KR0132381B1 - Formation method of oxide film by chemical vapor deposition - Google Patents
Formation method of oxide film by chemical vapor depositionInfo
- Publication number
- KR0132381B1 KR0132381B1 KR1019940013722A KR19940013722A KR0132381B1 KR 0132381 B1 KR0132381 B1 KR 0132381B1 KR 1019940013722 A KR1019940013722 A KR 1019940013722A KR 19940013722 A KR19940013722 A KR 19940013722A KR 0132381 B1 KR0132381 B1 KR 0132381B1
- Authority
- KR
- South Korea
- Prior art keywords
- oxide film
- gas
- vapor deposition
- chemical vapor
- film
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
제1도는 본 발명의 일실시예에 따른 공정단면도.1 is a cross-sectional view of a process according to an embodiment of the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 실리콘기판 2 : SiO2막1: silicon substrate 2: SiO 2 film
3 : SixOyNZ경계막3: SixOyN Z boundary film
본 발명은 반도체 제조공정중 산화막 형성방법에 관한 것으로, 특히 실리콘막과 접촉되는 산화막을 형성하는 화학기상증착법에 의한 산화막 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming an oxide film during a semiconductor manufacturing process, and more particularly to a method of forming an oxide film by chemical vapor deposition which forms an oxide film in contact with a silicon film.
일반적으로 기억소자의 고집접화에 따라 디바이스의 크기가 축소되면서 트랜지스터의 게이트산화막의 두께 또한 점점 감소되고 이에 따라 산화막 자체의 품질뿐 아니라 산화막과 실리콘기판 계면의 품질도 중요한 요소가 되고 있다.In general, as the size of a device decreases as a result of high integration of the memory device, the thickness of the gate oxide film of the transistor is gradually reduced. Accordingly, not only the quality of the oxide film itself but also the quality of the interface between the oxide film and the silicon substrate is important.
종래에는 게이트산화막 형성시 주로 고온의 확산로에서 대기압(atmospheric)상태의 산소가스와 증기(vapor) 상태의 TCA(Tertra - Chloro - Etane)를 이용하여 실리콘기판을 열산화시키고, 계면 특성을 향상시키기 위하여 TCA에서 분해된 Cl기를 실리콘기판에 공급하면서 산화막을 형성하였다.Conventionally, in the formation of a gate oxide film, the silicon substrate is thermally oxidized by using oxygen gas at atmospheric pressure and TCA (Tertra-Chloro-Etane) in vapor state in a high temperature diffusion furnace to improve interfacial properties. For this purpose, an oxide film was formed while supplying Cl groups decomposed in TCA to the silicon substrate.
그러나 상기 종래의 실리콘막의 열산화에 의한 산화막 형성방법은 실리콘막의 소모가 수반되면서 실리콘막과 산화막 경계면의 거침정도가 증가하게 되어 산화막의 전기적 특성 열화를 초래하는 문제점이 따랐다.However, the conventional method of forming an oxide film by thermal oxidation of the silicon film has a problem that the degree of roughness between the silicon film and the oxide film increases as the silicon film is consumed, resulting in deterioration of the electrical properties of the oxide film.
상기와 같은 문제점을 해결하기 위하여 안출된 본 발명은 실리콘막과 접촉되는 산화막 형성시 산화막 자체의 특성 및 산화막과 실리콘막의 계면 특성도 향상시킬 수 있는 화학기상증착법에 의한 산화막 형성방법을 제공하는데 그 목적이 있다.The present invention devised to solve the above problems is to provide an oxide film formation method by a chemical vapor deposition method that can improve the characteristics of the oxide film itself and the interface between the oxide film and the silicon film when forming the oxide film in contact with the silicon film. There is this.
상기 목적을 달성하기 위하여 본 발명은 반도체 제조공정중 실리콘막과 접촉되는 산화막 형성방법에 있어서, 화학기상증착(CVD)법으로 SiH2CL2가스와 N₂O 가스를 이용하여 실리콘막 상에 산화막 증착한 후 연속적으로 N₂O 가스를 이용하여 어닐링하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for forming an oxide film in contact with a silicon film during a semiconductor manufacturing process, wherein the oxide film is formed on an silicon film using SiH 2 CL 2 gas and N ₂ O gas by chemical vapor deposition (CVD). After the deposition is characterized in that the continuous annealing using N ₂ O gas.
이하, 첨부된 도면을 참조하여 본 발명의 일실시예를 상술한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention.
본 발명은 화학기상증착법으로 산화막을 형성하는데 있어서 저압상태에서 SiH2CL2가스와 N₂O 가스를 혼합 사용하여 산화막을 성장시킨 후 동일한 장비에서 연속으로 N₂0 가스를 이용하여 어닐링함으로써 양질의 산화막을 형성하는 기술이다.In the present invention, in forming an oxide film by chemical vapor deposition, an oxide film is grown using a mixture of SiH 2 CL 2 gas and N ₂ O gas at low pressure, and then annealed using N 2 O gas continuously in the same equipment to produce an oxide film of high quality. It is a technique to form.
제 1a도 내지 제1c도는 저압화학기상증착(LPCVD) 장비에서 게이트산화막을 형성하는 공정단면도로, 이를1A to 1C are cross-sectional views of a process of forming a gate oxide film in low pressure chemical vapor deposition (LPCVD) equipment.
통하여 실시방법을 구체적으로 설명하면 다음과 같다.The specific implementation method through the following.
첫단계로, 튜브내에 웨이퍼를 로딩한 다음 lTorr 미만의 저압, 800 내지 900℃ 온도범위 하에서 SiH2Cl2가스와 N₂0 가스를 동시에 주입한다. 이때 주입된 SiH2Cl2가스와 N₂0 가스가 화학반응을 일으켜 제1a도에 도시된 바와 같이 SiO2막(2)이 실리콘기판(1)에 증착되며, 상기 DCS에서 분해되어 나온 Cl기가 실리콘기판(1)으로 공급되며, 이를 간단히 식으로 표현하면 아래와 같다.In the first step, a wafer is loaded into a tube and then simultaneously injected with SiH 2 Cl 2 gas and N 2 2 gas under a low pressure of less than lTorr, in the temperature range from 800 to 900 ° C. At this time, the injected SiH 2 Cl 2 gas and the N ₂ 0 gas undergo a chemical reaction, and as shown in FIG. 1a, the SiO 2 film 2 is deposited on the silicon substrate 1, and the Cl group decomposed in the DCS It is supplied to the silicon substrate (1), which is expressed simply by the following equation.
원하는 두께의 산화막(2)을 형성한 후 이어서, 제1b도에서 SiH2Cl2가스주입을 중단하고 800 내지 900℃의 온도범위에서 N₂0 가스만을 계속 주입하여 증착된 산화막(2)을 어닐링(annealing)하여 불완전 구조를 갖는 증착된 산화막을 강화(densify)하고, 동시에 N₂를 산화막(2) 내부와 산화막과 실리콘기판의 계면에 확산 공급함으로써 제1c도에 도시된 바와 같이 SixOyN₂경계막(3)을 형성하면서 양질의 산화막으로 만든 후, 마무리 단계로 N₂가스를 이용하여 튜브내를 대기압 상태로 만들고 튜브에서 웨이퍼를 언로딩한다.After forming the oxide film 2 of a desired thickness, the SiH 2 Cl 2 gas injection was then stopped in FIG. 1b, and only the N 2 gas was continuously injected in the temperature range of 800 to 900 ° C. to anneal the deposited oxide film 2. By annealing and densify the deposited oxide film having an incomplete structure, and simultaneously supplying N ₂ to the inside of the oxide film 2 and the interface between the oxide film and the silicon substrate, the SixOyN ₂ boundary film as shown in FIG. (3) is formed into a high quality oxide film, and then, as a finishing step, the inside of the tube is brought to atmospheric pressure using N 2 gas, and the wafer is unloaded from the tube.
한편, 본 발명은 폴리실리콘막과 폴리실리콘막 간의 층간절연막 형성시에도 가능한데, 종래에는 저압화학기상증착 시스템에서 화학기상증착 산화막을 증착시킨 후 별도의 확산로에서 어닐링함에 비해 본 발명에서는 동일한 저압화학기상증착 시스템에서 SiH2Cl2가스와 N₂0 가스를 이용하여 화학기상증착 산화막을 증착시킨 후 연속적으로 N₂0 가스를 이용하여 어닐링함으로써 2개의 장비에서 웨이퍼를 이동하면서 진행할 때 유발되는 파티클 오염을 최소화할 수 있으며 설비의 단축을 이룰 수 있다.On the other hand, the present invention is also possible when forming an interlayer insulating film between the polysilicon film and the polysilicon film, conventionally the same low-pressure chemistry in the present invention compared to annealing in a separate diffusion furnace after depositing a chemical vapor deposition oxide film in a low-pressure chemical vapor deposition system Particle contamination caused by moving wafers in two devices by depositing chemical vapor deposition oxide film using SiH 2 Cl 2 gas and N ₂ 0 gas in an vapor deposition system, followed by annealing using N ₂ 0 gas continuously Can be minimized and equipment shortened.
상기와 같이 이루어지는 본 발명은 SiH2Cl2가스와 N₂0 가스를 이용하여 저압화학기상증착 시스템에서 화학기상증착 방식으로 실리콘막과 접촉되는 산화막을 형성함으로써 SiH2Cl2가스와 N₂0 가스를 이용하여 산화막을 형성할 때 SiH2Cl2에서 분해되어 나온 Cl기가 실리콘기판에 공급되어 기존의 TCA와 동일한 효과로 산화막의 특성을 향상시킨다.According to the present invention, the SiH 2 Cl 2 gas and the N ₂ 0 gas are formed by forming an oxide film in contact with the silicon film by chemical vapor deposition in a low pressure chemical vapor deposition system using SiH 2 Cl 2 gas and N ₂ 0 gas. When forming the oxide film using the Cl group decomposed from SiH 2 Cl 2 is supplied to the silicon substrate to improve the characteristics of the oxide film with the same effect as the conventional TCA.
또한, 산화막 증착 후 동일한 장비에서 N₂0 가스를 이용하여 어닐링함으로써 별도의 설비의 추가 없이 양질의 산화막 형성이 가능하다.In addition, by annealing using N ₂ 0 gas in the same equipment after the oxide film deposition, it is possible to form a good oxide film without the addition of additional equipment.
어닐링이 진행되는 과정에서 증착된 산화막이 강화되며 동시에 N₂산화를 통하여 확산되면서 산화막 내부의 불완전한 결합구조를 연결하는 역할을 할 뿐 아니라 산화막과 실리콘막의 경계면에서 SixOyNz 구조의 새로운 막을 형성하면서 산화막의 양질화가 가능하다.During the annealing process, the deposited oxide film is strengthened and simultaneously diffuses through N ₂ oxidation to connect the incomplete bonding structure inside the oxide film, forming a new film of SixOyNz structure at the interface between the oxide film and the silicon film. It is possible to paint.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940013722A KR0132381B1 (en) | 1994-06-17 | 1994-06-17 | Formation method of oxide film by chemical vapor deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940013722A KR0132381B1 (en) | 1994-06-17 | 1994-06-17 | Formation method of oxide film by chemical vapor deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960002472A KR960002472A (en) | 1996-01-26 |
KR0132381B1 true KR0132381B1 (en) | 1998-04-11 |
Family
ID=19385496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940013722A KR0132381B1 (en) | 1994-06-17 | 1994-06-17 | Formation method of oxide film by chemical vapor deposition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0132381B1 (en) |
-
1994
- 1994-06-17 KR KR1019940013722A patent/KR0132381B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR960002472A (en) | 1996-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7772643B2 (en) | Methods of fabricating semiconductor device having a metal gate pattern | |
US7727828B2 (en) | Method for fabricating a gate dielectric of a field effect transistor | |
US7601648B2 (en) | Method for fabricating an integrated gate dielectric layer for field effect transistors | |
US5940736A (en) | Method for forming a high quality ultrathin gate oxide layer | |
US20070077777A1 (en) | Method of forming a silicon oxynitride film with tensile stress | |
US20070093012A1 (en) | Method for fabricating a gate dielectric of a field effect transistor | |
US20080014759A1 (en) | Method for fabricating a gate dielectric layer utilized in a gate structure | |
KR101078498B1 (en) | Manufacturing method of insulator thin film | |
US7189661B2 (en) | Method of forming silicon oxynitride layer in semiconductor device and apparatus of forming the same | |
US20090258505A1 (en) | Semiconductor device manufacturing method | |
KR100729989B1 (en) | Method of forming insulation film on semiconductor substrate | |
US6740941B2 (en) | Semiconductor device including a gate insulating film made of high-dielectric-constant material | |
KR100541675B1 (en) | Method for fabricating dielectric layer | |
US6350707B1 (en) | Method of fabricating capacitor dielectric | |
KR0132381B1 (en) | Formation method of oxide film by chemical vapor deposition | |
US20210193468A1 (en) | Treatments To Improve Device Performance | |
US20080128833A1 (en) | High-Dielectric-Constant Film, Field-Effect Transistor and Semiconductor Integrated Circuit Device Using the Same, and Method for Producing High-Dielectric-Constant Film | |
WO2022187299A1 (en) | Treatments to improve device performance | |
KR0119965B1 (en) | Oxidation method of semiconductor device | |
KR100309125B1 (en) | Method of forming a gate oxide in a semiconductor device | |
US6232234B1 (en) | Method of reducing in film particle number in semiconductor manufacture | |
US7615500B2 (en) | Method for depositing film and method for manufacturing semiconductor device | |
Arienzo et al. | Silicon Nitride in Semiconductor Device Technology | |
KR100549584B1 (en) | Method for manufacturing isolation layer of semiconductor device | |
KR100329753B1 (en) | Method for forming isolation layer in semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20091126 Year of fee payment: 13 |
|
LAPS | Lapse due to unpaid annual fee |