3)상에 산화막을 증착한 후, 감광막패턴(4)을 형성하고 높은 이온주입 에너지로 S2+를 이온주입하여 산소이온을 구리층(3)내로 리코일링(Recoling)되도록 하여 CuSO4층(10)을 형성시킬 수 있다.As another embodiment of the present invention, after forming the copper layer 3 and depositing an oxide film on the copper etched (3), to form a photosensitive film pattern (4) and ion implanted S 2+ with high ion implantation energy The oxygen ions may be recoiled into the copper layer 3 to form the CuSO 4 layer 10.

이와 같은 본 발명에서 CuSO4층(10) 형성시 반응식은 다음과 같다.In the present invention as described above in the formation of CuSO 4 layer (10) the reaction scheme is as follows.

S2+와 O2+이온을 구리층(3)에 주입시 반응식은When the S 2+ and O 2+ ions are injected into the copper layer (3),

Cu + S + 4 → CuSO4 Cu + S + 4 → CuSO 4

SO2이온주입시 반응식은The reaction equation for SO 2 ion implantation is

Cu + 2SO2→ CuSO4+ S(gas)Cu + 2SO 2 → CuSO 4 + S (gas)

이다.to be.

상기와 같은 본 발명에서 금속배선(3a)으로 사용된 구리는 20℃에서의 고유저항이 1.68[㏁-㎝]로 아주 작으며 알루미늄에 비해 두께를 60%정도로만 형성시켜도 충분하므로 상층막에 대한 스탭커버리지를 개선할 수 있고, 열팽창계수가 작고, 인장강도가 커서 기계적 파괴에 강하므로 소자의 신뢰성을 증진시키는 효과가 있다.In the present invention as described above, the copper used as the metal wiring 3a has a very small resistivity of 1.68 [㏁-cm] at 20 ° C., and only about 60% of the thickness of aluminum is sufficient, so the staff for the upper layer film may be formed. Since the coverage can be improved, the coefficient of thermal expansion is small, and the tensile strength is large, it is strong in mechanical breakdown, thereby improving the reliability of the device.

Claims (4)

반도체기판상에 절연막을 형성하는 공정과, 상기 절연막상에 배선용금속으로 구리층을 형성하는 공정과, 상기 구리층의 선택영역에 황 및 산소이온을 주입하는 공정과, 상기 구리층을 열처리하여 황 및 산소이온의 주입된 구리층을 황산구리층으로 변화시키는 공정과, 상기 황산구리층을 제거하는 공정을 포함하는 것을 특징으로 하는 반도체소자의 금속배선 형성방법.Forming an insulating film on a semiconductor substrate, forming a copper layer with a wiring metal on the insulating film, injecting sulfur and oxygen ions into a selected region of the copper layer, and heat treating the copper layer to And changing the copper sulphate implanted with oxygen ions into a copper sulphate layer, and removing the copper sulphate layer. 제1항에 있어서, 상기 구리층에 황 및 산소이온을 주입하는 공정은 상기 구리층상에 감광막패턴을 형성하는 공정과, 상기 감광막패턴을 이온주입 마스크로 사용하여 상기 구리층에 산소 및 황이온을 주입하는 공정을 더 포함하는 것을 특징으로 하는 반도체소자의 금속배선 형성방법.The method of claim 1, wherein the step of injecting sulfur and oxygen ions into the copper layer comprises forming a photoresist pattern on the copper layer, and using oxygen and sulfur ions in the copper layer using the photoresist pattern as an ion implantation mask. The metal wiring forming method of the semiconductor device further comprising the step of implanting. 제1항에 있어서, S2+는 1×1016Atom/㎝-3이상의 농도를 이온주입하고 O2+를 4×1016Atom/㎝-3이 상의 농도로 이온주입함을 특징으로 하는 반도체소자의 금속배선 형성방법.According to claim 1, S 2+ is a semiconductor element, characterized in that the ion implantation of 1 × 10 16Atom / ㎝ concentration -3 or more, and the ion implantation to a concentration on the O 2+ 4 × 10 16Atom / ㎝ -3 this Metal wiring formation method. 제1항에 있어서, 상기 구리층을 열처리하는 온도는 850~1000℃인 것을 특징으로 하는 반도체소자의 금속배선 형성방법.The method of claim 1, wherein the temperature for heat treating the copper layer is about 850 ° C. to about 1000 ° C. 6.
KR1019930023895A 1993-11-11 1993-11-11 Metalizing method of semiconductor device KR0130382B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930023895A KR0130382B1 (en) 1993-11-11 1993-11-11 Metalizing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930023895A KR0130382B1 (en) 1993-11-11 1993-11-11 Metalizing method of semiconductor device

Publications (1)

Publication Number Publication Date
KR0130382B1 true KR0130382B1 (en) 1998-04-06

Family

ID=19367795

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930023895A KR0130382B1 (en) 1993-11-11 1993-11-11 Metalizing method of semiconductor device

Country Status (1)

Country Link
KR (1) KR0130382B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351230B1 (en) * 2000-06-09 2002-09-05 대주정밀화학 주식회사 Conductive paste composition for electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351230B1 (en) * 2000-06-09 2002-09-05 대주정밀화학 주식회사 Conductive paste composition for electrodes

Similar Documents

Publication Publication Date Title
EP0126424B1 (en) Process for making polycide structures
EP0430429A2 (en) A process for fabricating a semiconductor device
KR20030044800A (en) Semiconductor device having a low-resistance gate electrode
JPH04355912A (en) Semiconductor device and manufacture thereof
KR0130382B1 (en) Metalizing method of semiconductor device
KR100411025B1 (en) Method of manufacturing a semiconductor device
KR100257080B1 (en) Method for manufacturing semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
KR19980060621A (en) Manufacturing method of semiconductor device
US4653173A (en) Method of manufacturing an insulated gate field effect device
KR0172263B1 (en) Method of manufacturing semiconductor device
JPS6340374A (en) Mos-type semiconductor device and manufacture thereof
KR100333647B1 (en) Method for manufacturing field effect transistor using self-aligned silicide layer in semiconductor device
KR100365409B1 (en) Method for forming a gate electrode in semiconductor device
KR100209929B1 (en) Method for manufacturing semiconductor device
KR100347149B1 (en) Manufacturing method for semiconductor device
US9929165B1 (en) Method for producing integrated circuit memory cells with less dedicated lithographic steps
KR940007659B1 (en) Manufacturing method of semiconductor device
KR960006433B1 (en) Manufacturing method of semiconductor device isolation by nitrogen atom ion implant
KR940001397B1 (en) Semiconductor ic and manufacturing method thereof
KR0172290B1 (en) Method of manufacturing mos transistor
KR100192182B1 (en) Method of manufacturing semiconductor device
KR19980055970A (en) Transistor manufacturing method
KR100217913B1 (en) Forming method for polysilicon layer of semiconductor device
JPH06181219A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091028

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee