KR0119965B1 - Oxidation method of semiconductor device - Google Patents

Oxidation method of semiconductor device

Info

Publication number
KR0119965B1
KR0119965B1 KR1019940011479A KR19940011479A KR0119965B1 KR 0119965 B1 KR0119965 B1 KR 0119965B1 KR 1019940011479 A KR1019940011479 A KR 1019940011479A KR 19940011479 A KR19940011479 A KR 19940011479A KR 0119965 B1 KR0119965 B1 KR 0119965B1
Authority
KR
South Korea
Prior art keywords
oxide film
gas
semiconductor device
forming
temperature
Prior art date
Application number
KR1019940011479A
Other languages
Korean (ko)
Other versions
KR950034595A (en
Inventor
박인옥
서광수
이성수
정영석
김의식
홍흥기
구영모
김세정
Original Assignee
김주용
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김주용, 현대전자산업주식회사 filed Critical 김주용
Priority to KR1019940011479A priority Critical patent/KR0119965B1/en
Publication of KR950034595A publication Critical patent/KR950034595A/en
Application granted granted Critical
Publication of KR0119965B1 publication Critical patent/KR0119965B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The method is characterized by comprising the step of depositing an oxide film(2) on a substrate by CVD method while keeping the inside of a deposition apparatus in the desired temperature and low pressure state and injecting SiH4 gas and N2O gas simultaneously, and the step of annealing the deposited oxide film(2) while injecting N2O gas continuously after stopping the injection of SiH4 gas and increasing the temperature.

Description

반도체 소자의 산화막 형성방법Oxide film formation method of semiconductor device

제1a도 내지 제1c도는 본 발명에 의한 반도체 소자의 산화막 형성방법을 설명하기 위해 도시한 단면도.1A to 1C are cross-sectional views for explaining the oxide film forming method of a semiconductor device according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 실리콘 기판 2 : 산화막(Sio2)1: Silicon Substrate 2: Oxide Film (Sio 2 )

3 : 경계막(SiXOYNZ)3: boundary film (Si X O Y N Z )

본 발명은 반도체 소자의 산화막 형성방법에 관한 것으로, 특히 반도체 소자의 제조공정중 게이트 산화막 또는 층간 절연 산화막을 형성함에 있어, LPCVD 장비에서 CVD 방식으로 SiH4개스와 N2O 개스를 이용하여 어닐링(annealing)을 진행함으로써 양질의 산화막을 얻을 수 있는 반도체 소자의 산화막 형성방법에 관한 것이다.The present invention relates to a method for forming an oxide film of a semiconductor device, and in particular, in forming a gate oxide film or an interlayer insulating oxide film during a semiconductor device manufacturing process, annealing using SiH 4 gas and N 2 O gas by CVD in an LPCVD apparatus ( The present invention relates to a method for forming an oxide film of a semiconductor device in which a good oxide film can be obtained by annealing.

최근 반도체 소자가 고집적화 되어가면서 트랜지스터의 게이트 산화막의 두께도 점점 감소되고, 이에 따라 산화막 자체의 품질뿐만 아니라 산화막과 실리콘 기판사이의 계면에 대한 품질도 중요한 문제로 대두되고 있다.In recent years, as the semiconductor devices have been highly integrated, the thickness of the gate oxide film of the transistor is gradually reduced. Accordingly, not only the quality of the oxide film itself but also the quality of the interface between the oxide film and the silicon substrate has become an important problem.

종래의 게이트 산화막은 고온의 확산로에서 대기압 상태로 O2개스를 이용하여 실리콘기판을 열산화시켜서 형성하였다.The conventional gate oxide film was formed by thermally oxidizing a silicon substrate using O 2 gas at atmospheric pressure in a high temperature diffusion path.

이러한 실리콘의 열산화 방식에서는 실리콘기판의 소모가 수반되면서 실리콘 기판과 산화막 사이의 경계면에서 거친(Roughness)상태가 증가하게 되고 산화막의 전기적 특성의 열화를 가져왔다. 실리콘 기판과 산화막 사이의 계면특성은 반도체 소자가 고집적화 될수록 점점 중요하게 되는데, 기존의 열산화 방식으로는 상기한 바와 같은 전기적 특성의 열화로 고집적 소자에서의 적용이 어렵다.In the thermal oxidation method of silicon, as the silicon substrate is consumed, roughness is increased at the interface between the silicon substrate and the oxide film and the electrical properties of the oxide film are deteriorated. The interfacial characteristics between the silicon substrate and the oxide film become more important as the semiconductor device is highly integrated. However, the conventional thermal oxidation method is difficult to apply to the highly integrated device due to the deterioration of the electrical properties as described above.

따라서, 본 발명은 실리콘 기판과 산화막 사이의 경계면에서 거친 상태가 유발되는 것을 방지하면서 양질의 산화막을 형성할 수 있도록 하여 고집적 소자에 적용할 수 있는 반도체 소자의 산화막을 형성하는 방법을 제공함에 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for forming an oxide film of a semiconductor device that can be applied to a highly integrated device by forming a high quality oxide film while preventing a rough state from occurring at the interface between the silicon substrate and the oxide film. There is this.

이러한 목적을 달성하기 위한 본 발명의 산화막 형성방법은 증착장비 내부를 소정의 온도와 저압상태로 하고, SiH4개스와 N2O 개스를 동시에 주입하면서 CVD 방식으로 소정의 기판상에 산화막(2)을 증착시키는 단계와, 상기 단계로부터 SiH4개스 주입을 중단하고, 소정의 온도로 상승시킨 후 N2O 개스만을 계속 주입하면서 상기 증착된 산화막(2)을 어닐링하는 단계로 이루어지는 것을 특징으로 한다.The oxide film forming method of the present invention for achieving this purpose is to put the inside of the deposition equipment at a predetermined temperature and low pressure state, the oxide film (2) on a predetermined substrate by the CVD method while simultaneously injecting SiH 4 gas and N 2 O gas And depositing SiH 4 gas from the step, and raising the temperature to a predetermined temperature, followed by annealing the deposited oxide film 2 while continuing to inject only N 2 O gas.

이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제1a도 내지 제1c도는 본 발명에 의한 반도체 소자의 산화막 형성방법을 설명하기 위해 도시한 단면도로서, 제1a도는 소정의 실리콘 기판(1)상에 게이트 산화막과 같은 산화막을 형성할 웨이퍼를 증착장비내에 장착한 다음, 증착장비내를 1Torr 미만의 저압상태와 700~800oC 온도 범위로 하고, SiH4개스와 N2O 개스를 동시에 주입하여 이들 개스의 화학반응으로 생성된 SiO2가 실리콘 기판(1)에 증착되면서 소정 두께의 산화막(2)을 형성한 상태를 도시한 것이다.1A to 1C are cross-sectional views illustrating a method of forming an oxide film of a semiconductor device according to the present invention, and FIG. 1A is a deposition apparatus for depositing a wafer to form an oxide film such as a gate oxide film on a predetermined silicon substrate 1. Then, the inside of the deposition equipment is a low-pressure state of less than 1 Torr and a temperature range of 700 ~ 800 ° C, SiH 4 gas and N 2 O gas is injected at the same time, the SiO 2 silicon substrate produced by the chemical reaction of these gases The state in which the oxide film 2 of predetermined thickness is formed while depositing on (1) is shown.

상기 증착장비는 LPCVD 장비이며, 이 LPCVD 장비에서 상기 산화막(2)은 열산화 방식이 아닌 CVD 방식으로 형성된다.The deposition apparatus is an LPCVD apparatus, in which the oxide film 2 is formed by a CVD method rather than a thermal oxidation method.

제1b도는 상기 SiH4개스의 주입을 중단하고 동일한 증착장비에서 온도를 800~900oC로 하여 N2O 개스만을 계속 주입하면서 상기 산화막(2)을 어닐링하는 상태를 도시한 것이다.FIG. 1B illustrates a state in which the oxide film 2 is annealed while stopping the injection of the SiH 4 gas and continuously injecting only N 2 O gas at a temperature of 800 to 900 ° C. in the same deposition apparatus.

상기 어닐링이 진행되는 과정에서 질소이온(Nitrogen Ion)이 산화막(2) 내부로 확산되며, 이때 불완전한 본드(Bond) 구조를 갖는 산화막(2)은 조밀화(Densify)와 산화막 구조 개선이 동시에 일어난다.Nitrogen ion is diffused into the oxide film 2 during the annealing process, and at this time, the oxide film 2 having an incomplete bond structure densifies and improves the oxide film structure.

제1c도는 상기 산화막(2) 어닐링 공정에 의해 확산된 질소이온이 산화막(2)과 실리콘 기판(1) 사이의 경계면에 SiXOYNZ구조의 경계막(3)을 형성하며, 이후 N2개스를 이용하여 증착장비내를 대기압 상태로한 후 꺼낸 상태를 도시한 것이다.FIG. 1C shows a boundary film 3 having a structure of Si X O Y N Z formed on the interface between the oxide film 2 and the silicon substrate 1 by the nitrogen ions diffused by the oxide film 2 annealing process. It shows the state which took out after making the inside of a vapor deposition apparatus into atmospheric pressure using 2 gas.

첨부된 도면을 참조하여 설명한 상기 실시예는 게이트 산화막과 같이 실리콘 기판상에 산화막을 형성하는 경우를 설명한 것이다.The embodiment described with reference to the accompanying drawings has described a case where an oxide film is formed on a silicon substrate like a gate oxide film.

한편, 상술한 산화막 형성방법은 폴리실리콘과 폴리실리콘 사이의 층간 절연산화막을 형성할 때에도 적용할 수 있는데, 종래에는 LPCVD 장비에서 CVD 산화막을 증착시킨 후 별도의 확산로에서 어닐링을 실시하였으나, 상술한 본 발명의 방법을 적용하면 CVD 산화막을 증착시킨 후 연속적으로 N2O 개스를 이용하여 어닐링을 실시함으로써 2개의 장비에서 웨이퍼를 이동하면서 진행할 때 유발되는 파티클 오염 등을 최소화 할 수 있으며 설비의 단축을 이룰 수 있다.On the other hand, the above-described oxide film forming method can be applied to form an interlayer dielectric oxide film between polysilicon and polysilicon, conventionally after the deposition of the CVD oxide film in the LPCVD equipment, but the annealing was performed in a separate diffusion furnace, By applying the method of the present invention, by depositing a CVD oxide film and continuously performing annealing using N 2 O gas, particle contamination caused by moving wafers in two devices can be minimized and equipment shortened. Can be achieved.

상술한 바와 같이 SiH4개스와 N2O 개스를 이용하여 LPCVD 장비에서 CVD 방식으로 산화막을 형성함으로써 실리콘 기판과 산화막 사이의 경계면에서 거친 상태 증가를 가져오는 실리콘 기판의 소모를 방지하여 양질의 산화막 형성이 가능하고, 산화막 증착이 끝난 후 동일한 장비에서 N2O 개스를 이용하여 어닐링을 진행함으로써 별도의 설비의 추가가 없이 양질의 산화막 형성이 가능하다.As described above, by forming an oxide film by CVD method in an LPCVD apparatus using SiH 4 gas and N 2 O gas, a high quality oxide film is formed by preventing the consumption of the silicon substrate, which leads to an increase in the rough state at the interface between the silicon substrate and the oxide film. This is possible, and annealing using N 2 O gas in the same equipment after the oxide film deposition is completed, it is possible to form a good oxide film without the addition of additional equipment.

또한, 어닐링이 진행되는 과정에서 증착된 산화막의 조밀화가 일어나며, 동시에 질소이온이 산화막을 통하여 확산되면서 산화막 내부의 불완전한 본드구조를 연결하는 역할을 할뿐만 아니라 산화막과 실리콘 기판사이의 경계면에서 SiXOYNZ구조의 새로운 막이 형성되어 산화막의 양질화가 가능하다.In addition, densification of the deposited oxide film occurs during the annealing process, and at the same time, as nitrogen ions diffuse through the oxide film, not only the incomplete bond structure inside the oxide film is connected, but also Si X O at the interface between the oxide film and the silicon substrate. A new film having a Y N Z structure is formed, and quality of the oxide film can be improved.

Claims (6)

반도체 소자의 산화막 형성방법에 있어서, 증착장비 내부를 소정의 온도와 저압상태로 하고, SiH4 개스와 N2O 개스를 동시에 주입하면서 CVD 방식으로 소정의 기판상에 산화막(2)을 증착시키는 단계와, 상기 단계로부터 SiH4 개스 주입을 중단하고, 소정의 온도로 상승시킨 후 N2O 개스만을 계속 주입하면서 상기 증착된 산화막(2)을 어닐링하는 단계로 이루어지는 것을 특징으로 하는 반도체 소자의 산화막 형성방법.A method of forming an oxide film of a semiconductor device, the method comprising: depositing an oxide film 2 on a predetermined substrate by a CVD method while simultaneously injecting SiH4 gas and N2O gas into a predetermined temperature and a low pressure state in the deposition apparatus; Stopping the SiH4 gas injection from the step, raising the temperature to a predetermined temperature, and annealing the deposited oxide film (2) while continuing to inject only N2O gas. 제1항에 있어서, 상기 산화막(2)은 트랜지스터의 게이트 산화막인 것을 특징으로 하는 반도체 소자의 산화막 형성방법.The method of forming an oxide film of a semiconductor device according to claim 1, wherein said oxide film (2) is a gate oxide film of a transistor. 제1항에 있어서, 상기 산화막(2)은 폴리실리콘과 폴리실리콘 사이를 절연하는 층간 절연 산화막인 것을 특징으로 하는 반도체 소자의 산화막 형성방법.The method of forming an oxide film of a semiconductor device according to claim 1, wherein said oxide film (2) is an interlayer insulating oxide film insulating between polysilicon and polysilicon. 제1항에 있어서, 상기 산화막(2) 증착공정시 온도는 700~800oC, 압력은 1Torr 미만이며, 상기 증착된 산화막(2)의 어닐링공정시 온도는 800~900oC인 것을 특징으로 하는 반도체 소자의 산화막 형성방법.According to claim 1, wherein the temperature of the oxide film (2) deposition process is 700 ~ 800 o C, the pressure is less than 1 Torr, the temperature during the annealing process of the deposited oxide film (2) is characterized in that the temperature is 800 ~ 900 ° C. An oxide film forming method of a semiconductor device. 제1항에 있어서, 상기 N2O 개스 분위기로 어닐링공정을 진행할 때 질소이온이 산화막(2)으로 확산되어 하부 기판과의 경계면에 새로운 구조의 경계막(3)을 형성시키는 것을 특징으로 하는 반도체 소자의 산화막 형성방법.The semiconductor according to claim 1, wherein when the annealing process is performed in the N 2 O gas atmosphere, nitrogen ions diffuse into the oxide film 2 to form a boundary film 3 having a new structure on the interface with the lower substrate. A method of forming an oxide film of a device. 제5항에 있어서, 상기 경계막(3)은 SiXOYNZ구조인 것을 특징으로 하는 반도체 소자의 산화막 형성방법.The method of forming an oxide film of a semiconductor device according to claim 5, wherein the boundary film (3) has a Si X O Y N Z structure.
KR1019940011479A 1994-05-26 1994-05-26 Oxidation method of semiconductor device KR0119965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940011479A KR0119965B1 (en) 1994-05-26 1994-05-26 Oxidation method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940011479A KR0119965B1 (en) 1994-05-26 1994-05-26 Oxidation method of semiconductor device

Publications (2)

Publication Number Publication Date
KR950034595A KR950034595A (en) 1995-12-28
KR0119965B1 true KR0119965B1 (en) 1997-10-17

Family

ID=19383796

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940011479A KR0119965B1 (en) 1994-05-26 1994-05-26 Oxidation method of semiconductor device

Country Status (1)

Country Link
KR (1) KR0119965B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332129B1 (en) * 1995-12-29 2002-11-07 주식회사 하이닉스반도체 Method for forming oxide layer in semiconductor device
KR100282413B1 (en) * 1996-10-24 2001-03-02 김영환 Thin film formation method using nitrous oxide gas

Also Published As

Publication number Publication date
KR950034595A (en) 1995-12-28

Similar Documents

Publication Publication Date Title
US7498270B2 (en) Method of forming a silicon oxynitride film with tensile stress
US7544996B2 (en) Methods of fabricating a semiconductor device having a metal gate pattern
US20070169696A1 (en) Two-step post nitridation annealing for lower eot plasma nitrided gate dielectrics
EP0624660A1 (en) Plasma Enhanced Chemical Vapour Deposition (PECVD) Process for forming Borophosphosilicate Glass (BPSG) with low flow temperature
KR100192017B1 (en) Fabrication process of semiconductor device
KR20050033831A (en) Manufacturing method of insulator film and insulator film, and manufacturing method of semiconductor device and semiconductor device
KR20000062745A (en) An improved method for depositing and planarizing fluorinated bpsg films
KR0119965B1 (en) Oxidation method of semiconductor device
KR20040093584A (en) Method for fabricating dielectric layer
EP1796174A1 (en) Highly dielectric film, and utilizing the same, field-effect transistor and semiconductor integrated circuit apparatus, and process for producing the highly dielectric film
KR0161735B1 (en) Method for fabricating semiconductor device
KR100247904B1 (en) Method for manufacturing semiconductor device
KR0132381B1 (en) Formation method of oxide film by chemical vapor deposition
EP0844668A2 (en) MOS structure of semiconductor device and method of manufacturing the same
KR100324822B1 (en) A method for fabricating a gate oxide of a semiconductor device
KR100680970B1 (en) Method for forming gate of semiconductor device
KR100329753B1 (en) Method for forming isolation layer in semiconductor device
KR100351982B1 (en) Manufacturing method for insulator flim on semiconductor device
KR100445058B1 (en) Method for forming gate oxide in semiconductor device
KR100237022B1 (en) Forming method of dielectric film of capacitor
KR20010058614A (en) Method For Forming The Gate Oxide Having Double Structure
KR100332132B1 (en) Method for forming oxynitride layer in semiconductor device
KR100226214B1 (en) Method of fabricating gate isolation film of semiconductor device
KR100444611B1 (en) Method for manufacturing semiconductor device to reduce stress of substrate by forming silicon nitride layer using plasma
JP2003178990A (en) Substrate heat treatment method, method of manufacturing semiconductor device, chemical vapor deposition method and display

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100726

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee