KR100309125B1 - Method of forming a gate oxide in a semiconductor device - Google Patents

Method of forming a gate oxide in a semiconductor device Download PDF

Info

Publication number
KR100309125B1
KR100309125B1 KR1019990025748A KR19990025748A KR100309125B1 KR 100309125 B1 KR100309125 B1 KR 100309125B1 KR 1019990025748 A KR1019990025748 A KR 1019990025748A KR 19990025748 A KR19990025748 A KR 19990025748A KR 100309125 B1 KR100309125 B1 KR 100309125B1
Authority
KR
South Korea
Prior art keywords
thin film
film
oxide film
forming
depositing
Prior art date
Application number
KR1019990025748A
Other languages
Korean (ko)
Other versions
KR20010004969A (en
Inventor
주문식
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990025748A priority Critical patent/KR100309125B1/en
Publication of KR20010004969A publication Critical patent/KR20010004969A/en
Application granted granted Critical
Publication of KR100309125B1 publication Critical patent/KR100309125B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • H01L29/517
    • H01L29/518

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

본 발명은 필드 산화막에 의해 분리된 실리콘 기판 상부의 액티브 영역 표면을 시트-오프하여 자연산화막을 제거한 후 ALD 증착 장비에서 Al2O3박막을 증착하는 제 1 단계와, 상기 Al2O3박막을 반응로에서 N2O 분위기로 어닐 공정을 수행하여 상기 Al2O3박막 내의 결함 제거 및 상기 실리콘 기판과 상기 Al2O3박막사이에 옥시나이트라이드막을 형성하는 제 2 단계와, 상기 Al2O3박막 상부에 폴리 실리콘막을 증착한 후, 그 위에 WSix, TiSi2또는 텅스텐 막을 증착하여 워드라인을 형성하는 제 3 단계를 포함하여 이루어진 반도체 소자의 게이트 산화막 형성 방법을 제공한다.The present invention provides a first step of depositing an Al 2 O 3 thin film in an ALD deposition apparatus after removing a natural oxide film by sheet-offing an active region surface of an upper part of a silicon substrate separated by a field oxide film, and the Al 2 O 3 thin film. in a reaction with N 2 O atmosphere by performing the annealing process, the Al 2 O 3 and remove defects in the thin film, and a second step formed between the silicon substrate and the Al 2 O 3 thin film fluoride oxynitride, the Al 2 O A method of forming a gate oxide film of a semiconductor device, comprising: depositing a polysilicon film on an upper portion of a third thin film, and then depositing a WSix, TiSi 2, or tungsten film to form a word line.

Description

반도체 소자의 게이트 산화막 형성 방법{Method of forming a gate oxide in a semiconductor device}Method of forming a gate oxide film in a semiconductor device

본 발명은 반도체 소자의 게이트 산화막 형성 방법에 관한 것으로, 특히ALD(Atomic layer deposition) 방법으로 증착한 Al2O3박막에 N2O 어닐(Anneal)공정을 수행하여 고신뢰도, 저누설전류의 Al2O3박막 형성 및 Al2O3박막과 실리콘 기판 사이에 핫 캐리어 인젝션(Hot carrier injection)에 대해 내성이 큰 옥시나이트라이드막을 형성하여 전체적으로 고신뢰도 및 저누설전류의 게이트 유전체를 얻을 수 있는 반도체 소자의 게이트 산화막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a gate oxide film of a semiconductor device. In particular, an Al 2 O 3 thin film deposited by an ALD (Atomic layer deposition) method is subjected to an N 2 O annealing process to perform high reliability and low leakage current. 2 O 3 thin film is formed, and Al 2 O 3 to form a thin film with a film fluoride large resistance oxynitride against hot carrier injection (hot carrier injection) between the silicon substrate and overall reliability and semiconductor to obtain a gate dielectric of a low leakage current A method of forming a gate oxide film of an element is provided.

게이트 산화막의 두께가 얇아짐에 따라 디렉트 터널링(Direct tunneling)등으로 인하여 게이트 산화막을 통한 누설 전류가 크게 증가하는 등의 문제로 인하여 게이트 산화막의 두께를 40Å 이하로 낮추는데 있어서 어려움이 있다.As the thickness of the gate oxide film becomes thinner, there is a difficulty in reducing the thickness of the gate oxide film to 40 kΩ or less due to a problem such that leakage current through the gate oxide film is greatly increased due to direct tunneling.

이러한 단점을 보완하기 위해 종래의 열산화막으로 게이트 산화막을 사용하는 대신에 열산화막에 비해 유전상수가 커서 같은 유효산화막 두께를 위해 물질의 두께가 두꺼운 박막을 증착하여 디렉트 터널링에 의한 게이트 누설 전류를 줄일 수 있는 Al2O3박막(K=약 8.5)이 개발되고 있는 실정이다.To compensate for this drawback, instead of using a gate oxide as a conventional thermal oxide, a thin film of thick material is deposited for effective oxide thickness, which is larger than that of thermal oxide, thereby reducing gate leakage current due to direct tunneling. Al 2 O 3 thin film (K = about 8.5) is being developed.

이러한 Al2O3박막에 의한 게이트 유전체 형성 방법 중 H2O와 TMA(Al(CH3)3)을 사용한 ALD 방법이 있는데, 이 방법은 TMA 에 포함되어 있는 C(탄소)가 Al2O3박막 증착 후 제거되지 않고 박막에 남아있기 때문에 주의 깊은 열처리가 필요한 실정이다.Among the gate dielectric formation methods using the Al 2 O 3 thin film, there is an ALD method using H 2 O and TMA (Al (CH 3 ) 3 ), in which the C (carbon) contained in the TMA is Al 2 O 3. Careful heat treatment is required because the film is not removed after the deposition and remains in the film.

또한, 실리콘 기판위에 Al2O3박막을 곧바로 증착할 경우 Si/Al2O3계면에 굉장히 많은 인터페이스 상태가 형성될 가능성이 있고, 디바이스 동작시 핫 캐리어스트레스에 대한 내성이 약화될 가능성이 매우 많다.In addition, if Al 2 O 3 thin films are directly deposited on the silicon substrate, there is a possibility that a large number of interface states are formed at the Si / Al 2 O 3 interface, and the resistance to hot carrier stress is weakened during device operation. .

따라서, 본 발명은 ALD 방법으로 증착한 Al2O3박막에 N2O 어닐 공정을 수행함으로써, 상술한 단점을 해결할 수 있는 반도체 소자의 게이트 산화막 형성 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for forming a gate oxide film of a semiconductor device capable of solving the above-described disadvantages by performing an N 2 O annealing process on an Al 2 O 3 thin film deposited by an ALD method.

상술한 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 게이트 산화막 형성 방법은 필드 산화막에 의해 분리된 실리콘 기판 상부의 액티브 영역 표면을 시트-오프하여 자연산화막을 제거한 후 ALD 증착 장비에서 Al2O3박막을 증착하는 제 1 단계와, 상기 Al2O3박막을 반응로에서 N2O 분위기로 어닐 공정을 수행하여 상기 Al2O3박막 내의 결함 제거 및 상기 실리콘 기판과 상기 Al2O3박막사이에 옥시나이트라이드막을 형성하는 제 2 단계와, 상기 Al2O3박막 상부에 폴리 실리콘막을 증착한 후, 그 위에 WSix, TiSi2또는 텅스텐 막을 증착하여 워드라인을 형성하는 제 3 단계를 포함하여 이루어진 것을 특징으로 한다.In the method for forming a gate oxide film of a semiconductor device according to the present invention for achieving the above object, Al 2 O 3 in an ALD deposition apparatus after removing a natural oxide film by sheet-off the surface of the active region on the silicon substrate separated by the field oxide film a first step of depositing a thin film, the Al 2 O 3 thin film in a reaction with N 2 O atmosphere, performing an annealing process to remove defects in the Al 2 O 3 thin film and between the silicon substrate and the Al 2 O 3 thin film And a third step of forming an oxynitride film on the Al 2 O 3 thin film, and then forming a word line by depositing a WSix, TiSi 2 or tungsten film thereon. It is characterized by.

본 발명은 간단한 어닐 공정을 통해 신뢰성이 우수하며 게이트 누설전류가 작은 고유전체 게이트 박막을 형성할 수 있다.The present invention can form a high dielectric gate thin film having excellent reliability and a small gate leakage current through a simple annealing process.

도 1(a) 내지 도 1(c)는 본 발명에 따른 게이트 산화막 형성 방법을 설명하기 위해 도시한 소자의 단면도.1 (a) to 1 (c) are cross-sectional views of a device shown for explaining a method of forming a gate oxide film according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

1: 실리콘 기판 2: 필드산화막1: silicon substrate 2: field oxide film

3: 액티브 영역 4: Al2O3 3: active area 4: Al 2 O 3

5: H2O 6: TMA5: H 2 O 6: TMA

7: N2O 8: 옥시나이트라이드막7: N 2 O 8: oxynitride film

9: 폴리 실리콘 10: WSix 또는 TiSi2, W9: polysilicon 10: WSix or T i Si 2 , W

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

도 1(a) 내지 도 1(c)는 본 발명에 따른 게이트 산화막 형성 방법을 설명하기 위해 도시한 단면도이다.1 (a) to 1 (c) are cross-sectional views illustrating a method of forming a gate oxide film according to the present invention.

도 1(a)에서, 실리콘 기판(1) 상부의 필드 산화막(2)에 의해 분리된 액티브 영역(3)을 HF 에 의해 표면을 시트-오프(Sheet-off)하여 자연 산화막을 제거한 후 ALD 증착 장비에서 H2O(5) 와 TMA(6)(Al(CH3)3) 소스를 사용하여 Al2O3박막(4)을 50 내지 100Å 두께로 얇게 증착한다.In FIG. 1A, the active region 3 separated by the field oxide film 2 on the silicon substrate 1 is sheet-off the surface by HF to remove the native oxide film, and then ALD deposition. In the equipment, a thin film of Al 2 O 3 thin film (4) was deposited to a thickness of 50 to 100 μs using H 2 O (5) and TMA (6) (Al (CH 3 ) 3 ) sources.

도 1(b)에서, 증착된 Al2O3박막(4)을 반응로에서 N2O(7) 분위기로 어닐 공정을 수행한다. 이때, 어닐 공정 온도는 활성화 산소가 충분히 나오고 써멀 버지트(Thermal budget)을 낮게 가져가기 위해 800 내지 900℃에서 수행한다.In FIG. 1 (b), the deposited Al 2 O 3 thin film 4 is annealed in an N 2 O (7) atmosphere in a reactor. At this time, the annealing process temperature is carried out at 800 to 900 ℃ to get enough activated oxygen and lower the thermal budget (Thermal budget).

그리고, 반응로의 용적을 고려해서 N2O(7) 가스의 플로우 비는 5 내지 20ℓ로 하고, 압력은 감압 혹은 상압분위기에서 행한다. 이때 N2O(7)가 분해되어 NO와 활성화 산소가 발생하게 되는데 이때 발생한 활성화 산소가 Al2O3박막(4) 증착시 함유되어 있는 탄소(C)와 결합하여 CO 나 CO2형태로 변하여 제거되기 때문에 Al2O3박막(4)의 누설전류 소스를 제거해 주는 효과를 가져온다.In consideration of the volume of the reactor, the flow ratio of the N 2 O (7) gas is set to 5 to 20 l, and the pressure is performed in a reduced pressure or atmospheric pressure atmosphere. At this time, N 2 O (7) is decomposed to generate NO and activated oxygen. At this time, the activated oxygen is combined with carbon (C) contained in the deposition of Al 2 O 3 thin film (4) to form CO or CO 2 . Since it is removed, the effect of removing the leakage current source of the Al 2 O 3 thin film (4).

또한, 활성화 산소는 원자 크기가 작기때문에 증착이 빨라서 Al2O3박막(4) 밑부분까지 충분히 확산하여 탄소를 제거해줄 뿐만아니라, 실리콘 기판과 반응하여 SiO2막을 형성하여 인터페이스 상태가 상태적으로 적은 Si/SiO2계면을 만들게 되고, 함께 확산하여 들어간 NO 분자에 의해 이렇게 생성된 산화막이 질화되어 전체적으로 신뢰성이 우수한 아주 얇은 옥시나이트라이드막(8)을 형성하게 되어, 핫 캐리어 스트레스에 대한 내성을 증가시키게 된다. 또한, Al2O3박막(4)에도 NO가 반응하여 미결합 Al-O 본드(bond)에 N을 효과적으로 결합하여 Al2O3박막(4)의 신뢰성을 올릴 수 있다. 또한, 상기 Al2O3박막(4) 및 옥시나이트라이드막(8) 증착시 공정 시간을 줄이기 위해 ALD 증착 장비와 RTO를 클러스터(Cluster)화 시킨 시스템을 이용하여 증착한다.In addition, since activated oxygen has a small atomic size, deposition is fast, and it diffuses sufficiently to the bottom of the Al 2 O 3 thin film 4 to remove carbon, and also reacts with a silicon substrate to form an SiO 2 film to maintain an interface state. As a result, a small Si / SiO 2 interface is produced, and the oxide film thus formed is nitrided by the NO molecules diffused together to form a very thin oxynitride film (8) with excellent overall reliability, thereby improving resistance to hot carrier stress. Is increased. In addition, Al 2 O 3 thin film 4 also is NO can react to increase the reliability of the non-joined Al-O bond (bond) to effectively combine the N to Al 2 O 3 thin film (4). In addition, in order to reduce the process time when the Al 2 O 3 thin film 4 and the oxynitride film 8 are deposited, the ALD deposition apparatus and the RTO are deposited using a clustered system.

도 1(c)에서, Al2O3박막(4) 위에 폴리 실리콘막(9)을 증착한 후, 그 위에 WSix, TiSi2또는 W(텅스텐) 막(10)을 증착하여 워드라인을 형성한다.In FIG. 1 (c), a polysilicon film 9 is deposited on an Al 2 O 3 thin film 4, and then a WSix, TiSi 2 or W (tungsten) film 10 is deposited thereon to form a word line. .

상술한 바와 같이 본 발명은 고신뢰도 및 저누설전류의 고유전율의 게이트 유전체를 복잡한 공정을 거치지 않고 간단한 어닐 공정을 추가하여 형성시킬 수 있다. 전저 열산화막에 비해 상대적으로 유전상수가 큰 Al2O3박막을 증착하여 디렉트 터널링 전류에 의한 게이트 누설전류를 억제시킬 수 있다. 또한 Al2O3박막이 후속 N2O 가스에 의한 어닐 공정시 활성화 산소에 의해 Al2O3박막의 카본(Carbon)을 포함한 유기물이 제거되어 이에 의한 누설전류를 줄일 수 있고, 활성화 산소와 NO 분자에 의해 Al2O3박막과 실리콘 사이에 옥시나이트라이드막을 형성할 수 있어 계면 특성이 향상될 뿐만 아니라, 핫 캐리어 인잭션에 대한 내성을 증가시킬 수 있다. 또한, Al2O3박막에도 NO가 반응하여 미결합 Al-O 본드(bond)에 N을 효과적으로 결합하여 Al2O3박막의 신뢰성을 증가시켜 전반적으로 신뢰성이 향상된 고유전율을 가진 박막을 제조할 수 있다.As described above, the present invention can form a high dielectric constant gate dielectric of high reliability and low leakage current by adding a simple annealing process without a complicated process. The gate leakage current caused by the direct tunneling current can be suppressed by depositing an Al 2 O 3 thin film having a relatively high dielectric constant compared to the total low thermal oxide film. In addition, Al 2 O 3 thin film is subsequently N 2 O the organic material including carbon (Carbon) of Al 2 O 3 film by active oxygen during the annealing process by the gas is removed it is possible to reduce the leakage current due to, free radicals and NO By the molecule, an oxynitride film can be formed between the Al 2 O 3 thin film and the silicon, thereby improving the interfacial properties and increasing the resistance to hot carrier interaction. In addition, NO reacts to Al 2 O 3 thin film non-joined Al-O bond (bond) to effectively combine the N to Al 2 O increases the reliability of the third thin film to produce a thin film having an overall reliability enhanced by a high-k Can be.

Claims (4)

필드 산화막에 의해 분리된 실리콘 기판 상부의 액티브 영역 표면을 시트-오프하여 자연산화막을 제거한 후 ALD 증착 장비에서 Al2O3박막을 증착하는 제 1 단계와,A first step of depositing an Al 2 O 3 thin film in an ALD deposition apparatus by removing the natural oxide film by sheet-offing the surface of the active region on the silicon substrate separated by the field oxide film; 상기 Al2O3박막을 반응로에서 N2O 분위기로 어닐 공정을 수행하여 상기 Al2O3박막 내의 결함 제거 및 상기 실리콘 기판과 상기 Al2O3박막사이에 옥시나이트라이드막을 형성하는 제 2 단계와,The second is formed by performing the anneal process to the N 2 O atmosphere in a reaction of the Al 2 O 3 thin film wherein the Al 2 O 3 to remove defects in the thin film and the nitride film oxynitride between the silicon substrate and the Al 2 O 3 thin film Steps, 상기 Al2O3박막 상부에 폴리 실리콘막을 증착한 후, 그 위에 WSix, TiSi2또는 텅스텐 막을 증착하여 워드라인을 형성하는 제 3 단계를 포함하여 이루어진 것을 특징으로 하는 반도체 소자의 게이트 산화막 형성 방법.And depositing a polysilicon film on the Al 2 O 3 thin film and then depositing a WSix, TiSi 2, or tungsten film on the Al 2 O 3 thin film to form a word line. 제 1 항에 있어서,The method of claim 1, 상기 제 1 단계의 자연산화막은 HF 또는 BOE 으로 완전히 제거하는 것을 특징으로 하는 반도체 소자의 게이트 산화막 형성 방법.The method of forming a gate oxide film of a semiconductor device, characterized in that the natural oxide film of the first step is completely removed with HF or BOE. 제 1 항에 있어서,The method of claim 1, 상기 Al2O3박막은 50 내지 100Å 두께로 증착하는 것을 특징으로 하는 반도체 소자의 게이트 산화막 형성 방법.The Al 2 O 3 thin film is a gate oxide film forming method of a semiconductor device characterized in that the deposition to 50 to 100Å thick. 제 1 항에 있어서,The method of claim 1, 상기 제 1 및 제 2 단계 증착시 공정 시간을 줄이기 위해 ALD 증착 장비와 RTO를 클러스터화 시킨 시스템을 이용하여 증착하는 것을 특징으로 하는 반도체 소자의 게이트 산화막 형성 방법.A method of forming a gate oxide film of a semiconductor device, characterized in that to deposit using a system in which the ALD deposition equipment and the RTO clustered to reduce the process time during the first and second stage deposition.
KR1019990025748A 1999-06-30 1999-06-30 Method of forming a gate oxide in a semiconductor device KR100309125B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990025748A KR100309125B1 (en) 1999-06-30 1999-06-30 Method of forming a gate oxide in a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990025748A KR100309125B1 (en) 1999-06-30 1999-06-30 Method of forming a gate oxide in a semiconductor device

Publications (2)

Publication Number Publication Date
KR20010004969A KR20010004969A (en) 2001-01-15
KR100309125B1 true KR100309125B1 (en) 2001-11-01

Family

ID=19597656

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990025748A KR100309125B1 (en) 1999-06-30 1999-06-30 Method of forming a gate oxide in a semiconductor device

Country Status (1)

Country Link
KR (1) KR100309125B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522765B1 (en) * 2001-07-03 2005-10-19 주식회사 컴텍스 Manufacturing method of base for semiconductor device using material of GaN series
KR100609047B1 (en) * 2004-10-30 2006-08-09 주식회사 하이닉스반도체 Method of manufacturing semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431306B1 (en) * 2002-08-30 2004-05-12 주식회사 하이닉스반도체 Method for formig gate of semiconductor device using gate oxide made of double film of aluminium oxide and yttrium oxynitride
KR100524197B1 (en) 2003-04-29 2005-10-27 삼성전자주식회사 Single wafer type manufacturing device of semiconductor device and method of forming gate electrode and contact plug using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522765B1 (en) * 2001-07-03 2005-10-19 주식회사 컴텍스 Manufacturing method of base for semiconductor device using material of GaN series
KR100609047B1 (en) * 2004-10-30 2006-08-09 주식회사 하이닉스반도체 Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
KR20010004969A (en) 2001-01-15

Similar Documents

Publication Publication Date Title
US6245616B1 (en) Method of forming oxynitride gate dielectric
US6509283B1 (en) Thermal oxidation method utilizing atomic oxygen to reduce dangling bonds in silicon dioxide grown on silicon
US8071452B2 (en) Atomic layer deposition of hafnium lanthanum oxides
US5464783A (en) Oxynitride-dioxide composite gate dielectric process for MOS manufacture
US7704858B2 (en) Methods of forming nickel silicide layers with low carbon content
JPH11121453A (en) Manufacture of semiconductor device
KR960042954A (en) Method of forming ruthenium oxide film for diffusion barrier of semiconductor device
JP2003218108A (en) CVD DEPOSITION OF M-SiO GATE DIELECTRIC
KR20090077802A (en) Uv-assisted dielectric formation for devices with strained germanium-containing layers
US20070222003A1 (en) Semiconductor device and method of manufacturing the same
KR20050033831A (en) Manufacturing method of insulator film and insulator film, and manufacturing method of semiconductor device and semiconductor device
US4392299A (en) Method of manufacturing low resistance gates and interconnections
JP4563016B2 (en) Method for forming oxide film on composite surface of silicon substrate
KR100309125B1 (en) Method of forming a gate oxide in a semiconductor device
JP2003209110A (en) Method of manufacturing metal oxide nitride film, and insulated gate fet and method of manufacturing the same
US7160818B2 (en) Semiconductor device and method for fabricating same
JP4477981B2 (en) Manufacturing method of semiconductor device
US6579614B2 (en) Structure having refractory metal film on a substrate
US7358198B2 (en) Semiconductor device and method for fabricating same
KR100324822B1 (en) A method for fabricating a gate oxide of a semiconductor device
KR0119965B1 (en) Oxidation method of semiconductor device
KR100329745B1 (en) A method for forming gate dielectric layer using alumina
KR100380980B1 (en) Method of Forming Tungsten Gate
JPH11283975A (en) Method of forming thin and uniform thickness oxide film at low temperature
US20050170665A1 (en) Method of forming a high dielectric film

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090828

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee