JPWO2020242765A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020242765A5
JPWO2020242765A5 JP2021570755A JP2021570755A JPWO2020242765A5 JP WO2020242765 A5 JPWO2020242765 A5 JP WO2020242765A5 JP 2021570755 A JP2021570755 A JP 2021570755A JP 2021570755 A JP2021570755 A JP 2021570755A JP WO2020242765 A5 JPWO2020242765 A5 JP WO2020242765A5
Authority
JP
Japan
Prior art keywords
derived
constraints
peptide
reference target
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021570755A
Other languages
English (en)
Japanese (ja)
Other versions
JP2022535511A (ja
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/032715 external-priority patent/WO2020242765A1/en
Publication of JP2022535511A publication Critical patent/JP2022535511A/ja
Publication of JPWO2020242765A5 publication Critical patent/JPWO2020242765A5/ja
Pending legal-status Critical Current

Links

JP2021570755A 2019-05-31 2020-05-13 メソスケール操作されたペプチドおよび選択方法 Pending JP2022535511A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962855767P 2019-05-31 2019-05-31
US62/855,767 2019-05-31
PCT/US2020/032715 WO2020242765A1 (en) 2019-05-31 2020-05-13 Meso-scale engineered peptides and methods of selecting

Publications (2)

Publication Number Publication Date
JP2022535511A JP2022535511A (ja) 2022-08-09
JPWO2020242765A5 true JPWO2020242765A5 (zh) 2023-06-14

Family

ID=73553528

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021570755A Pending JP2022535511A (ja) 2019-05-31 2020-05-13 メソスケール操作されたペプチドおよび選択方法
JP2021571033A Pending JP2022535769A (ja) 2019-05-31 2020-05-13 メソスケールペプチドを操作するための機械学習ベースの装置およびそのための方法およびシステム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021571033A Pending JP2022535769A (ja) 2019-05-31 2020-05-13 メソスケールペプチドを操作するための機械学習ベースの装置およびそのための方法およびシステム

Country Status (7)

Country Link
US (3) US11545238B2 (zh)
EP (2) EP3976083A4 (zh)
JP (2) JP2022535511A (zh)
KR (2) KR20220041784A (zh)
CN (2) CN114585918A (zh)
CA (2) CA3142339A1 (zh)
WO (2) WO2020242765A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024521100A (ja) * 2021-05-21 2024-05-28 ペプトーン, リミテッド ポリペプチド構造の時空間的決定
CN114065620B (zh) * 2021-11-11 2022-06-03 四川大学 基于像素图表征和cnn的可解释性分子动力学轨迹分析方法
WO2023215887A1 (en) * 2022-05-06 2023-11-09 Dyno Therapeutics, Inc. System and methods for predicting features of biological sequences
CN115512763B (zh) * 2022-09-06 2023-10-24 北京百度网讯科技有限公司 多肽序列的生成方法、多肽生成模型的训练方法和装置
CN115881220B (zh) * 2023-02-15 2023-06-06 北京深势科技有限公司 一种抗体结构预测的处理方法和装置
CN116913395B (zh) * 2023-09-13 2023-11-28 青岛虹竹生物科技有限公司 一种构建小分子肽数据库的数字化方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP660698A0 (en) * 1998-10-21 1998-11-12 University Of Queensland, The A method of protein engineering
CA2377244A1 (en) * 1999-08-02 2001-02-08 Synt:Em S.A. Computational design methods for making molecular mimetics
WO2002064734A2 (en) * 2000-12-19 2002-08-22 Palatin Technologies, Inc. Identification of target-specific folding sites in peptides and proteins
EP1510959A3 (en) * 2001-08-10 2006-07-26 Xencor, Inc. Protein design automation for protein libraries
US20060020396A1 (en) * 2002-09-09 2006-01-26 Rene Gantier Rational directed protein evolution using two-dimensional rational mutagenesis scanning
US20070192033A1 (en) 2006-02-16 2007-08-16 Microsoft Corporation Molecular interaction predictors
US8050870B2 (en) 2007-01-12 2011-11-01 Microsoft Corporation Identifying associations using graphical models
US8374828B1 (en) * 2007-12-24 2013-02-12 The University Of North Carolina At Charlotte Computer implemented system for protein and drug target design utilizing quantified stability and flexibility relationships to control function
EP2640405A4 (en) * 2010-09-21 2015-04-15 Massachusetts Inst Technology TREATMENT AND / OR CHARACTERIZATION OF INFLUENZA; POLYPEPTIDES HA ADAPTED TO MAN
US20130090265A1 (en) * 2011-10-11 2013-04-11 Biolauncher Ltd. Systems and methods for generation of context-specific, molecular field-based amino acid substitution matrices
US10431325B2 (en) 2012-08-03 2019-10-01 Novartis Ag Methods to identify amino acid residues involved in macromolecular binding and uses therefor
WO2014082729A1 (en) * 2012-11-28 2014-06-05 Biontech Ag Individualized vaccines for cancer
CA2989383A1 (en) * 2014-07-07 2016-01-14 Yeda Research And Development Co. Ltd. Method of computational protein design
CN107708720A (zh) 2015-04-06 2018-02-16 苏伯多曼有限责任公司 含有从头结合结构域的多肽及其用途
US20180068054A1 (en) * 2016-09-06 2018-03-08 University Of Washington Hyperstable Constrained Peptides and Their Design
EP3568782A1 (en) 2017-01-13 2019-11-20 Massachusetts Institute Of Technology Machine learning based antibody design
WO2018201020A1 (en) * 2017-04-28 2018-11-01 University Of Washington Folded and protease-resistant polypeptides
WO2020102603A1 (en) * 2018-11-14 2020-05-22 Rubryc Therapeutics, Inc. Engineered cd25 polypeptides and uses thereof
EP3899954A4 (en) 2018-12-21 2022-09-14 BioNTech US Inc. METHODS AND SYSTEMS FOR PREDICTING HLA CLASS II SPECIFIC EPITOPES AND CHARACTERIZING CD4+ T CELLS

Similar Documents

Publication Publication Date Title
DiMaio et al. Refinement of protein structures into low-resolution density maps using rosetta
Park et al. Advances in computational protein design
CN114585918A (zh) 中尺度工程化肽和选择方法
JP2017526053A (ja) コンピュータ計算によるタンパク質設計方法
EP3880698A1 (en) Engineered cd25 polypeptides and uses thereof
JPWO2020242765A5 (zh)
Afshar et al. Investigating the high affinity and low sequence specificity of calmodulin binding to its targets
Shen et al. The folding energy landscape and phosphorylation: modeling the conformational switch of the NFAT regulatory domain
Pogozheva et al. Evolution and adaptation of single-pass transmembrane proteins
Le et al. Incorporating post translational modification information for enhancing the predictive performance of membrane transport proteins
Nakariyakul et al. A sequence-based computational approach to predicting PDZ domain-peptide interactions
Varela et al. Crowding differential evolution for protein structure prediction
Tufféry et al. A refined pH-dependent coarse-grained model for peptide structure prediction in aqueous solution
Liu et al. The interaction of DNA with multi-Cys2His2 zinc finger proteins
Schmidler et al. Bayesian protein structure prediction
Gromiha Distinct roles of conventional non-covalent and cation–π interactions in protein stability
Arunachalam et al. Protein structure prediction using mutually orthogonal Latin squares and a genetic algorithm
Li et al. Machine learning methods in prediction of protein palmitoylation sites: a brief review
Aita et al. Toward the fast blind docking of a peptide to a target protein by using a four-body statistical pseudo-potential
Varela et al. Combination of differential evolution and fragment-based replacements for protein structure prediction
WO1998048270A1 (en) Method of determining three-dimensional protein structure from primary protein sequence
Elkin et al. Computational design of D-peptide inhibitors of hepatitis delta antigen dimerization
Al–Gharabli et al. Artificial neural networks for dihedral angles prediction in enzyme loops: a novel approach
DHAWANJEWAR Statistical Potentials for Prediction of Protein-Protein Interactions
Monzon et al. Exploring Protein Intrinsic Disorder with MobiDB