WO2020235643A1 - Production method for nanocrystalline alloy ribbon having resin film - Google Patents

Production method for nanocrystalline alloy ribbon having resin film Download PDF

Info

Publication number
WO2020235643A1
WO2020235643A1 PCT/JP2020/020159 JP2020020159W WO2020235643A1 WO 2020235643 A1 WO2020235643 A1 WO 2020235643A1 JP 2020020159 W JP2020020159 W JP 2020020159W WO 2020235643 A1 WO2020235643 A1 WO 2020235643A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy strip
resin film
nanocrystal
nanocrystal alloy
strip
Prior art date
Application number
PCT/JP2020/020159
Other languages
French (fr)
Japanese (ja)
Inventor
安男 栗山
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2021520851A priority Critical patent/JP7074258B2/en
Priority to EP20809623.0A priority patent/EP3974546A4/en
Priority to US17/612,763 priority patent/US20220293313A1/en
Priority to CN202080030755.XA priority patent/CN113748473B/en
Publication of WO2020235643A1 publication Critical patent/WO2020235643A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14716Fe-Ni based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Definitions

  • the present disclosure relates to a method for producing a nanocrystalline alloy strip with a resin film.
  • a secondary battery such as a lithium ion battery is used as a power source.
  • the method of charging this secondary battery is a contact charging method in which the electrode on the power receiving side and the electrode on the power feeding side are directly contacted to charge the battery, and transmission coils are provided on both the power feeding side and the power receiving side to utilize electromagnetic induction.
  • a non-contact charging method that charges by power transmission.
  • the non-contact charging method does not require an electrode for directly contacting the power feeding device and the power receiving device, it is possible to charge different power receiving devices using the same power feeding device.
  • the non-contact charging method is a technology that can be used not only in mobile devices but also in other electronic devices, electric vehicles, drones, and the like.
  • the magnetic flux generated in the primary transmission coil of the power feeding device is supplied by generating an electromotive force in the secondary transmission coil of the power receiving device via the housing of the power feeding device and the power receiving device.
  • a magnetic sheet is installed as a coil yoke on the side of the transmission coil opposite to the contact surface between the power feeding device and the power receiving device.
  • the first role is as a magnetic shielding material.
  • the magnetic sheet can suppress this heat generation as a magnetic shield material.
  • the second role of the magnetic sheet is to act as a yoke member that recirculates the magnetic flux generated in the coil during charging.
  • ferrite materials have been the mainstream of soft magnetic materials used for magnetic sheets of non-contact charging devices, but recently, as shown in Japanese Patent Application Laid-Open No. 2008-112830, soft magnetic materials made of amorphous alloys and nanocrystal alloys are used. Magnetic alloy strips are also beginning to be applied.
  • Japanese Patent Application Laid-Open No. 2008-112830 describes a step of adhering a thin plate-shaped magnetic material (alloy thin band) on a sheet base material via an adhesive layer to form a magnetic sheet, and using the alloy thin band as the sheet base material.
  • a method for producing a magnetic sheet including a step of dividing into a plurality of pieces by an external force in order to improve the Q value or reduce the eddy current loss while maintaining the bonded state is disclosed.
  • Japanese Patent Application Laid-Open No. 2008-112830 discloses that the Q value can be improved when the magnetic sheet is used as, for example, a magnetic material for an inductor, by applying an external force to the alloy strip and dividing it into a plurality of pieces. doing.
  • Japanese Patent Application Laid-Open No. 2008-11230 discloses that when a magnetic sheet is used as a magnetic material for magnetic shielding, the current path of the alloy strip can be divided to reduce the eddy current loss.
  • 2008-112830 states that when the alloy strip is divided into a plurality of pieces, the area of the divided magnetic material pieces is preferably in the range of 0.01 mm 2 or more and 25 mm 2 or less.
  • Disclosure. Further, International Publication No. 2014/157526 discloses a magnetic sheet using a thin band obtained by heat-treating an Fe-based amorphous material and having a magnetic permeability ⁇ r of 220 or more and 770 or less at 500 kHz.
  • magnetic permeability is often substituted as a characteristic for quantifying the divided state.
  • a magnetic sheet having an AC relative permeability ⁇ r of 100 or more and 2000 or less at 128 kHz is desired.
  • the alloy strip is generally as thin as 5 ⁇ m or more and 50 ⁇ m or less, but since the resin film of the magnetic sheet has a large elastic force, even if an external force is applied through the resin film, the soft magnetic alloy strip inside is used.
  • the magnetic sheet using Fe amorphous as described in WO 2014/157526 by slightly crystallized amorphous alloy, a magnetic permeability of 10 3 orders in an amorphous state, and to more than 220 770 or less.
  • the magnetic permeability of nanocrystal alloys is an order of magnitude higher, and it is difficult to reduce the AC relative magnetic permeability ⁇ r from 100 to 2000.
  • the nanocrystal alloy since the microcrystalline structure is formed by the nanocrystallizing heat treatment, the decrease in magnetic permeability due to the heat treatment as in International Publication No. 2014/157526 is not large, and the permeability is assumed to be within the above range.
  • the heat treatment for lowering the magnetic coefficient is performed, the thin band becomes brittle, which makes it difficult to handle when adhering to the sheet substrate.
  • the problem to be solved by the invention is to make it possible to easily manufacture a nanocrystal alloy strip having an AC relative permeability ⁇ r of 100 or more and 2000 or less at 128 kHz, and to use the nanocrystal alloy strip to create a nanocrystal with a resin film. It is to provide a method for manufacturing an alloy strip.
  • the nanocrystalline alloy strip with a resin film can be applied to, for example, a magnetic sheet.
  • the nanocrystal alloy strip with a resin film can be applied to applications other than magnetic sheets.
  • ⁇ 3> The method for producing a nanocrystal alloy strip with a resin film according to ⁇ 1> or ⁇ 2>, which comprises a step of stacking a plurality of the nanocrystal alloy strips on the resin film.
  • ⁇ 4> The method for producing a nanocrystal alloy strip with a resin film according to ⁇ 3>, wherein an adhesive layer is provided between the plurality of stacked nanocrystal alloy strips.
  • the amorphous alloy strip is a long amorphous alloy strip produced by roll cooling, and the step of obtaining the nanocrystal alloy strip is performed by using the amorphous alloy strip.
  • the method for producing an amorphous alloy ribbon with a resin film according to any one of ⁇ 1> to ⁇ 4> which comprises a step of performing the process.
  • the method for producing a nanocrystal alloy strip with a resin film according to any one of ⁇ 1> to ⁇ 5> comprising a step of forming a crack in the nanocrystal alloy strip.
  • the nanocrystal alloy strip has a general formula: (Fe 1-a M a ) 100-x-y-z- ⁇ - ⁇ - ⁇ Cu x S y B z M' ⁇ M " ⁇ X ⁇ ( It has a composition represented by (atomic%), and in the above general formula, M is Co and / or Ni, and M'is from Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W.
  • M is at least one element selected from the group consisting of Al, platinum group element, Sc, rare earth element, Zn, Sn, and Re, and is X.
  • a, x, y, z, ⁇ , ⁇ and ⁇ are 0 ⁇ a ⁇ 0.1, 0.7 ⁇ x ⁇ 1.3, 12 ⁇ y ⁇ 17, 5 ⁇ , respectively.
  • nanocrystal alloy strip having an AC relative permeability ⁇ r of 100 or more and 2000 or less at 128 kHz, and the nanocrystal alloy strip with a resin film can be manufactured using the nanocrystal alloy strip.
  • a method is provided.
  • FIG. 1 is a schematic view of an in-line annealing device showing an embodiment of a step of obtaining a nanocrystal alloy strip of the present disclosure.
  • FIG. 2 is a schematic view of a laminating step showing an embodiment of a step of holding a nanocrystal alloy strip on the resin film of the present disclosure via an adhesive layer.
  • FIG. 3 is a plan view of the nanocrystal alloy strip of the embodiment of the present disclosure, which conceptually shows the location where an external force is applied.
  • FIG. 4 is a diagram showing a manufacturing apparatus according to the embodiment of the present disclosure, in which a plurality of nanocrystal alloy strips having cracks formed are laminated on a resin film.
  • FIG. 5 is a plan view (a) and a cross-sectional view (b) showing an example of the nanocrystal alloy strip with a resin film of the present disclosure.
  • FIG. 6 is a plan view (a) and a cross-sectional view (b) showing another example of the nanocrystal alloy strip with a resin film of the present disclosure.
  • FIG. 7 is a plan view showing the state of cracks in the nanocrystal alloy strip with the resin film of the present disclosure.
  • FIG. 8 is a diagram showing a circuit configuration of an example of a non-contact charging device as an example of an applied product of the nanocrystal alloy strip with a resin film of the embodiment of the present disclosure.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • ordinal numbers are terms used to distinguish components and do not limit the number of components and the superiority or inferiority of the components. ..
  • process is included in the term “process” as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes. ..
  • the method for producing a nanocrystal alloy strip with a resin film includes a step of preparing an amorphous alloy strip capable of nanocrystallization and applying tension to the amorphous alloy strip.
  • the process includes a step of performing a heat treatment for nanocrystallization to obtain a nanocrystal alloy strip, and a step of holding the nanocrystal alloy strip on a resin film via an adhesive layer.
  • the amorphous alloy strip capable of nanocrystallization is an amorphous alloy strip in which nanocrystals are generated by heat treatment.
  • a molten metal blended into an alloy composition to be a nanocrystal alloy. Can be produced by quenching and solidifying.
  • a method for quenching and solidifying the molten metal a method called a single roll method or a double roll method can be used. These are methods using roll cooling. A well-known method can be applied to the method using this roll cooling. In this method using roll cooling, the molten metal is continuously rapidly cooled to obtain a long amorphous alloy strip.
  • the one that has been rapidly cooled and solidified into a thin band does not have nanocrystals and is in an amorphous state. After that, nanocrystals are generated (nanocrystallized) by heat treatment, and the nanocrystal alloy is thin. It is a belt.
  • this long amorphous alloy strip is often wound around a winding shaft and transported as a roll-shaped winding body.
  • fine crystals may be present in the amorphous alloy strip capable of nanocrystallization. In that case, the fine crystals become nanocrystals by heat treatment.
  • the nanocrystalline alloy ribbon for example, the general formula: (Fe 1-a M a ) 100-x-y-z- ⁇ - ⁇ - ⁇ Cu x Si y B z M ' ⁇ M " ⁇ X ⁇ ( atomic %)
  • M is Co and / or Ni
  • M' is a group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W.
  • At least one element selected from, M is at least one element selected from the group consisting of Al, platinum group element, Sc, rare earth element, Zn, Sn, and Re
  • X is C, Ge, P.
  • a, x, y, z, ⁇ , ⁇ and ⁇ are 0 ⁇ a ⁇ 0.1, 0.7 ⁇ x ⁇ 1.3, 12 ⁇ y ⁇ 17, 5 ⁇ , respectively. It is a range that satisfies z ⁇ 10, 1.5 ⁇ ⁇ ⁇ 5, 0 ⁇ ⁇ ⁇ 1 and 0 ⁇ ⁇ ⁇ 1.
  • the amorphous alloy strip capable of nanocrystallization may be produced or purchased.
  • a step of performing a heat treatment for nanocrystallization in a state where tension is applied to the amorphous alloy strip of the present embodiment to obtain a nanocrystal alloy strip will be described. It is possible to adjust the AC specific magnetic permeability ⁇ r of the nanocrystal alloy strip by performing the nanocrystallization heat treatment in a state where tension is applied to the nanocrystal-capable amorphous alloy strip. Then, it is preferable to obtain a nanocrystal alloy strip having an AC relative permeability ⁇ r of 100 or more and 2000 or less by this step.
  • the nanocrystalline alloy is an alloy having a microcrystalline structure having a particle size of 100 nm or less.
  • 10 to 20 layers of ring-shaped punched sheets having an outer diameter of 20 mm and an inner diameter of 9 mm are used.
  • ⁇ r 2 ⁇ ⁇ Z / (2 ⁇ ⁇ ⁇ 0 ⁇ f ⁇ t ⁇ n ⁇ ln (OD / ID))
  • Z Absolute value of impedance
  • f Frequency (Hz)
  • t Thin band thickness (m)
  • n Number of layers ⁇ 0: Vacuum permeability (4 ⁇ ⁇ ⁇ 10-7 H / m)
  • OD Outer diameter (m)
  • ID Inner diameter (m)
  • the amorphous alloy strip is continuously run under tension, and a part of the amorphous alloy strip is nanocrystallized. Nano-crystallization is performed by applying heat above the crystallization start temperature.
  • an amorphous alloy strip is passed through a heat treatment furnace, or an amorphous alloy strip is used as a heat transfer medium. Means for contacting can be adopted.
  • the amorphous alloy strip in a tensioned state is continuously run while maintaining contact with the heat transfer medium.
  • the heat transfer medium that comes into contact with the continuously traveling amorphous alloy strip is arranged in the middle of the traveling path of the amorphous alloy strip. Then, the amorphous alloy strip is heat-treated by passing through the heat transfer medium to become a nanocrystal alloy strip.
  • the direction of the tension applied to the amorphous alloy strip is the running direction of the amorphous alloy strip immediately before contacting the heat transfer medium.
  • the running direction of the amorphous alloy strip when in contact with the heat transfer medium and the running direction of the nanocrystal alloy strip immediately after leaving the heat transfer medium are the same, and both are linear. ..
  • the amorphous alloy strip when the amorphous alloy strip is run and heat-treated is a long amorphous alloy strip, and the longitudinal direction of the amorphous alloy strip and the addition of the amorphous alloy strip are applied.
  • the direction of tension applied is the same.
  • the direction of the tension applied to the amorphous alloy strip is the same as the direction along the rotation direction of the roll when the amorphous alloy strip is manufactured by roll cooling.
  • the direction along the rotation direction of the roll is also referred to as the casting direction, and the direction of tension applied to the amorphous alloy strip is the same as the casting direction.
  • the amorphous alloy strip is stretched in the longitudinal direction of the amorphous alloy strip while applying tension to the amorphous alloy strip in the longitudinal direction. It may have a step of continuously performing nanocrystallization heat treatment on the amorphous alloy strip by advancing in the direction.
  • the amorphous alloy strip may meander while passing through a transport roller or the like on the upstream side in the traveling direction from "immediately before contacting the heat transfer medium".
  • the nanocrystalline alloy strip obtained from the amorphous alloy strip is meandering on the downstream side in the traveling direction from "immediately after leaving the heat transfer medium" while passing through a transport roller or the like. May be good.
  • the tension applied to the amorphous alloy strip is preferably 1.0N to 50.0N, more preferably 2.0N to 40.0N, and particularly preferably 3.0N to 35.0N. When the tension is 1.0 N or more, the magnetic permeability can be sufficiently lowered. When the tension is 50.0 N or less, the breakage of the amorphous alloy strip or the nanocrystalline alloy strip can be further suppressed.
  • the temperature of the amorphous alloy strip is raised to the temperature reached at the crystallization temperature Tc1 or higher (for example, 430 ° C. or higher).
  • Tc1 or higher for example, 430 ° C. or higher
  • nanocrystallization proceeds in the structure of the alloy strip.
  • the ultimate temperature is preferably 430 ° C to 600 ° C.
  • the soft magnetic properties (Hc, Bs, etc.) of the nanocrystal alloy strip are determined.
  • the frequency of precipitation of Fe-B compounds that can be deteriorated can be further reduced.
  • the reached temperature to be set and the temperature of the heat transfer medium are the same temperature.
  • examples of the heat transfer medium include a plate and a twin roll, but the plate-shaped heat transfer medium has many surfaces in contact with the amorphous alloy strip.
  • a heat medium is preferred.
  • the contact surface of the plate-shaped heat transfer medium is preferably a flat surface, but a slightly curved surface may be provided.
  • a suction hole may be provided on the contact surface of the heat transfer medium with the alloy strip, and the suction hole may be used for vacuum suction.
  • the alloy strip can be suction-adsorbed to the surface of the heat transfer medium having suction holes, the contact property of the alloy strip with the heat transfer medium can be improved, and the efficiency of heat treatment can be improved.
  • the material of the heat transfer medium examples include copper, copper alloy (bronze, brass, etc.), aluminum, iron, iron alloy (stainless steel, etc.) and the like. Of these, copper, copper alloy, or aluminum is preferable because of its high thermoelectric coefficient (heat transfer coefficient).
  • the heat transfer medium may be plated with Ni plating, Ag plating, or the like. Further, a means for heating the heat transfer medium may be separately provided, and the heated heat transfer medium may be brought into contact with the amorphous alloy strip to heat the amorphous alloy strip for heat treatment. it can. Further, the heat transfer medium may be surrounded by an arbitrary member.
  • the temperature of the nanocrystal alloy strip may be maintained for a certain period of time on the heat transfer medium. Further, in the present embodiment, it is preferable to cool the obtained nanocrystal alloy strip (preferably to room temperature). Further, the present embodiment may include obtaining a wound body of the nanocrystal alloy strip by winding the obtained nanocrystal alloy strip (preferably the nanocrystal alloy strip after cooling). ..
  • the thickness of the amorphous alloy strip of the present embodiment is preferably in the range of 10 ⁇ m to 50 ⁇ m. If it is less than 10 ⁇ m, the mechanical strength of the alloy strip itself is low, and it is difficult to stably cast a long alloy strip. Further, if it exceeds 50 ⁇ m, a part of the alloy is likely to crystallize, and the characteristics may be deteriorated.
  • the thickness of the amorphous alloy strip is more preferably 11 ⁇ m to 30 ⁇ m, still more preferably 12 ⁇ m to 27 ⁇ m.
  • the width of the amorphous alloy strip is not particularly limited, but is preferably 5 mm to 300 mm.
  • the width of the amorphous alloy strip is 5 mm or more, the manufacturing suitability of the amorphous alloy strip is excellent.
  • the width of the amorphous alloy strip is 300 mm or less, the uniformity of nanocrystallization is further improved in the step of obtaining the nanocrystal alloy strip.
  • the width of the amorphous alloy strip is preferably 200 mm or less.
  • the amorphous alloy strip is unwound from the amorphous alloy strip formed of the roll-shaped wound body, and the amorphous alloy strip is subjected to tension while being amorphous.
  • the alloy strip is run, the running amorphous alloy strip is brought into contact with a heat transfer medium and heated, and nanocrystallized by heat treatment by the heating to obtain a nanocrystal alloy strip, and the nanocrystal alloy thin It is also possible to prepare a nanocrystal alloy ribbon by providing a continuous line in which the band is wound around a roll-shaped winding body.
  • FIG. 1 shows an in-line annealing device 150, which includes a temperature raising step to a temperature lowering (cooling) step for a long amorphous alloy strip from the unwinding roller 112 to the winding roller 114.
  • This is an apparatus that performs an in-line annealing step of performing a continuous heat treatment step to obtain a nanocrystal alloy strip.
  • the in-line annealing device 150 combines the unwinding roller 112 (unwinding device) that unwinds the alloy thin band 110 from the winding body 111 of the amorphous alloy thin band and the alloy thin band 110 unwound from the unwinding roller 112.
  • the heating plate (heat transfer medium) 122 to be heated, the cooling plate (heat transfer medium) 132 for lowering the temperature of the alloy strip 110 heated by the heating plate 122, and the alloy strip 110 heated by the cooling plate 132 are wound up.
  • a take-up roller 114 (wind-up device) is provided. In FIG. 1, the traveling direction of the alloy strip 110 is indicated by an arrow R.
  • An amorphous alloy thin band winding body 111 is set on the unwinding roller 112.
  • the alloy thin band 110 is unwound from the wound body 111 of the amorphous alloy thin band.
  • the unwinding roller 112 itself may be provided with a rotating mechanism (for example, a motor), and the unwinding roller 112 itself may not be provided with a rotating mechanism. Even if the unwinding roller 112 itself does not have a rotation mechanism, the amorphous alloy thin band set on the unwinding roller 112 is wound in conjunction with the winding operation of the alloy thin band 110 by the winding roller 114 described later.
  • the alloy strip 110 is unwound from the rotating body 111.
  • the heating plate 122 includes a first plane 122S to which the alloy strip 110 unwound from the unwinding roller 112 comes into contact.
  • the heating plate 122 heats the alloy strip 110 running on the first plane 122S while being in contact with the first plane 122S via the first plane 122S.
  • the heating plate 122 is connected to a heat source (not shown) and is heated to a desired temperature by the heat supplied from this heat source.
  • the heating plate 122 may be provided with a heat source inside the heating plate 122 itself, instead of being connected to the heat source or in addition to being connected to the heat source. Examples of the material of the heating plate 122 include stainless steel, Cu, Cu alloy, Al alloy and the like.
  • the heating plate 122 is housed in the heating chamber 120.
  • the heating chamber 120 may include a heat source for controlling the temperature of the heating chamber in addition to the heat source for the heating plate 122.
  • the heating chamber 120 has openings (not shown) in which the alloy strips enter or exit, respectively, on the upstream side and the downstream side of the alloy strip 110 in the traveling direction (arrow R).
  • the alloy strip 110 enters the heating chamber 120 through the entrance which is the opening on the upstream side, and exits from the heating chamber 120 through the exit outlet which is the opening on the downstream side.
  • the cooling plate 132 includes the second plane 132S to which the alloy strip 110 contacts.
  • the cooling plate 132 lowers the temperature of the alloy strip 110 running on the second plane 132S while being in contact with the second plane 132S via the second plane 132S.
  • the cooling plate 132 may or may not have a cooling mechanism (for example, a water cooling mechanism) or may not have a special cooling mechanism. Examples of the material of the cooling plate 132 include stainless steel, Cu, Cu alloy, Al alloy and the like.
  • the cooling plate 132 is housed in the cooling chamber 130.
  • the cooling chamber 130 may have a cooling mechanism (for example, a water cooling mechanism), but may not have a special cooling mechanism.
  • the mode of cooling by the cooling chamber 130 may be water cooling or air cooling.
  • the cooling chamber 130 has openings (not shown) through which the alloy strips enter or exit, respectively, on the upstream side and the downstream side of the alloy strip 110 in the traveling direction (arrow R).
  • the alloy strip 110 enters the cooling chamber 130 through the entrance which is the opening on the upstream side, and exits from the cooling chamber 130 through the exit outlet which is the opening on the downstream side.
  • the take-up roller 114 is provided with a rotation mechanism (for example, a motor) that rotates around the axis in the direction of the arrow W. The rotation of the take-up roller 114 winds the alloy strip 110 at a desired speed.
  • a rotation mechanism for example, a motor
  • the in-line annealing device 150 includes a guide roller 41, a dancer roller 60 (one of the tensile stress adjusting devices), and a guide roller 42 between the unwinding roller 112 and the heating chamber 120 along the traveling path of the alloy strip 110. , And a pair of guide rollers 43A and 43B.
  • the tensile stress is also adjusted by controlling the operation of the take-up roller 112 and the take-up roller 114.
  • the dancer roller 60 is provided so as to be movable in the vertical direction (direction of the arrows on both sides in FIG. 1). By adjusting the position of the dancer roller 60 in the vertical direction, the tensile stress of the alloy strip 110 can be adjusted. As a result, the heat treatment for nanocrystallization can be performed in a state where tension is applied to the amorphous alloy strip.
  • the alloy strip 110 unwound from the unwinding roller 112 is guided into the heating chamber 120 via these guide rollers and dancer rollers.
  • the in-line annealing device 150 includes a pair of guide rollers 44A and 44B and a pair of guide rollers 45A and 45B between the heating chamber 120 and the cooling chamber 130.
  • the alloy strip 110 exiting the heating chamber 120 is guided into the cooling chamber 130 via these guide rollers.
  • the in-line annealing device 150 includes a pair of guide rollers 46A and 46B, a guide roller 47, a dancer roller 62, and a guide roller 48 along the traveling path of the alloy strip 110 between the cooling chamber 130 and the take-up roller 114. It includes a guide roller 49 and a guide roller 50.
  • the dancer roller 62 is provided so as to be movable in the vertical direction (direction of the arrows on both sides in FIG. 1). By adjusting the position of the dancer roller 62 in the vertical direction, the tensile stress of the alloy strip 110 can be adjusted.
  • the alloy strip 110 exiting the cooling chamber 130 is guided to the take-up roller 114 via these guide rollers and dancer rollers.
  • the guide rollers (43A, 43B, 44A, and 44B) arranged on the upstream side and the downstream side of the heating chamber 120 completely cover the alloy strip 110 and the first plane of the heating plate 122. It has a function of adjusting the position of the alloy strip 110 for contact.
  • the guide rollers (45A, 45B, 46A, and 46B) arranged on the upstream side and the downstream side of the cooling chamber 130 completely cover the alloy strip 110 and the second plane of the cooling plate 132. It has a function of adjusting the position of the alloy strip 110 for contact.
  • FIG. 2 is an example of the laminating process, in which each of the nanocrystal alloy strip 101, the adhesive layer 102, and the resin film 103 is pulled out from the roll and sandwiched between a pair of pressure rollers 104 arranged at predetermined intervals.
  • the nanocrystal alloy strip 105 with a resin film is manufactured by laminating and integrating.
  • the laminating step is a specific example of a step of holding a nanocrystal alloy strip on a resin film via an adhesive layer.
  • a multilayer of nanocrystal alloy strips can be produced by a step of stacking a plurality of nanocrystal alloy strips on a resin film.
  • a required number of adhesive layers 102 and nanocrystal alloy strips 101 can be further stacked on the nanocrystal alloy strips 105 with a resin film to produce a multilayer body of nanocrystal alloy strips.
  • a plurality of nanocrystal alloy strips 101, a plurality of adhesive layers 102, and a resin film 103 are integrated by a pair of pressure rollers 104 to form a nanocrystal alloy strips.
  • Multilayers can also be made.
  • the resin film may be laminated on the surface opposite to the resin film 103 of the nanocrystal alloy strip, and the nanocrystal alloy strip may be sandwiched between the resin films.
  • a resin film on which the adhesive layer is formed such as double-sided tape, can be used for laminating.
  • the nanocrystal alloy strip 105 with a resin film may be cut into a required shape and size to form a nanocrystal alloy strip 105 with a resin film having a shape suitable for the intended use.
  • the nanocrystal alloy strip 105 with a resin film may be cut using a rotary blade type slitter or a shear blade type cutter.
  • the nanocrystal alloy strip 105 with a resin film may be punched and cut using a press die or the like.
  • a material and thickness that are easily deformable and have high bendability are selected for the resin film.
  • a resin film such as a polyethylene terephthalate (PET) film having a thickness of 10 ⁇ m to 100 ⁇ m is suitable.
  • a resin film made of polyimide such as polyetherimide and polyamideimide, and polyester such as polyamide and polyethylene terephthalate may be used.
  • polypropylene, polyethylene, polystyrene, polycarbonate, polysulfone, polyetherketone, polyvinyl chloride, polyvinyl alcohol, fluororesin, acrylic resin, cellulose and the like can be used.
  • Polyamide and polyimide are particularly preferable from the viewpoint of heat resistance and dielectric loss.
  • An adhesive provided in the form of a liquid, sheet, or tape such as acrylic resin or silicone resin can be applied to the adhesive layer for bonding the resin film and the nanocrystal alloy strip.
  • a liquid adhesive may be thinly applied to one side of the resin film to form an adhesive layer, or a resin sheet to which a double-sided tape is previously attached may be used.
  • a conductor such as a thick Cu foil or Al foil may be provided.
  • the nanocrystal alloy strip can be cracked by applying an external force by pressing the nanocrystal alloy strip with a member such as a roller while holding it on the resin film.
  • the nanocrystal alloy strip may be divided into a plurality of pieces in a fixed shape or an irregular shape.
  • the cracked nanocrystal alloy strips are covered with a coating layer such as another resin film or an adhesive layer so that the cracked nanocrystal alloy strips do not fall off from the resin film. It is preferable to sandwich it.
  • the nanocrystal alloy strip is brittle and can be cracked relatively easily by pressurization, the magnetic permeability has not been sufficiently reduced in the past.
  • the AC specific magnetic permeability ⁇ r is 100 or more. It can be easily adjusted to the range of 2000 or less.
  • the crack in the present disclosure refers to a magnetic gap formed in the alloy strip, and includes, for example, cracks and / or cracks in the alloy strip.
  • the nanocrystal alloy strip is cracked and divided into a plurality of pieces, the effect of reducing the eddy current loss can be obtained.
  • the individual pieces divided in this way are excessively irregular, problems such as changes in characteristics depending on the region in the nanocrystal alloy strip may occur. It is desirable to divide it.
  • the shape of the individual piece is preferably a rectangle having a side of 1 mm to 10 mm.
  • the nanocrystal alloy in order to bring the individual pieces closer to the fixed shape, after the step of holding the nanocrystal alloy strip on the resin film via the adhesive layer (for example, the laminating step shown in FIG. 2), the nanocrystal alloy By applying an external force to multiple locations on the surface of the thin band (crack starting point treatment) and winding the nanocrystal alloy thin band with a resin film with a roll, cracks are generated starting from the location where the external force is applied. It is conceivable to include a step (crack treatment) of dividing the nanocrystal alloy strip into a plurality of pieces.
  • the nanocrystal alloy strip By applying a crack origin treatment to the nanocrystal alloy strip that has undergone a step of holding the nanocrystal alloy strip on the resin film via an adhesive layer (for example, the laminating step shown in FIG. 2), the nanocrystal alloy strip is wound by a roll and bending stress. Cracks are formed at appropriate intervals when the above is applied, which contributes to the shaping of individual pieces.
  • the crack can be formed, for example, by pressing a convex member against the surface of the nanocrystal alloy strip.
  • the shape of the convex member may be, for example, a rod shape or a cone shape.
  • the tip of the end of the convex member may be flat, conical, inverted cone with a recess in the center, or tubular.
  • a press member in which a plurality of convex members are regularly arranged can be used.
  • cracks can be formed by using a roll (hereinafter referred to as a cracking roll) in which a plurality of convex members are arranged on a peripheral surface.
  • cracks can be continuously formed by pressing a long nanocrystal alloy strip against a cracking roll with tension or the like, or by transporting a long nanocrystal alloy strip between cracking rolls. .. It is also possible to form cracks using a plurality of cracking rolls.
  • FIG. 3 is a plan view of a nanocrystal alloy strip with a resin film that conceptually shows a portion where an external force is regularly applied by a plurality of convex members.
  • the shape of the pattern corresponds to the tip shape of the convex member in the portion where the external force is applied.
  • FIG. 3A conceptually shows a portion where an external force is applied when a convex member having a circular cross-sectional shape at an end portion is used.
  • FIG. 3B conceptually shows a portion where an external force is applied when a convex member having a cross-shaped outer shape at the end is used.
  • FIG. 3 is a plan view of a nanocrystal alloy strip with a resin film that conceptually shows a portion where an external force is regularly applied by a plurality of convex members.
  • the shape of the pattern corresponds to the tip shape of the convex member in the portion where the external force is applied.
  • FIG. 3A conceptually shows a portion where an external force is applied when
  • 3C conceptually shows a place where an external force is applied when an convex member whose outer shape is linear in the vertical direction of the figure and a convex member whose outer shape is linear in the horizontal direction are used. It is a thing. In this figure, the places where the external force is applied are arranged so as to be discontinuous and in a matrix shape.
  • FIG. 3D the outer shape of the end portion is tilted by ⁇ ° with respect to the vertical direction of the figure (inclined by 45 ° in FIG. 3D), and the linear convex member is tilted by ⁇ ° (FIG. 3).
  • (D) conceptually shows a place where an external force is applied when a linear convex member (tilted by ⁇ 45 °) is used.
  • the points where the external force is applied are discontinuous, and the points where one linear external force is applied intersect between both ends of the extension line of the other where the external force is applied. Is placed in.
  • FIG. 3D conceptually shows a place where an external force is applied when a linear convex member (tilted by ⁇ 45 °) is used.
  • FIG. 3 (e) a linear convex member whose outer shape of the end portion is tilted by ⁇ ° with respect to the vertical direction of the figure (tilted by 45 ° in FIG. 3 (e)) and ⁇ ° (FIG. 3 (e)).
  • FIG. 3 (f) conceptually shows a portion where an external force is applied when an convex member whose outer shape is linear in the vertical direction of the figure and a convex member whose outer shape is linear in the horizontal direction are used.
  • the arrangement of the convex members is not limited to that shown in the figure, and can be appropriately set. It is desirable that cracks having exactly the same shape as the places where the external force is applied are formed in the places where the external force is applied. However, there may be cases where other cracks are formed or cracks of the same form are not formed (cracks are only partially formed). Further, the cracks may be linear and formed so that a plurality of cracks are continuously connected.
  • one convex member is arranged on the cracking roll and the other convex member is separated. It can be placed on the cracking rolls of the above, and both cracking rolls can sequentially apply an external force directly to the alloy strip to form cracks.
  • a second external force can be applied by means such as bending or winding the nanocrystal alloy strip.
  • cracks and / or cracks can be formed by using the cracks as the starting point of brittle fracture or crack fracture.
  • the cracks and / or cracks (magnetic gaps) connecting the cracks may be referred to as network cracks.
  • a crack is formed in the nanocrystal alloy strip
  • FIG. 4 is used for an embodiment in which the nanocrystal alloy strip having the crack is laminated in multiple layers. Will be explained.
  • a heat treatment for nanocrystallization is performed in a state where tension is applied to an amorphous alloy strip capable of nanocrystallization to form a nanocrystal alloy strip.
  • the steps described below are performed using this nanocrystalline alloy strip.
  • the number of wound bodies is not limited to four, and the number of wound bodies can be set as appropriate. Then, the following steps are performed.
  • the specific product names and numerical values shown below are examples for explaining the process in detail.
  • the release film 1A and the release film 1B are made of the same material (PET) and have a tensile elastic force of 3.9 GPa.
  • the adhesive layer is coated with an acrylic adhesive on both sides of the base film.
  • the release film 1A and the release film 1B can be peeled off from the adhesive layer.
  • the release film 1A is peeled off from the double-sided tape 2A. This peeling is performed at substantially the same timing as the double-sided tape 2A is pulled out from the roll.
  • the tape composed of the adhesive layer and the release film 1B thus obtained is used as the cracking tape.
  • the release film 1B is a kind of resin film.
  • the nanocrystalline alloy strip 4 is an alloy strip (FT-3 manufactured by Hitachi Metals, Ltd.) made of a Fe—Cu—Nb—Si—B based nanocrystal alloy.
  • the release film is preferably a release film made of an elastic resin.
  • a method for producing a nanocrystal alloy strip with a resin film is a method for producing a nanocrystal alloy thin band on a crack tape having an adhesive layer and a release film that can be peeled from the adhesive layer. It has a step of adhering the band (step (1)) and a step of directly applying an external force to the nanocrystal alloy strip to form a crack (step (2) described later).
  • the release film is made of resin, the elastic force of the release film suppresses the occurrence of unevenness on the surface of the nanocrystal alloy strip.
  • the nanocrystal alloy strip in a good flat state can be obtained, and the nanocrystal alloy strip with a resin film having a small change in magnetic properties with time can be obtained.
  • a resin having a lower limit of tensile elastic modulus of 0.1 GPa can be used as the resin of the release film.
  • the lower limit of the tensile elastic modulus is preferably 0.5 GPa, more preferably 1.0 GPa.
  • the upper limit of the tensile elastic modulus is preferably 10 GPa. If it exceeds 10 GPa, deformation of the alloy strip may be suppressed when cracks are formed.
  • the upper limit of the tensile elastic modulus is preferably 7 GPa, more preferably 5 GPa.
  • the release film it is preferable to use a resin having a thickness of 1 ⁇ m to 100 ⁇ m. As the thickness of the release film increases, it becomes difficult to deform. Further, if the thickness is less than 1 ⁇ m, the release film itself is more easily deformed, which makes it difficult to handle.
  • the same adhesive layer as the adhesive layer of the resin film can be used.
  • a known adhesive layer can be used, and for example, a pressure-sensitive adhesive can be used.
  • a pressure-sensitive adhesive for example, a pressure-sensitive adhesive such as acrylic, silicone, urethane, synthetic rubber, or natural rubber can be used.
  • the cracking roll 5 directly applies an external force to the nanocrystal alloy strip 4 adhered to the cracking tape to form cracks.
  • convex members are regularly arranged on the peripheral surface.
  • a compression roll that presses the nanocrystal alloy strip 4 against the cracking roll side can be arranged on the release film 1B side so as not to let the external force from the cracking roll escape.
  • Step (3) "A step of peeling the release film from the adhesive layer to form a sheet member having an adhesive layer and a nanocrystal alloy strip having cracks formed".
  • the release film 1B is peeled off from the cracking tape to expose the adhesive layer.
  • a sheet member having an adhesive layer and a nanocrystal alloy strip having cracks formed is formed.
  • Network cracks can also be formed by utilizing the external force on the nanocrystal alloy strip 4 generated when the release film 1B is peeled off.
  • four mechanisms from step (1) to step (3) are provided. However, the number is not limited to four, and may be five or more or three or less depending on the purpose.
  • the release film When laminating the nanocrystal alloy strips in multiple layers, the release film is left as it is for the nanocrystal alloy strips that are the bottom layer, and the release film is used as the resin film for the nanocrystal alloy strips with a resin film. May be good.
  • Step (4) "Step of forming a nanocrystalline alloy strip with a resin film"
  • the sheet member is laminated on the resin film 6A by a crimping roll and adhered.
  • the resin film is laminated so that the adhesive layer of the sheet member is in contact with the resin film. Further, the next sheet member is laminated on it with a crimping roll and adhered. This is repeated, and the adhesive layer and the nanocrystal alloy strip are laminated alternately. As a result, a nanocrystal alloy strip with a resin film 6A is formed. Further, in FIG. 4, the resin film 6a is adhered on the laminated nanocrystal alloy strips.
  • the resin film 6a is adhered to the laminate of the nanocrystal alloy strips via the adhesive layer of another double-sided tape 2B.
  • the double-sided tape 2B has a three-layer structure of a release film 1C, an adhesive layer (5 ⁇ m), and a release film 1D.
  • the release film 1C and the release film 1D can be peeled off from the adhesive layer.
  • the release film 1C is peeled from the double-sided tape 2B, and the exposed adhesive layer and the nanocrystal alloy strip 4 are adhered by a pressure-bonding roll. After that, the release film 1D is peeled off. After that, the resin film 6a is pressure-bonded to the adhesive layer of the double-sided tape 2B.
  • the resin film 6a is a PET protective film having a thickness of 25 ⁇ m.
  • the resin film 6A has a two-layer structure of an adhesive layer having a thickness of 5 ⁇ m and a resin film having a thickness of 75 ⁇ m. This resin film can be peeled off from the adhesive layer.
  • the adhesive layer of the sheet member and the adhesive layer of the resin film are adhered by a pressure-bonding roll.
  • the adhesive layer from which the resin film is peeled off is exposed, and the nanocrystal alloy strip can be attached to an electronic device or the like.
  • the nanocrystal alloy strip with a resin film is cut to a required size by the cutter 7 and transported to the tray 8.
  • the cutter 7 it can be processed into a desired shape by a punching die or the like.
  • FIG. 5 shows a plan view (a) and a cross-sectional view (b) schematically showing a nanocrystal alloy strip with a resin film in which a sheet member is laminated on the resin film 6A.
  • the cross-sectional view (b) is a cross-sectional view taken along the line AA of the plan view (a).
  • the nanocrystal alloy strip 4' is laminated and adhered to the resin film 6A via the adhesive layer 6b.
  • cracks 9' are formed in the nanocrystal alloy strip 4'.
  • the crack 9' is formed by pressing a cracking roll in which linear convex members are regularly arranged on the peripheral surface, and the linear crack 9'is intermittently formed.
  • FIG. 6 shows a plan view (a) and a cross-sectional view (b) schematically showing a nanocrystal alloy strip with a resin film in which a plurality of nanocrystal alloy strips are laminated on the resin film 6A.
  • the cross-sectional view (b) is a DD cross-sectional view of the plan view (a).
  • the sheet members 10c1 to 10c3 are laminated on the nanocrystal alloy strip 4'bonded to the resin film 6A. Cracks 9, 9-1, 9-2 formed on the first sheet member 10c1 to 10c3, respectively, and crack 9 formed on the nanocrystal alloy strip 4'bonded to the resin film 6A. 'Is formed at different positions when viewed in the stacking direction.
  • the position of the crack can be changed for each layer of the nanocrystal alloy strip, so that the nanocrystal alloy strip with a resin film having evenly formed magnetic gaps can be obtained. Therefore, even if the nanocrystal alloy strip with a resin film is further punched or cut into a desired shape, the magnetic permeability does not fluctuate depending on the processing position, and the resin film has stable shielding characteristics.
  • another resin film can be laminated on the surface opposite to the resin film 6A in the lamination direction. Both resin films can be adhered via an adhesive layer (eg, double-sided tape).
  • cracks are formed by directly applying an external force to the alloy strips before laminating the nanocrystal alloy strips, not after laminating the nanocrystal alloy strips. Therefore, the external force applied is only the strength to directly apply to the alloy strip and to crack one layer of the alloy strip. Therefore, the cracks can be formed with a smaller external force than the method of forming cracks in a plurality of alloy strips at the same time or the method of applying an external force from above the protective film to form the cracks. Since the external force for forming the crack is small, the unevenness of the surface of the nanocrystal alloy strip in which the crack is formed can be suppressed, and the flat state of the nanocrystal alloy strip can be improved.
  • Table 1 shows the results of evaluating the AC relative magnetic permeability ⁇ r (128 kHz) of the magnetic sheet (described in FIG. 4), which is an example of the nanocrystal alloy strip with a resin film according to the present disclosure.
  • the results of evaluating two samples are shown.
  • the rate of change after 300 days was about 3% or less.
  • a conventional magnetic sheet (a magnetic sheet in which a four-layer alloy strip laminated via an adhesive layer is sandwiched between two resin films and an external force is applied from above the resin film to form cracks) is 100. Although it changed by about 7 to 10% with the passage of time, in the present embodiment, it is about 3% or less even after 300 days (7200 hours), and according to the embodiment of the present disclosure, the change in magnetic permeability is changed. A small magnetic sheet has been obtained.
  • FIG. 8 shows a circuit configuration of an example of a non-contact charging device.
  • the power feeding device 200 inputs an alternating current to a feeding unit 207, a rectifying circuit 202 connected to the feeding unit 207 to rectify the alternating current into a direct current, and converts the alternating current into a high frequency current having a predetermined frequency.
  • Switching circuit 203 primary transmission coil 201 connected to switching circuit 203 so that high-frequency current flows, and resonance capacitor 206 connected in parallel to primary transmission coil 201 so as to resonate at the same frequency as switching circuit 203 ,
  • a control circuit 204 connected to the switching circuit 203, and a control primary coil 205 connected to the control circuit 204.
  • the control circuit 204 controls the operation of the switching circuit 203 based on the induced current obtained from the control primary coil 205.
  • the power receiving device 300 includes a secondary transmission coil 301 that receives the magnetic flux generated from the primary transmission coil 201, a rectifying circuit 302 connected to the secondary transmission coil 301, and a secondary battery 303 connected to the rectifying circuit 302. It includes a battery control circuit 304 connected to the secondary battery 303 to detect the storage status from the voltage of the secondary battery 303, and a control secondary coil 305 connected to the battery control circuit 304. A resonance capacitor (not shown) may be connected in parallel to the secondary transmission coil 301.
  • the rectified current is stored in the secondary battery 303, and is also used for, for example, an electronic circuit and a driving member (not shown).
  • the battery control circuit 304 sends a signal for performing optimum charging according to the storage status of the secondary battery 303 to the control secondary coil 305. For example, when the secondary battery 303 is completely charged, a signal of that information is sent to the control secondary coil 305, and the signal is supplied via the control primary coil 205 that is electromagnetically coupled to the control secondary coil 305. It is transmitted to the control circuit 204 of 200. The control circuit 204 stops the switching circuit 203 based on the signal.
  • the magnetic sheet is provided as a coil yoke of the primary transmission coil 201 on the opposite side of the primary transmission coil 201 from the side facing the secondary transmission coil 301, and is provided with the primary transmission coil 201 for secondary transmission. In addition to improving the coupling property with the coil 301, it also serves as a shield between the primary transmission coil 201 and other parts and the like. Further, the magnetic sheet of the present embodiment is provided on the side opposite to the side facing the primary transmission coil 201 of the secondary transmission coil 301 to improve the coupling property between the primary transmission coil 201 and the secondary transmission coil 301. It also serves as a shield between the secondary transmission coil 301 and other parts (secondary battery) and the like.
  • the nanocrystal alloy strip with a resin film of the present embodiment can be used by forming it into a block-shaped laminate or a toroidal shape.
  • the nanocrystal alloy strip with a resin film can be used as an induction element or the like.
  • Example 1 [Manufacturing of nanocrystal alloy strips] Using the manufacturing apparatus having the components shown in FIG. 1, heat treatment is performed on a long amorphous alloy strip (Fe-Cu-Nb-Si-B alloy) with tension applied, and the length is long. (Fe-Cu-Nb-Si-B based alloy) was produced. The tension applied to the amorphous alloy strip was 40 MPa. The ultimate temperature of the amorphous alloy strip in the heat treatment was 600 ° C. The thickness of the nanocrystal alloy strip was 16 ⁇ m.
  • amorphous alloy strip Fe-Cu-Nb-Si-B alloy
  • the tension applied to the amorphous alloy strip was 40 MPa.
  • the ultimate temperature of the amorphous alloy strip in the heat treatment was 600 ° C.
  • the thickness of the nanocrystal alloy strip was 16 ⁇ m.
  • a nanocrystal alloy strip and a nanocrystal alloy strip with a resin film were prepared by the same procedure as in Example 1 except that the heat treatment was performed without applying tension.
  • the AC relative magnetic permeability ⁇ r of the nanocrystal alloy strip measured using the nanocrystal alloy strip with a resin film was about 12000.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

The present disclosure provides a production method that is for a nanocrystalline alloy ribbon having a resin film and that comprises a step for preparing a nanocrystallizable amorphous alloy ribbon, a step for performing a thermal treatment for nanocrystallization of the amorphous alloy ribbon with a tension exerted on the amorphous alloy ribbon, to obtain a nanocrystalline alloy ribbon, and a step for causing the nanocrystalline alloy ribbon to be held on the resin film with an adhesive layer therebetween.

Description

樹脂フィルム付きナノ結晶合金薄帯の製造方法Manufacturing method of nanocrystalline alloy strip with resin film
 本開示は、樹脂フィルム付きナノ結晶合金薄帯の製造方法に関する。 The present disclosure relates to a method for producing a nanocrystalline alloy strip with a resin film.
 近年急速にスマートフォン、タブレット型情報端末、あるいは携帯電話等の電子機器が普及している。特に、携帯電話(例えば、スマートフォン)、Web端末、ミュージックプレイヤー等は携帯機器としての利便性のため、長時間の連続使用が可能であることが求められている。これら小型携帯機器では電源としてリチウムイオン電池などの二次電池が使用されている。この二次電池の充電方法には受電側の電極と給電側の電極とを直接接触させて充電を行う接触充電方式と、給電側と受電側の両方に伝送コイルを設け、電磁誘導を利用した電力伝送によって充電する非接触充電方式とがある。非接触充電方式は給電装置と受電装置を直接接触させるための電極が必要ないため、同じ給電装置を用いて異なる受電装置に充電することも可能である。また、非接触充電方式は、携帯機器のみならず、その他の電子機器や電気自動車やドローン等でも利用されうる技術である。 In recent years, electronic devices such as smartphones, tablet-type information terminals, and mobile phones have rapidly become widespread. In particular, mobile phones (for example, smartphones), Web terminals, music players and the like are required to be able to be used continuously for a long time for convenience as mobile devices. In these small portable devices, a secondary battery such as a lithium ion battery is used as a power source. The method of charging this secondary battery is a contact charging method in which the electrode on the power receiving side and the electrode on the power feeding side are directly contacted to charge the battery, and transmission coils are provided on both the power feeding side and the power receiving side to utilize electromagnetic induction. There is a non-contact charging method that charges by power transmission. Since the non-contact charging method does not require an electrode for directly contacting the power feeding device and the power receiving device, it is possible to charge different power receiving devices using the same power feeding device. The non-contact charging method is a technology that can be used not only in mobile devices but also in other electronic devices, electric vehicles, drones, and the like.
 非接触充電方式において、給電装置の一次伝送コイルに発生した磁束は給電装置と受電装置の筐体を介して受電装置の二次伝送コイルに起電力を発生させることで給電が行われる。高い電力伝送効率を得るためには、伝送コイルに対して、給電装置と受電装置の接触面とは反対側にコイルヨークとして磁性シートが設置される。かかる磁性シートには以下のような役割がある。
 第一の役割は、磁気シールド材としての役割である。例えば、非接触充電装置の充電作業中に発生した漏れ磁束が二次電池を構成する金属部材などの他の部品に流れると、これらの部品が渦電流によって発熱する。磁性シートは、磁気シールド材としてこの発熱を抑制できる。
 磁性シートの第二の役割は、充電中にコイルで発生した磁束を還流させるヨーク部材として作用することである。
In the non-contact charging method, the magnetic flux generated in the primary transmission coil of the power feeding device is supplied by generating an electromotive force in the secondary transmission coil of the power receiving device via the housing of the power feeding device and the power receiving device. In order to obtain high power transmission efficiency, a magnetic sheet is installed as a coil yoke on the side of the transmission coil opposite to the contact surface between the power feeding device and the power receiving device. Such a magnetic sheet has the following roles.
The first role is as a magnetic shielding material. For example, when the leakage flux generated during the charging operation of the non-contact charging device flows to other parts such as metal members constituting the secondary battery, these parts generate heat due to the eddy current. The magnetic sheet can suppress this heat generation as a magnetic shield material.
The second role of the magnetic sheet is to act as a yoke member that recirculates the magnetic flux generated in the coil during charging.
 従来、非接触充電装置の磁性シートに用いられる軟磁性材料はフェライト材が主流であったが、最近では、特開2008-112830号公報に示されるように、アモルファス合金やナノ結晶合金からなる軟磁性合金薄帯も適用され始めている。
 特開2008-112830号公報は、シート基材上に接着層を介して薄板状磁性体(合金薄帯)を接着して磁性シートを形成する工程と、上記合金薄帯を上記シート基材に接着された状態を維持しつつ、Q値の向上又は渦電流損の低減のために外力により複数に分割する工程とを具備する磁性シートの製造方法について、開示している。また、特開2008-112830号公報は、合金薄帯に外力を加えて複数に分割することで、磁性シートを例えばインダクタ用磁性体として用いる場合にQ値の向上を図ることができることを、開示している。また、特開2008-112830号公報は、磁性シートを磁気シールド用磁性体として用いる場合には、合金薄帯の電流路を分断して渦電流損を低減できることを、開示している。さらには、特開2008-112830号公報は、合金薄帯を複数に分割する場合において、分割した磁性体片は、その面積が0.01mm以上25mm以下の範囲であることが好ましいことを、開示している。
 また、国際公開第2014/157526号には、Fe基アモルファスを熱処理し、500kHzでの透磁率μrが220以上770以下の薄帯を用いた磁性シートが開示されている。
Conventionally, ferrite materials have been the mainstream of soft magnetic materials used for magnetic sheets of non-contact charging devices, but recently, as shown in Japanese Patent Application Laid-Open No. 2008-112830, soft magnetic materials made of amorphous alloys and nanocrystal alloys are used. Magnetic alloy strips are also beginning to be applied.
Japanese Patent Application Laid-Open No. 2008-112830 describes a step of adhering a thin plate-shaped magnetic material (alloy thin band) on a sheet base material via an adhesive layer to form a magnetic sheet, and using the alloy thin band as the sheet base material. A method for producing a magnetic sheet including a step of dividing into a plurality of pieces by an external force in order to improve the Q value or reduce the eddy current loss while maintaining the bonded state is disclosed. Further, Japanese Patent Application Laid-Open No. 2008-112830 discloses that the Q value can be improved when the magnetic sheet is used as, for example, a magnetic material for an inductor, by applying an external force to the alloy strip and dividing it into a plurality of pieces. doing. Further, Japanese Patent Application Laid-Open No. 2008-11230 discloses that when a magnetic sheet is used as a magnetic material for magnetic shielding, the current path of the alloy strip can be divided to reduce the eddy current loss. Further, Japanese Patent Application Laid-Open No. 2008-112830 states that when the alloy strip is divided into a plurality of pieces, the area of the divided magnetic material pieces is preferably in the range of 0.01 mm 2 or more and 25 mm 2 or less. , Disclosure.
Further, International Publication No. 2014/157526 discloses a magnetic sheet using a thin band obtained by heat-treating an Fe-based amorphous material and having a magnetic permeability μr of 220 or more and 770 or less at 500 kHz.
 複数に分割した合金薄帯を用いた磁性シートを非接触充電装置に用いる場合、その分割の状態を定量化するための特性として、透磁率が代用されることが多い。普及が進む携帯電話等で使用される場合、128kHzにおける交流比透磁率μrが100以上2000以下の磁性シートが要望される。
 しかし、この透磁率の数値を有する磁性シートとするには、軟磁性合金薄帯を1mm程度の間隔で細かく分割する必要がある。
 合金薄帯は、一般的には5μm以上50μm以下の薄さであるが、磁性シートの樹脂フィルムは弾性力が大きいため、樹脂フィルムを介して外力を与えても、内部の軟磁性合金薄帯を細かく複数に分割することは非常に難しい。
 国際公開第2014/157526号に記載されるFeアモルファスを用いた磁性シートでは、アモルファス合金を僅かに結晶化させることで、アモルファス状態で10オーダーの透磁率を、220以上770以下にしている。しかし、ナノ結晶合金では透磁率が一桁大きく、交流比透磁率μrを100以上2000以下まで低下させることが難しい。また、ナノ結晶合金では、ナノ結晶化熱処理をして微結晶組織を形成しているため、国際公開第2014/157526号のような熱処理による透磁率の低下は大きくなく、仮に、上記範囲まで透磁率を下げる熱処理を行うと薄帯が脆くなり、シート基材に接着する際の取り扱いが困難となる。
When a magnetic sheet using a plurality of divided alloy strips is used in a non-contact charging device, magnetic permeability is often substituted as a characteristic for quantifying the divided state. When used in mobile phones and the like, which are becoming more widespread, a magnetic sheet having an AC relative permeability μr of 100 or more and 2000 or less at 128 kHz is desired.
However, in order to obtain a magnetic sheet having this numerical value of magnetic permeability, it is necessary to finely divide the soft magnetic alloy strips at intervals of about 1 mm.
The alloy strip is generally as thin as 5 μm or more and 50 μm or less, but since the resin film of the magnetic sheet has a large elastic force, even if an external force is applied through the resin film, the soft magnetic alloy strip inside is used. It is very difficult to divide the.
The magnetic sheet using Fe amorphous as described in WO 2014/157526, by slightly crystallized amorphous alloy, a magnetic permeability of 10 3 orders in an amorphous state, and to more than 220 770 or less. However, the magnetic permeability of nanocrystal alloys is an order of magnitude higher, and it is difficult to reduce the AC relative magnetic permeability μr from 100 to 2000. Further, in the nanocrystal alloy, since the microcrystalline structure is formed by the nanocrystallizing heat treatment, the decrease in magnetic permeability due to the heat treatment as in International Publication No. 2014/157526 is not large, and the permeability is assumed to be within the above range. When the heat treatment for lowering the magnetic coefficient is performed, the thin band becomes brittle, which makes it difficult to handle when adhering to the sheet substrate.
 従って、発明が解決しようとする課題は、128kHzにおける交流比透磁率μrが100以上2000以下のナノ結晶合金薄帯を簡易に製造可能とし、そのナノ結晶合金薄帯を用いた樹脂フィルム付きナノ結晶合金薄帯の製造方法を提供することである。
 樹脂フィルム付きナノ結晶合金薄帯は、例えば、磁性シートに適用することができる。なお、この樹脂フィルム付きナノ結晶合金薄帯は、磁性シート以外の用途にも適用することができる。
Therefore, the problem to be solved by the invention is to make it possible to easily manufacture a nanocrystal alloy strip having an AC relative permeability μr of 100 or more and 2000 or less at 128 kHz, and to use the nanocrystal alloy strip to create a nanocrystal with a resin film. It is to provide a method for manufacturing an alloy strip.
The nanocrystalline alloy strip with a resin film can be applied to, for example, a magnetic sheet. The nanocrystal alloy strip with a resin film can be applied to applications other than magnetic sheets.
 上記課題を解決するための具体的手段には、以下の態様が含まれる。
<1> ナノ結晶化が可能な非晶質合金薄帯を用意する工程と、上記非晶質合金薄帯に張力を付与した状態でナノ結晶化の熱処理を行い、ナノ結晶合金薄帯を得る工程と、樹脂フィルム上に接着層を介して上記ナノ結晶合金薄帯を保持させる工程と、を備える、樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<2> 上記ナノ結晶合金薄帯の交流比透磁率μrは、100以上2000以下である、<1>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<3> 上記樹脂フィルム上に、上記ナノ結晶合金薄帯を複数積み重ねる工程を備える、<1>又は<2>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<4> 上記複数積み重ねられたナノ結晶合金薄帯間に接着層を備える、<3>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<5> 上記非晶質合金薄帯は、ロール冷却により製造された長尺の非晶質合金薄帯であり、上記ナノ結晶合金薄帯を得る工程は、上記非晶質合金薄帯に、上記非晶質合金薄帯の長手方向に張力を付与しつつ、上記非晶質合金薄帯を上記長手方向に進行させて、上記非晶質合金薄帯に対してナノ結晶化の熱処理を連続的に行う工程を備える、<1>~<4>のいずれか1つに記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<6> 上記ナノ結晶合金薄帯にクラックを形成する工程を備える、<1>~<5>のいずれか1つに記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<7> 上記ナノ結晶合金薄帯にクラックを形成する工程は、上記ナノ結晶合金薄帯に直接外力を付与する工程を有する<6>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<8> 上記ナノ結晶合金薄帯は、一般式:(Fe1-a100-x-y-z-α-β-γCuSiM’αM”βγ(原子%)により表される組成を有し、上記一般式中、MはCo及び/又はNiであり、M’はNb、Mo、Ta、Ti、Zr、Hf、V、Cr、Mn及びWからなる群から選ばれた少なくとも1種の元素であり、M”はAl、白金族元素、Sc、希土類元素、Zn、Sn、及びReからなる群から選ばれた少なくとも1種の元素であり、XはC、Ge、P、Ga、Sb、In、Be、及びAsからなる群から選ばれた少なくとも1種の元素であり、a、x、y、z、α、β及びγはそれぞれ0≦a≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、0≦α≦20、0≦β≦20及び0≦γ≦20を満たす、<1>~<7>のいずれか1つに記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
<9> 上記一般式において、a、x、y、z、α、β及びγは、それぞれ0≦a≦0.1、0.7≦x≦1.3、12≦y≦17、5≦z≦10、1.5≦α≦5、0≦β≦1及び0≦γ≦1である、<8>に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
Specific means for solving the above problems include the following aspects.
<1> A step of preparing an amorphous alloy strip capable of nanocrystallization and a heat treatment for nanocrystallization in a state where tension is applied to the above amorphous alloy strip to obtain a nanocrystal alloy strip. A method for producing a nanocrystal alloy strip with a resin film, comprising a step and a step of holding the nanocrystal alloy strip on the resin film via an adhesive layer.
<2> The method for producing a nanocrystal alloy thin band with a resin film according to <1>, wherein the AC specific magnetic permeability μr of the nanocrystal alloy thin band is 100 or more and 2000 or less.
<3> The method for producing a nanocrystal alloy strip with a resin film according to <1> or <2>, which comprises a step of stacking a plurality of the nanocrystal alloy strips on the resin film.
<4> The method for producing a nanocrystal alloy strip with a resin film according to <3>, wherein an adhesive layer is provided between the plurality of stacked nanocrystal alloy strips.
<5> The amorphous alloy strip is a long amorphous alloy strip produced by roll cooling, and the step of obtaining the nanocrystal alloy strip is performed by using the amorphous alloy strip. While applying tension in the longitudinal direction of the amorphous alloy strip, the amorphous alloy strip is advanced in the longitudinal direction, and the heat treatment for nanocrystallization is continuously performed on the amorphous alloy strip. The method for producing an amorphous alloy ribbon with a resin film according to any one of <1> to <4>, which comprises a step of performing the process.
<6> The method for producing a nanocrystal alloy strip with a resin film according to any one of <1> to <5>, comprising a step of forming a crack in the nanocrystal alloy strip.
<7> The method for producing a nanocrystal alloy strip with a resin film according to <6>, wherein the step of forming a crack in the nanocrystal alloy strip includes a step of directly applying an external force to the nanocrystal alloy strip.
<8> The nanocrystal alloy strip has a general formula: (Fe 1-a M a ) 100-x-y-z-α-β-γ Cu x S y B z M'α M " β X γ ( It has a composition represented by (atomic%), and in the above general formula, M is Co and / or Ni, and M'is from Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W. M "is at least one element selected from the group consisting of Al, platinum group element, Sc, rare earth element, Zn, Sn, and Re, and is X. Is at least one element selected from the group consisting of C, Ge, P, Ga, Sb, In, Be, and As, and a, x, y, z, α, β, and γ are 0 ≦ a, respectively. Satisfy ≤0.5, 0.1≤x≤3, 0≤y≤30, 0≤z≤25, 5≤y + z≤30, 0≤α≤20, 0≤β≤20 and 0≤γ≤20. , <1>. The method for producing a nanocrystal alloy strip with a resin film according to any one of <1> to <7>.
<9> In the above general formula, a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.1, 0.7 ≦ x ≦ 1.3, 12 ≦ y ≦ 17, 5 ≦, respectively. The method for producing a nanocrystal alloy strip with a resin film according to <8>, wherein z ≦ 10, 1.5 ≦ α ≦ 5, 0 ≦ β ≦ 1 and 0 ≦ γ ≦ 1.
 本開示によれば、128kHzにおける交流比透磁率μrが100以上2000以下のナノ結晶合金薄帯を簡易に製造可能とし、そのナノ結晶合金薄帯を用いた樹脂フィルム付きナノ結晶合金薄帯の製造方法が提供される。 According to the present disclosure, it is possible to easily manufacture a nanocrystal alloy strip having an AC relative permeability μr of 100 or more and 2000 or less at 128 kHz, and the nanocrystal alloy strip with a resin film can be manufactured using the nanocrystal alloy strip. A method is provided.
図1は、本開示のナノ結晶合金薄帯を得る工程の一実施形態を示すインラインアニール装置の模式図である。FIG. 1 is a schematic view of an in-line annealing device showing an embodiment of a step of obtaining a nanocrystal alloy strip of the present disclosure. 図2は、本開示の樹脂フィルム上に接着層を介してナノ結晶合金薄帯を保持させる工程の一実施形態を示すラミネート工程の模式図である。FIG. 2 is a schematic view of a laminating step showing an embodiment of a step of holding a nanocrystal alloy strip on the resin film of the present disclosure via an adhesive layer. 図3は、外力を加えられた箇所を概念的に示した本開示の実施形態のナノ結晶合金薄帯の平面図である。FIG. 3 is a plan view of the nanocrystal alloy strip of the embodiment of the present disclosure, which conceptually shows the location where an external force is applied. 図4は、クラックが形成されたナノ結晶合金薄帯を樹脂フィルム上に複数積層する本開示の実施形態の製造装置を示す図である。FIG. 4 is a diagram showing a manufacturing apparatus according to the embodiment of the present disclosure, in which a plurality of nanocrystal alloy strips having cracks formed are laminated on a resin film. 図5は、本開示の樹脂フィルム付きナノ結晶合金薄帯の一例を示す平面図(a)と断面図(b)である。FIG. 5 is a plan view (a) and a cross-sectional view (b) showing an example of the nanocrystal alloy strip with a resin film of the present disclosure. 図6は、本開示の樹脂フィルム付きナノ結晶合金薄帯の別の一例を示す平面図(a)と断面図(b)である。FIG. 6 is a plan view (a) and a cross-sectional view (b) showing another example of the nanocrystal alloy strip with a resin film of the present disclosure. 図7は、本開示の樹脂フィルム付きナノ結晶合金薄帯のクラックの様子を示す平面図である。FIG. 7 is a plan view showing the state of cracks in the nanocrystal alloy strip with the resin film of the present disclosure. 図8は、本開示の実施形態の樹脂フィルム付きナノ結晶合金薄帯の応用製品の一例として、非接触充電装置の一例の回路構成を示す図である。FIG. 8 is a diagram showing a circuit configuration of an example of a non-contact charging device as an example of an applied product of the nanocrystal alloy strip with a resin film of the embodiment of the present disclosure.
 以下、本開示の実施形態によって、本開示を具体的に説明するが、本開示はこれら実施形態により限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to the embodiments of the present disclosure, but the present disclosure is not limited to these embodiments.
 本開示の実施形態について図面を参照して説明する場合、図面において重複する構成要素、及び符号については、説明を省略することがある。図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。 When the embodiment of the present disclosure is described with reference to the drawings, the description of overlapping components and reference numerals in the drawings may be omitted. The components shown by using the same reference numerals in the drawings mean that they are the same components. The dimensional ratio in the drawings does not necessarily represent the actual dimensional ratio.
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the present disclosure, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively. In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
 本開示において、序数詞(例えば、「第1」、及び「第2」)は、構成要素を区別するために使用する用語であり、構成要素の数、及び構成要素の優劣を制限するものではない。 In the present disclosure, the ordinal numbers (eg, "first" and "second") are terms used to distinguish components and do not limit the number of components and the superiority or inferiority of the components. ..
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。 In the present disclosure, the term "process" is included in the term "process" as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes. ..
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。 In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
 本開示の一実施形態に係る樹脂フィルム付きナノ結晶合金薄帯の製造方法は、ナノ結晶化が可能な非晶質合金薄帯を用意する工程と、上記非晶質合金薄帯に張力を付与した状態でナノ結晶化の熱処理を行い、ナノ結晶合金薄帯を得る工程と、樹脂フィルム上に接着層を介して上記ナノ結晶合金薄帯を保持させる工程と、を備える。 The method for producing a nanocrystal alloy strip with a resin film according to an embodiment of the present disclosure includes a step of preparing an amorphous alloy strip capable of nanocrystallization and applying tension to the amorphous alloy strip. In this state, the process includes a step of performing a heat treatment for nanocrystallization to obtain a nanocrystal alloy strip, and a step of holding the nanocrystal alloy strip on a resin film via an adhesive layer.
 まず、本実施形態のナノ結晶化が可能な非晶質合金薄帯を用意する工程について、記載する。
 ナノ結晶化が可能な非晶質合金薄帯とは、熱処理することによりナノ結晶が生成される非晶質状態の合金薄帯であり、例えば、ナノ結晶合金となる合金組成に配合された溶湯を急冷凝固させて製造することができる。溶湯を急冷凝固させる方法には、単ロール法又は双ロール法と呼ばれる方法を用いることができる。これらはロール冷却を用いた方法である。このロール冷却を用いた方法は、よく知られた方法を適用することができる。このロール冷却を用いた方法では、溶湯を連続して急冷し、長尺の非晶質合金薄帯が得られる。薄帯状に急冷凝固されたものは、ナノ結晶は備えておらず、非晶質状態のものであり、その後、熱処理を行うことで、ナノ結晶を生成(ナノ結晶化)させ、ナノ結晶合金薄帯となるものである。なお、この長尺の非晶質合金薄帯は巻き軸に巻き取られ、ロール状の巻回体として、搬送されることが多い。なお、ナノ結晶化が可能な非晶質合金薄帯には、微細結晶が存在している場合もある。その場合、微細結晶は熱処理によりナノ結晶となる。
First, a step of preparing an amorphous alloy strip capable of nanocrystallization of the present embodiment will be described.
The amorphous alloy strip capable of nanocrystallization is an amorphous alloy strip in which nanocrystals are generated by heat treatment. For example, a molten metal blended into an alloy composition to be a nanocrystal alloy. Can be produced by quenching and solidifying. As a method for quenching and solidifying the molten metal, a method called a single roll method or a double roll method can be used. These are methods using roll cooling. A well-known method can be applied to the method using this roll cooling. In this method using roll cooling, the molten metal is continuously rapidly cooled to obtain a long amorphous alloy strip. The one that has been rapidly cooled and solidified into a thin band does not have nanocrystals and is in an amorphous state. After that, nanocrystals are generated (nanocrystallized) by heat treatment, and the nanocrystal alloy is thin. It is a belt. In addition, this long amorphous alloy strip is often wound around a winding shaft and transported as a roll-shaped winding body. In addition, fine crystals may be present in the amorphous alloy strip capable of nanocrystallization. In that case, the fine crystals become nanocrystals by heat treatment.
 このナノ結晶合金薄帯は、例えば、一般式:(Fe1-a100-x-y-z-α-β-γCuSiM’αM”βγ(原子%)により表される組成を有する。上記一般式中、MはCo及び/又はNiであり、M’はNb、Mo、Ta、Ti、Zr、Hf、V、Cr、Mn及びWからなる群から選ばれた少なくとも1種の元素、M”はAl、白金族元素、Sc、希土類元素、Zn、Sn、及びReからなる群から選ばれた少なくとも1種の元素、XはC、Ge、P、Ga、Sb、In、Be、及びAsからなる群から選ばれた少なくとも1種の元素、a、x、y、z、α、β及びγはそれぞれ0≦a≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、0≦α≦20、0≦β≦20及び0≦γ≦20を満たす。)により表される組成を有するものを使用することができる。好ましくは、上記一般式において、a、x、y、z、α、β及びγは、それぞれ0≦a≦0.1、0.7≦x≦1.3、12≦y≦17、5≦z≦10、1.5≦α≦5、0≦β≦1及び0≦γ≦1を満たす範囲である。
 なお、ナノ結晶化が可能な非晶質合金薄帯を用意する工程とは、ナノ結晶化が可能な非晶質合金薄帯を製造してもよいし、購入してもよい。
The nanocrystalline alloy ribbon, for example, the general formula: (Fe 1-a M a ) 100-x-y-z-α-β-γ Cu x Si y B z M 'α M "β X γ ( atomic %) In the above general formula, M is Co and / or Ni, and M'is a group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W. At least one element selected from, M "is at least one element selected from the group consisting of Al, platinum group element, Sc, rare earth element, Zn, Sn, and Re, and X is C, Ge, P. , Ga, Sb, In, Be, and at least one element selected from the group consisting of As, a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.5 and 0.1, respectively. Satisfy ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, 5 ≦ y + z ≦ 30, 0 ≦ α ≦ 20, 0 ≦ β ≦ 20, and 0 ≦ γ ≦ 20. ) Can be used. Preferably, in the above general formula, a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.1, 0.7 ≦ x ≦ 1.3, 12 ≦ y ≦ 17, 5 ≦, respectively. It is a range that satisfies z ≦ 10, 1.5 ≦ α ≦ 5, 0 ≦ β ≦ 1 and 0 ≦ γ ≦ 1.
In addition, in the step of preparing the amorphous alloy strip capable of nanocrystallization, the amorphous alloy strip capable of nanocrystallization may be produced or purchased.
 次に、本実施形態の非晶質合金薄帯に張力を付与した状態でナノ結晶化の熱処理を行い、ナノ結晶合金薄帯を得る工程について、記載する。
 ナノ結晶化が可能な非晶質合金薄帯に張力を付与した状態で、ナノ結晶化の熱処理を行うことで、ナノ結晶合金薄帯の交流比透磁率μrを調整することが可能である。そして、この工程により、交流比透磁率μrが100以上2000以下のナノ結晶合金薄帯を得ることが好ましい。なお、ナノ結晶合金とは、粒径が100nm以下の微結晶組織を有する合金である。
Next, a step of performing a heat treatment for nanocrystallization in a state where tension is applied to the amorphous alloy strip of the present embodiment to obtain a nanocrystal alloy strip will be described.
It is possible to adjust the AC specific magnetic permeability μr of the nanocrystal alloy strip by performing the nanocrystallization heat treatment in a state where tension is applied to the nanocrystal-capable amorphous alloy strip. Then, it is preferable to obtain a nanocrystal alloy strip having an AC relative permeability μr of 100 or more and 2000 or less by this step. The nanocrystalline alloy is an alloy having a microcrystalline structure having a particle size of 100 nm or less.
 交流比透磁率μrの測定においては、インピーダンス(Z)と直列等価回路のインダクタンス(L)をインピーダンスアナライザ(キーサイト・テクノロジー社製E4990A、測定治具:16454A)にて、OSCレベルを0.03Vとし、25℃の温度で128kHzの周波数で測定し、以下の式に基づいて交流比透磁率μrを算出する。評価サンプルは、外径20mm、内径9mmのリング状に打ち抜いたシートを10~20層重ねたものを使用する。
 μr=2π×Z/(2π×μ0×f×t×n×ln(OD/ID))
 Z:インピーダンスの絶対値
 f:周波数(Hz)
 t:薄帯厚み(m)
 n:層数
 μ0:真空透磁率(4×π×10-7H/m)
 OD:外径(m)
 ID:内径(m)
AC in the measurement of relative permeability .mu.r, impedance (Z) and an impedance analyzer inductance (L S) of the series equivalent circuit (key sites Technology Inc. E4990A, measurement jig: 16454A) at the OSC level 0. It is set to 03V, measured at a temperature of 25 ° C. and a frequency of 128 kHz, and the AC relative magnetic permeability μr is calculated based on the following formula. As the evaluation sample, 10 to 20 layers of ring-shaped punched sheets having an outer diameter of 20 mm and an inner diameter of 9 mm are used.
μr = 2π × Z / (2π × μ0 × f × t × n × ln (OD / ID))
Z: Absolute value of impedance f: Frequency (Hz)
t: Thin band thickness (m)
n: Number of layers μ0: Vacuum permeability (4 × π × 10-7 H / m)
OD: Outer diameter (m)
ID: Inner diameter (m)
 本実施形態では、例えば、非晶質合金薄帯を張力が加わる状態で連続走行させ、その非晶質合金薄帯の一部の領域をナノ結晶化させる。ナノ結晶化は、結晶化開始温度以上の熱が付与されることで行われ、例えば、非晶質合金薄帯を熱処理炉の中を通過させたり、非晶質合金薄帯を伝熱媒体に接触させたりする手段を採用できる。具体的な本実施形態では、張力が加わった状態の非晶質合金薄帯を、伝熱媒体との接触を維持しながら連続走行させる。連続走行する非晶質合金薄帯に接触する伝熱媒体は、非晶質合金薄帯の走行経路の途中に配置されている。そして、非晶質合金薄帯は、伝熱媒体を通過することにより、熱処理され、ナノ結晶合金薄帯となる。 In the present embodiment, for example, the amorphous alloy strip is continuously run under tension, and a part of the amorphous alloy strip is nanocrystallized. Nano-crystallization is performed by applying heat above the crystallization start temperature. For example, an amorphous alloy strip is passed through a heat treatment furnace, or an amorphous alloy strip is used as a heat transfer medium. Means for contacting can be adopted. Specifically, in the present embodiment, the amorphous alloy strip in a tensioned state is continuously run while maintaining contact with the heat transfer medium. The heat transfer medium that comes into contact with the continuously traveling amorphous alloy strip is arranged in the middle of the traveling path of the amorphous alloy strip. Then, the amorphous alloy strip is heat-treated by passing through the heat transfer medium to become a nanocrystal alloy strip.
 上記のような非晶質合金を連続走行させながら熱処理する方法において、非晶質合金薄帯に加わっている張力の方向は、伝熱媒体に接触する直前の非晶質合金薄帯の走行方向、伝熱媒体に接触している時の非晶質合金薄帯の走行方向、及び、伝熱媒体から離れた直後のナノ結晶合金薄帯の走行方向と同一であり、いずれも直線状である。このように、非晶質合金薄帯を走行させて熱処理する場合の非晶質合金薄帯は、長尺の非晶質合金薄帯であり、その非晶質合金薄帯の長手方向と付与される張力の方向とは同一となる。なお、非晶質合金薄帯に付与される張力の方向は、非晶質合金薄帯をロール冷却で製造する場合のロールの回転方向に沿う方向と同じである。ロールの回転方向に沿う方向を鋳造方向ともいい、非晶質合金薄帯に付与される張力の方向はその鋳造方向と同じである。上記のように、ナノ結晶合金薄帯を得る工程は、非晶質合金薄帯に、上記非晶質合金薄帯の長手方向に張力を付与しつつ、上記非晶質合金薄帯を上記長手方向に進行させて、上記非晶質合金薄帯に対してナノ結晶化の熱処理を連続的行う工程を有していてもよい。
 但し、非晶質合金薄帯は、「伝熱媒体に接触する直前」よりも走行方向上流側においては、搬送ローラー等を経由しながら蛇行走行していてもよい。同様に、非晶質合金薄帯から得られたナノ結晶合金薄帯は、「伝熱媒体から離れた直後」よりも走行方向下流側においては、搬送ローラー等を経由しながら蛇行走行していてもよい。
 非晶質合金薄帯に付与される張力としては、1.0N~50.0Nが好ましく、2.0N~40.0Nがより好ましく、3.0N~35.0Nが特に好ましい。
 張力が1.0N以上であると、透磁率を十分に低下することができる。
 張力が50.0N以下であると、非晶質合金薄帯又はナノ結晶合金薄帯の破断をより抑制できる。
In the method of heat-treating the amorphous alloy while continuously running it as described above, the direction of the tension applied to the amorphous alloy strip is the running direction of the amorphous alloy strip immediately before contacting the heat transfer medium. , The running direction of the amorphous alloy strip when in contact with the heat transfer medium and the running direction of the nanocrystal alloy strip immediately after leaving the heat transfer medium are the same, and both are linear. .. As described above, the amorphous alloy strip when the amorphous alloy strip is run and heat-treated is a long amorphous alloy strip, and the longitudinal direction of the amorphous alloy strip and the addition of the amorphous alloy strip are applied. The direction of tension applied is the same. The direction of the tension applied to the amorphous alloy strip is the same as the direction along the rotation direction of the roll when the amorphous alloy strip is manufactured by roll cooling. The direction along the rotation direction of the roll is also referred to as the casting direction, and the direction of tension applied to the amorphous alloy strip is the same as the casting direction. As described above, in the step of obtaining the nanocrystal alloy strip, the amorphous alloy strip is stretched in the longitudinal direction of the amorphous alloy strip while applying tension to the amorphous alloy strip in the longitudinal direction. It may have a step of continuously performing nanocrystallization heat treatment on the amorphous alloy strip by advancing in the direction.
However, the amorphous alloy strip may meander while passing through a transport roller or the like on the upstream side in the traveling direction from "immediately before contacting the heat transfer medium". Similarly, the nanocrystalline alloy strip obtained from the amorphous alloy strip is meandering on the downstream side in the traveling direction from "immediately after leaving the heat transfer medium" while passing through a transport roller or the like. May be good.
The tension applied to the amorphous alloy strip is preferably 1.0N to 50.0N, more preferably 2.0N to 40.0N, and particularly preferably 3.0N to 35.0N.
When the tension is 1.0 N or more, the magnetic permeability can be sufficiently lowered.
When the tension is 50.0 N or less, the breakage of the amorphous alloy strip or the nanocrystalline alloy strip can be further suppressed.
 また、本実施形態のナノ結晶化の熱処理では、非晶質合金薄帯の温度を結晶化温度Tc1以上(例えば430℃以上)の到達温度まで昇温させる。これにより、合金薄帯の組織において、ナノ結晶化が進行する。
 到達温度は、430℃~600℃が好ましい。
 到達温度が600℃以下である場合(特に、Bの含有量が10原子%以上20原子%以下である場合)には、例えば、ナノ結晶合金薄帯の軟磁気特性(Hc、Bs等)を劣化させ得るFe-B化合物の析出頻度をより低減できる。
 また、設定する到達温度と、伝熱媒体の温度とを同一温度としておくことが好ましい。
Further, in the heat treatment for nanocrystallization of the present embodiment, the temperature of the amorphous alloy strip is raised to the temperature reached at the crystallization temperature Tc1 or higher (for example, 430 ° C. or higher). As a result, nanocrystallization proceeds in the structure of the alloy strip.
The ultimate temperature is preferably 430 ° C to 600 ° C.
When the ultimate temperature is 600 ° C. or lower (particularly, when the B content is 10 atomic% or more and 20 atomic% or less), for example, the soft magnetic properties (Hc, Bs, etc.) of the nanocrystal alloy strip are determined. The frequency of precipitation of Fe-B compounds that can be deteriorated can be further reduced.
Further, it is preferable that the reached temperature to be set and the temperature of the heat transfer medium are the same temperature.
 また、ナノ結晶化の熱処理に伝熱媒体を用いる場合、伝熱媒体としては、例えば、プレート、ツインロール等が挙げられるが、非晶質合金薄帯と接触する面が多い、プレート状の伝熱媒体が好ましい。プレート状の伝熱媒体の接触面は、平面であることが好ましいが、多少の曲面が設けられていてもよい。また、伝熱媒体の合金薄帯との接触面に吸引孔を設け、吸引孔において減圧吸引することを可能としてもよい。これにより、合金薄帯を伝熱媒体の吸引孔を有する面に吸引吸着させることができ、合金薄帯の伝熱媒体への接触性が向上し、熱処理の効率を向上できる。 When a heat transfer medium is used for the heat treatment of nanocrystallization, examples of the heat transfer medium include a plate and a twin roll, but the plate-shaped heat transfer medium has many surfaces in contact with the amorphous alloy strip. A heat medium is preferred. The contact surface of the plate-shaped heat transfer medium is preferably a flat surface, but a slightly curved surface may be provided. Further, a suction hole may be provided on the contact surface of the heat transfer medium with the alloy strip, and the suction hole may be used for vacuum suction. As a result, the alloy strip can be suction-adsorbed to the surface of the heat transfer medium having suction holes, the contact property of the alloy strip with the heat transfer medium can be improved, and the efficiency of heat treatment can be improved.
 また、伝熱媒体の材質としては、例えば、銅、銅合金(青銅、真鍮等)、アルミニウム、鉄、鉄合金(ステンレス等)などが挙げられる。このうち、銅、銅合金、又はアルミニウムが、熱電率(熱伝達率)が高く好ましい。
 伝熱媒体は、Niめっき、Agめっき等のめっき処理が施されていてもよい。
 また、この伝熱媒体を加熱する手段を別途設けておき、加熱された伝熱媒体と非晶質合金薄帯とを接触させて、非晶質合金薄帯を加熱して、熱処理することができる。また、伝熱媒体の周りを任意の部材で囲ってもよい。
 また、本実施形態では、上記した到達温度まで昇温後、伝熱媒体上にて、ナノ結晶合金薄帯の温度を一定時間保持してもよい。
 また、本実施形態では、得られたナノ結晶合金薄帯を(好ましくは室温まで)冷却することが好ましい。
 また、本実施形態は、得られたナノ結晶合金薄帯(好ましくは上記冷却後のナノ結晶合金薄帯)を巻き取ることにより、ナノ結晶合金薄帯の巻回体を得ることを含んでもよい。
Examples of the material of the heat transfer medium include copper, copper alloy (bronze, brass, etc.), aluminum, iron, iron alloy (stainless steel, etc.) and the like. Of these, copper, copper alloy, or aluminum is preferable because of its high thermoelectric coefficient (heat transfer coefficient).
The heat transfer medium may be plated with Ni plating, Ag plating, or the like.
Further, a means for heating the heat transfer medium may be separately provided, and the heated heat transfer medium may be brought into contact with the amorphous alloy strip to heat the amorphous alloy strip for heat treatment. it can. Further, the heat transfer medium may be surrounded by an arbitrary member.
Further, in the present embodiment, after raising the temperature to the above-mentioned reached temperature, the temperature of the nanocrystal alloy strip may be maintained for a certain period of time on the heat transfer medium.
Further, in the present embodiment, it is preferable to cool the obtained nanocrystal alloy strip (preferably to room temperature).
Further, the present embodiment may include obtaining a wound body of the nanocrystal alloy strip by winding the obtained nanocrystal alloy strip (preferably the nanocrystal alloy strip after cooling). ..
 本実施形態の非晶質合金薄帯の厚さは、10μm~50μmの範囲が好ましい。10μm未満では、合金薄帯自体の機械的強度が低いため、安定して長尺の合金薄帯を鋳造することが困難である。また、50μmを超えると合金の一部が結晶化しやすくなり、特性が劣化する場合がある。非晶質合金薄帯の厚さは、より好ましくは11μm~30μmであり、さらに好ましくは12μm~27μmである。
 また、非晶質合金薄帯の幅は特に制限はないが、5mm~300mmであることが好ましい。非晶質合金薄帯の幅が5mm以上であると、非晶質合金薄帯の製造適性に優れる。非晶質合金薄帯の幅が300mm以下であると、ナノ結晶合金薄帯を得る工程において、ナノ結晶化の均一性がより向上する。非晶質合金薄帯の幅は、200mm以下であることが好ましい。
The thickness of the amorphous alloy strip of the present embodiment is preferably in the range of 10 μm to 50 μm. If it is less than 10 μm, the mechanical strength of the alloy strip itself is low, and it is difficult to stably cast a long alloy strip. Further, if it exceeds 50 μm, a part of the alloy is likely to crystallize, and the characteristics may be deteriorated. The thickness of the amorphous alloy strip is more preferably 11 μm to 30 μm, still more preferably 12 μm to 27 μm.
The width of the amorphous alloy strip is not particularly limited, but is preferably 5 mm to 300 mm. When the width of the amorphous alloy strip is 5 mm or more, the manufacturing suitability of the amorphous alloy strip is excellent. When the width of the amorphous alloy strip is 300 mm or less, the uniformity of nanocrystallization is further improved in the step of obtaining the nanocrystal alloy strip. The width of the amorphous alloy strip is preferably 200 mm or less.
 なお、本実施形態では、ロール状の巻回体に構成された非晶質合金薄帯から非晶質合金薄帯を巻き出し、その非晶質合金薄帯に張力を加えながら、非晶質合金薄帯を走行させ、その走行する非晶質合金薄帯を伝熱媒体に接触させて加熱し、その加熱による熱処理によりナノ結晶化し、ナノ結晶合金薄帯を得て、そのナノ結晶合金薄帯をロール状の巻回体に巻き取る、連続ラインを設けてナノ結晶合金薄帯を作製することもできる。 In the present embodiment, the amorphous alloy strip is unwound from the amorphous alloy strip formed of the roll-shaped wound body, and the amorphous alloy strip is subjected to tension while being amorphous. The alloy strip is run, the running amorphous alloy strip is brought into contact with a heat transfer medium and heated, and nanocrystallized by heat treatment by the heating to obtain a nanocrystal alloy strip, and the nanocrystal alloy thin It is also possible to prepare a nanocrystal alloy ribbon by providing a continuous line in which the band is wound around a roll-shaped winding body.
 連続ラインを設けてナノ結晶合金薄帯を作製する方法の一実施形態を、図1を用いて説明する。図1に示すのは、インラインアニール装置150であり、巻き出しローラー112から巻き取りローラー114に亘って、長尺の非晶質合金薄帯に対して昇温工程~降温(冷却)工程を含む連続した熱処理工程を施し、ナノ結晶合金薄帯を得るインラインアニール工程を行う装置である。 An embodiment of a method for producing a nanocrystal alloy strip by providing a continuous line will be described with reference to FIG. FIG. 1 shows an in-line annealing device 150, which includes a temperature raising step to a temperature lowering (cooling) step for a long amorphous alloy strip from the unwinding roller 112 to the winding roller 114. This is an apparatus that performs an in-line annealing step of performing a continuous heat treatment step to obtain a nanocrystal alloy strip.
 インラインアニール装置150は、非晶質合金薄帯の巻回体111から合金薄帯110を巻き出す巻き出しローラー112(巻き出し装置)と、巻き出しローラー112から巻き出された合金薄帯110を加熱する加熱プレート(伝熱媒体)122と、加熱プレート122によって加熱された合金薄帯110を降温する冷却プレート(伝熱媒体)132と、冷却プレート132によって降温された合金薄帯110を巻き取る巻き取りローラー114(巻き取り装置)と、を備える。図1では、合金薄帯110の走行方向を、矢印Rで示している。 The in-line annealing device 150 combines the unwinding roller 112 (unwinding device) that unwinds the alloy thin band 110 from the winding body 111 of the amorphous alloy thin band and the alloy thin band 110 unwound from the unwinding roller 112. The heating plate (heat transfer medium) 122 to be heated, the cooling plate (heat transfer medium) 132 for lowering the temperature of the alloy strip 110 heated by the heating plate 122, and the alloy strip 110 heated by the cooling plate 132 are wound up. A take-up roller 114 (wind-up device) is provided. In FIG. 1, the traveling direction of the alloy strip 110 is indicated by an arrow R.
 巻き出しローラー112には、非晶質合金薄帯の巻回体111がセットされている。
 巻き出しローラー112が矢印Uの方向に軸回転することにより、非晶質合金薄帯の巻回体111から合金薄帯110が巻き出される。
 この一例では、巻き出しローラー112自体が回転機構(例えばモーター)を備えていてもよいし、巻き出しローラー112自体は回転機構を備えていなくてもよい。
 巻き出しローラー112自体は回転機構を備えていない場合でも、後述の巻き取りローラー114による合金薄帯110の巻き取り動作に連動し、巻き出しローラー112にセットされた非晶質合金薄帯の巻回体111から合金薄帯110が巻き出される。
An amorphous alloy thin band winding body 111 is set on the unwinding roller 112.
When the unwinding roller 112 rotates about the axis in the direction of the arrow U, the alloy thin band 110 is unwound from the wound body 111 of the amorphous alloy thin band.
In this example, the unwinding roller 112 itself may be provided with a rotating mechanism (for example, a motor), and the unwinding roller 112 itself may not be provided with a rotating mechanism.
Even if the unwinding roller 112 itself does not have a rotation mechanism, the amorphous alloy thin band set on the unwinding roller 112 is wound in conjunction with the winding operation of the alloy thin band 110 by the winding roller 114 described later. The alloy strip 110 is unwound from the rotating body 111.
 図1中、丸で囲った拡大部分に示すように、加熱プレート122は、巻き出しローラー112から巻き出された合金薄帯110が接触する第1平面122Sを含む。この加熱プレート122は、第1平面122Sに接触しながら第1平面122S上を走行している合金薄帯110を、第1平面122Sを介して加熱する。これにより、走行中の合金薄帯110が、安定的に急速加熱され、ナノ結晶化される。
 加熱プレート122は、不図示の熱源に接続されており、この熱源から供給された熱によって所望とする温度に加熱されている。加熱プレート122は、熱源に接続されることに代えて、又は、熱源に接続されることに加えて、加熱プレート122自身の内部に熱源を備えていてもよい。
 加熱プレート122の材質としては、例えば、ステンレス、Cu、Cu合金、Al合金等が挙げられる。
As shown in the circled enlarged portion in FIG. 1, the heating plate 122 includes a first plane 122S to which the alloy strip 110 unwound from the unwinding roller 112 comes into contact. The heating plate 122 heats the alloy strip 110 running on the first plane 122S while being in contact with the first plane 122S via the first plane 122S. As a result, the running alloy strip 110 is stably and rapidly heated and nanocrystallized.
The heating plate 122 is connected to a heat source (not shown) and is heated to a desired temperature by the heat supplied from this heat source. The heating plate 122 may be provided with a heat source inside the heating plate 122 itself, instead of being connected to the heat source or in addition to being connected to the heat source.
Examples of the material of the heating plate 122 include stainless steel, Cu, Cu alloy, Al alloy and the like.
 加熱プレート122は、加熱室120に収容されている。
 加熱室120は、加熱プレート122に対する熱源とは別に、加熱室の温度を制御するための熱源を備えていてもよい。
 加熱室120は、合金薄帯110の走行方向(矢印R)の上流側及び下流側のそれぞれに、合金薄帯が進入又は退出する開口部(不図示)を有している。合金薄帯110は、上流側の開口部である進入口を通って加熱室120内に進入し、下流側の開口部である退出口を通って加熱室120内から退出する。
The heating plate 122 is housed in the heating chamber 120.
The heating chamber 120 may include a heat source for controlling the temperature of the heating chamber in addition to the heat source for the heating plate 122.
The heating chamber 120 has openings (not shown) in which the alloy strips enter or exit, respectively, on the upstream side and the downstream side of the alloy strip 110 in the traveling direction (arrow R). The alloy strip 110 enters the heating chamber 120 through the entrance which is the opening on the upstream side, and exits from the heating chamber 120 through the exit outlet which is the opening on the downstream side.
 また、図1中、丸で囲った拡大部分に示すように、冷却プレート132は、合金薄帯110が接触する第2平面132Sを含む。この冷却プレート132は、第2平面132Sに接触しながら第2平面132S上を走行している合金薄帯110を、第2平面132Sを介して降温する。
 冷却プレート132は、冷却機構(例えば水冷機構)を有していてもよいし、特段の冷却機構を有していなくてもよい。
 冷却プレート132の材質としては、例えば、ステンレス、Cu、Cu合金、Al合金等が挙げられる。
 冷却プレート132は、冷却室130に収容されている。
 冷却室130は、冷却機構(例えば水冷機構)を有していてもよいが、特段の冷却機構を有していなくてもよい。即ち、冷却室130による冷却の態様は、水冷であってもよいし、空冷であってもよい。
 冷却室130は、合金薄帯110の走行方向(矢印R)の上流側及び下流側のそれぞれに、合金薄帯が進入又は退出する開口部(不図示)を有している。合金薄帯110は、上流側の開口部である進入口を通って冷却室130内に進入し、下流側の開口部である退出口を通って冷却室130内から退出する。
Further, as shown in the enlarged portion circled in FIG. 1, the cooling plate 132 includes the second plane 132S to which the alloy strip 110 contacts. The cooling plate 132 lowers the temperature of the alloy strip 110 running on the second plane 132S while being in contact with the second plane 132S via the second plane 132S.
The cooling plate 132 may or may not have a cooling mechanism (for example, a water cooling mechanism) or may not have a special cooling mechanism.
Examples of the material of the cooling plate 132 include stainless steel, Cu, Cu alloy, Al alloy and the like.
The cooling plate 132 is housed in the cooling chamber 130.
The cooling chamber 130 may have a cooling mechanism (for example, a water cooling mechanism), but may not have a special cooling mechanism. That is, the mode of cooling by the cooling chamber 130 may be water cooling or air cooling.
The cooling chamber 130 has openings (not shown) through which the alloy strips enter or exit, respectively, on the upstream side and the downstream side of the alloy strip 110 in the traveling direction (arrow R). The alloy strip 110 enters the cooling chamber 130 through the entrance which is the opening on the upstream side, and exits from the cooling chamber 130 through the exit outlet which is the opening on the downstream side.
 巻き取りローラー114は、矢印Wの方向に軸回転する回転機構(例えばモーター)を備えている。巻き取りローラー114の回転により、合金薄帯110が所望とする速度で巻き取られる。 The take-up roller 114 is provided with a rotation mechanism (for example, a motor) that rotates around the axis in the direction of the arrow W. The rotation of the take-up roller 114 winds the alloy strip 110 at a desired speed.
 インラインアニール装置150は、巻き出しローラー112と加熱室120との間に、合金薄帯110の走行経路に沿って、ガイドローラー41、ダンサーローラー60(引張応力調整装置の一つ)、ガイドローラー42、並びに、一対のガイドローラー43A及び43Bを備えている。引張応力の調整は、巻き出しローラー112及び巻き取りローラー114の動作制御によっても行われる。
 ダンサーローラー60は、鉛直方向(図1中の両側矢印の方向)に移動可能に設けられている。このダンサーローラー60の鉛直方向の位置を調整することにより、合金薄帯110の引張応力を調整できる。
 これにより、非晶質合金薄帯に張力を付与した状態でナノ結晶化の熱処理を行うことができる。
The in-line annealing device 150 includes a guide roller 41, a dancer roller 60 (one of the tensile stress adjusting devices), and a guide roller 42 between the unwinding roller 112 and the heating chamber 120 along the traveling path of the alloy strip 110. , And a pair of guide rollers 43A and 43B. The tensile stress is also adjusted by controlling the operation of the take-up roller 112 and the take-up roller 114.
The dancer roller 60 is provided so as to be movable in the vertical direction (direction of the arrows on both sides in FIG. 1). By adjusting the position of the dancer roller 60 in the vertical direction, the tensile stress of the alloy strip 110 can be adjusted.
As a result, the heat treatment for nanocrystallization can be performed in a state where tension is applied to the amorphous alloy strip.
 巻き出しローラー112から巻き出された合金薄帯110は、これらのガイドローラー及びダンサーローラーを経由して、加熱室120内に導かれる。
 インラインアニール装置150は、加熱室120と冷却室130との間に、一対のガイドローラー44A及び44B、並びに、一対のガイドローラー45A及び45Bを備えている。
 加熱室120から退出した合金薄帯110は、これらのガイドローラーを経由して冷却室130内に導かれる。
The alloy strip 110 unwound from the unwinding roller 112 is guided into the heating chamber 120 via these guide rollers and dancer rollers.
The in-line annealing device 150 includes a pair of guide rollers 44A and 44B and a pair of guide rollers 45A and 45B between the heating chamber 120 and the cooling chamber 130.
The alloy strip 110 exiting the heating chamber 120 is guided into the cooling chamber 130 via these guide rollers.
 インラインアニール装置150は、冷却室130と巻き取りローラー114との間に、合金薄帯110の走行経路に沿って、一対のガイドローラー46A及び46B、ガイドローラー47、ダンサーローラー62、ガイドローラー48、ガイドローラー49、並びに、ガイドローラー50を備えている。
 ダンサーローラー62は、鉛直方向(図1中の両側矢印の方向)に移動可能に設けられている。このダンサーローラー62の鉛直方向の位置を調節することにより、合金薄帯110の引張応力を調整できる。
 冷却室130から退出した合金薄帯110は、これらのガイドローラー及びダンサーローラーを経由して、巻き取りローラー114に導かれる。
The in-line annealing device 150 includes a pair of guide rollers 46A and 46B, a guide roller 47, a dancer roller 62, and a guide roller 48 along the traveling path of the alloy strip 110 between the cooling chamber 130 and the take-up roller 114. It includes a guide roller 49 and a guide roller 50.
The dancer roller 62 is provided so as to be movable in the vertical direction (direction of the arrows on both sides in FIG. 1). By adjusting the position of the dancer roller 62 in the vertical direction, the tensile stress of the alloy strip 110 can be adjusted.
The alloy strip 110 exiting the cooling chamber 130 is guided to the take-up roller 114 via these guide rollers and dancer rollers.
 インラインアニール装置150において、加熱室120の上流側及び下流側に配置されたガイドローラー(43A、43B、44A、及び44B)は、合金薄帯110と加熱プレート122の第1平面とを全面的に接触させるために、合金薄帯110の位置を調整する機能を有する。
 インラインアニール装置150において、冷却室130の上流側及び下流側に配置されたガイドローラー(45A、45B、46A、及び46B)は、合金薄帯110と冷却プレート132の第2平面とを全面的に接触させるために、合金薄帯110の位置を調整する機能を有する。
In the in-line annealing device 150, the guide rollers (43A, 43B, 44A, and 44B) arranged on the upstream side and the downstream side of the heating chamber 120 completely cover the alloy strip 110 and the first plane of the heating plate 122. It has a function of adjusting the position of the alloy strip 110 for contact.
In the in-line annealing device 150, the guide rollers (45A, 45B, 46A, and 46B) arranged on the upstream side and the downstream side of the cooling chamber 130 completely cover the alloy strip 110 and the second plane of the cooling plate 132. It has a function of adjusting the position of the alloy strip 110 for contact.
 本実施形態の樹脂フィルム上に接着層を介してナノ結晶合金薄帯を保持させる工程を、図2を用いて説明する。
 図2は、ラミネート工程の一例であり、ナノ結晶合金薄帯101、接着層102及び樹脂フィルム103の各々をロールから引き出し、所定の間隔を設けて配置された一対の加圧ローラー104で挟んで積層し、一体化して樹脂フィルム付きナノ結晶合金薄帯105を作製している。ラミネート工程は、樹脂フィルム上に接着層を介してナノ結晶合金薄帯を保持させる工程の具体例である。ここで、ナノ結晶合金薄帯を多層とする場合は、例えば、樹脂フィルム上にナノ結晶合金薄帯を複数積み重ねる工程によってナノ結晶合金薄帯の多層体を作製することができる。例えば、樹脂フィルム付きナノ結晶合金薄帯105の上にさらに接着層102とナノ結晶合金薄帯101を所要数積み重ねて、ナノ結晶合金薄帯の多層体を作製することができる。例えば、図2に示されるラミネート工程において、複数のナノ結晶合金薄帯101、複数の接着層102、及び樹脂フィルム103を一対の加圧ローラー104によって一体化することで、ナノ結晶合金薄帯の多層体を作製することもできる。また、ナノ結晶合金薄帯の樹脂フィルム103とは反対の面に、樹脂フィルムを積層し、ナノ結晶合金薄帯が樹脂フィルムで挟まれる構成としてもよい。また、接着層102の代わりに、両面テープ等の、接着層が形成されている樹脂フィルムを用いてラミネートすることもできる。
The step of holding the nanocrystal alloy strip on the resin film of the present embodiment via the adhesive layer will be described with reference to FIG.
FIG. 2 is an example of the laminating process, in which each of the nanocrystal alloy strip 101, the adhesive layer 102, and the resin film 103 is pulled out from the roll and sandwiched between a pair of pressure rollers 104 arranged at predetermined intervals. The nanocrystal alloy strip 105 with a resin film is manufactured by laminating and integrating. The laminating step is a specific example of a step of holding a nanocrystal alloy strip on a resin film via an adhesive layer. Here, when the nanocrystal alloy strips are made into multiple layers, for example, a multilayer of nanocrystal alloy strips can be produced by a step of stacking a plurality of nanocrystal alloy strips on a resin film. For example, a required number of adhesive layers 102 and nanocrystal alloy strips 101 can be further stacked on the nanocrystal alloy strips 105 with a resin film to produce a multilayer body of nanocrystal alloy strips. For example, in the laminating step shown in FIG. 2, a plurality of nanocrystal alloy strips 101, a plurality of adhesive layers 102, and a resin film 103 are integrated by a pair of pressure rollers 104 to form a nanocrystal alloy strips. Multilayers can also be made. Further, the resin film may be laminated on the surface opposite to the resin film 103 of the nanocrystal alloy strip, and the nanocrystal alloy strip may be sandwiched between the resin films. Further, instead of the adhesive layer 102, a resin film on which the adhesive layer is formed, such as double-sided tape, can be used for laminating.
 この樹脂フィルム付きナノ結晶合金薄帯105は、必要な形状及び大きさに切断して、使用用途に合わせた形状の樹脂フィルム付きナノ結晶合金薄帯としてもよい。この場合、回転刃式のスリッター又は剪断刃式のカッターを用いて、樹脂フィルム付きナノ結晶合金薄帯105を切断してもよい。また、プレスダイ等を用いて樹脂フィルム付きナノ結晶合金薄帯105を打抜いて切断してもよい。 The nanocrystal alloy strip 105 with a resin film may be cut into a required shape and size to form a nanocrystal alloy strip 105 with a resin film having a shape suitable for the intended use. In this case, the nanocrystal alloy strip 105 with a resin film may be cut using a rotary blade type slitter or a shear blade type cutter. Alternatively, the nanocrystal alloy strip 105 with a resin film may be punched and cut using a press die or the like.
 本実施形態において、樹脂フィルムには変形容易であって、曲げ性に富む材質、厚みが選択される。例えば、厚みが10μm~100μmのポリエチレンテレフタレート(PET)フィルムなどの樹脂フィルムが好適である。他に、ポリエーテルイミド、ポリアミドイミド等のポリイミド、ポリアミド、ポリエチレンテレフタレート等のポリエステル等からなる樹脂フィルムでもよい。その他、ポリプロピレン、ポリエチレン、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルケトン、ポリ塩化ビニル、ポリビニルアルコール、フッ素樹脂、アクリル樹脂、セルロース等を用いることができる。耐熱性及び誘電損失の観点から、ポリアミド及びポリイミドが特に好ましい。 In the present embodiment, a material and thickness that are easily deformable and have high bendability are selected for the resin film. For example, a resin film such as a polyethylene terephthalate (PET) film having a thickness of 10 μm to 100 μm is suitable. In addition, a resin film made of polyimide such as polyetherimide and polyamideimide, and polyester such as polyamide and polyethylene terephthalate may be used. In addition, polypropylene, polyethylene, polystyrene, polycarbonate, polysulfone, polyetherketone, polyvinyl chloride, polyvinyl alcohol, fluororesin, acrylic resin, cellulose and the like can be used. Polyamide and polyimide are particularly preferable from the viewpoint of heat resistance and dielectric loss.
 樹脂フィルムの厚みが増すと変形し難くなり、曲面又は屈曲面に倣って樹脂フィルム付きナノ結晶合金薄帯を配置するのを阻害することがある。また、厚さが10μm未満であると、樹脂フィルム自体の変形が一層起こりやすくなるので扱いが難しくなり、ナノ結晶合金薄帯を支持する機能も十分に得られない場合がある。
 樹脂フィルムとナノ結晶合金薄帯とを貼り合わせるための接着層には、アクリル樹脂、シリコーン樹脂等の液状、シート状、又はテープ状で供される接着剤を適用することができる。液状の接着剤を樹脂フィルムの一面側に薄く塗布して接着層としたり、予め両面テープが貼付された樹脂シートを用いたりしてもよい。樹脂フィルムのナノ結晶合金薄帯が貼付される側の一面とは反対の面、もしくは非晶質合金薄帯と樹脂フィルムとの間に、電磁波シールドの機能を付与する目的で5μm~30μm程度の厚みのCu箔又はAl箔などの導電体を設けてもよい。
As the thickness of the resin film increases, it becomes difficult to deform, which may hinder the placement of the nanocrystal alloy strip with the resin film along the curved surface or the bent surface. Further, if the thickness is less than 10 μm, the resin film itself is more likely to be deformed, which makes it difficult to handle, and the function of supporting the nanocrystal alloy strip may not be sufficiently obtained.
An adhesive provided in the form of a liquid, sheet, or tape such as acrylic resin or silicone resin can be applied to the adhesive layer for bonding the resin film and the nanocrystal alloy strip. A liquid adhesive may be thinly applied to one side of the resin film to form an adhesive layer, or a resin sheet to which a double-sided tape is previously attached may be used. About 5 μm to 30 μm for the purpose of imparting an electromagnetic wave shielding function between the surface opposite to the one side on which the nanocrystal alloy strip of the resin film is attached, or between the amorphous alloy strip and the resin film. A conductor such as a thick Cu foil or Al foil may be provided.
 ナノ結晶合金薄帯は、ナノ結晶合金薄帯を樹脂フィルムに保持した状態でローラー等の部材で加圧するなどして外力を加えるクラック処理を施すことができる。これにより、ナノ結晶合金薄帯を定形、あるいは不定形に複数の個片に分割しても構わない。この場合、クラック処理されたナノ結晶合金薄帯の個片等が樹脂フィルムから脱落しない様に、クラック処理されたナノ結晶合金薄帯を他の樹脂フィルムや接着層等の被覆層で覆って、挟み込むのが好ましい。ナノ結晶合金薄帯は、脆化し加圧によって比較的容易にクラックを生じさせることが出来るものの、従来は透磁率を十分に低下させることができなかった。しかし本開示では、張力を付与した状態でナノ結晶化の熱処理を行ったナノ結晶合金薄帯を用いており、このナノ結晶合金薄帯は透磁率が小さいため、交流比透磁率μrを100以上2000以下の範囲に簡易に調整できる。本開示におけるクラックとは、合金薄帯に形成される磁気的なギャップを指し、例えば、合金薄帯の割れ及び/又はひびが包含される。 The nanocrystal alloy strip can be cracked by applying an external force by pressing the nanocrystal alloy strip with a member such as a roller while holding it on the resin film. As a result, the nanocrystal alloy strip may be divided into a plurality of pieces in a fixed shape or an irregular shape. In this case, the cracked nanocrystal alloy strips are covered with a coating layer such as another resin film or an adhesive layer so that the cracked nanocrystal alloy strips do not fall off from the resin film. It is preferable to sandwich it. Although the nanocrystal alloy strip is brittle and can be cracked relatively easily by pressurization, the magnetic permeability has not been sufficiently reduced in the past. However, in the present disclosure, a nanocrystal alloy strip that has been heat-treated for nanocrystallization under tension is used, and since this nanocrystal alloy strip has a small magnetic permeability, the AC specific magnetic permeability μr is 100 or more. It can be easily adjusted to the range of 2000 or less. The crack in the present disclosure refers to a magnetic gap formed in the alloy strip, and includes, for example, cracks and / or cracks in the alloy strip.
 クラック処理を施してナノ結晶合金薄帯を複数の個片に分割すれば、渦電流損失の低減効果を得ることができる。但し、そのようにして分割された個片が過度に不定形であると、ナノ結晶合金薄帯内の領域に応じて特性が変わるなどの不具合を生じる恐れがあるため、なるべく定形の個片に分割することが望ましい。個片の形状は、好ましくは1辺が1mm~10mmの矩形である。 If the nanocrystal alloy strip is cracked and divided into a plurality of pieces, the effect of reducing the eddy current loss can be obtained. However, if the individual pieces divided in this way are excessively irregular, problems such as changes in characteristics depending on the region in the nanocrystal alloy strip may occur. It is desirable to divide it. The shape of the individual piece is preferably a rectangle having a side of 1 mm to 10 mm.
 クラック処理を施す場合において、個片を定形に近付けるためには、樹脂フィルム上に接着層を介してナノ結晶合金薄帯を保持させる工程(例えば図2に示すラミネート工程)の後、ナノ結晶合金薄帯の面上の複数箇所に外力を加える工程(クラック起点処理)と、その樹脂フィルム付きナノ結晶合金薄帯をロールで巻き取ることにより、外力を加えた箇所を起点としたクラックを生じさせてナノ結晶合金薄帯を複数の個片に分割する工程(クラック処理)とを備えることが考えられる。樹脂フィルム上に接着層を介してナノ結晶合金薄帯を保持させる工程(例えば図2に示すラミネート工程)を経たナノ結晶合金薄帯にクラック起点処理を施すことで、ロールで巻き取って曲げ応力を作用させたときにクラックが適度な間隔で形成され、個片の定形化に資する。 In the case of crack treatment, in order to bring the individual pieces closer to the fixed shape, after the step of holding the nanocrystal alloy strip on the resin film via the adhesive layer (for example, the laminating step shown in FIG. 2), the nanocrystal alloy By applying an external force to multiple locations on the surface of the thin band (crack starting point treatment) and winding the nanocrystal alloy thin band with a resin film with a roll, cracks are generated starting from the location where the external force is applied. It is conceivable to include a step (crack treatment) of dividing the nanocrystal alloy strip into a plurality of pieces. By applying a crack origin treatment to the nanocrystal alloy strip that has undergone a step of holding the nanocrystal alloy strip on the resin film via an adhesive layer (for example, the laminating step shown in FIG. 2), the nanocrystal alloy strip is wound by a roll and bending stress. Cracks are formed at appropriate intervals when the above is applied, which contributes to the shaping of individual pieces.
[クラック処理]
 クラックは、例えば、凸状部材を、ナノ結晶合金薄帯の表面に押しつけて形成することができる。凸状部材の形状は、例えば、棒状、又は錐状でもよい。凸状部材の端部の先端は、平坦、錐状、中央が窪む逆錐状、又は筒状でもよい。
 クラックの形成において、複数の凸状部材が規則的に配置されたプレス部材を用いることができる。例えば、複数の凸状部材を周面に配置したロール(以後、クラッキングロールという)を用いてクラックの形成を行うことができる。例えば、長尺のナノ結晶合金薄帯をクラッキングロールに張力等で押し付けたり、又は長尺のナノ結晶合金薄帯をクラッキングロール同士の間に搬送したりすることで、連続的にクラックを形成できる。また、複数のクラッキングロールを用いてクラックを形成することもできる。
[Crack processing]
The crack can be formed, for example, by pressing a convex member against the surface of the nanocrystal alloy strip. The shape of the convex member may be, for example, a rod shape or a cone shape. The tip of the end of the convex member may be flat, conical, inverted cone with a recess in the center, or tubular.
In forming cracks, a press member in which a plurality of convex members are regularly arranged can be used. For example, cracks can be formed by using a roll (hereinafter referred to as a cracking roll) in which a plurality of convex members are arranged on a peripheral surface. For example, cracks can be continuously formed by pressing a long nanocrystal alloy strip against a cracking roll with tension or the like, or by transporting a long nanocrystal alloy strip between cracking rolls. .. It is also possible to form cracks using a plurality of cracking rolls.
 図3は、複数の凸状部材によって規則的に外力を加えられた箇所を概念的に示した樹脂フィルム付きナノ結晶合金薄帯の平面図である。模様の形状は、外力が加えられた部分の凸状部材の先端形状に相当する。
 図3(a)は、端部の断面形状が円状の凸状部材を用いた場合の、外力が加えられる箇所を概念的に示すものである。
 図3(b)は、端部の外形が十字状の凸状部材を用いた場合の、外力が加えられる箇所を概念的に示すものである。
 図3(c)は、端部の外形が図形縦方向に線状の凸状部材と、横方向に線状の凸状部材をそれぞれ用いた場合の、外力が加えられる箇所を概念的に示すものである。本図においては、外力が加えられる箇所は、それぞれ不連続、かつ、マトリクス状になるように配置されている。
FIG. 3 is a plan view of a nanocrystal alloy strip with a resin film that conceptually shows a portion where an external force is regularly applied by a plurality of convex members. The shape of the pattern corresponds to the tip shape of the convex member in the portion where the external force is applied.
FIG. 3A conceptually shows a portion where an external force is applied when a convex member having a circular cross-sectional shape at an end portion is used.
FIG. 3B conceptually shows a portion where an external force is applied when a convex member having a cross-shaped outer shape at the end is used.
FIG. 3C conceptually shows a place where an external force is applied when an convex member whose outer shape is linear in the vertical direction of the figure and a convex member whose outer shape is linear in the horizontal direction are used. It is a thing. In this figure, the places where the external force is applied are arranged so as to be discontinuous and in a matrix shape.
 図3(d)は、端部の外形が図形縦方向に対してθ°傾いた(図3(d)では45°傾いた)線状の凸状部材と、-θ°傾いた(図3(d)では-45°傾いた)線状の凸状部材を用いた場合の、外力が加えられる箇所を概念的に示すものである。本図においては、外力が加えられる箇所は、それぞれ不連続、かつ、一方の線状の外力が加えられる箇所は、その延長線上において、他方の外力が加えられる箇所の両端の間で交差するように、配置されている。
 図3(e)は、端部の外形が図形縦方向に対してθ°傾いた(図3(e)では45°傾いた)線状の凸状部材と、-θ°(図3(e)では-45°傾いた)線状の凸状部材を用いた場合の、外力が加えられる箇所を概念的に示すものである。本図においては、外力が加えられる箇所は、それぞれ不連続、かつ、傾いたマトリクス状になるように配置されている。
 図3(f)は、端部の外形が図形縦方向に線状の凸状部材と、横方向に線状の凸状部材をそれぞれ用いた場合の、外力が加えられる箇所を概念的に示すものであり、図3(c)に対し、位置関係を変えたものである。凸状部材の配置は、図に示すものに限られず、適宜設定することができる。
 これらの外力が加えられる箇所は、この外力が加えられる箇所と全く同一の形態のクラックが形成されることが望ましい。しかしながら、その他のクラックが形成される場合や、同一形態のクラックが形成されない(部分的にしかクラックが形成されない)場合があってもよい。
 また、クラックを線状のものとし、複数のクラックを連続的に繋がるように形成しても良い。
In FIG. 3D, the outer shape of the end portion is tilted by θ ° with respect to the vertical direction of the figure (inclined by 45 ° in FIG. 3D), and the linear convex member is tilted by −θ ° (FIG. 3). (D) conceptually shows a place where an external force is applied when a linear convex member (tilted by −45 °) is used. In this figure, the points where the external force is applied are discontinuous, and the points where one linear external force is applied intersect between both ends of the extension line of the other where the external force is applied. Is placed in.
In FIG. 3 (e), a linear convex member whose outer shape of the end portion is tilted by θ ° with respect to the vertical direction of the figure (tilted by 45 ° in FIG. 3 (e)) and −θ ° (FIG. 3 (e)). ) Conceptually shows the place where an external force is applied when a linear convex member (tilted by −45 °) is used. In this figure, the places where the external force is applied are arranged so as to form a discontinuous and inclined matrix.
FIG. 3 (f) conceptually shows a portion where an external force is applied when an convex member whose outer shape is linear in the vertical direction of the figure and a convex member whose outer shape is linear in the horizontal direction are used. It is a thing, and the positional relationship is changed with respect to FIG. 3C. The arrangement of the convex members is not limited to that shown in the figure, and can be appropriately set.
It is desirable that cracks having exactly the same shape as the places where the external force is applied are formed in the places where the external force is applied. However, there may be cases where other cracks are formed or cracks of the same form are not formed (cracks are only partially formed).
Further, the cracks may be linear and formed so that a plurality of cracks are continuously connected.
 図3(c)、図3(d)、図3(e)、又は図3(f)のクラックを形成する場合、一方の凸状部材をクラッキングロールに配置し、他方の凸状部材を別のクラッキングロールに配置し、両方のクラッキングロールで、順次、合金薄帯に直接外力を付与してクラックを形成することができる。 When forming the crack of FIG. 3 (c), FIG. 3 (d), FIG. 3 (e), or FIG. 3 (f), one convex member is arranged on the cracking roll and the other convex member is separated. It can be placed on the cracking rolls of the above, and both cracking rolls can sequentially apply an external force directly to the alloy strip to form cracks.
 凸状部材でナノ結晶合金薄帯に直接外力を付与してクラックを形成した後、ナノ結晶合金薄帯を湾曲したり、巻き取ったりする等の手段によって第2の外力を付与できる。これにより、クラックを脆性破壊や亀裂破壊の起点として、クラック同士を繋ぐ割れ及び/又はひび(クラック同士を繋ぐ磁気的なギャップ)を形成することができる。以後、このクラック同士を繋ぐ割れ及び/又はひび(磁気的なギャップ)をネットワーククラックということがある。 After forming a crack by directly applying an external force to the nanocrystal alloy strip with the convex member, a second external force can be applied by means such as bending or winding the nanocrystal alloy strip. As a result, cracks and / or cracks (magnetic gaps connecting the cracks) can be formed by using the cracks as the starting point of brittle fracture or crack fracture. Hereinafter, the cracks and / or cracks (magnetic gaps) connecting the cracks may be referred to as network cracks.
 本実施形態の樹脂フィルム付きナノ結晶合金薄帯において、ナノ結晶合金薄帯にクラックを形成し、そのクラックを形成したナノ結晶合金薄帯を多層に積層する場合の実施形態について、図4を用いて説明する。 In the nanocrystal alloy strip with a resin film of the present embodiment, a crack is formed in the nanocrystal alloy strip, and FIG. 4 is used for an embodiment in which the nanocrystal alloy strip having the crack is laminated in multiple layers. Will be explained.
 まず、ナノ結晶化が可能な非晶質合金薄帯に張力を付与した状態でナノ結晶化の熱処理を行い、ナノ結晶合金薄帯を形成しておく。以下に説明する工程は、このナノ結晶合金薄帯を用いて行われる。
 ナノ結晶合金薄帯がロール状に巻かれたロール状の巻回体を4つ用意する。なお、4つに限定されるものではなく、巻回体の個数は適宜設定できる。
 そして、以下の工程を行う。以下に示される具体的な品名及び数値は、工程を詳細に説明するための例である。
・工程(1)「接着層と、上記接着層から剥離が可能なリリースフィルムとを有するクラック用テープの接着層に、ナノ結晶合金薄帯を接着する工程」
 先ず、両面テープ2Aを巻き付けたロールが4箇所に配置される。ロールの数は、ロール状に巻かれたナノ結晶合金薄帯の巻回体の数と合わせておく。その後、両面テープ2Aがロールから引き出される。両面テープ2Aは、リリースフィルム1A(25μm)と、接着層(5μm)と、リリースフィルム1B(25μm)の3層構造である。リリースフィルム1Aとリリースフィルム1Bは同じ材質(PET)であり、引張弾性力が3.9GPaである。接着層は、基材フィルムの両面にアクリル系の接着剤が被覆されている。リリースフィルム1A、及びリリースフィルム1Bは、接着層から剥離が可能である。
 リリースフィルム1Aは両面テープ2Aから剥離される。この剥離が、両面テープ2Aがロールから引き出されるのとほぼ同じタイミングで行われる。本実施形態では、これにより得られた接着層とリリースフィルム1Bからなるテープを、クラック用テープとして用いる。なお、リリースフィルム1Bは樹脂フィルムの一種である。
 その後、ナノ結晶合金薄帯4がロール状の巻回体から引き出され、圧着ロールにより、クラック用テープの接着層に接着される。ナノ結晶合金薄帯4はFe-Cu-Nb-Si-B系のナノ結晶合金からなる合金薄帯(日立金属株式会社製FT-3)である。
First, a heat treatment for nanocrystallization is performed in a state where tension is applied to an amorphous alloy strip capable of nanocrystallization to form a nanocrystal alloy strip. The steps described below are performed using this nanocrystalline alloy strip.
Prepare four roll-shaped winders in which the nanocrystal alloy strips are wound in a roll shape. The number of wound bodies is not limited to four, and the number of wound bodies can be set as appropriate.
Then, the following steps are performed. The specific product names and numerical values shown below are examples for explaining the process in detail.
-Step (1) "A step of adhering a nanocrystal alloy strip to an adhesive layer of a cracking tape having an adhesive layer and a release film that can be peeled off from the adhesive layer"
First, rolls around which the double-sided tape 2A is wound are arranged at four places. The number of rolls is matched with the number of windings of the nanocrystal alloy strip wound in a roll shape. After that, the double-sided tape 2A is pulled out from the roll. The double-sided tape 2A has a three-layer structure of a release film 1A (25 μm), an adhesive layer (5 μm), and a release film 1B (25 μm). The release film 1A and the release film 1B are made of the same material (PET) and have a tensile elastic force of 3.9 GPa. The adhesive layer is coated with an acrylic adhesive on both sides of the base film. The release film 1A and the release film 1B can be peeled off from the adhesive layer.
The release film 1A is peeled off from the double-sided tape 2A. This peeling is performed at substantially the same timing as the double-sided tape 2A is pulled out from the roll. In the present embodiment, the tape composed of the adhesive layer and the release film 1B thus obtained is used as the cracking tape. The release film 1B is a kind of resin film.
After that, the nanocrystal alloy strip 4 is pulled out from the roll-shaped wound body and adhered to the adhesive layer of the crack tape by the pressure-bonding roll. The nanocrystalline alloy strip 4 is an alloy strip (FT-3 manufactured by Hitachi Metals, Ltd.) made of a Fe—Cu—Nb—Si—B based nanocrystal alloy.
 ここで、リリースフィルムは、弾力性を有する樹脂製のリリースフィルムであることが好ましい。
 図4に示されるように、ある実施形態において、樹脂フィルム付きナノ結晶合金薄帯の製造方法は、接着層と接着層から剥離が可能なリリースフィルムとを有するクラック用テープに、ナノ結晶合金薄帯を接着する工程(工程(1))と、ナノ結晶合金薄帯に直接外力を付与してクラックを形成する工程(後述する工程(2))と、を有する。この場合、リリースフィルムが樹脂製であると、リリースフィルムの弾性力により、ナノ結晶合金薄帯の表面の凹凸の発生自体が抑制される。また、もしナノ結晶合金薄帯の表面に凹凸が発生しても、その弾性力により、凹凸が平坦になるように変形される。これにより、良好な平面状態のナノ結晶合金薄帯とすることができ、磁気特性の経時変化が小さい樹脂フィルム付きナノ結晶合金薄帯を得ることができる。
 例えば、リリースフィルムの樹脂としては、引張弾性率の下限が、0.1GPaの樹脂を使用できる。引張弾性率が0.1GPa以上であれば、上記の効果が十分に得られやすい。引張弾性率の下限は、0.5GPaが好ましく、1.0GPaがさらに好ましい。引張弾性率の上限は10GPaとすることが好ましい。10GPaを超えると、クラックを形成する際、合金薄帯の変形を抑制してしまうことがある。引張弾性率の上限は7GPaが好ましく、5GPaがさらに好ましい。
Here, the release film is preferably a release film made of an elastic resin.
As shown in FIG. 4, in a certain embodiment, a method for producing a nanocrystal alloy strip with a resin film is a method for producing a nanocrystal alloy thin band on a crack tape having an adhesive layer and a release film that can be peeled from the adhesive layer. It has a step of adhering the band (step (1)) and a step of directly applying an external force to the nanocrystal alloy strip to form a crack (step (2) described later). In this case, if the release film is made of resin, the elastic force of the release film suppresses the occurrence of unevenness on the surface of the nanocrystal alloy strip. Further, even if unevenness is generated on the surface of the nanocrystal alloy strip, the unevenness is deformed so as to be flat due to the elastic force. As a result, the nanocrystal alloy strip in a good flat state can be obtained, and the nanocrystal alloy strip with a resin film having a small change in magnetic properties with time can be obtained.
For example, as the resin of the release film, a resin having a lower limit of tensile elastic modulus of 0.1 GPa can be used. When the tensile elastic modulus is 0.1 GPa or more, the above effect can be sufficiently obtained. The lower limit of the tensile elastic modulus is preferably 0.5 GPa, more preferably 1.0 GPa. The upper limit of the tensile elastic modulus is preferably 10 GPa. If it exceeds 10 GPa, deformation of the alloy strip may be suppressed when cracks are formed. The upper limit of the tensile elastic modulus is preferably 7 GPa, more preferably 5 GPa.
 また、リリースフィルムとしては、厚みが1μm~100μmの樹脂を用いることが好ましい。リリースフィルムの厚みが増すと変形し難くなる。また、厚さが1μm未満であると、リリースフィルム自体の変形が一層容易となるので扱いが難しくなる。 Further, as the release film, it is preferable to use a resin having a thickness of 1 μm to 100 μm. As the thickness of the release film increases, it becomes difficult to deform. Further, if the thickness is less than 1 μm, the release film itself is more easily deformed, which makes it difficult to handle.
 接着層は、樹脂フィルムの接着層と、同じものを用いることができる。例えば、接着層は、既知のものを使用でき、例えば、感圧性接着剤を用いることができる。感圧性接着剤としては、例えば、アクリル系、シリコーン系、ウレタン系、合成ゴム、天然ゴム等の感圧性接着剤を用いることができる。 The same adhesive layer as the adhesive layer of the resin film can be used. For example, a known adhesive layer can be used, and for example, a pressure-sensitive adhesive can be used. As the pressure-sensitive adhesive, for example, a pressure-sensitive adhesive such as acrylic, silicone, urethane, synthetic rubber, or natural rubber can be used.
・工程(2)「ナノ合金薄帯に直接外力を付与してクラックを形成する工程」
 クラック用テープに接着されたナノ結晶合金薄帯4に、クラッキングロール5により、直接外力が付与されてクラックが形成される。クラッキングロール5においては、凸状部材が周面に規則的に配置されている。クラックを形成する際、クラッキングロールからの外力を逃がさないよう、リリースフィルム1B側に、ナノ結晶合金薄帯4をクラッキングロール側に押し付ける圧縮ロールを配置することもできる。
-Step (2) "Step of directly applying an external force to the nanoalloy strip to form cracks"
The cracking roll 5 directly applies an external force to the nanocrystal alloy strip 4 adhered to the cracking tape to form cracks. In the cracking roll 5, convex members are regularly arranged on the peripheral surface. When forming cracks, a compression roll that presses the nanocrystal alloy strip 4 against the cracking roll side can be arranged on the release film 1B side so as not to let the external force from the cracking roll escape.
・工程(3)「リリースフィルムを接着層から剥離し、接着層とクラックが形成されたナノ結晶合金薄帯とを有するシート部材を形成する工程」
 クラック用テープから、リリースフィルム1Bを剥離し、接着層を露出させる。これにより、接着層とクラックが形成されたナノ結晶合金薄帯とを有するシート部材を形成する。リリースフィルム1Bを剥離する際に発生するナノ結晶合金薄帯4への外力を利用して、ネットワーククラックを形成することもできる。
 図4では、工程(1)から工程(3)の機構を4つ備えている。しかし、4つに限定されるものではなく、目的により、5つ以上としてもよいし、3つ以下としてもよい。
 なお、ナノ結晶合金薄帯を多層の積層する場合、最下層となるナノ結晶合金薄帯については、リリースフィルムをそのままとし、そのリリースフィルムを樹脂フィルム付きナノ結晶合金薄帯の樹脂フィルムとして用いてもよい。
-Step (3) "A step of peeling the release film from the adhesive layer to form a sheet member having an adhesive layer and a nanocrystal alloy strip having cracks formed".
The release film 1B is peeled off from the cracking tape to expose the adhesive layer. As a result, a sheet member having an adhesive layer and a nanocrystal alloy strip having cracks formed is formed. Network cracks can also be formed by utilizing the external force on the nanocrystal alloy strip 4 generated when the release film 1B is peeled off.
In FIG. 4, four mechanisms from step (1) to step (3) are provided. However, the number is not limited to four, and may be five or more or three or less depending on the purpose.
When laminating the nanocrystal alloy strips in multiple layers, the release film is left as it is for the nanocrystal alloy strips that are the bottom layer, and the release film is used as the resin film for the nanocrystal alloy strips with a resin film. May be good.
・工程(4)「樹脂フィルム付きナノ結晶合金薄帯を形成する工程」
 樹脂フィルム6Aにシート部材を圧着ロールにより積層し、接着させる。樹脂フィルムにシート部材の接着層が当接するように積層する。さらに、その上に、次のシート部材を圧着ロールで積層し、接着させる。これを繰り返し、接着層とナノ結晶合金薄帯とが交互になるように積層される。これにより、樹脂フィルム6A付きナノ結晶合金薄帯が形成される。
 さらに、図4では、積層されたナノ結晶合金薄帯の上に、樹脂フィルム6aが接着される。樹脂フィルム6aは、別の両面テープ2Bの接着層を介して、ナノ結晶合金薄帯の積層体に接着される。両面テープ2Bは、リリースフィルム1Cと、接着層(5μm)と、リリースフィルム1Dの3層構造である。リリースフィルム1C、及びリリースフィルム1Dは、接着層から剥離可能である。両面テープ2Bからリリースフィルム1Cが剥離され、露出された接着層とナノ結晶合金薄帯4が圧着ロールにより接着される。その後、リリースフィルム1Dが剥離される。さらにその後、樹脂フィルム6aが、両面テープ2Bの接着層に圧着される。樹脂フィルム6aは厚さ25μmのPET製保護フィルムである。
 なお、樹脂フィルム6Aは、厚さ5μmの接着層と、厚さ75μmの樹脂フィルムの2層構造である。なお、この樹脂フィルムは接着層から剥離可能である。シート部材の接着層と、樹脂フィルムの接着層が、圧着ロールにより接着される。樹脂フィルムが剥離される接着層が露出し、ナノ結晶合金薄帯を電子機器等に貼り付けることが可能になる。
-Step (4) "Step of forming a nanocrystalline alloy strip with a resin film"
The sheet member is laminated on the resin film 6A by a crimping roll and adhered. The resin film is laminated so that the adhesive layer of the sheet member is in contact with the resin film. Further, the next sheet member is laminated on it with a crimping roll and adhered. This is repeated, and the adhesive layer and the nanocrystal alloy strip are laminated alternately. As a result, a nanocrystal alloy strip with a resin film 6A is formed.
Further, in FIG. 4, the resin film 6a is adhered on the laminated nanocrystal alloy strips. The resin film 6a is adhered to the laminate of the nanocrystal alloy strips via the adhesive layer of another double-sided tape 2B. The double-sided tape 2B has a three-layer structure of a release film 1C, an adhesive layer (5 μm), and a release film 1D. The release film 1C and the release film 1D can be peeled off from the adhesive layer. The release film 1C is peeled from the double-sided tape 2B, and the exposed adhesive layer and the nanocrystal alloy strip 4 are adhered by a pressure-bonding roll. After that, the release film 1D is peeled off. After that, the resin film 6a is pressure-bonded to the adhesive layer of the double-sided tape 2B. The resin film 6a is a PET protective film having a thickness of 25 μm.
The resin film 6A has a two-layer structure of an adhesive layer having a thickness of 5 μm and a resin film having a thickness of 75 μm. This resin film can be peeled off from the adhesive layer. The adhesive layer of the sheet member and the adhesive layer of the resin film are adhered by a pressure-bonding roll. The adhesive layer from which the resin film is peeled off is exposed, and the nanocrystal alloy strip can be attached to an electronic device or the like.
 その後、樹脂フィルム付きナノ結晶合金薄帯がカッター7によって必要な大きさに切断され、トレー8に搬送される。カッター7の代わりに、打抜き型等によって所望の形状に加工することもできる。 After that, the nanocrystal alloy strip with a resin film is cut to a required size by the cutter 7 and transported to the tray 8. Instead of the cutter 7, it can be processed into a desired shape by a punching die or the like.
 樹脂フィルム6Aにシート部材を積層した樹脂フィルム付きナノ結晶合金薄帯を模式的に示す平面図(a)と断面図(b)を図5に示す。ここで、断面図(b)は、平面図(a)のA-A断面図である。樹脂フィルム6Aに接着層6bを介してナノ結晶合金薄帯4’が積層し、接着されている。また、ナノ結晶合金薄帯4’には、クラック9’が形成されている。クラック9’は、線状の凸状部材が周面に規則的に配置されているクラッキングロールを押しつけて形成されたものであり、線状のクラック9’が断続的に形成されている。 FIG. 5 shows a plan view (a) and a cross-sectional view (b) schematically showing a nanocrystal alloy strip with a resin film in which a sheet member is laminated on the resin film 6A. Here, the cross-sectional view (b) is a cross-sectional view taken along the line AA of the plan view (a). The nanocrystal alloy strip 4'is laminated and adhered to the resin film 6A via the adhesive layer 6b. Further, cracks 9'are formed in the nanocrystal alloy strip 4'. The crack 9'is formed by pressing a cracking roll in which linear convex members are regularly arranged on the peripheral surface, and the linear crack 9'is intermittently formed.
 樹脂フィルム6Aにナノ結晶合金薄帯を複数積層した樹脂フィルム付きナノ結晶合金薄帯を模式的に示す平面図(a)と断面図(b)を図6に示す。ここで、断面図(b)は、平面図(a)のD-D断面図である。
 図6(a)に示すように、樹脂フィルム6Aに接着されたナノ結晶合金薄帯4’に、シート部材10c1~シート部材10c3が、積層されている。第1のシート部材10c1~第3のシート部材10c3にそれぞれ形成されたクラック9、9-1、9-2と、樹脂フィルム6Aに接着されたナノ結晶合金薄帯4’に形成されたクラック9’が、積層方向に見て、異なる位置に形成されている。このように、本開示の好ましい実施形態では、それぞれのナノ結晶合金薄帯に直接外力を付与してクラックを形成しているため、複数のナノ結晶合金薄帯に同時にクラックを形成する従来の製造方法と異なり、ナノ結晶合金薄帯の層毎でクラックの位置を変えることができるので、磁気ギャップが均等に形成された樹脂フィルム付きナノ結晶合金薄帯にすることができる。そのため、この樹脂フィルム付きナノ結晶合金薄帯に対し、さらに所望の形状に打ち抜いたり、切断したりする加工を施しても、加工位置による透磁率の変動が少なく、安定したシールド特性を有する樹脂フィルム付きナノ結晶合金薄帯を製造することができる。
 この樹脂フィルム付きナノ結晶合金薄帯は、積層方向で、樹脂フィルム6Aとは反対側の面に、別の樹脂フィルムを積層することができる。どちらの樹脂フィルムも、接着層(例えば、両面テープ)を介して接着させることができる。
FIG. 6 shows a plan view (a) and a cross-sectional view (b) schematically showing a nanocrystal alloy strip with a resin film in which a plurality of nanocrystal alloy strips are laminated on the resin film 6A. Here, the cross-sectional view (b) is a DD cross-sectional view of the plan view (a).
As shown in FIG. 6A, the sheet members 10c1 to 10c3 are laminated on the nanocrystal alloy strip 4'bonded to the resin film 6A. Cracks 9, 9-1, 9-2 formed on the first sheet member 10c1 to 10c3, respectively, and crack 9 formed on the nanocrystal alloy strip 4'bonded to the resin film 6A. 'Is formed at different positions when viewed in the stacking direction. As described above, in the preferred embodiment of the present disclosure, since an external force is directly applied to each nanocrystal alloy strip to form a crack, the conventional production of forming a crack in a plurality of nanocrystal alloy strips at the same time. Unlike the method, the position of the crack can be changed for each layer of the nanocrystal alloy strip, so that the nanocrystal alloy strip with a resin film having evenly formed magnetic gaps can be obtained. Therefore, even if the nanocrystal alloy strip with a resin film is further punched or cut into a desired shape, the magnetic permeability does not fluctuate depending on the processing position, and the resin film has stable shielding characteristics. It is possible to manufacture a nanocrystal alloy strip with a resin.
In this nanocrystal alloy strip with a resin film, another resin film can be laminated on the surface opposite to the resin film 6A in the lamination direction. Both resin films can be adhered via an adhesive layer (eg, double-sided tape).
 本開示の好ましい実施形態では、ナノ結晶合金薄帯を積層した後ではなく、合金薄帯を積層する前で、かつ、合金薄帯に直接外力を付与してクラックを形成している。このため、付与する外力が、合金薄帯に直接加える上、合金薄帯1層分にクラックを入れる強さのみとなる。したがって、複数の合金薄帯に同時にクラックを形成する方法、又は保護フィルムの上から外力を付与してクラックを形成する方法より、小さい外力でクラックを形成することができる。クラックを形成するための外力が小さいので、クラックが形成されたナノ結晶合金薄帯の表面の凹凸を抑制することができ、ナノ結晶合金薄帯の平面状態を良好とすることができる。 In a preferred embodiment of the present disclosure, cracks are formed by directly applying an external force to the alloy strips before laminating the nanocrystal alloy strips, not after laminating the nanocrystal alloy strips. Therefore, the external force applied is only the strength to directly apply to the alloy strip and to crack one layer of the alloy strip. Therefore, the cracks can be formed with a smaller external force than the method of forming cracks in a plurality of alloy strips at the same time or the method of applying an external force from above the protective film to form the cracks. Since the external force for forming the crack is small, the unevenness of the surface of the nanocrystal alloy strip in which the crack is formed can be suppressed, and the flat state of the nanocrystal alloy strip can be improved.
 本開示において、ナノ結晶合金薄帯に直線状のクラックを形成する場合、例えば図7に示すとおり、ナノ結晶合金薄帯の鋳造方向(ロール冷却により、連続的に鋳造(急冷凝固)する場合の長手方向に相当し、ロールの回転方向に沿う方向である)に平行に形成することが好ましい。なお、図7に示す矢印が鋳造方向を示す。 In the present disclosure, when linear cracks are formed in the nanocrystal alloy strip, for example, as shown in FIG. 7, in the casting direction of the nanocrystal alloy strip (when continuously casting (quenching solidification) by roll cooling). It corresponds to the longitudinal direction and is the direction along the rotation direction of the roll)). The arrow shown in FIG. 7 indicates the casting direction.
 本開示に係る樹脂フィルム付きナノ結晶合金薄帯の一例である磁性シート(図4で説明したもの)の交流比透磁率μr(128kHz)を評価した結果を表1に示す。ここでは、2つの試料を評価した結果を示す。本開示に係る樹脂フィルム付きナノ結晶合金薄帯の製造方法によって得られる磁性シートでは、300日後の変化率は3%程度もしくはそれ以下であった。
 従来の磁性シート(接着層を介して積層された4層の合金薄帯を2層の樹脂フィルムの間にはさみ、樹脂フィルムの上から外力を付与してクラックを形成した磁性シート)では、100時間経過で7~10%程度変化していたが、本実施形態では、300日後(7200時間後)でも3%程度もしくはそれ以下であり、本開示の実施例によれば、透磁率の変化が小さい磁性シートが得られている。
Table 1 shows the results of evaluating the AC relative magnetic permeability μr (128 kHz) of the magnetic sheet (described in FIG. 4), which is an example of the nanocrystal alloy strip with a resin film according to the present disclosure. Here, the results of evaluating two samples are shown. In the magnetic sheet obtained by the method for producing a nanocrystal alloy strip with a resin film according to the present disclosure, the rate of change after 300 days was about 3% or less.
A conventional magnetic sheet (a magnetic sheet in which a four-layer alloy strip laminated via an adhesive layer is sandwiched between two resin films and an external force is applied from above the resin film to form cracks) is 100. Although it changed by about 7 to 10% with the passage of time, in the present embodiment, it is about 3% or less even after 300 days (7200 hours), and according to the embodiment of the present disclosure, the change in magnetic permeability is changed. A small magnetic sheet has been obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施形態の樹脂フィルム付きナノ結晶合金薄帯は磁性シートに適用することができる。その磁性シートの応用製品の一例として、非接触充電装置の一例の回路構成を図8に示す。給電装置200は、交流電流を供給する給電部207と、交流電流を直流電流に整流するために給電部207に接続された整流回路202と、直流電流を入力して所定周波数の高周波電流に変換するスイッチング回路203と、高周波電流が流れるようにスイッチング回路203に接続された一次伝送コイル201と、スイッチング回路203と同じ周波数で共振するように一次伝送コイル201に並列接続された共振用コンデンサ206と、スイッチング回路203に接続された制御回路204と、制御回路204に接続された制御用一次コイル205と、を具備する。制御回路204は、制御用一次コイル205から得られる誘導電流に基づきスイッチング回路203の動作を制御する。 The nanocrystal alloy strip with a resin film of this embodiment can be applied to a magnetic sheet. As an example of an application product of the magnetic sheet, FIG. 8 shows a circuit configuration of an example of a non-contact charging device. The power feeding device 200 inputs an alternating current to a feeding unit 207, a rectifying circuit 202 connected to the feeding unit 207 to rectify the alternating current into a direct current, and converts the alternating current into a high frequency current having a predetermined frequency. Switching circuit 203, primary transmission coil 201 connected to switching circuit 203 so that high-frequency current flows, and resonance capacitor 206 connected in parallel to primary transmission coil 201 so as to resonate at the same frequency as switching circuit 203 , A control circuit 204 connected to the switching circuit 203, and a control primary coil 205 connected to the control circuit 204. The control circuit 204 controls the operation of the switching circuit 203 based on the induced current obtained from the control primary coil 205.
 受電装置300は、一次伝送コイル201から発生した磁束を受ける二次伝送コイル301と、二次伝送コイル301に接続された整流回路302と、整流回路302に接続された二次電池303と、二次電池303の電圧から蓄電状況を検出するために二次電池303に接続された電池制御回路304と、電池制御回路304に接続された制御用二次コイル305とを具備する。二次伝送コイル301には共振用コンデンサ(図示せず)を並列接続してもよい。整流された電流は、二次電池303に蓄電される他、例えば、電子回路及び駆動部材(図示せず)等に利用される。電池制御回路304は、二次電池303の蓄電状況に応じて最適な充電を行うための信号を制御用二次コイル305に流す。例えば、二次電池303が完全に充電された場合、その情報の信号を制御用二次コイル305に流し、制御用二次コイル305に電磁結合する制御用一次コイル205を介して信号を給電装置200の制御回路204に伝える。制御回路204はその信号に基づきスイッチング回路203を停止する。 The power receiving device 300 includes a secondary transmission coil 301 that receives the magnetic flux generated from the primary transmission coil 201, a rectifying circuit 302 connected to the secondary transmission coil 301, and a secondary battery 303 connected to the rectifying circuit 302. It includes a battery control circuit 304 connected to the secondary battery 303 to detect the storage status from the voltage of the secondary battery 303, and a control secondary coil 305 connected to the battery control circuit 304. A resonance capacitor (not shown) may be connected in parallel to the secondary transmission coil 301. The rectified current is stored in the secondary battery 303, and is also used for, for example, an electronic circuit and a driving member (not shown). The battery control circuit 304 sends a signal for performing optimum charging according to the storage status of the secondary battery 303 to the control secondary coil 305. For example, when the secondary battery 303 is completely charged, a signal of that information is sent to the control secondary coil 305, and the signal is supplied via the control primary coil 205 that is electromagnetically coupled to the control secondary coil 305. It is transmitted to the control circuit 204 of 200. The control circuit 204 stops the switching circuit 203 based on the signal.
 磁性シートは、上記した非接触充電装置において、一次伝送コイル201のコイルヨークとして、一次伝送コイル201の二次伝送コイル301に対向する側の反対側に設けられ、一次伝送コイル201と二次伝送コイル301との結合性を向上させるとともに、一次伝送コイル201と他の部品等とのシールドの役目も果たす。また、本実施形態の磁性シートは、二次伝送コイル301の一次伝送コイル201に対向する側の反対側に設けられ、一次伝送コイル201と二次伝送コイル301との結合性を向上させるとともに、二次伝送コイル301と他の部品(二次電池)等とのシールドの役目も果たす。
 また、本実施形態の樹脂フィルム付きナノ結晶合金薄帯は、ブロック状の積層体、又はトロイダル状に形成して用いることもできる。例えば、樹脂フィルム付きナノ結晶合金薄帯は、誘導素子などとして使用することができる。
In the non-contact charging device described above, the magnetic sheet is provided as a coil yoke of the primary transmission coil 201 on the opposite side of the primary transmission coil 201 from the side facing the secondary transmission coil 301, and is provided with the primary transmission coil 201 for secondary transmission. In addition to improving the coupling property with the coil 301, it also serves as a shield between the primary transmission coil 201 and other parts and the like. Further, the magnetic sheet of the present embodiment is provided on the side opposite to the side facing the primary transmission coil 201 of the secondary transmission coil 301 to improve the coupling property between the primary transmission coil 201 and the secondary transmission coil 301. It also serves as a shield between the secondary transmission coil 301 and other parts (secondary battery) and the like.
Further, the nanocrystal alloy strip with a resin film of the present embodiment can be used by forming it into a block-shaped laminate or a toroidal shape. For example, the nanocrystal alloy strip with a resin film can be used as an induction element or the like.
 以下、実施例により本開示を詳細に説明する。ただし、本開示は、以下の実施例に制限されるものではない。 Hereinafter, the present disclosure will be described in detail by way of examples. However, the present disclosure is not limited to the following examples.
<実施例1>
[ナノ結晶合金薄帯の製造]
 図1に示される構成要素を有する製造装置を用いて、長尺の非晶質合金薄帯(Fe-Cu-Nb-Si-B系合金)に張力を付与した状態で熱処理を行い、長尺のナノ結晶合金薄帯(Fe-Cu-Nb-Si-B系合金)を製造した。非晶質合金薄帯に付与した張力は、40MPaであった。熱処理における非晶質合金薄帯の到達温度は、600℃であった。ナノ結晶合金薄帯の厚さは、16μmであった。
<Example 1>
[Manufacturing of nanocrystal alloy strips]
Using the manufacturing apparatus having the components shown in FIG. 1, heat treatment is performed on a long amorphous alloy strip (Fe-Cu-Nb-Si-B alloy) with tension applied, and the length is long. (Fe-Cu-Nb-Si-B based alloy) was produced. The tension applied to the amorphous alloy strip was 40 MPa. The ultimate temperature of the amorphous alloy strip in the heat treatment was 600 ° C. The thickness of the nanocrystal alloy strip was 16 μm.
[樹脂フィルム付きナノ結晶合金薄帯の製造]
 次に、図4に示される構成要素を有する製造装置を用いて、PET製樹脂フィルムと接着層とを含む2層構造を有する樹脂フィルム上に、ナノ結晶合金薄帯と接着層とを含む2層構造を有する4つのシート部材を順次積層した。以上の手順によって樹脂フィルム付きナノ結晶合金薄帯を製造した。樹脂フィルム付きナノ結晶合金薄帯に含まれる各ナノ結晶合金薄帯には、クラックが形成されている。樹脂フィルム付きナノ結晶合金薄帯を用いて測定したナノ結晶合金薄帯の交流比透磁率μrは表1で示したとおりである。
[Manufacturing of nanocrystal alloy strips with resin film]
Next, using the manufacturing apparatus having the constituent elements shown in FIG. 4, a nanocrystal alloy strip and an adhesive layer are included on a resin film having a two-layer structure including a PET resin film and an adhesive layer. Four sheet members having a layered structure were sequentially laminated. A nanocrystal alloy strip with a resin film was produced by the above procedure. Cracks are formed in each nanocrystal alloy strip contained in the nanocrystal alloy strip with a resin film. The AC relative magnetic permeability μr of the nanocrystal alloy strip measured using the nanocrystal alloy strip with a resin film is as shown in Table 1.
<比較例1>
 張力をかけないで熱処理したこと以外は、実施例1と同様の手順によって、ナノ結晶合金薄帯、及び樹脂フィルム付きナノ結晶合金薄帯をそれぞれ作製した。樹脂フィルム付きナノ結晶合金薄帯を用いて測定したナノ結晶合金薄帯の交流比透磁率μrは約12000であった。
<Comparative example 1>
A nanocrystal alloy strip and a nanocrystal alloy strip with a resin film were prepared by the same procedure as in Example 1 except that the heat treatment was performed without applying tension. The AC relative magnetic permeability μr of the nanocrystal alloy strip measured using the nanocrystal alloy strip with a resin film was about 12000.
 2019年5月21日に出願された日本国特許出願2019-095278号の開示、及び2019年5月21日に出願された日本国特許出願2019-095279号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2019-095278 filed on May 21, 2019 and the disclosure of Japanese Patent Application No. 2019-095279 filed on May 21, 2019 are by reference in their entirety. Incorporated into the specification. All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
 1、105:樹脂フィルム付きナノ結晶合金薄帯
 1A、1B、1C、1D:リリースフィルム
 2A、2B:両面テープ
 3、6b、102:接着層
 4、4’、101、110:ナノ結晶合金薄帯
 5:クラッキングロール
 6A、6a、103:樹脂フィルム
 7:カッター
 8:トレー
 9、9’、9-1、9-2:クラック
 10c1、10c2、10c3:シート部材
 41、42、43A、43B、44A、44B、45A、45B、46A、46B、47、48、49、50:ガイドローラー
 112:巻き出しローラー
 114:巻き取りローラー
 122:加熱プレート(伝熱媒体)
 132:冷却プレート(伝熱媒体)
 60、62:ダンサーローラー
 104:加圧ローラー
 150:インラインアニール装置
 200:給電装置
 201:一次伝送コイル
 202:整流回路
 203:スイッチング回路
 204:制御回路
 205:制御用一次コイル
 206:共振用コンデンサ
 207:給電部
 300:受電装置
 301:二次伝送コイル
 302:整流回路
 304:電池制御回路
 305:制御用二次コイル
1,105: Nanocrystal alloy thin band with resin film 1A, 1B, 1C, 1D: Release film 2A, 2B: Double- sided tape 3,6b, 102: Adhesive layer 4,4', 101, 110: Nanocrystal alloy thin band 5: Cracking roll 6A, 6a, 103: Resin film 7: Cutter 8: Tray 9, 9', 9-1, 9-2: Crack 10c1, 10c2, 10c3: Sheet member 41, 42, 43A, 43B, 44A, 44B, 45A, 45B, 46A, 46B, 47, 48, 49, 50: Guide roller 112: Unwinding roller 114: Winding roller 122: Heating plate (heat transfer medium)
132: Cooling plate (heat transfer medium)
60, 62: Dancer roller 104: Pressurizing roller 150: In-line annealing device 200: Feeding device 201: Primary transmission coil 202: Rectifier circuit 203: Switching circuit 204: Control circuit 205: Control primary coil 206: Resonant capacitor 207: Power supply unit 300: Power receiving device 301: Secondary transmission coil 302: Rectifier circuit 304: Battery control circuit 305: Secondary coil for control

Claims (9)

  1.  ナノ結晶化が可能な非晶質合金薄帯を用意する工程と、
     前記非晶質合金薄帯に張力を付与した状態でナノ結晶化の熱処理を行い、ナノ結晶合金薄帯を得る工程と、
     樹脂フィルム上に接着層を介して前記ナノ結晶合金薄帯を保持させる工程と、
     を備える、樹脂フィルム付きナノ結晶合金薄帯の製造方法。
    The process of preparing an amorphous alloy strip capable of nanocrystallization and
    A step of performing a heat treatment for nanocrystallization in a state where tension is applied to the amorphous alloy strip to obtain a nanocrystal alloy strip.
    A step of holding the nanocrystal alloy strip on the resin film via an adhesive layer, and
    A method for producing a nanocrystal alloy strip with a resin film.
  2.  前記ナノ結晶合金薄帯の交流比透磁率μrは、100以上2000以下である、請求項1に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The method for producing a nanocrystal alloy thin band with a resin film according to claim 1, wherein the nanocrystalline alloy thin band has an AC relative magnetic permeability μr of 100 or more and 2000 or less.
  3.  前記樹脂フィルム上に、前記ナノ結晶合金薄帯を複数積み重ねる工程を備える、請求項1又は請求項2に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The method for producing a nanocrystal alloy strip with a resin film according to claim 1 or 2, further comprising a step of stacking a plurality of the nanocrystal alloy strips on the resin film.
  4.  前記複数積み重ねられたナノ結晶合金薄帯間に接着層を備える、請求項3に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The method for producing a nanocrystal alloy strip with a resin film according to claim 3, wherein an adhesive layer is provided between the plurality of stacked nanocrystal alloy strips.
  5.  前記非晶質合金薄帯は、ロール冷却により製造された長尺の非晶質合金薄帯であり、
     前記ナノ結晶合金薄帯を得る工程は、前記非晶質合金薄帯に、前記非晶質合金薄帯の長手方向に張力を付与しつつ、前記非晶質合金薄帯を前記長手方向に進行させて、前記非晶質合金薄帯に対してナノ結晶化の熱処理を連続的に行う工程を備える、請求項1~請求項4のいずれか1項に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。
    The amorphous alloy strip is a long amorphous alloy strip manufactured by roll cooling.
    In the step of obtaining the nanocrystal alloy zonule, the amorphous alloy zonule is advanced in the longitudinal direction while applying tension to the amorphous alloy zonule in the longitudinal direction. The nanocrystal alloy thin band with a resin film according to any one of claims 1 to 4, further comprising a step of continuously performing nanocrystallization heat treatment on the amorphous alloy thin band. Manufacturing method.
  6.  前記ナノ結晶合金薄帯にクラックを形成する工程を備える、請求項1~請求項5のいずれか1項に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The method for producing a nanocrystal alloy strip with a resin film according to any one of claims 1 to 5, further comprising a step of forming cracks in the nanocrystal alloy strip.
  7.  前記ナノ結晶合金薄帯にクラックを形成する工程は、前記ナノ結晶合金薄帯に直接外力を付与する工程を有する請求項6に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The method for producing a nanocrystal alloy strip with a resin film according to claim 6, wherein the step of forming a crack in the nanocrystal alloy strip is a step of directly applying an external force to the nanocrystal alloy strip.
  8.  前記ナノ結晶合金薄帯は、一般式:(Fe1-a100-x-y-z-α-β-γCuSiM’αM”βγ(原子%)により表される組成を有し、前記一般式中、MはCo及び/又はNiであり、M’はNb、Mo、Ta、Ti、Zr、Hf、V、Cr、Mn及びWからなる群から選ばれた少なくとも1種の元素であり、M”はAl、白金族元素、Sc、希土類元素、Zn、Sn、及びReからなる群から選ばれた少なくとも1種の元素であり、XはC、Ge、P、Ga、Sb、In、Be、及びAsからなる群から選ばれた少なくとも1種の元素であり、a、x、y、z、α、β及びγはそれぞれ0≦a≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、0≦α≦20、0≦β≦20及び0≦γ≦20を満たす、請求項1~請求項7のいずれか1項に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 The nanocrystalline alloy ribbon has the general formula: (Fe 1-a M a ) 100-x-y-z-α-β-γ Cu x Si y B z M 'α M "β X γ ( atomic%) In the general formula, M is Co and / or Ni, and M'is from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W. At least one selected element, M "is at least one element selected from the group consisting of Al, platinum group element, Sc, rare earth element, Zn, Sn, and Re, and X is C, It is at least one element selected from the group consisting of Ge, P, Ga, Sb, In, Be, and As, and a, x, y, z, α, β, and γ are 0 ≦ a ≦ 0, respectively. 5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, 5 ≦ y + z ≦ 30, 0 ≦ α ≦ 20, 0 ≦ β ≦ 20, and 0 ≦ γ ≦ 20. The method for producing a nanocrystal alloy strip with a resin film according to any one of claims 1 to 7.
  9.  前記一般式において、a、x、y、z、α、β及びγは、それぞれ0≦a≦0.1、0.7≦x≦1.3、12≦y≦17、5≦z≦10、1.5≦α≦5、0≦β≦1及び0≦γ≦1である、請求項8に記載の樹脂フィルム付きナノ結晶合金薄帯の製造方法。 In the above general formula, a, x, y, z, α, β and γ are 0 ≦ a ≦ 0.1, 0.7 ≦ x ≦ 1.3, 12 ≦ y ≦ 17, 5 ≦ z ≦ 10, respectively. The method for producing a nanocrystalline alloy strip with a resin film according to claim 8, wherein 1.5 ≦ α ≦ 5, 0 ≦ β ≦ 1 and 0 ≦ γ ≦ 1.
PCT/JP2020/020159 2019-05-21 2020-05-21 Production method for nanocrystalline alloy ribbon having resin film WO2020235643A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021520851A JP7074258B2 (en) 2019-05-21 2020-05-21 Manufacturing method of nanocrystalline alloy strip with resin film
EP20809623.0A EP3974546A4 (en) 2019-05-21 2020-05-21 Production method for nanocrystalline alloy ribbon having resin film
US17/612,763 US20220293313A1 (en) 2019-05-21 2020-05-21 Production method for nanocrystalline alloy ribbon having resin film
CN202080030755.XA CN113748473B (en) 2019-05-21 2020-05-21 Method for producing nanocrystalline alloy ribbon with resin film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-095278 2019-05-21
JP2019-095279 2019-05-21
JP2019095278 2019-05-21
JP2019095279 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020235643A1 true WO2020235643A1 (en) 2020-11-26

Family

ID=73458512

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/020159 WO2020235643A1 (en) 2019-05-21 2020-05-21 Production method for nanocrystalline alloy ribbon having resin film
PCT/JP2020/020158 WO2020235642A1 (en) 2019-05-21 2020-05-21 Production method for alloy strip laminate and production apparatus for alloy strip laminate

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020158 WO2020235642A1 (en) 2019-05-21 2020-05-21 Production method for alloy strip laminate and production apparatus for alloy strip laminate

Country Status (6)

Country Link
US (2) US20220293313A1 (en)
EP (1) EP3974546A4 (en)
JP (3) JP7074258B2 (en)
CN (2) CN113748473B (en)
TW (2) TW202108787A (en)
WO (2) WO2020235643A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190886A1 (en) * 2022-03-30 2023-10-05 株式会社プロテリアル Nanocrystalline alloy thin strip and magnetic sheet
WO2023190770A1 (en) * 2022-03-30 2023-10-05 株式会社プロテリアル Method for producing magnetic sheet
WO2023190963A1 (en) * 2022-03-30 2023-10-05 株式会社プロテリアル Method for manufacturing nanocrystal alloy ribbon, and method for manufacturing magnetic sheet
KR20240008259A (en) 2022-07-11 2024-01-18 가부시키가이샤 프로테리아루 Manufacturing method of magnetic sheet and manufacturing apparatus of magnetic sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117616495A (en) * 2021-11-04 2024-02-27 三星电子株式会社 Display system and driving method of display module
JP2023144882A (en) 2022-03-28 2023-10-11 株式会社プロテリアル Magnetic sheet, rolled magnetic sheet, and multilayer magnetic sheet
EP4254448A1 (en) 2022-03-28 2023-10-04 Proterial, Ltd. Multilayer magnetic sheet
JP2023152053A (en) 2022-04-01 2023-10-16 株式会社プロテリアル Magnetic sheet, multilayer magnetic sheet, and manufacturing method of magnetic sheet
EP4254442A1 (en) 2022-04-01 2023-10-04 Proterial, Ltd. Multilayer magnetic sheet
JP2023155003A (en) 2022-04-08 2023-10-20 株式会社プロテリアル multilayer magnetic sheet
JP2023155004A (en) 2022-04-08 2023-10-20 株式会社プロテリアル multilayer magnetic sheet
JP2023155005A (en) 2022-04-08 2023-10-20 株式会社プロテリアル multilayer magnetic sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227156A (en) * 1985-04-01 1986-10-09 Toa Kikai Seisakusho:Kk Continuous heat treating apparatus for nonferrous metal sheet
JP2005529233A (en) * 2002-06-11 2005-09-29 ヴァキュームシュメルツェ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for continuous annealing of metal ribbon
JP2008112830A (en) 2006-10-30 2008-05-15 Toshiba Corp Method of manufacturing magnetic sheet
WO2014157526A1 (en) 2013-03-28 2014-10-02 日立金属株式会社 Magnetic sheet, electronic device using same, and method for manufacturing magnetic sheet
WO2018062310A1 (en) * 2016-09-29 2018-04-05 日立金属株式会社 Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
JP2019095279A (en) 2017-11-22 2019-06-20 アイシン・エィ・ダブリュ株式会社 System and program for identifying vehicle position
JP2019095278A (en) 2017-11-22 2019-06-20 古野電気株式会社 Analysis data processor, method for processing analysis data, and analysis data processing program

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335450A (en) * 1994-06-10 1995-12-22 Hitachi Metals Ltd Compact transformer, inverter circuit, and discharge tube lighting circuit
FR2823507B1 (en) * 2001-04-12 2004-03-19 Imphy Ugine Precision METHOD FOR MANUFACTURING A STRIP OF NANOCRYSTALLINE MATERIAL, METHOD AND DEVICE FOR MANUFACTURING A MAGNETIC CORE, MAGNETIC CORE AND USE OF THE MAGNETIC CORE AS AN ELEMENT OF AN INDUCTIVE COMPONENT
JP3753320B2 (en) * 2002-11-14 2006-03-08 日立金属株式会社 Shield material manufacturing method
EP1724792A1 (en) * 2005-05-20 2006-11-22 Imphy Alloys Verfahren zur Herstellung eines Bandes aus nanocrystallinem Material sowie eine Vorrichtung zur Herstellung eines von diesem Band ausgehenden Wickelkernes
JP2011134959A (en) * 2009-12-25 2011-07-07 Hitachi Metals Ltd Magnetic sheet
US9252611B2 (en) 2011-12-21 2016-02-02 Amosense Co., Ltd. Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
US9507390B2 (en) * 2012-02-03 2016-11-29 Amosense Co., Ltd. Magnetic field shielding sheet for digitizer, manufacturing method thereof, and portable terminal device using same
EP3050977B1 (en) 2013-09-27 2018-11-21 Hitachi Metals, Ltd. Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core
CN104376950B (en) * 2014-12-12 2018-02-23 安泰科技股份有限公司 A kind of iron-based perseverance magnetic conducting nanocrystalline magnetic core and preparation method thereof
CN104900383B (en) * 2015-04-27 2017-04-19 安泰科技股份有限公司 Single/multi-layer magnetic conductive sheet for wireless charging and preparation method thereof
CN105632678B (en) * 2015-12-31 2017-07-28 安泰科技股份有限公司 A kind of contactless charging flexible magnetic conduction thin slice and preparation method thereof
WO2017150440A1 (en) * 2016-02-29 2017-09-08 日立金属株式会社 Method for producing nanocrystalline alloy ribbon
KR101889226B1 (en) * 2017-09-05 2018-08-16 삼성전기주식회사 Laminated sheet of flexible magnetic substance and method of manufacturing thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227156A (en) * 1985-04-01 1986-10-09 Toa Kikai Seisakusho:Kk Continuous heat treating apparatus for nonferrous metal sheet
JP2005529233A (en) * 2002-06-11 2005-09-29 ヴァキュームシュメルツェ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for continuous annealing of metal ribbon
JP2008112830A (en) 2006-10-30 2008-05-15 Toshiba Corp Method of manufacturing magnetic sheet
WO2014157526A1 (en) 2013-03-28 2014-10-02 日立金属株式会社 Magnetic sheet, electronic device using same, and method for manufacturing magnetic sheet
WO2018062310A1 (en) * 2016-09-29 2018-04-05 日立金属株式会社 Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
JP2019095279A (en) 2017-11-22 2019-06-20 アイシン・エィ・ダブリュ株式会社 System and program for identifying vehicle position
JP2019095278A (en) 2017-11-22 2019-06-20 古野電気株式会社 Analysis data processor, method for processing analysis data, and analysis data processing program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3974546A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190886A1 (en) * 2022-03-30 2023-10-05 株式会社プロテリアル Nanocrystalline alloy thin strip and magnetic sheet
WO2023190770A1 (en) * 2022-03-30 2023-10-05 株式会社プロテリアル Method for producing magnetic sheet
WO2023190963A1 (en) * 2022-03-30 2023-10-05 株式会社プロテリアル Method for manufacturing nanocrystal alloy ribbon, and method for manufacturing magnetic sheet
JP7424549B1 (en) 2022-03-30 2024-01-30 株式会社プロテリアル Nanocrystalline alloy ribbon and magnetic sheet
KR20240008259A (en) 2022-07-11 2024-01-18 가부시키가이샤 프로테리아루 Manufacturing method of magnetic sheet and manufacturing apparatus of magnetic sheet

Also Published As

Publication number Publication date
JP7074258B2 (en) 2022-05-24
CN113748473B (en) 2023-06-16
TW202102360A (en) 2021-01-16
CN113748473A (en) 2021-12-03
TW202108787A (en) 2021-03-01
EP3974546A4 (en) 2023-08-02
EP3974546A1 (en) 2022-03-30
JP7409376B2 (en) 2024-01-09
US20220298593A1 (en) 2022-09-22
JP2023103450A (en) 2023-07-26
US20220293313A1 (en) 2022-09-15
CN113767443A (en) 2021-12-07
JPWO2020235643A1 (en) 2020-11-26
WO2020235642A1 (en) 2020-11-26
JPWO2020235642A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2020235643A1 (en) Production method for nanocrystalline alloy ribbon having resin film
JPWO2020235643A5 (en)
JPWO2020235642A5 (en)
US20230326644A1 (en) Multilayer magnetic sheet
US20230321950A1 (en) Multilayer magnetic sheet
JP7424549B1 (en) Nanocrystalline alloy ribbon and magnetic sheet
JP2023145331A (en) Multi-layer magnetic sheet
WO2023190770A1 (en) Method for producing magnetic sheet
US20230307162A1 (en) Magnetic sheet, wound magnetic sheet, and multilayer magnetic sheet
JP2023152668A (en) Multi-layer magnetic sheet
JP7247564B2 (en) Soft magnetic sheet manufacturing method
US20230360837A1 (en) Magnetic sheet, multilayer magnetic sheet, and method for manufacturing magnetic sheet
EP4254442A1 (en) Multilayer magnetic sheet
US20230326639A1 (en) Multilayer magnetic sheet
US20230302770A1 (en) Multilayer magnetic sheet
WO2023190963A1 (en) Method for manufacturing nanocrystal alloy ribbon, and method for manufacturing magnetic sheet
WO2024043283A1 (en) Sheet-like magnetic member
WO2024024958A1 (en) Sheet-shaped magnetic member
JP2005116764A (en) Method for manufacturing multilayer soft magnetic member and soft magnetic sheet
CN116895458A (en) multilayer magnetic sheet
CN117393296A (en) Method and apparatus for manufacturing magnetic sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020809623

Country of ref document: EP

Effective date: 20211221