JPWO2020235643A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020235643A5
JPWO2020235643A5 JP2021520851A JP2021520851A JPWO2020235643A5 JP WO2020235643 A5 JPWO2020235643 A5 JP WO2020235643A5 JP 2021520851 A JP2021520851 A JP 2021520851A JP 2021520851 A JP2021520851 A JP 2021520851A JP WO2020235643 A5 JPWO2020235643 A5 JP WO2020235643A5
Authority
JP
Japan
Prior art keywords
alloy strip
resin film
nanocrystal
producing
nanocrystal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021520851A
Other languages
Japanese (ja)
Other versions
JP7074258B2 (en
JPWO2020235643A1 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2020/020159 external-priority patent/WO2020235643A1/en
Publication of JPWO2020235643A1 publication Critical patent/JPWO2020235643A1/ja
Publication of JPWO2020235643A5 publication Critical patent/JPWO2020235643A5/ja
Application granted granted Critical
Publication of JP7074258B2 publication Critical patent/JP7074258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上記課題を解決するための具体的手段には、以下の態様が含まれる。
<1> ナノ結晶化が可能な非晶質合金薄帯を用意する工程と、上記非晶質合金薄帯に張力を付与した状態でナノ結晶化の熱処理を行い、ナノ結晶合金薄帯を得る工程と、樹脂フィルム上に接着層を介して上記ナノ結晶合金薄帯を保持させる工程と、を備える、樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<2> 上記ナノ結晶合金薄帯の128kHzにおける交流比透磁率μrは、100以上2000以下である、<1>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<3> 上記樹脂フィルム上に、上記ナノ結晶合金薄帯を複数積み重ねる工程を備える、<1>又は<2>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<4> 上記複数積み重ねられたナノ結晶合金薄帯間に接着層を備える、<3>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<5> 上記非晶質合金薄帯は、ロール冷却により製造された長尺の非晶質合金薄帯であり、上記ナノ結晶合金薄帯を得る工程は、上記非晶質合金薄帯に、上記非晶質合金薄帯の長手方向に張力を付与しつつ、上記非晶質合金薄帯を上記長手方向に進行させて、上記非晶質合金薄帯に対してナノ結晶化の熱処理を連続的に行う工程を備える、<1>~<4>のいずれか1つに記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<6> 上記ナノ結晶合金薄帯にクラックを形成する工程を備える、<1>~<5>のいずれか1つに記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<7> 上記ナノ結晶合金薄帯にクラックを形成する工程は、上記ナノ結晶合金薄帯に直接外力を付与する工程を有する<6>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<8> 上記ナノ結晶合金薄帯は、一般式:(Fe1-aMa)100-x-y-z-α-β-γCuxSiyBzM’αM”βXγ(原子%)により表される組成を有し、上記一般式中、MはCo及び/又はNiであり、M’はNb、Mo、Ta、Ti、Zr、Hf、V、Cr、Mn及びWからなる群から選ばれた少なくとも1種の元素であり、M”はAl、白金族元素、Sc、希土類元素、Zn、Sn、及びReからなる群から選ばれた少なくとも1種の元素であり、XはC、Ge、P、Ga、Sb、In、Be、及びAsからなる群から選ばれた少なくとも1種の元素であり、a、x、y、z、α、β及びγはそれぞれ0≦a≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、0≦α≦20、0≦β≦20及び0≦γ≦20を満たす、<1>~<7>のいずれか1つに記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<9> 上記一般式において、a、x、y、z、α、β及びγは、それぞれ0≦a≦0.1、0.7≦x≦1.3、12≦y≦17、5≦z≦10、1.5≦α≦5、0≦β≦1及び0≦γ≦1である、<8>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
Specific means for solving the above problems include the following aspects.
<1> A step of preparing an amorphous alloy strip capable of nanocrystallization and a heat treatment for nanocrystallization in a state where tension is applied to the above amorphous alloy strip to obtain a nanocrystal alloy strip. A method for producing a nanocrystalline alloy strip with a resin film, comprising a step of holding the nanocrystalline alloy strip on a resin film via an adhesive layer.
<2> The method for producing a nanocrystal alloy thin band with a resin film according to <1>, wherein the AC specific magnetic permeability μr of the nanocrystal alloy thin band at 128 kHz is 100 or more and 2000 or less.
<3> The method for producing a nanocrystal alloy strip with a resin film according to <1> or <2>, comprising a step of stacking a plurality of the nanocrystal alloy strips on the resin film.
<4> The method for producing a nanocrystal alloy strip with a resin film according to <3>, wherein an adhesive layer is provided between the plurality of stacked nanocrystal alloy strips.
<5> The amorphous alloy strip is a long amorphous alloy strip manufactured by roll cooling, and the step of obtaining the nanocrystalline alloy strip is performed by using the amorphous alloy strip. While applying tension in the longitudinal direction of the amorphous alloy strip, the amorphous alloy strip is advanced in the longitudinal direction, and the heat treatment for nanocrystallization is continuously applied to the amorphous alloy strip. The method for producing a nanocrystalline alloy ribbon with a resin film according to any one of <1> to <4>, which comprises a step of performing the same.
<6> The method for producing a nanocrystal alloy strip with a resin film according to any one of <1> to <5>, comprising a step of forming cracks in the nanocrystal alloy strip.
<7> The method for producing a nanocrystal alloy strip with a resin film according to <6>, wherein the step of forming a crack in the nanocrystal alloy strip has a step of directly applying an external force to the nanocrystal alloy strip.
<8> The nanocrystal alloy strip has a composition represented by the general formula: (Fe1-aMa) 100-x-y-z-α-β-γCuxSiyBzM'αM "βXγ (atomic%), and is described above. In the general formula, M is Co and / or Ni, and M'is at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W. , M ”is at least one element selected from the group consisting of Al, platinum group element, Sc, rare earth element, Zn, Sn, and Re, and X is C, Ge, P, Ga, Sb, In, It is at least one element selected from the group consisting of Be and As, and a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.5 and 0.1 ≦ x ≦ 3, respectively. Any one of <1> to <7> that satisfies 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, 5 ≦ y + z ≦ 30, 0 ≦ α ≦ 20, 0 ≦ β ≦ 20 and 0 ≦ γ ≦ 20. The method for manufacturing a nanocrystalline alloy strip with a resin film according to.
<9> In the above general formula, a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.1, 0.7 ≦ x ≦ 1.3, 12 ≦ y ≦ 17, 5 ≦, respectively. The method for producing a nanocrystal alloy strip with a resin film according to <8>, wherein z ≦ 10, 1.5 ≦ α ≦ 5, 0 ≦ β ≦ 1 and 0 ≦ γ ≦ 1.

このナノ結晶合金薄帯は、例えば、一般式:(Fe1-aMa)100-x-y-z-α-β-γCuxSiyBzM’αM”βXγ(原子%)により表される組成を有する。上記一般式中、MはCo及び/又はNiであり、M’はNb、Mo、Ta、Ti、Zr、Hf、V、Cr、Mn及びWからなる群から選ばれた少なくとも1種の元素、M”はAl、白金族元素、Sc、希土類元素、Zn、Sn、及びReからなる群から選ばれた少なくとも1種の元素、XはC、Ge、P、Ga、Sb、In、Be、及びAsからなる群から選ばれた少なくとも1種の元素、a、x、y、z、α、β及びγはそれぞれ0≦a≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、0≦α≦20、0≦β≦20及び0≦γ≦20により表される組成を有するものを使用することができる。好ましくは、上記一般式において、a、x、y、z、α、β及びγは、それぞれ0≦a≦0.1、0.7≦x≦1.3、12≦y≦17、5≦z≦10、1.5≦α≦5、0≦β≦1及び0≦γ≦1を満たす範囲である。
なお、ナノ結晶化が可能な非晶質合金薄帯を用意する工程とは、ナノ結晶化が可能な非晶質合金薄帯を製造してもよいし、購入してもよい。
This nanocrystal alloy strip has a composition represented by, for example, the general formula: (Fe1-aMa) 100-x-y-z-α-β-γCuxSiyBzM'αM "βXγ (atomic%). Among them, M is Co and / or Ni, M'is at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W, and M'is At least one element selected from the group consisting of Al, platinum group element, Sc, rare earth element, Zn, Sn, and Re, X is composed of C, Ge, P, Ga, Sb, In, Be, and As. At least one element selected from the group, a, x, y, z, α, β and γ, has 0 ≦ a ≦ 0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦, respectively. Those having a composition represented by z ≦ 25, 5 ≦ y + z ≦ 30, 0 ≦ α ≦ 20, 0 ≦ β ≦ 20 and 0 ≦ γ ≦ 20 can be used. Preferably, in the above general formula, a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.1, 0.7 ≦ x ≦ 1.3, 12 ≦ y ≦ 17, 5 ≦, respectively. It is a range that satisfies z ≦ 10, 1.5 ≦ α ≦ 5, 0 ≦ β ≦ 1 and 0 ≦ γ ≦ 1.
In addition, in the step of preparing the amorphous alloy strip capable of nanocrystallization, the amorphous alloy strip capable of nanocrystallization may be manufactured or purchased.

また、ナノ結晶化の熱処理に伝熱媒体を用いる場合、伝熱媒体としては、例えば、プレート、ツインロール等が挙げられるが、非晶質合金薄帯と接触する面積が大きい、プレート状の伝熱媒体が好ましい。プレート状の伝熱媒体の接触面は、平面であることが好ましいが、多少の曲面が設けられていてもよい。また、伝熱媒体の合金薄帯との接触面に吸引孔を設け、吸引孔において減圧吸引することを可能としてもよい。これにより、合金薄帯を伝熱媒体の吸引孔を有する面に吸引吸着させることができ、合金薄帯の伝熱媒体への接触性が向上し、熱処理の効率を向上できる。 When a heat transfer medium is used for the heat treatment of nanocrystallization, examples of the heat transfer medium include plates and twin rolls, but the heat transfer medium has a large contact area with the amorphous alloy strip and is in the form of a plate. Heat transfer medium is preferred. The contact surface of the plate-shaped heat transfer medium is preferably a flat surface, but a slightly curved surface may be provided. Further, a suction hole may be provided on the contact surface of the heat transfer medium with the alloy strip to enable vacuum suction in the suction hole. As a result, the alloy strip can be suction-adsorbed to the surface of the heat transfer medium having the suction holes, the contact property of the alloy strip with the heat transfer medium can be improved, and the efficiency of heat treatment can be improved.

また、伝熱媒体の材質としては、例えば、銅、銅合金(青銅、真鍮等)、アルミニウム、鉄、鉄合金(ステンレス等)などが挙げられる。このうち、銅、銅合金、又はアルミニウムが、熱伝導率(熱伝達率)が高く好ましい。
伝熱媒体は、Niめっき、Agめっき等のめっき処理が施されていてもよい。
また、この伝熱媒体を加熱する手段を別途設けておき、加熱された伝熱媒体と非晶質合金薄帯とを接触させて、非晶質合金薄帯を加熱して、熱処理することができる。また、伝熱媒体の周りを任意の部材で囲ってもよい。
また、本実施形態では、上記した到達温度まで昇温後、伝熱媒体上にて、ナノ結晶合金薄帯の温度を一定時間保持してもよい。
また、本実施形態では、得られたナノ結晶合金薄帯を(好ましくは室温まで)冷却することが好ましい。
また、本実施形態は、得られたナノ結晶合金薄帯(好ましくは上記冷却後のナノ結晶合金薄帯)を巻き取ることにより、ナノ結晶合金薄帯の巻回体を得ることを含んでもよい。
Examples of the material of the heat transfer medium include copper, copper alloys (bronze, brass, etc.), aluminum, iron, iron alloys (stainless steel, etc.) and the like. Of these, copper, copper alloy, or aluminum is preferable because of its high thermal conductivity (heat transfer coefficient).
The heat transfer medium may be plated with Ni plating, Ag plating, or the like.
Further, a means for heating the heat transfer medium may be separately provided, and the heated heat transfer medium may be brought into contact with the amorphous alloy strip to heat the amorphous alloy strip for heat treatment. can. Further, the heat transfer medium may be surrounded by any member.
Further, in the present embodiment, after raising the temperature to the above-mentioned reached temperature, the temperature of the nanocrystal alloy strip may be maintained for a certain period of time on the heat transfer medium.
Further, in the present embodiment, it is preferable to cool the obtained nanocrystalline alloy strip (preferably to room temperature).
Further, the present embodiment may include winding the obtained nanocrystal alloy strip (preferably the above-cooled nanocrystal alloy strip) to obtain a wound body of the nanocrystal alloy strip. ..

なお、本実施形態では、非晶質合金薄帯で構成されたロール状の巻回体から非晶質合金薄帯を巻き出し、その非晶質合金薄帯に張力を加えながら、非晶質合金薄帯を走行させ、その走行する非晶質合金薄帯を伝熱媒体に接触させて加熱し、その加熱による熱処理によりナノ結晶化し、ナノ結晶合金薄帯を得て、そのナノ結晶合金薄帯をロール状の巻回体に巻き取る、連続ラインを設けてナノ結晶合金薄帯を作製することもできる。 In the present embodiment, the amorphous alloy strip is unwound from a roll-shaped winding body composed of the amorphous alloy strip, and the amorphous alloy strip is subjected to tension while being amorphous. The quality alloy strip is run, the running amorphous alloy strip is brought into contact with a heat transfer medium and heated, and nanocrystallized by heat treatment by the heating to obtain a nanocrystal alloy strip, and the nanocrystal alloy is obtained. It is also possible to prepare a nanocrystalline alloy thin band by providing a continuous line in which the thin band is wound around a roll-shaped winding body.

ナノ結晶合金薄帯は、ナノ結晶合金薄帯を樹脂フィルムに保持した状態でローラー等の部材で加圧するなどして外力を加えるクラック処理を施すことができる。これにより、ナノ結晶合金薄帯を定形、あるいは不定形に複数の個片に分割しても構わない。この場合、クラック処理されたナノ結晶合金薄帯の個片等が樹脂フィルムから脱落しない様に、クラック処理されたナノ結晶合金薄帯を他の樹脂フィルムや接着層等の被覆層で覆って、挟み込むのが好ましい。ナノ結晶合金薄帯は、脆化し加圧によって比較的容易にクラックを生じさせることが出来るものの、従来は透磁率を十分に低下させることができなかった。しかし本開示では、張力を付与した状態でナノ結晶化の熱処理を行ったナノ結晶合金薄帯を用いており、このナノ結晶合金薄帯は透磁率が小さいため、128kHzでの交流比透磁率μrを100以上2000以下の範囲に簡易に調整できる。本開示におけるクラックとは、合金薄帯に形成される磁気的なギャップを指し、例えば、合金薄帯の割れ及び/又はひびが包含される。 The nanocrystal alloy strip can be cracked by applying an external force by pressing the nanocrystal alloy strip with a member such as a roller while holding the nanocrystal alloy strip on the resin film. Thereby, the nanocrystal alloy strip may be divided into a plurality of pieces in a fixed shape or an irregular shape. In this case, the cracked nanocrystalline alloy strip is covered with a coating layer such as another resin film or an adhesive layer so that the cracked nanocrystalline alloy strips do not fall off from the resin film. It is preferable to sandwich it. Although the nanocrystal alloy strip is brittle and can be cracked relatively easily by pressurization, the magnetic permeability has not been sufficiently reduced in the past. However, in the present disclosure, a nanocrystal alloy strip that has been heat-treated for nanocrystallization under tension is used, and since this nanocrystal alloy strip has a small magnetic permeability , the AC specific magnetic permeability at 128 kHz μr. Can be easily adjusted to the range of 100 or more and 2000 or less. The crack in the present disclosure refers to a magnetic gap formed in the alloy strip, including, for example, cracks and / or cracks in the alloy strip.

図3(d)は、端部の外形が図形縦方向に対してθ°傾いた(図3(d)では45°傾いた)線状の凸状部材と、-θ°傾いた(図3(d)では-45°傾いた)線状の凸状部材を用いた場合の、外力が加えられる箇所を概念的に示すものである。本図においては、外力が加えられる箇所は、それぞれ不連続、かつ、一方の線状の外力が加えられる箇所は、その延長線上において、他方の外力が加えられる箇所の両端の間で交差するように、配置されている。
図3(e)は、端部の外形が図形縦方向に対してθ°傾いた(図3(e)では45°傾いた)線状の凸状部材と、-θ°傾いた(図3(e)では-45°傾いた)線状の凸状部材を用いた場合の、外力が加えられる箇所を概念的に示すものである。本図においては、外力が加えられる箇所は、それぞれ不連続、かつ、傾いたマトリクス状になるように配置されている。
図3(f)は、端部の外形が図形縦方向に線状の凸状部材と、横方向に線状の凸状部材をそれぞれ用いた場合の、外力が加えられる箇所を概念的に示すものであり、図3(c)に対し、位置関係を変えたものである。凸状部材の配置は、図に示すものに限られず、適宜設定することができる。
これらの外力が加えられる箇所は、この外力が加えられる箇所と全く同一の形態のクラックが形成されることが望ましい。しかしながら、その他のクラックが形成される場合や、同一形態のクラックが形成されない(部分的にしかクラックが形成されない)場合があってもよい。
また、クラックを線状のものとし、複数のクラックを連続的に繋がるように形成しても良い。
In FIG. 3D, the outer shape of the end portion is tilted by θ ° with respect to the vertical direction of the figure (inclined by 45 ° in FIG. 3D), and the linear convex member is tilted by −θ ° (FIG. 3). (D) conceptually shows a place where an external force is applied when a linear convex member (tilted by −45 °) is used. In this figure, the points where the external force is applied are discontinuous, and the points where one linear external force is applied intersect between both ends of the extension line of the other where the external force is applied. Is placed in.
In FIG. 3 (e), a linear convex member whose outer shape of the end portion is tilted by θ ° with respect to the vertical direction of the figure (tilted by 45 ° in FIG. 3 (e)) and a linear convex member tilted by −θ ° (FIG. 3). (E) conceptually shows a place where an external force is applied when a linear convex member (tilted by −45 °) is used. In this figure, the locations where the external force is applied are arranged so as to form a discontinuous and inclined matrix.
FIG. 3 (f) conceptually shows a place where an external force is applied when an convex member whose outer shape is linear in the vertical direction of the figure and a convex member whose outer shape is linear in the horizontal direction are used. It is a thing, and the positional relationship is changed with respect to FIG. 3 (c). The arrangement of the convex members is not limited to that shown in the figure, and can be appropriately set.
It is desirable that cracks having exactly the same shape as the places where the external force is applied are formed in the places where the external force is applied. However, there may be cases where other cracks are formed or cracks of the same form are not formed (cracks are only partially formed).
Further, the cracks may be linear and formed so that a plurality of cracks are continuously connected.

・工程(2)「ナノ結晶合金薄帯に直接外力を付与してクラックを形成する工程」
クラック用テープに接着されたナノ結晶合金薄帯4に、クラッキングロール5により、直接外力が付与されてクラックが形成される。クラッキングロール5においては、凸状部材が周面に規則的に配置されている。クラックを形成する際、クラッキングロールからの外力を逃がさないよう、リリースフィルム1B側に、ナノ結晶合金薄帯4をクラッキングロール側に押し付ける圧縮ロールを配置することもできる。
-Step (2) "Step of directly applying an external force to the nanocrystal alloy strip to form cracks"
A crack is formed by directly applying an external force to the nanocrystal alloy strip 4 adhered to the crack tape by the cracking roll 5. In the cracking roll 5, convex members are regularly arranged on the peripheral surface. When forming cracks, a compression roll that presses the nanocrystal alloy strip 4 against the cracking roll side may be arranged on the release film 1B side so as not to let the external force from the cracking roll escape.

[樹脂フィルム付きナノ結晶合金薄帯の製造]
次に、図4に示される構成要素を有する製造装置を用いて、PET製樹脂フィルムと接着層とを含む2層構造を有する樹脂フィルム上に、ナノ結晶合金薄帯と接着層とを含む2層構造を有する4つのシート部材を順次積層した。以上の手順によって樹脂フィルム付きナノ結晶合金薄帯を製造した。樹脂フィルム付きナノ結晶合金薄帯に含まれる各ナノ結晶合金薄帯には、クラックが形成されてい。樹脂フィルム付きナノ結晶合金薄帯を用いて測定したナノ結晶合金薄帯の交流比透磁率μrは表1で示したとおりである。
[Manufacturing of nanocrystalline alloy strips with resin film]
Next, using the manufacturing apparatus having the constituent elements shown in FIG. 4, the nanocrystal alloy strip and the adhesive layer are included on the resin film having the two-layer structure including the PET resin film and the adhesive layer. Four sheet members having a layered structure were sequentially laminated. A nanocrystalline alloy strip with a resin film was manufactured by the above procedure. Cracks were formed in each nanocrystal alloy strip contained in the nanocrystal alloy strip with a resin film. The AC relative magnetic permeability μr of the nanocrystal alloy strip measured using the nanocrystal alloy strip with the resin film is as shown in Table 1.

Claims (8)

ナノ結晶化が可能な非晶質合金薄帯を用意する工程と、
前記非晶質合金薄帯に張力を付与した状態でナノ結晶化の熱処理を行い、ナノ結晶合金薄帯を得る工程と、
樹脂フィルム上に接着層を介して前記ナノ結晶合金薄帯を保持させる工程と、
を備え、前記ナノ結晶合金薄帯の128kHzにおける交流比透磁率μrは、100以上2000以下である、樹脂フィルム付きナノ結晶合金薄帯の製造方法。
The process of preparing an amorphous alloy strip capable of nanocrystallization, and
A step of performing a heat treatment for nanocrystallization in a state where tension is applied to the amorphous alloy strip to obtain a nanocrystal alloy strip.
The step of holding the nanocrystal alloy strip on the resin film via the adhesive layer, and
The method for producing a nanocrystal alloy thin band with a resin film , wherein the AC specific magnetic permeability μr at 128 kHz of the nanocrystal alloy thin band is 100 or more and 2000 or less .
前記樹脂フィルム上に、前記ナノ結晶合金薄帯を複数積み重ねる工程を備える、請求項1に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The method for producing a nanocrystal alloy strip with a resin film according to claim 1 , further comprising a step of stacking a plurality of the nanocrystal alloy strips on the resin film. 前記複数積み重ねられたナノ結晶合金薄帯間に接着層を備える、請求項2に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The method for producing a nanocrystal alloy strip with a resin film according to claim 2, wherein an adhesive layer is provided between the plurality of stacked nanocrystal alloy strips. 前記非晶質合金薄帯は、ロール冷却により製造された長尺の非晶質合金薄帯であり、
前記ナノ結晶合金薄帯を得る工程は、前記非晶質合金薄帯に、前記非晶質合金薄帯の長手方向に張力を付与しつつ、前記非晶質合金薄帯を前記長手方向に進行させて、前記非晶質合金薄帯に対してナノ結晶化の熱処理を連続的に行う工程を備える、請求項1~請求項のいずれか1項に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
The amorphous alloy strip is a long amorphous alloy strip manufactured by roll cooling.
In the step of obtaining the nano-crystal alloy strip, the amorphous alloy strip is advanced in the longitudinal direction while applying tension to the amorphous alloy strip in the longitudinal direction. The nano-crystal alloy thin band with a resin film according to any one of claims 1 to 3 , further comprising a step of continuously performing a heat treatment for nano-crystallization on the amorphous alloy thin band. Manufacturing method.
前記ナノ結晶合金薄帯にクラックを形成する工程を備える、請求項1~請求項のいずれか1項に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The method for producing a nanocrystalline alloy strip with a resin film according to any one of claims 1 to 4 , further comprising a step of forming cracks in the nanocrystal alloy strip. 前記ナノ結晶合金薄帯にクラックを形成する工程は、前記ナノ結晶合金薄帯に直接外力を付与する工程を有する請求項に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The method for producing a nanocrystal alloy strip with a resin film according to claim 5 , wherein the step of forming a crack in the nanocrystal alloy strip is a step of directly applying an external force to the nanocrystal alloy strip. 前記ナノ結晶合金薄帯は、一般式:(Fe1-a100-x-y-z-α-β-γCuSiM’αM”βγ(原子%)により表される組成を有し、前記一般式中、MはCo及び/又はNiであり、M’はNb、Mo、Ta、Ti、Zr、Hf、V、Cr、Mn及びWからなる群から選ばれた少なくとも1種の元素であり、M”はAl、白金族元素、Sc、希土類元素、Zn、Sn、及びReからなる群から選ばれた少なくとも1種の元素であり、XはC、Ge、P、Ga、Sb、In、Be、及びAsからなる群から選ばれた少なくとも1種の元素であり、a、x、y、z、α、β及びγはそれぞれ0≦a≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、0≦α≦20、0≦β≦20及び0≦γ≦20を満たす、請求項1~請求項のいずれか1項に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The nanocrystal alloy strip has a general formula: (Fe 1-a M a ) 100-x-y-z-α-β-γ Cu x S y B z M'α M " β X γ (atomic%). In the above general formula, M is Co and / or Ni, and M'is composed of Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W. At least one selected element, M "is at least one element selected from the group consisting of Al, platinum group elements, Sc, rare earth elements, Zn, Sn, and Re, and X is C, It is at least one element selected from the group consisting of Ge, P, Ga, Sb, In, Be, and As, and a, x, y, z, α, β, and γ are 0≤a≤0. 5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, 5 ≦ y + z ≦ 30, 0 ≦ α ≦ 20, 0 ≦ β ≦ 20 and 0 ≦ γ ≦ 20. The method for producing a nanocrystalline alloy strip with a resin film according to any one of claims 1 to 6 . 前記一般式において、a、x、y、z、α、β及びγは、それぞれ0≦a≦0.1、0.7≦x≦1.3、12≦y≦17、5≦z≦10、1.5≦α≦5、0≦β≦1及び0≦γ≦1である、請求項に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 In the above general formula, a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.1, 0.7 ≦ x ≦ 1.3, 12 ≦ y ≦ 17, 5 ≦ z ≦ 10, respectively. , 1.5 ≦ α ≦ 5, 0 ≦ β ≦ 1 and 0 ≦ γ ≦ 1, the method for producing a nanocrystal alloy strip with a resin film according to claim 7 .
JP2021520851A 2019-05-21 2020-05-21 Manufacturing method of nanocrystalline alloy strip with resin film Active JP7074258B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2019095279 2019-05-21
JP2019095278 2019-05-21
JP2019095278 2019-05-21
JP2019095279 2019-05-21
PCT/JP2020/020159 WO2020235643A1 (en) 2019-05-21 2020-05-21 Production method for nanocrystalline alloy ribbon having resin film

Publications (3)

Publication Number Publication Date
JPWO2020235643A1 JPWO2020235643A1 (en) 2020-11-26
JPWO2020235643A5 true JPWO2020235643A5 (en) 2022-03-07
JP7074258B2 JP7074258B2 (en) 2022-05-24

Family

ID=73458512

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2021520851A Active JP7074258B2 (en) 2019-05-21 2020-05-21 Manufacturing method of nanocrystalline alloy strip with resin film
JP2021520850A Active JP7409376B2 (en) 2019-05-21 2020-05-21 Method for manufacturing alloy ribbon laminate and apparatus for manufacturing alloy ribbon laminate
JP2023083520A Pending JP2023103450A (en) 2019-05-21 2023-05-19 Magnetic sheet and method for producing magnetic sheet

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021520850A Active JP7409376B2 (en) 2019-05-21 2020-05-21 Method for manufacturing alloy ribbon laminate and apparatus for manufacturing alloy ribbon laminate
JP2023083520A Pending JP2023103450A (en) 2019-05-21 2023-05-19 Magnetic sheet and method for producing magnetic sheet

Country Status (6)

Country Link
US (2) US20220293313A1 (en)
EP (1) EP3974546A4 (en)
JP (3) JP7074258B2 (en)
CN (2) CN113748473B (en)
TW (2) TW202108787A (en)
WO (2) WO2020235643A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117616495A (en) * 2021-11-04 2024-02-27 三星电子株式会社 Display system and driving method of display module
JP2023144882A (en) 2022-03-28 2023-10-11 株式会社プロテリアル Magnetic sheet, rolled magnetic sheet, and multilayer magnetic sheet
EP4254448A1 (en) 2022-03-28 2023-10-04 Proterial, Ltd. Multilayer magnetic sheet
WO2023190770A1 (en) * 2022-03-30 2023-10-05 株式会社プロテリアル Method for producing magnetic sheet
WO2023190963A1 (en) * 2022-03-30 2023-10-05 株式会社プロテリアル Method for manufacturing nanocrystal alloy ribbon, and method for manufacturing magnetic sheet
JP7424549B1 (en) 2022-03-30 2024-01-30 株式会社プロテリアル Nanocrystalline alloy ribbon and magnetic sheet
JP2023152053A (en) 2022-04-01 2023-10-16 株式会社プロテリアル Magnetic sheet, multilayer magnetic sheet, and manufacturing method of magnetic sheet
EP4254442A1 (en) 2022-04-01 2023-10-04 Proterial, Ltd. Multilayer magnetic sheet
JP2023155003A (en) 2022-04-08 2023-10-20 株式会社プロテリアル multilayer magnetic sheet
JP2023155004A (en) 2022-04-08 2023-10-20 株式会社プロテリアル multilayer magnetic sheet
JP2023155005A (en) 2022-04-08 2023-10-20 株式会社プロテリアル multilayer magnetic sheet
JP2024009722A (en) 2022-07-11 2024-01-23 株式会社プロテリアル Manufacturing method of magnetic sheet and manufacturing device of magnetic sheet

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227156A (en) * 1985-04-01 1986-10-09 Toa Kikai Seisakusho:Kk Continuous heat treating apparatus for nonferrous metal sheet
JPH07335450A (en) * 1994-06-10 1995-12-22 Hitachi Metals Ltd Compact transformer, inverter circuit, and discharge tube lighting circuit
FR2823507B1 (en) * 2001-04-12 2004-03-19 Imphy Ugine Precision METHOD FOR MANUFACTURING A STRIP OF NANOCRYSTALLINE MATERIAL, METHOD AND DEVICE FOR MANUFACTURING A MAGNETIC CORE, MAGNETIC CORE AND USE OF THE MAGNETIC CORE AS AN ELEMENT OF AN INDUCTIVE COMPONENT
US6830634B2 (en) * 2002-06-11 2004-12-14 Sensormatic Electronics Corporation Method and device for continuous annealing metallic ribbons with improved process efficiency
JP3753320B2 (en) * 2002-11-14 2006-03-08 日立金属株式会社 Shield material manufacturing method
EP1724792A1 (en) * 2005-05-20 2006-11-22 Imphy Alloys Verfahren zur Herstellung eines Bandes aus nanocrystallinem Material sowie eine Vorrichtung zur Herstellung eines von diesem Band ausgehenden Wickelkernes
JP4836749B2 (en) 2006-10-30 2011-12-14 株式会社東芝 Manufacturing method of magnetic sheet
JP2011134959A (en) * 2009-12-25 2011-07-07 Hitachi Metals Ltd Magnetic sheet
US9252611B2 (en) 2011-12-21 2016-02-02 Amosense Co., Ltd. Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
US9507390B2 (en) * 2012-02-03 2016-11-29 Amosense Co., Ltd. Magnetic field shielding sheet for digitizer, manufacturing method thereof, and portable terminal device using same
CN105074838B (en) * 2013-03-28 2018-05-11 日立金属株式会社 Magnetic piece, use the electronic equipment of the magnetic piece and the manufacture method of magnetic piece
EP3050977B1 (en) 2013-09-27 2018-11-21 Hitachi Metals, Ltd. Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core
CN104376950B (en) * 2014-12-12 2018-02-23 安泰科技股份有限公司 A kind of iron-based perseverance magnetic conducting nanocrystalline magnetic core and preparation method thereof
CN104900383B (en) * 2015-04-27 2017-04-19 安泰科技股份有限公司 Single/multi-layer magnetic conductive sheet for wireless charging and preparation method thereof
CN105632678B (en) * 2015-12-31 2017-07-28 安泰科技股份有限公司 A kind of contactless charging flexible magnetic conduction thin slice and preparation method thereof
WO2017150440A1 (en) * 2016-02-29 2017-09-08 日立金属株式会社 Method for producing nanocrystalline alloy ribbon
EP3522186B1 (en) * 2016-09-29 2022-11-02 Hitachi Metals, Ltd. Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
KR101889226B1 (en) * 2017-09-05 2018-08-16 삼성전기주식회사 Laminated sheet of flexible magnetic substance and method of manufacturing thereof
JP7180972B2 (en) 2017-11-22 2022-11-30 古野電気株式会社 Analysis data processing device, analysis data processing method, and analysis data processing program
JP2019095279A (en) 2017-11-22 2019-06-20 アイシン・エィ・ダブリュ株式会社 System and program for identifying vehicle position

Similar Documents

Publication Publication Date Title
JPWO2020235643A5 (en)
JP7074258B2 (en) Manufacturing method of nanocrystalline alloy strip with resin film
CN1020984C (en) Low-frequency transformer
TWI769275B (en) Method of manufacturing an amorphous alloy ribbon and amorphous alloy ribbon
CN102473486B (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
CN110303079A (en) A kind of corrugated-crossed milling method of ply-metal
CN107523714A (en) A kind of preparation method of graphene alloy material
CN111468553B (en) Nickel-titanium shape memory alloy plate with gradient grain structure
CN110914931A (en) Amorphous alloy strip, manufacturing method thereof and amorphous alloy strip sheet
WO2022264999A1 (en) Thin nanocrystal alloy band production method, and thin nanocrystal alloy band
JP2018056336A (en) Laminate and composite laminate core
JP5029956B2 (en) Magnetic core for antenna, method for manufacturing the same, and antenna
US11840045B2 (en) Roll-bonded laminate
JP7088057B2 (en) How to manufacture alloy strips
JPS62229921A (en) Manufacture of laminated core element
JP2021077677A (en) Wound iron core, silicon steel plate, and manufacturing method thereof
JP4585059B2 (en) Press-punched magnetic alloy ribbon, laminated magnetic core, and laminated magnetic core manufacturing method
WO2023190770A1 (en) Method for producing magnetic sheet
WO2023243697A1 (en) Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same
TWI779904B (en) Manufacturing method and manufacturing device of wound iron core
JP7375708B2 (en) Metal foil manufacturing method
US20230321950A1 (en) Multilayer magnetic sheet
US20230307162A1 (en) Magnetic sheet, wound magnetic sheet, and multilayer magnetic sheet
JPH08213267A (en) Core laminate and its manufacture
JP2023155005A (en) multilayer magnetic sheet