JPWO2020210168A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020210168A5
JPWO2020210168A5 JP2021559429A JP2021559429A JPWO2020210168A5 JP WO2020210168 A5 JPWO2020210168 A5 JP WO2020210168A5 JP 2021559429 A JP2021559429 A JP 2021559429A JP 2021559429 A JP2021559429 A JP 2021559429A JP WO2020210168 A5 JPWO2020210168 A5 JP WO2020210168A5
Authority
JP
Japan
Prior art keywords
optical module
camera
speculum
item
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021559429A
Other languages
Japanese (ja)
Other versions
JP2022526626A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/026920 external-priority patent/WO2020210168A1/en
Publication of JP2022526626A publication Critical patent/JP2022526626A/en
Publication of JPWO2020210168A5 publication Critical patent/JPWO2020210168A5/ja
Pending legal-status Critical Current

Links

Description

本開示の追加の側面および利益が、本開示の例証的実施形態のみが示され、説明される、以下の発明を実施するための形態から、当業者に容易に明白となるであろう。認識されるであろうように、本開示は、他の異なる実施形態が可能であり、そのいくつかの詳細は、全て本開示から逸脱することなく、種々の明白な点において修正が可能である。故に、図面および説明は、制限的ではなく、本質的に例証的と見なされるものである。
本発明は、例えば、以下を提供する。
(項目1)
光学アダプタであって、前記光学アダプタは、
(1)検鏡に解放可能に結合するように構成された第1の端部と、(2)カメラに解放可能に結合するように構成された第2の端部とを備えている筐体と、
前記筐体内の画像センサと、
前記筐体内に配置された光学系アセンブリと
を備え、
前記光学系アセンブリは、(i)対象の身体内の標的部位から反射され、前記検鏡を通して伝送される光信号を受け取り、(ii)前記光信号の第1の部分を前記画像センサまたは前記カメラのうちの一方の上に反射しながら、前記光信号の第2の部分が前記画像センサまたは前記カメラのうちの他方に至るまで通過することを可能にするように構成されている、光学アダプタ。
(項目2)
前記画像センサは、前記筐体に解放可能に結合されている、項目1に記載の光学アダプタ。
(項目3)
前記画像センサは、前記光信号の第1の部分から撮像データの第1の組を発生させるように構成され、前記カメラは、前記光信号の第2の部分から撮像データの第2の組を発生させるように構成されている、項目1に記載の光学アダプタ。
(項目4)
前記撮像データの第1の組は、レーザスペックルパターンを備え、前記撮像データの第2の組は、写真またはビデオ画像を備えている、項目2に記載の光学アダプタ。
(項目5)
前記画像センサは、レーザスペックル撮像のために使用される、項目1に記載の光学アダプタ。
(項目6)
前記光学系アセンブリは、ビームスプリッタを備えている、項目1に記載の光学アダプタ。
(項目7)
前記ビームスプリッタは、ダイクロイックミラーを備えている、項目6に記載の光学アダプタ。
(項目8)
前記光学系アセンブリは、前記光信号の前記第1の部分を前記画像センサ上に反射しながら、前記光信号の前記第2の部分が前記カメラに至るまで通過することを可能にするように構成されている、項目1に記載の光学アダプタ。
(項目9)
前記光学系アセンブリは、ショートパスダイクロイックミラーを備えている、項目8に記載の光学アダプタ。
(項目10)
前記光学系アセンブリは、前記光信号の前記第1の部分を前記カメラ上に反射しながら、前記光信号の前記第2の部分が前記画像センサに至るまで通過することを可能するように構成されている、項目1に記載の光学アダプタ。
(項目11)
前記光学系アセンブリは、ロングパスダイクロイックミラーを備えている、項目10に記載の光学アダプタ。
(項目12)
前記光信号の前記第1の部分は、前記標的部位が前記検鏡を介して伝送されるコヒーレントレーザ光を用いて照明されるときに発生させられる後方散乱光を備えている、項目1に記載の光学アダプタ。
(項目13)
前記コヒーレントレーザ光は、実質的に単一の波長を有する単一のレーザ源から提供される、項目12に記載の光学アダプタ。
(項目14)
前記コヒーレントレーザ光は、複数の異なる波長を有する複数のレーザ源から提供される、項目12に記載の光学アダプタ。
(項目15)
前記光信号の前記第2の部分は、前記標的部位が前記検鏡を介して伝送される白色光を用いて照明されるときに発生させられる反射光を備えている、項目1に記載の光学アダプタ。
(項目16)
前記単一の波長は、不可視スペクトル内に位置している、項目13に記載の光学アダプタ。
(項目17)
前記複数の異なる波長は、不可視スペクトル内に位置している、項目14に記載の光学アダプタ。
(項目18)
前記反射光は、可視スペクトル内にある、項目15に記載の光学アダプタ。
(項目19)
前記筐体の前記第1の端部は、迅速解放機構を使用して前記検鏡に解放可能に結合するように構成されている、項目1に記載の光学アダプタ。
(項目20)
前記迅速解放機構は、前記光学アダプタを異なるサイズを有する種々のタイプの検鏡に解放可能に結合するように構成されている、項目19に記載の光学アダプタ。
(項目21)
前記迅速解放機構は、ユーザがツールの使用なしに前記筐体の前記第1の端部を前記検鏡に解放可能に結合することを可能にするように構成されている、項目19に記載の光学アダプタ。
(項目22)
前記迅速解放機構は、ユーザが30秒未満以内に前記筐体の前記第1の端部を前記検鏡に解放可能に結合することを可能にするように構成されている、項目19に記載の光学アダプタ。
(項目23)
前記筐体の前記第2の端部は、迅速解放機構を使用して前記カメラに解放可能に結合するように構成されている、項目1に記載の光学アダプタ。
(項目24)
前記迅速解放機構は、前記光学アダプタを異なるサイズを有する種々のタイプのカメラに解放可能に結合するように構成されている、項目23に記載の光学アダプタ。
(項目25)
前記迅速解放機構は、ユーザがツールの使用なしに前記筐体の前記第2の端部を前記カメラに解放可能に結合することを可能にするように構成されている、項目23に記載の光学アダプタ。
(項目26)
前記迅速解放機構は、ユーザが30秒未満以内に前記筐体の前記第2の端部を前記カメラに解放可能に結合することを可能にするように構成されている、項目23に記載の光学アダプタ。
(項目27)
前記光学系アセンブリは、前記画像センサのための集束デバイスをさらに備えている、項目1に記載の光学アダプタ。
(項目28)
前記光学系アセンブリは、(i)前記画像センサのための第1の集束デバイスと、(ii)前記カメラのための第2の集束デバイスとをさらに備えている、項目1に記載の光学アダプタ。
(項目29)
前記第1の集束デバイスおよび前記第2の集束デバイスは、前記画像センサおよび前記カメラのための集束が、並行して実施されることができるように、互いに動作可能に結合されている、項目28に記載の光学アダプタ。
(項目30)
前記第1の集束デバイスおよび前記第2の集束デバイスは、歯車伝動機構を介して互いに動作可能に結合されている、項目28に記載の光学アダプタ。
(項目31)
前記第1の集束デバイスおよび前記第2の集束デバイスは、別個に提供され、互いに独立して使用されるように構成されている、項目28に記載の光学アダプタ。
(項目32)
前記検鏡は、(1)照明源から組み合わせられた光ビームを受け取り、(2)前記組み合わせられた光ビームを前記対象の身体内の前記標的部位の上に向けるように構成されている、項目1に記載の光学アダプタ。
(項目33)
前記第1の端部と前記第2の端部とは、共通の縦方向軸を共有している、項目1に記載の光学アダプタ。
(項目34)
前記第1の端部と前記第2の端部とは、前記筐体の対向する側に提供されている、項目33に記載の光学アダプタ。
(項目35)
前記第1の端部と前記第2の端部とは、共通の縦方向軸を共有していない、項目1に記載の光学アダプタ。
(項目36)
前記第1の端部と前記第2の端部とは、前記筐体の実質的に直交する側に提供されている、項目35に記載の光学アダプタ。
(項目37)
前記画像センサと前記カメラとは、異なる光軸を有する、項目1に記載の光学アダプタ。
(項目38)
前記画像センサの光軸は、前記カメラの光軸に直交している、項目1に記載の光学アダプタ。
(項目39)
前記画像センサは、前記筐体の表面に解放可能に結合するように構成され、前記表面は、前記筐体の前記第1の端部または前記第2の端部に実質的に直交している、項目1に記載の光学アダプタ。
(項目40)
前記画像センサは、前記筐体の前記表面に解放可能に結合するように構成されたケーシングを備えている、項目39に記載の光学アダプタ。
(項目41)
前記画像センサは、使い捨てであり、医療撮像手技における単回使用のために構成されている、項目1に記載の光学アダプタ。
(項目42)
前記画像センサは、複数の医療撮像手技のために再使用可能であるように構成されている、項目1に記載の光学アダプタ。
(項目43)
撮像キットであって、前記撮像キットは、
項目1に記載の光学アダプタと、
照明源と
を備え、
前記照明源は、組み合わせられた光ビームを前記対象の身体内の前記標的部位の上に向けるために、前記組み合わせられた光ビームを前記検鏡に伝送するように構成されている、撮像キット。
(項目44)
方法であって、前記方法は、
白色光をコヒーレントレーザ光と組み合わせ、組み合わせられた光ビームを発生させることと、
前記組み合わせられた光ビームを検鏡に提供することと、
前記検鏡を使用し、前記組み合わせられた光ビームを対象の身体内の標的部位の上に向けることと、
前記検鏡を介して、前記標的部位から反射される光信号を受け取ることと、
前記光信号の第1の部分を(i)光学アダプタ内の画像センサまたは(ii)カメラのうちの一方の上に反射しながら、前記光信号の第2の部分が(i)前記画像センサまたは(ii)前記カメラのうちの他方に至るまで通過することを可能にすることと
を含み、
前記光学アダプタは、前記検鏡および前記カメラの両方に解放可能に結合するように構成されている、方法。
(項目45)
前記光信号の前記第1の部分は、前記画像センサ上に反射される一方、前記光信号の前記第2の部分は、前記カメラに至るまで通過することを可能にされる、項目44に記載の方法。
(項目46)
前記光信号の前記第1の部分は、前記カメラ上に反射される一方、前記光信号の前記第2の部分は、前記画像センサに至るまで通過することを可能にされる、項目44に記載の方法。
(項目47)
前記光学アダプタは、前記検鏡および前記カメラに解放可能に結合されるとき、前記検鏡と前記カメラとの間に配置される、項目44に記載の方法。
(項目48)
前記検鏡と前記カメラとは、前記光学アダプタの直交する側に解放可能に結合される、項目44に記載の方法。
(項目49)
方法であって、前記方法は、
筐体を備えている光学アダプタを提供することであって、画像センサが、前記筐体内にある、ことと、
前記筐体の第1の端部を検鏡に解放可能に結合することと、
前記筐体の第2の端部をカメラに解放可能に結合することと、
組み合わせられた光ビームを前記検鏡に提供することであって、前記組み合わせられた光ビームは、コヒーレントレーザ光と組み合わせられた白色光を備えている、ことと、
前記検鏡を使用し、前記組み合わせられた光ビームを対象の身体内の標的部位の上に向けることと、
前記検鏡を介して、前記標的部位から反射される光信号を受け取ることと、
前記光信号の第1の部分を前記画像センサまたは前記カメラのうちの一方の上に反射しながら、前記光信号の第2の部分が前記画像センサまたは前記カメラのうちの他方に至るまで通過することを可能にすることと、
前記画像センサを使用し、前記光信号の前記第1の部分から撮像データの第1の組を発生させ、前記カメラを使用し、前記光信号の前記第2の部分から撮像データの第2の組を発生させることと
を含む、方法。
(項目50)
前記光信号の前記第1の部分は、前記画像センサ上に反射される一方、前記光信号の前記第2の部分は、前記カメラに至るまで通過することを可能にされる、項目49に記載の方法。
(項目51)
前記光信号の前記第1の部分は、前記カメラ上に反射される一方、前記光信号の前記第2の部分は、前記画像センサに至るまで通過することを可能にされる、項目49に記載の方法。
(項目52)
前記撮像データの前記第1の組は、レーザスペックルパターンを備えている、項目49に記載の方法。
(項目53)
前記撮像データの前記第2の組は、写真またはビデオ画像を備えている、項目49に記載の方法。
Additional aspects and benefits of the present disclosure will become readily apparent to those skilled in the art from the following detailed description, in which only illustrative embodiments of the present disclosure are shown and described. As will be realized, the disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. . Accordingly, the drawings and description are to be regarded as illustrative in nature rather than restrictive.
The present invention provides, for example, the following.
(Item 1)
An optical adapter, the optical adapter comprising:
A housing having (1) a first end configured to releasably couple to a speculum and (2) a second end configured to releasably couple to a camera. and,
an image sensor in the housing;
an optics assembly disposed within the housing; and
with
The optics assembly (i) receives a light signal reflected from a target site within a subject's body and transmitted through the speculum, and (ii) transmits a first portion of the light signal to the image sensor or the camera. An optical adapter configured to allow a second portion of the optical signal to pass all the way to the other of the image sensor or the camera while reflecting onto one of them.
(Item 2)
2. Optical adapter according to item 1, wherein the image sensor is releasably coupled to the housing.
(Item 3)
The image sensor is configured to generate a first set of imaging data from a first portion of the light signal and the camera generates a second set of imaging data from a second portion of the light signal. 2. Optical adapter according to item 1, configured to generate.
(Item 4)
3. The optical adapter of item 2, wherein the first set of imaging data comprises a laser speckle pattern and the second set of imaging data comprises a photographic or video image.
(Item 5)
2. Optical adapter according to item 1, wherein the image sensor is used for laser speckle imaging.
(Item 6)
The optical adapter of item 1, wherein the optics assembly comprises a beam splitter.
(Item 7)
7. Optical adapter according to item 6, wherein the beam splitter comprises a dichroic mirror.
(Item 8)
The optics assembly is configured to reflect the first portion of the optical signal onto the image sensor while allowing the second portion of the optical signal to pass through to the camera. The optical adapter according to item 1, wherein the optical adapter is
(Item 9)
9. Optical adapter according to item 8, wherein the optics assembly comprises a short pass dichroic mirror.
(Item 10)
The optics assembly is configured to reflect the first portion of the optical signal onto the camera while allowing the second portion of the optical signal to pass to the image sensor. The optical adapter of item 1, wherein the optical adapter is
(Item 11)
11. The optical adapter of item 10, wherein the optics assembly comprises a longpass dichroic mirror.
(Item 12)
Clause 1, wherein the first portion of the optical signal comprises backscattered light generated when the target site is illuminated with coherent laser light transmitted through the speculum. optical adapter.
(Item 13)
13. Optical adapter according to item 12, wherein the coherent laser light is provided from a single laser source having substantially a single wavelength.
(Item 14)
13. The optical adapter of item 12, wherein the coherent laser light is provided from multiple laser sources having multiple different wavelengths.
(Item 15)
The optics of item 1, wherein the second portion of the optical signal comprises reflected light generated when the target site is illuminated with white light transmitted through the speculum. adapter.
(Item 16)
14. Optical adapter according to item 13, wherein the single wavelength lies in the non-visible spectrum.
(Item 17)
15. The optical adapter of item 14, wherein the plurality of different wavelengths are located within the non-visible spectrum.
(Item 18)
16. Optical adapter according to item 15, wherein the reflected light is in the visible spectrum.
(Item 19)
The optical adapter of item 1, wherein the first end of the housing is configured to releasably couple to the speculum using a quick release mechanism.
(Item 20)
20. The optical adapter of item 19, wherein the quick release mechanism is configured to releasably couple the optical adapter to various types of speculum having different sizes.
(Item 21)
20. of paragraph 19, wherein the quick release mechanism is configured to allow a user to releasably couple the first end of the housing to the speculum without the use of tools. optical adapter.
(Item 22)
20. Clause 20, wherein the quick release mechanism is configured to allow a user to releasably couple the first end of the housing to the speculum in less than 30 seconds. optical adapter.
(Item 23)
2. The optical adapter of item 1, wherein the second end of the housing is configured to releasably couple to the camera using a quick release mechanism.
(Item 24)
24. An optical adapter according to item 23, wherein the quick release mechanism is configured to releasably couple the optical adapter to various types of cameras having different sizes.
(Item 25)
24. The optic of item 23, wherein the quick release mechanism is configured to allow a user to releasably couple the second end of the housing to the camera without the use of tools. adapter.
(Item 26)
24. The optic of item 23, wherein the quick release mechanism is configured to allow a user to releasably couple the second end of the housing to the camera within less than 30 seconds. adapter.
(Item 27)
The optical adapter of item 1, wherein the optics assembly further comprises a focusing device for the image sensor.
(Item 28)
The optical adapter of item 1, wherein the optics assembly further comprises (i) a first focusing device for the image sensor and (ii) a second focusing device for the camera.
(Item 29)
Item 28, wherein said first focusing device and said second focusing device are operably coupled to each other such that focusing for said image sensor and said camera can be performed in parallel. optical adapter described in .
(Item 30)
29. The optical adapter of item 28, wherein the first focusing device and the second focusing device are operably coupled to each other via a gear transmission.
(Item 31)
29. The optical adapter of item 28, wherein the first focusing device and the second focusing device are provided separately and configured to be used independently of each other.
(Item 32)
wherein said speculum is configured to (1) receive a combined light beam from an illumination source; and (2) direct said combined light beam onto said target site within said subject's body. 2. The optical adapter according to 1.
(Item 33)
2. The optical adapter of item 1, wherein the first end and the second end share a common longitudinal axis.
(Item 34)
34. The optical adapter of item 33, wherein the first end and the second end are provided on opposite sides of the housing.
(Item 35)
2. The optical adapter of item 1, wherein the first end and the second end do not share a common longitudinal axis.
(Item 36)
36. Optical adapter according to item 35, wherein the first end and the second end are provided on substantially orthogonal sides of the housing.
(Item 37)
The optical adapter according to item 1, wherein the image sensor and the camera have different optical axes.
(Item 38)
The optical adapter according to item 1, wherein the optical axis of the image sensor is orthogonal to the optical axis of the camera.
(Item 39)
The image sensor is configured to releasably couple to a surface of the housing, the surface being substantially orthogonal to the first end or the second end of the housing. 3. The optical adapter according to claim 1.
(Item 40)
40. The optical adapter of item 39, wherein the image sensor comprises a casing configured to releasably couple to the surface of the housing.
(Item 41)
2. The optical adapter of item 1, wherein the image sensor is disposable and configured for single use in a medical imaging procedure.
(Item 42)
2. The optical adapter of item 1, wherein the image sensor is configured to be reusable for multiple medical imaging procedures.
(Item 43)
An imaging kit, the imaging kit comprising:
an optical adapter according to item 1;
illumination source and
with
The imaging kit, wherein the illumination source is configured to transmit the combined light beam to the speculum to direct the combined light beam onto the target site within the subject's body.
(Item 44)
A method, the method comprising:
combining white light with coherent laser light to generate a combined light beam;
providing the combined light beam to a speculum;
using the speculum to direct the combined light beam over a target site within a subject's body;
receiving optical signals reflected from the target site via the speculum;
Reflecting a first portion of the optical signal onto one of (i) an image sensor in an optical adapter or (ii) a camera while reflecting a second portion of the optical signal onto (i) the image sensor or (ii) allowing passage to the other of said cameras;
including
The method, wherein the optical adapter is configured to releasably couple to both the speculum and the camera.
(Item 45)
45. Claimed in item 44, wherein the first part of the light signal is reflected onto the image sensor, while the second part of the light signal is allowed to pass all the way to the camera. the method of.
(Item 46)
45. Claimed in item 44, wherein the first part of the light signal is reflected onto the camera, while the second part of the light signal is allowed to pass all the way to the image sensor. the method of.
(Item 47)
45. The method of item 44, wherein the optical adapter is positioned between the speculum and the camera when releasably coupled to the speculum and the camera.
(Item 48)
45. The method of item 44, wherein the speculum and the camera are releasably coupled to orthogonal sides of the optical adapter.
(Item 49)
A method, the method comprising:
providing an optical adapter comprising a housing, wherein an image sensor is within the housing;
releasably coupling the first end of the housing to a speculum;
releasably coupling the second end of the housing to a camera;
providing a combined light beam to the speculum, the combined light beam comprising white light combined with coherent laser light;
using the speculum to direct the combined light beam over a target site within a subject's body;
receiving optical signals reflected from the target site via the speculum;
Reflecting a first portion of the optical signal onto one of the image sensor or the camera while a second portion of the optical signal passes through to the other of the image sensor or the camera. and
using the image sensor to generate a first set of imaging data from the first portion of the light signal; using the camera to generate a second set of imaging data from the second portion of the light signal; generating pairs and
A method, including
(Item 50)
50. According to item 49, wherein the first part of the light signal is reflected onto the image sensor, while the second part of the light signal is allowed to pass all the way to the camera. the method of.
(Item 51)
50. According to item 49, wherein the first part of the light signal is reflected onto the camera, while the second part of the light signal is allowed to pass all the way to the image sensor. the method of.
(Item 52)
50. The method of item 49, wherein the first set of imaging data comprises a laser speckle pattern.
(Item 53)
50. The method of item 49, wherein the second set of imaging data comprises photographic or video images.

Claims (26)

光学モジュールであって、前記光学モジュールは、
(1)検鏡に解放可能に結合するように構成された第1の部分と、(2)カメラに解放可能に結合するように構成された第2の部分とを備えている筐体と、
前記筐体内の画像センサ
前記筐体内に配置された光学系アセンブリと
を備え、
前記光学系アセンブリは、(i)対象の身体内の標的部位から反射され、前記検鏡を通して伝送される光信号を受け取り、(ii)前記光信号の第1の部分を前記画像センサまたは前記カメラのうちの一方の上に反射しながら、前記標的部位の多波長撮像を可能にするように前記光信号の第2の部分が前記画像センサまたは前記カメラのうちの他方に至るまで通過することを可能にするように構成され、
前記画像センサは、第1の範囲内の波長を検出するように構成され、前記カメラは、前記第1の範囲と異なる第2の範囲内の波長を検出するように構成され、前記第1の範囲または前記第2の範囲は、前記標的部位からのレーザスペックルを備えている反射光信号を備えている、光学モジュール
An optical module , the optical module comprising:
a housing comprising (1) a first portion configured to releasably couple to a speculum; and (2) a second portion configured to releasably couple to a camera;
an image sensor in the housing ;
an optics assembly disposed within the housing;
The optics assembly (i) receives a light signal reflected from a target site within a subject's body and transmitted through the speculum, and (ii) transmits a first portion of the light signal to the image sensor or the camera. allowing a second portion of the optical signal to pass through to the other of the image sensor or the camera to enable multi-wavelength imaging of the target site while being reflected onto one of the configured to allow
The image sensor is configured to detect wavelengths within a first range , the camera is configured to detect wavelengths within a second range different from the first range , The optics module , wherein the range or said second range comprises a reflected light signal comprising laser speckle from said target site .
前記画像センサは、前記光信号の第1の部分から撮像データの第1の組を発生させるように構成され、前記カメラは、前記光信号の第2の部分から撮像データの第2の組を発生させるように構成されている、請求項1に記載の光学モジュールThe image sensor is configured to generate a first set of imaging data from a first portion of the light signal and the camera generates a second set of imaging data from a second portion of the light signal. 2. An optical module according to claim 1, adapted to generate. 記撮像データの第2の組は、写真またはビデオ画像を備えている、請求項に記載の光学モジュール3. The optical module of claim 2 , wherein the second set of imaging data comprises photographic or video images. 前記光学系アセンブリは、ビームスプリッタを備えている、請求項1に記載の光学モジュール2. The optical module of Claim 1, wherein the optics assembly comprises a beam splitter. 前記ビームスプリッタは、ダイクロイックミラーを備えている、請求項に記載の光学モジュール5. The optical module of Claim 4 , wherein the beam splitter comprises a dichroic mirror. 前記光学系アセンブリは、ショートパスダイクロイックミラー、ロングパスダイクロイックミラー、または、バンドパスフィルタを備えている、請求項1に記載の光学モジュール2. The optical module of claim 1, wherein the optics assembly comprises a shortpass dichroic mirror , a longpass dichroic mirror, or a bandpass filter . 前記光信号の前記第1の部分は、前記標的部位が前記検鏡を介して伝送されるコヒーレントレーザ光を用いて照明されるときに発生させられる後方散乱光を備えている、請求項1に記載の光学モジュール2. The method of claim 1, wherein said first portion of said optical signal comprises backscattered light generated when said target site is illuminated with coherent laser light transmitted through said speculum. Optical module as described. 前記検鏡は、(1)不可視スペクトル内に位置している実質的に単一の波長を有する単一のレーザ源であって、前記単一のレーザ源は、前記検鏡を通して前記標的部位に前記コヒーレントレーザ光を伝送するように構成されている、単一のレーザ源、または、(2)不可視スペクトル内に位置している複数の異なる波長を有する複数のレーザ源であって、前記複数のレーザ源からの前記コヒーレントレーザ光は、組み合わせられ、前記検鏡を通して前記標的部位に伝送される、複数のレーザ源に動作可能に結合されている、請求項に記載の光学モジュールThe speculum includes: (1) a single laser source having a substantially single wavelength located within the invisible spectrum, the single laser source passing through the speculum to the target site; (2) a plurality of laser sources having a plurality of different wavelengths located within the non-visible spectrum, wherein the plurality of 8. The optics module of claim 7 , wherein the coherent laser light from laser sources is operatively coupled to a plurality of laser sources that are combined and transmitted through the speculum to the target site. 前記光信号の前記第2の部分は、前記標的部位が前記検鏡を介して伝送される白色光を用いて照明されるときに発生させられる反射光を備え、前記反射光は、可視スペクトル内にある、請求項1に記載の光学モジュールThe second portion of the optical signal comprises reflected light generated when the target site is illuminated with white light transmitted through the speculum, the reflected light being within the visible spectrum. 2. The optical module according to claim 1, wherein: 前記筐体の前記第1の部分は、迅速解放機構を使用して前記検鏡に解放可能に結合するように構成されている、請求項1に記載の光学モジュール3. The optics module of Claim 1, wherein the first portion of the housing is configured to releasably couple to the speculum using a quick release mechanism. 前記迅速解放機構は、前記光学モジュールを前記検鏡に解放可能に結合するように構成され、前記検鏡は、複数の異なるサイズを有する複数の異なるタイプの検鏡から選択される、請求項10に記載の光学モジュール 11. The quick release mechanism is configured to releasably couple the optical module to the speculum, the speculum being selected from a plurality of different types of speculum having a plurality of different sizes. The optical module according to . 前記迅速解放機構は、ユーザがツールの使用なしに前記筐体の前記第1の部分を前記検鏡に解放可能に結合することを可能にするように構成されている、請求項10に記載の光学モジュール11. The quick release mechanism of claim 10 , wherein the quick release mechanism is configured to allow a user to releasably couple the first portion of the housing to the speculum without the use of tools. optical module . 前記筐体の前記第2の部分は、迅速解放機構を使用して前記カメラに解放可能に結合するように構成されている、請求項1に記載の光学モジュール2. The optical module of Claim 1, wherein the second portion of the housing is configured to releasably couple to the camera using a quick release mechanism. 前記迅速解放機構は、前記光学モジュールを前記カメラに解放可能に結合するように構成され、前記カメラは、複数の異なるサイズを有する複数の異なるタイプのカメラから選択される、請求項13に記載の光学モジュール14. The quick release mechanism of claim 13 , wherein the quick release mechanism is configured to releasably couple the optics module to the camera, the camera selected from a plurality of different types of cameras having a plurality of different sizes. optical module . 前記迅速解放機構は、ユーザがツールの使用なしに前記筐体の前記第2の部分を前記カメラに解放可能に結合することを可能にするように構成されている、請求項13に記載の光学モジュール14. The optic of Claim 13 , wherein the quick release mechanism is configured to allow a user to releasably couple the second portion of the housing to the camera without the use of tools. module . 前記光学系アセンブリは、前記画像センサのための集束デバイスをさらに備えている、請求項1に記載の光学モジュール2. The optics module of Claim 1, wherein the optics assembly further comprises a focusing device for the image sensor. 前記光学系アセンブリは、(i)前記画像センサのための第1の集束デバイスと、(ii)前記カメラのための第2の集束デバイスとをさらに備えている、請求項1に記載の光学モジュール2. The optics module of claim 1, wherein the optics assembly further comprises: (i) a first focusing device for the image sensor; and (ii) a second focusing device for the camera. . 前記第1の集束デバイスおよび前記第2の集束デバイスは、前記画像センサおよび前記カメラのための集束が、並行して実施されることが可能であるように、互いに結合されている、請求項17に記載の光学モジュール 18. The first focusing device and the second focusing device are coupled to each other such that the focusing for the image sensor and the camera can be performed in parallel. The optical module according to . 前記第1の集束デバイスおよび前記第2の集束デバイスは、歯車伝動機構を介して互いに動作可能に結合されている、請求項17に記載の光学モジュール18. The optical module of Claim 17 , wherein the first focusing device and the second focusing device are operably coupled to each other via a gear transmission. 前記第1の集束デバイスおよび前記第2の集束デバイスは、別個に提供され、互いに独立して動作されるように構成されている、請求項17に記載の光学モジュール 18. The optical module of claim 17, wherein the first focusing device and the second focusing device are provided separately and configured to operate independently of each other. 前記検鏡は、(1)照明源から組み合わせられた光ビームを受け取り、(2)前記組み合わせられた光ビームを前記標的部位の上に向けるように構成されている、請求項1に記載の光学モジュール2. The optic of Claim 1, wherein the speculum is configured to (1) receive a combined light beam from an illumination source and (2) direct the combined light beam onto the target site. module . 前記筐体の前記第1の部分と前記第2の部分とは、共通の縦方向軸を共有している、請求項1に記載の光学モジュール2. The optical module of claim 1, wherein said first portion and said second portion of said housing share a common longitudinal axis. 前記画像センサと前記カメラとは、異なる光軸を有する、請求項1に記載の光学モジュール2. The optical module of claim 1, wherein the image sensor and camera have different optical axes. 前記画像センサの光軸は、前記カメラの光軸に実質的に直交している、請求項1に記載の光学モジュール2. The optical module of claim 1, wherein the optical axis of the image sensor is substantially orthogonal to the optical axis of the camera. 前記標的部位の前記多波長撮像は、染料の使用なしに可能にされる、請求項1に記載の光学モジュール2. The optical module of claim 1, wherein said multi-wavelength imaging of said target site is enabled without the use of dyes. 前記第1の集束デバイスまたは前記第2の集束デバイスは、前記第1の集束デバイスまたは前記第2の集束デバイスの集束を自動的に調節するように構成されたプロセスに動作可能に接続されている、請求項17に記載の光学モジュール The first focusing device or the second focusing device is operably connected to a process configured to automatically adjust the focusing of the first focusing device or the second focusing device. 18. The optical module according to claim 17 .
JP2021559429A 2019-04-08 2020-04-06 Systems and methods for medical imaging Pending JP2022526626A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962830934P 2019-04-08 2019-04-08
US62/830,934 2019-04-08
US201962952892P 2019-12-23 2019-12-23
US62/952,892 2019-12-23
PCT/US2020/026920 WO2020210168A1 (en) 2019-04-08 2020-04-06 Systems and methods for medical imaging

Publications (2)

Publication Number Publication Date
JP2022526626A JP2022526626A (en) 2022-05-25
JPWO2020210168A5 true JPWO2020210168A5 (en) 2023-08-04

Family

ID=72750598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021559429A Pending JP2022526626A (en) 2019-04-08 2020-04-06 Systems and methods for medical imaging

Country Status (7)

Country Link
US (3) US10925465B2 (en)
EP (1) EP3952720A4 (en)
JP (1) JP2022526626A (en)
KR (1) KR20220021920A (en)
CN (1) CN113950279B (en)
CA (1) CA3132350A1 (en)
WO (1) WO2020210168A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11268791B1 (en) * 2014-05-23 2022-03-08 Vista Outdoor Operations Llc Handgun cartridge with shear groove bullet
CN110192390A (en) 2016-11-24 2019-08-30 华盛顿大学 The light-field capture of head-mounted display and rendering
US11471151B2 (en) 2018-07-16 2022-10-18 Cilag Gmbh International Safety logic for surgical suturing systems
EP3667299B1 (en) * 2018-12-13 2022-11-09 Imec VZW Multimodal imaging system
JP2022526626A (en) 2019-04-08 2022-05-25 アクティブ サージカル, インコーポレイテッド Systems and methods for medical imaging
CN114599263A (en) 2019-08-21 2022-06-07 艾科缇弗外科公司 System and method for medical imaging
US20210127957A1 (en) * 2019-10-31 2021-05-06 Inthesmart Co., Ltd. Apparatus for intraoperative identification and viability assessment of tissue and method using the same
US11648060B2 (en) * 2019-12-30 2023-05-16 Cilag Gmbh International Surgical system for overlaying surgical instrument data onto a virtual three dimensional construct of an organ
US11776144B2 (en) 2019-12-30 2023-10-03 Cilag Gmbh International System and method for determining, adjusting, and managing resection margin about a subject tissue
US11832996B2 (en) 2019-12-30 2023-12-05 Cilag Gmbh International Analyzing surgical trends by a surgical system
US11744667B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Adaptive visualization by a surgical system
US11759283B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Surgical systems for generating three dimensional constructs of anatomical organs and coupling identified anatomical structures thereto
US11284963B2 (en) 2019-12-30 2022-03-29 Cilag Gmbh International Method of using imaging devices in surgery
US11896442B2 (en) 2019-12-30 2024-02-13 Cilag Gmbh International Surgical systems for proposing and corroborating organ portion removals
US12002571B2 (en) 2019-12-30 2024-06-04 Cilag Gmbh International Dynamic surgical visualization systems
US20220061644A1 (en) * 2020-08-27 2022-03-03 Nokia Technologies Oy Holographic endoscope
JP2023549246A (en) * 2020-11-16 2023-11-22 アルコン インコーポレイティド Ophthalmological endoscope that uses near-infrared spectrum
CN116744873A (en) * 2020-12-04 2023-09-12 艾科缇弗外科公司 Systems and methods for providing surgical guidance
WO2023091515A1 (en) * 2021-11-16 2023-05-25 Activ Surgical, Inc. Systems and methods for medical imaging
WO2023205456A1 (en) * 2022-04-22 2023-10-26 Activ Surgical, Inc. Methods and systems for medical imaging with multi-modal adaptor coupling

Family Cites Families (277)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652031A (en) * 1979-10-02 1981-05-09 Olympus Optical Co Endoscope system
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
GB9515311D0 (en) 1995-07-26 1995-09-20 3D Scanners Ltd Stripe scanners and methods of scanning
DE19636354A1 (en) 1996-09-02 1998-03-05 Ruedger Dipl Ing Rubbert Method and device for performing optical recordings
US5980450A (en) * 1997-05-07 1999-11-09 Pinotage, Llc Coupling device for use in an imaging system
US6069698A (en) 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US6081322A (en) 1997-10-16 2000-06-27 Research Foundation Of State Of New York NIR clinical opti-scan system
US6373963B1 (en) 1998-02-05 2002-04-16 Textile/Clothing Technology Corporation Systems, methods and computer program for measuring the surface contour of an object
DE19815201A1 (en) 1998-04-04 1999-10-07 Link Johann & Ernst Gmbh & Co Measuring arrangement for detecting dimensions of test specimens, preferably of hollow bodies, in particular of bores in workpieces, and methods for measuring such dimensions
US6549288B1 (en) 1998-05-14 2003-04-15 Viewpoint Corp. Structured-light, triangulation-based three-dimensional digitizer
DE19829278C1 (en) 1998-06-30 2000-02-03 Sirona Dental Systems Gmbh 3-D camera for the detection of surface structures, especially for dental purposes
IL125659A (en) 1998-08-05 2002-09-12 Cadent Ltd Method and apparatus for imaging three-dimensional structure
DE19837932C2 (en) 1998-08-20 2000-09-07 Bioshape Ag Method and device for determining the surface shape of biological tissue
US7137948B2 (en) * 1998-11-25 2006-11-21 Jory Tsai Medical inspection device
US7068825B2 (en) 1999-03-08 2006-06-27 Orametrix, Inc. Scanning system and calibration method for capturing precise three-dimensional information of objects
US7107116B2 (en) 1999-03-29 2006-09-12 Genex Technologies, Inc. Diffuse optical tomography system and method of use
US7099732B2 (en) 1999-03-29 2006-08-29 Genex Technologies, Inc. Sanitary sleeve or tip for intra-oral three-dimensional camera
US6503195B1 (en) 1999-05-24 2003-01-07 University Of North Carolina At Chapel Hill Methods and systems for real-time structured light depth extraction and endoscope using real-time structured light depth extraction
US6563105B2 (en) 1999-06-08 2003-05-13 University Of Washington Image acquisition with depth enhancement
US6542249B1 (en) 1999-07-20 2003-04-01 The University Of Western Ontario Three-dimensional measurement method and apparatus
ATE285079T1 (en) 1999-09-08 2005-01-15 3Dv Systems Ltd 3D IMAGE PRODUCTION SYSTEM
US7006236B2 (en) 2002-05-22 2006-02-28 Canesta, Inc. Method and apparatus for approximating depth of an object's placement onto a monitored region with applications to virtual interface devices
ATE221344T1 (en) 2000-04-05 2002-08-15 Brainlab Ag REFERENCEING A PATIENT IN A MEDICAL NAVIGATION SYSTEM USING RADIATED LIGHT POINTS
WO2001082829A2 (en) 2000-05-03 2001-11-08 Flock Stephen T Prosthesis and method of making
EP1731087A3 (en) * 2000-07-14 2008-08-06 Novadaq Technologies Inc. Compact fluorescent endoscopy video system
US6850872B1 (en) 2000-08-30 2005-02-01 Microsoft Corporation Facial image processing methods and systems
JP2002164066A (en) 2000-11-22 2002-06-07 Mitsubishi Heavy Ind Ltd Stacked heat exchanger
JP2002345733A (en) 2001-05-29 2002-12-03 Fuji Photo Film Co Ltd Imaging device
US20060178556A1 (en) 2001-06-29 2006-08-10 Intuitive Surgical, Inc. Articulate and swapable endoscope for a surgical robot
JP2003075137A (en) 2001-09-04 2003-03-12 Minolta Co Ltd Photographing system and imaging device used therefor and three-dimensional measuring auxiliary unit
JP3962588B2 (en) 2002-01-07 2007-08-22 キヤノン株式会社 3D image processing method, 3D image processing apparatus, 3D image processing system, and 3D image processing program
US8194122B2 (en) * 2002-03-12 2012-06-05 Karl Storz Imaging, Inc. Universal scope reader
JP4054222B2 (en) * 2002-06-05 2008-02-27 オリンパス株式会社 Light source device for endoscope device
WO2003105289A2 (en) 2002-06-07 2003-12-18 University Of North Carolina At Chapel Hill Methods and systems for laser based real-time structured light depth extraction
US20110015518A1 (en) 2002-06-13 2011-01-20 Martin Schmidt Method and instrument for surgical navigation
US6977732B2 (en) 2002-12-26 2005-12-20 National Taiwan University Miniature three-dimensional contour scanner
DE10304111B4 (en) 2003-01-31 2011-04-28 Sirona Dental Systems Gmbh Recording method for an image of a recording object
JP4798945B2 (en) 2003-03-05 2011-10-19 トヨタ自動車株式会社 Imaging device
WO2004085956A2 (en) 2003-03-24 2004-10-07 D3D, L.P. Laser digitizer system for dental applications
US7450783B2 (en) 2003-09-12 2008-11-11 Biopticon Corporation Methods and systems for measuring the size and volume of features on live tissues
US20050096515A1 (en) 2003-10-23 2005-05-05 Geng Z. J. Three-dimensional surface image guided adaptive therapy system
US7951073B2 (en) 2004-01-21 2011-05-31 Boston Scientific Limited Endoscopic device having spray mechanism and related methods of use
US7330577B2 (en) 2004-01-27 2008-02-12 Densys Ltd. Three-dimensional modeling of the oral cavity by projecting a two-dimensional array of random patterns
KR100764419B1 (en) 2004-02-09 2007-10-05 강철권 Device for measuring 3d shape using irregular pattern and method for the same
DE102004008164B3 (en) 2004-02-11 2005-10-13 Karl Storz Gmbh & Co. Kg Method and device for creating at least a section of a virtual 3D model of a body interior
ATE383817T1 (en) 2004-06-17 2008-02-15 Cadent Ltd METHOD FOR PROVIDING DATA RELATED TO THE ORAL CAVITY
JP4589048B2 (en) 2004-08-04 2010-12-01 オリンパス株式会社 Capsule endoscope
US7961912B2 (en) 2004-10-14 2011-06-14 Stevick Glen R Method and apparatus for dynamic space-time imaging system
US7620209B2 (en) 2004-10-14 2009-11-17 Stevick Glen R Method and apparatus for dynamic space-time imaging system
JP2008522761A (en) 2004-12-08 2008-07-03 ザ・ゼネラル・ホスピタル・コーポレーション Systems and methods for normalized fluorescence or bioluminescence imaging
US8027710B1 (en) 2005-01-28 2011-09-27 Patrick Dannan Imaging system for endoscopic surgery
EP1759629B1 (en) 2005-08-31 2014-04-02 Karl Storz GmbH & Co. KG Endoscope with variable direction of view
CN101288105B (en) 2005-10-11 2016-05-25 苹果公司 For the method and system of object reconstruction
JP2009511163A (en) 2005-10-14 2009-03-19 アプライド リサーチ アソシエイツ エヌゼット リミテッド Method and apparatus for observing surface features
KR100752758B1 (en) 2005-10-19 2007-08-29 (주) 인텍플러스 Apparatus and method for measuring image
US20070115484A1 (en) 2005-10-24 2007-05-24 Peisen Huang 3d shape measurement system and method including fast three-step phase shifting, error compensation and calibration
US7898651B2 (en) 2005-10-24 2011-03-01 General Electric Company Methods and apparatus for inspecting an object
US7489408B2 (en) 2005-11-15 2009-02-10 General Electric Company Optical edge break gage
JP2009517634A (en) 2005-11-28 2009-04-30 3シェイプ アー/エス Encoded structured light
DE102005060312A1 (en) 2005-12-16 2007-06-28 Siemens Ag Scanning device for optical scanning of surfaces
DE102006004583A1 (en) 2006-02-01 2007-08-09 Siemens Ag Optical scanner, to give images of marked human and animal tissue, has a distance sensor with a control unit to set the focus of the infra red light source for the image detector
JP5044126B2 (en) 2006-02-23 2012-10-10 オリンパス株式会社 Endoscope observation apparatus and operation method of endoscope for image formation
WO2007109678A2 (en) 2006-03-20 2007-09-27 Baylor College Of Medicine Method and system for non-contact fluorescence optical tomography with patterned illumination
JP4864511B2 (en) 2006-03-31 2012-02-01 富士フイルム株式会社 Electronic endoscope apparatus and program
US7435217B2 (en) 2006-04-17 2008-10-14 Microvision, Inc. Scanned beam imagers and endoscopes with positionable light collector
DE502006003187D1 (en) 2006-05-31 2009-04-30 Brainlab Ag Registration by means of radiation marking elements
EP2030558B1 (en) 2006-05-31 2017-05-03 National University Corporation Chiba University Three-dimensional image forming device, three-dimensional image forming method and program
US20110057930A1 (en) 2006-07-26 2011-03-10 Inneroptic Technology Inc. System and method of using high-speed, high-resolution depth extraction to provide three-dimensional imagery for endoscopy
US20080107305A1 (en) 2006-11-02 2008-05-08 Northern Digital Inc. Integrated mapping system
US8556807B2 (en) 2006-12-21 2013-10-15 Intuitive Surgical Operations, Inc. Hermetically sealed distal sensor endoscope
US8326020B2 (en) 2007-02-28 2012-12-04 Sungkyunkwan University Foundation Structural light based depth imaging method and system using signal separation coding, and error correction thereof
US7995798B2 (en) 2007-10-15 2011-08-09 Given Imaging Ltd. Device, system and method for estimating the size of an object in a body lumen
DE102007054906B4 (en) 2007-11-15 2011-07-28 Sirona Dental Systems GmbH, 64625 Method for optical measurement of the three-dimensional geometry of objects
ES2372515B2 (en) 2008-01-15 2012-10-16 Universidad De La Laguna CHAMBER FOR THE REAL-TIME ACQUISITION OF THE VISUAL INFORMATION OF THREE-DIMENSIONAL SCENES.
US9072445B2 (en) 2008-01-24 2015-07-07 Lifeguard Surgical Systems Inc. Common bile duct surgical imaging system
US7821649B2 (en) 2008-03-05 2010-10-26 Ge Inspection Technologies, Lp Fringe projection system and method for a probe suitable for phase-shift analysis
JP2009240621A (en) 2008-03-31 2009-10-22 Hoya Corp Endoscope apparatus
WO2010036403A2 (en) 2008-05-06 2010-04-01 Flashscan3D, Llc System and method for structured light illumination with frame subwindows
US20100113921A1 (en) 2008-06-02 2010-05-06 Uti Limited Partnership Systems and Methods for Object Surface Estimation
DE102008040947B4 (en) 2008-08-01 2014-02-06 Sirona Dental Systems Gmbh 3D dental camera for detecting surface structures of a test object by means of triangulation
US8593507B2 (en) 2008-08-03 2013-11-26 Microsoft International Holdings B.V. Rolling camera system
WO2010019515A2 (en) 2008-08-10 2010-02-18 Board Of Regents, The University Of Texas System Digital light processing hyperspectral imaging apparatus
US9282926B2 (en) 2008-12-18 2016-03-15 Sirona Dental Systems Gmbh Camera for recording surface structures, such as for dental purposes
US8295546B2 (en) 2009-01-30 2012-10-23 Microsoft Corporation Pose tracking pipeline
WO2010096447A2 (en) 2009-02-17 2010-08-26 Board Of Regents, The University Of Texas System Quantitative imaging with multi-exposure speckle imaging (mesi)
WO2010096453A1 (en) 2009-02-17 2010-08-26 Board Of Regents, The University Of Texas System Methods of producing laser speckle contrast images
US9135502B2 (en) 2009-05-11 2015-09-15 Universitat Zu Lubeck Method for the real-time-capable, computer-assisted analysis of an image sequence containing a variable pose
US7763841B1 (en) 2009-05-27 2010-07-27 Microsoft Corporation Optical component for a depth sensor
CA2765559C (en) 2009-06-18 2017-09-05 Peer Medical Ltd. Multi-camera endoscope
US9706903B2 (en) * 2009-06-18 2017-07-18 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
JP5361592B2 (en) 2009-07-24 2013-12-04 オリンパス株式会社 Endoscope apparatus, measurement method, and program
KR20110018696A (en) 2009-08-18 2011-02-24 주식회사 이턴 Apparatus and method for processing 3d image
US8264536B2 (en) 2009-08-25 2012-09-11 Microsoft Corporation Depth-sensitive imaging via polarization-state mapping
JP5807787B2 (en) 2009-08-27 2015-11-10 ナヴィスウィス エージー Endoscope
ES2676511T3 (en) 2009-09-04 2018-07-20 The Johns Hopkins University Multimodal laser spotting imaging
US8723118B2 (en) 2009-10-01 2014-05-13 Microsoft Corporation Imager for constructing color and depth images
US20110080471A1 (en) 2009-10-06 2011-04-07 Iowa State University Research Foundation, Inc. Hybrid method for 3D shape measurement
US10045882B2 (en) 2009-10-30 2018-08-14 The Johns Hopkins University Surgical instrument and systems with integrated optical sensor
US20110123098A1 (en) 2009-11-24 2011-05-26 Maurice Moshe Ernst System and a Method for Three-dimensional Modeling of a Three-dimensional Scene Features with a Cooling System
US20120206587A1 (en) 2009-12-04 2012-08-16 Orscan Technologies Ltd System and method for scanning a human body
AU2010339972B2 (en) * 2009-12-15 2015-04-30 Emory University System and method for providing real-time anatomical guidance in a diagnostic or therapeutic procedure
US8320621B2 (en) 2009-12-21 2012-11-27 Microsoft Corporation Depth projector system with integrated VCSEL array
US8723923B2 (en) 2010-01-14 2014-05-13 Alces Technology Structured light system
CN102762142B (en) 2010-02-12 2016-01-27 皇家飞利浦电子股份有限公司 The laser enhancing on 3D surface is rebuild
EP2359745A1 (en) * 2010-02-12 2011-08-24 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Method and device for multi-spectral photonic imaging
US8279418B2 (en) 2010-03-17 2012-10-02 Microsoft Corporation Raster scanning for depth detection
CA2797302C (en) 2010-04-28 2019-01-15 Ryerson University System and methods for intraoperative guidance feedback
US8330804B2 (en) 2010-05-12 2012-12-11 Microsoft Corporation Scanned-beam depth mapping to 2D image
US9557574B2 (en) 2010-06-08 2017-01-31 Microsoft Technology Licensing, Llc Depth illumination and detection optics
US8558873B2 (en) 2010-06-16 2013-10-15 Microsoft Corporation Use of wavefront coding to create a depth image
US20130253313A1 (en) 2010-08-02 2013-09-26 The Johns Hopkins University Autofocusing endoscope and system
US9833145B2 (en) * 2010-08-11 2017-12-05 Snu R&Db Foundation Method for simultaneously detecting fluorescence and raman signals for multiple fluorescence and raman signal targets, and medical imaging device for simultaneously detecting multiple targets using the method
US9157733B2 (en) 2010-09-10 2015-10-13 Dimensional Photonics International, Inc. Method of data acquisition for three-dimensional imaging
AU2011305543A1 (en) 2010-09-21 2013-04-11 The Johns Hopkins University Optical sensing system for cochlear implant surgery
US8760517B2 (en) 2010-09-27 2014-06-24 Apple Inc. Polarized images for security
CN102008282B (en) 2010-10-29 2012-08-08 深圳大学 Number stamp intraoral scanner and oral cavity internal surface topography image real-time reconstructing system
US9345389B2 (en) * 2010-11-12 2016-05-24 Emory University Additional systems and methods for providing real-time anatomical guidance in a diagnostic or therapeutic procedure
US9506749B2 (en) 2010-11-15 2016-11-29 Seikowave, Inc. Structured light 3-D measurement module and system for illuminating an area-under-test using a fixed-pattern optic
US9599461B2 (en) 2010-11-16 2017-03-21 Ectoscan Systems, Llc Surface data acquisition, storage, and assessment system
US8649024B2 (en) 2010-12-03 2014-02-11 Zygo Corporation Non-contact surface characterization using modulated illumination
US8803952B2 (en) 2010-12-20 2014-08-12 Microsoft Corporation Plural detector time-of-flight depth mapping
US20120165681A1 (en) 2010-12-23 2012-06-28 Tyco Healthcare Group Lp Delineating Skin or Surface Lesions
US9226673B2 (en) 2011-01-10 2016-01-05 East Carolina University Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
US9271658B2 (en) 2011-01-10 2016-03-01 East Carolina University Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
EP2689708B1 (en) 2011-04-27 2016-10-19 Olympus Corporation Endoscopic apparatus and measurement method
WO2012154578A1 (en) 2011-05-06 2012-11-15 The Trustees Of The University Of Pennsylvania Ped - endoscope image and diagnosis capture system
JP5830270B2 (en) 2011-05-24 2015-12-09 オリンパス株式会社 Endoscope apparatus and measuring method
JP5846763B2 (en) 2011-05-24 2016-01-20 オリンパス株式会社 Endoscope device
JP5841353B2 (en) 2011-05-24 2016-01-13 オリンパス株式会社 Endoscope apparatus and image acquisition method
US8891087B2 (en) 2011-06-01 2014-11-18 Digital Light Innovations System and method for hyperspectral imaging
US8792098B2 (en) 2011-06-01 2014-07-29 Digital Light Innovations System and method for hyperspectral illumination
WO2012167041A2 (en) * 2011-06-01 2012-12-06 Nathaniel Group, Inc. Multi-wavelength multi-lamp radiation sources and systems and apparatuses incorporating same
US9001190B2 (en) 2011-07-05 2015-04-07 Microsoft Technology Licensing, Llc Computer vision system and method using a depth sensor
KR20130011141A (en) 2011-07-20 2013-01-30 삼성전자주식회사 Endoscope and endoscope system
US9444981B2 (en) 2011-07-26 2016-09-13 Seikowave, Inc. Portable structured light measurement module/apparatus with pattern shifting device incorporating a fixed-pattern optic for illuminating a subject-under-test
US8784301B2 (en) 2011-08-12 2014-07-22 Intuitive Surgical Operations, Inc. Image capture unit and method with an extended depth of field
US8672838B2 (en) 2011-08-12 2014-03-18 Intuitive Surgical Operations, Inc. Image capture unit in a surgical instrument
US8764633B2 (en) 2011-08-12 2014-07-01 Intuitive Surgical Operations, Inc. Feature differentiation image capture unit and method in a surgical instrument
US9254103B2 (en) 2011-08-15 2016-02-09 The Trustees Of Dartmouth College Operative microscope having diffuse optical imaging system with tomographic image reconstruction and superposition in field of view
US9491441B2 (en) 2011-08-30 2016-11-08 Microsoft Technology Licensing, Llc Method to extend laser depth map range
US9142025B2 (en) 2011-10-05 2015-09-22 Electronics And Telecommunications Research Institute Method and apparatus for obtaining depth information using optical pattern
WO2013058978A1 (en) 2011-10-17 2013-04-25 Kimmel Zebadiah M Method and apparatus for sizing and fitting an individual for apparel, accessories, or prosthetics
DE102011119608B4 (en) 2011-11-29 2021-07-29 Karl Storz Se & Co. Kg Device and method for endoscopic 3D data acquisition
US11510600B2 (en) 2012-01-04 2022-11-29 The Trustees Of Dartmouth College Method and apparatus for quantitative and depth resolved hyperspectral fluorescence and reflectance imaging for surgical guidance
WO2013131232A1 (en) 2012-03-05 2013-09-12 Microsoft Corporation Generation of depth images based upon light falloff
JP5654511B2 (en) 2012-03-14 2015-01-14 富士フイルム株式会社 Endoscope system, processor device for endoscope system, and method for operating endoscope system
WO2013136620A1 (en) 2012-03-14 2013-09-19 独立行政法人産業技術総合研究所 Phase distribution analysis method and device for fringe image using high-dimensional brightness information, and program therefor
JP5995484B2 (en) 2012-03-30 2016-09-21 キヤノン株式会社 Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, and program
WO2013158636A1 (en) 2012-04-16 2013-10-24 Azizian Mahdi Dual-mode stereo imaging system for tracking and control in surgical and interventional procedures
US10575737B2 (en) 2012-04-27 2020-03-03 Novadaq Technologies ULC Optical coherent imaging medical device
WO2013165399A2 (en) 2012-05-01 2013-11-07 Empire Technology Development Llc Infrared scanner and projector to indicate cancerous cells
US20130296712A1 (en) 2012-05-03 2013-11-07 Covidien Lp Integrated non-contact dimensional metrology tool
JP5930531B2 (en) 2012-05-24 2016-06-08 三菱電機エンジニアリング株式会社 Imaging apparatus and imaging method
US9674436B2 (en) 2012-06-18 2017-06-06 Microsoft Technology Licensing, Llc Selective imaging zones of an imaging sensor
US9471864B2 (en) 2012-06-22 2016-10-18 Microsoft Technology Licensing, Llc Encoding data in depth patterns
US9492065B2 (en) * 2012-06-27 2016-11-15 Camplex, Inc. Surgical retractor with video cameras
US9220570B2 (en) 2012-06-29 2015-12-29 Children's National Medical Center Automated surgical and interventional procedures
US8896594B2 (en) 2012-06-30 2014-11-25 Microsoft Corporation Depth sensing with depth-adaptive illumination
WO2014016001A1 (en) 2012-07-25 2014-01-30 Siemens Aktiengesellschaft Colour coding for 3d measurement, more particularly for transparent scattering surfaces
US20140031665A1 (en) 2012-07-25 2014-01-30 Covidien Lp Telecentric Scale Projection System for Real-Time In-Situ Surgical Metrology
CN104125794B (en) 2012-08-07 2016-06-22 奥林巴斯株式会社 Sweep type endoscope apparatus
US9696427B2 (en) 2012-08-14 2017-07-04 Microsoft Technology Licensing, Llc Wide angle depth detection
US9297889B2 (en) 2012-08-14 2016-03-29 Microsoft Technology Licensing, Llc Illumination light projection for a depth camera
US9057784B2 (en) 2012-08-14 2015-06-16 Microsoft Technology Licensing, Llc Illumination light shaping for a depth camera
EP2901671A4 (en) 2012-09-28 2016-08-24 Pelican Imaging Corp Generating images from light fields utilizing virtual viewpoints
US20150238276A1 (en) 2012-09-30 2015-08-27 M.S.T. Medical Surgery Technologies Ltd. Device and method for assisting laparoscopic surgery - directing and maneuvering articulating tool
US9070194B2 (en) 2012-10-25 2015-06-30 Microsoft Technology Licensing, Llc Planar surface detection
WO2014067000A1 (en) 2012-10-29 2014-05-08 7D Surgical Inc. Integrated illumination and optical surface topology detection system and methods of use thereof
DE102012021185A1 (en) 2012-10-30 2014-04-30 Smart Optics Sensortechnik Gmbh Method for 3D optical measurement of teeth with reduced point-spread function
US9304603B2 (en) 2012-11-12 2016-04-05 Microsoft Technology Licensing, Llc Remote control using depth camera
EP2950701B1 (en) 2013-02-01 2021-03-10 DEKA Products Limited Partnership Endoscope with pannable camera
WO2014121278A1 (en) 2013-02-04 2014-08-07 D4D Technologies, Llc Intra-oral scanning device with illumination frames interspersed with image frames
CN105101903B (en) 2013-02-04 2018-08-24 儿童国家医疗中心 Mixing control surgical robot systems
DK2956084T3 (en) 2013-02-13 2022-10-31 3Shape As FOCUS SCANNING DEVICE FOR REGISTERING COLOR
CN104036226B (en) 2013-03-04 2017-06-27 联想(北京)有限公司 A kind of object information acquisition method and electronic equipment
US9351643B2 (en) 2013-03-12 2016-05-31 Covidien Lp Systems and methods for optical measurement for in-situ surgical applications
US9375844B2 (en) 2013-03-15 2016-06-28 Intuitive Surgical Operations, Inc. Geometrically appropriate tool selection assistance for determined work site dimensions
US20140307055A1 (en) 2013-04-15 2014-10-16 Microsoft Corporation Intensity-modulated light pattern for active stereo
US9294758B2 (en) 2013-04-18 2016-03-22 Microsoft Technology Licensing, Llc Determining depth data for a captured image
US9407838B2 (en) 2013-04-23 2016-08-02 Cedars-Sinai Medical Center Systems and methods for recording simultaneously visible light image and infrared light image from fluorophores
US9074868B2 (en) 2013-05-13 2015-07-07 General Electric Company Automated borescope measurement tip accuracy test
US9274047B2 (en) 2013-05-24 2016-03-01 Massachusetts Institute Of Technology Methods and apparatus for imaging of occluded objects
US9729860B2 (en) 2013-05-24 2017-08-08 Microsoft Technology Licensing, Llc Indirect reflection suppression in depth imaging
WO2014192876A1 (en) 2013-05-30 2014-12-04 独立行政法人産業技術総合研究所 Imaging system and imaging method
EP4105640A1 (en) * 2013-06-19 2022-12-21 The General Hospital Corporation Apparatus, devices and methods for obtaining omnidirectional viewing by a catheter
DE102013016752A1 (en) 2013-09-03 2015-03-05 Universität Stuttgart Method and arrangement for robust one-shot interferometry, in particular also for optical coherence tomography according to the Spatial Domain Approach (SD-OCT)
US9462253B2 (en) 2013-09-23 2016-10-04 Microsoft Technology Licensing, Llc Optical modules that reduce speckle contrast and diffraction artifacts
US9799117B2 (en) 2013-09-30 2017-10-24 Lenovo (Beijing) Co., Ltd. Method for processing data and apparatus thereof
US20150099926A1 (en) 2013-10-03 2015-04-09 Endochoice, Inc. Endoscope with Integrated Sensors
US9443310B2 (en) 2013-10-09 2016-09-13 Microsoft Technology Licensing, Llc Illumination modules that emit structured light
WO2015081213A1 (en) 2013-11-27 2015-06-04 Children's National Medical Center 3d corrected imaging
EP3080631A1 (en) 2013-12-10 2016-10-19 Koninklijke Philips N.V. Magnetic resonance coil assembly for fiducial markers
JP6447516B2 (en) 2013-12-27 2019-01-09 ソニー株式会社 Image processing apparatus and image processing method
WO2015103566A2 (en) 2014-01-06 2015-07-09 The Regents Of The University Of California Spatial frequency domain imaging using custom patterns
WO2015105780A1 (en) 2014-01-07 2015-07-16 The Regents Of The University Of California Method for extraction of spatial frequency information for quantitative tissue imaging
WO2015105360A1 (en) 2014-01-10 2015-07-16 주식회사 고영테크놀러지 Device and method for measuring three-dimensional shape
US9720506B2 (en) 2014-01-14 2017-08-01 Microsoft Technology Licensing, Llc 3D silhouette sensing system
US10485425B2 (en) 2014-02-04 2019-11-26 The Trustees Of Dartmouth College Apparatus and methods for structured light scatteroscopy
CA2939345C (en) 2014-02-17 2022-05-31 Children's National Medical Center Method and system for providing recommendation for optimal execution of surgical procedures
DE102014002514B4 (en) 2014-02-21 2015-10-29 Universität Stuttgart Device and method for multi- or hyperspectral imaging and / or for distance and / or 2-D or 3-D profile measurement of an object by means of spectrometry
US9380224B2 (en) 2014-02-28 2016-06-28 Microsoft Technology Licensing, Llc Depth sensing using an infrared camera
US9545220B2 (en) 2014-03-02 2017-01-17 V.T.M (Virtual Tape Measure) Technologies Ltd. Endoscopic measurement system and method
DE102014204244A1 (en) 2014-03-07 2015-09-10 Siemens Aktiengesellschaft Endoscope with depth determination
DE102014204243A1 (en) 2014-03-07 2015-09-10 Siemens Aktiengesellschaft Endoscope with depth determination
US11116383B2 (en) 2014-04-02 2021-09-14 Asensus Surgical Europe S.à.R.L. Articulated structured light based-laparoscope
DE102014207022A1 (en) 2014-04-11 2015-10-29 Siemens Aktiengesellschaft Depth determination of a surface of a test object
DE102014207315A1 (en) * 2014-04-16 2015-10-22 Spheronvr Ag camera assembly
DE102014210938A1 (en) 2014-06-06 2015-12-17 Siemens Aktiengesellschaft Method for controlling a medical device and control system for a medical device
US20150377613A1 (en) 2014-06-30 2015-12-31 Samsung Electronics Co., Ltd. Systems and methods for reconstructing 3d surfaces of tubular lumens
US9439568B2 (en) 2014-07-03 2016-09-13 Align Technology, Inc. Apparatus and method for measuring surface topography optically
US9261358B2 (en) 2014-07-03 2016-02-16 Align Technology, Inc. Chromatic confocal system
US9261356B2 (en) 2014-07-03 2016-02-16 Align Technology, Inc. Confocal surface topography measurement with fixed focal positions
US10398294B2 (en) 2014-07-24 2019-09-03 Z Square Ltd. Illumination sources for multicore fiber endoscopes
CN105509639B (en) 2014-09-24 2019-01-01 通用电气公司 For the measuring system and measurement method of measure geometry feature
US10039439B2 (en) 2014-09-30 2018-08-07 Fujifilm Corporation Endoscope system and method for operating the same
WO2016061052A1 (en) 2014-10-14 2016-04-21 East Carolina University Methods, systems and computer program products for visualizing anatomical structures and blood flow and perfusion physiology using imaging techniques
US11553844B2 (en) 2014-10-14 2023-01-17 East Carolina University Methods, systems and computer program products for calculating MetaKG signals for regions having multiple sets of optical characteristics
CN107257655B (en) 2014-10-14 2020-06-16 东卡罗莱娜大学 Methods, systems, and computer program products for determining hemodynamic status parameters using signals acquired from multi-spectral blood flow and perfusion imaging
US20160128553A1 (en) 2014-11-07 2016-05-12 Zheng Jason Geng Intra- Abdominal Lightfield 3D Endoscope and Method of Making the Same
JP6432770B2 (en) 2014-11-12 2018-12-05 ソニー株式会社 Image processing apparatus, image processing method, and program
US9841496B2 (en) 2014-11-21 2017-12-12 Microsoft Technology Licensing, Llc Multiple pattern illumination optics for time of flight system
US9638801B2 (en) 2014-11-24 2017-05-02 Mitsubishi Electric Research Laboratories, Inc Depth sensing using optical pulses and fixed coded aperature
US9330464B1 (en) 2014-12-12 2016-05-03 Microsoft Technology Licensing, Llc Depth camera feedback
US9958758B2 (en) 2015-01-21 2018-05-01 Microsoft Technology Licensing, Llc Multiple exposure structured light pattern
EP3461451B1 (en) 2015-01-28 2020-03-04 Brainlab AG Laser pointer system for radiotherapy
US9817159B2 (en) 2015-01-31 2017-11-14 Microsoft Technology Licensing, Llc Structured light pattern generation
WO2016130997A1 (en) 2015-02-12 2016-08-18 Nextvr Inc. Methods and apparatus for making environmental measurements and/or using such measurements
US9953428B2 (en) 2015-03-03 2018-04-24 Microsoft Technology Licensing, Llc Digital camera unit with simultaneous structured and unstructured illumination
KR102376954B1 (en) 2015-03-06 2022-03-21 삼성전자주식회사 Method for irradiating litght for capturing iris and device thereof
US9955140B2 (en) 2015-03-11 2018-04-24 Microsoft Technology Licensing, Llc Distinguishing foreground and background with inframed imaging
KR102306539B1 (en) 2015-03-12 2021-09-29 삼성전자주식회사 Method and device for irradiating light used to capture iris
US10058256B2 (en) 2015-03-20 2018-08-28 East Carolina University Multi-spectral laser imaging (MSLI) methods and systems for blood flow and perfusion imaging and quantification
US10390718B2 (en) 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
DE102015206511B4 (en) 2015-04-13 2023-10-19 Siemens Healthcare Gmbh Determination of a clear spatial relationship between a medical device and another object
US9690984B2 (en) 2015-04-14 2017-06-27 Microsoft Technology Licensing, Llc Two-dimensional infrared depth sensing
US20170059305A1 (en) 2015-08-25 2017-03-02 Lytro, Inc. Active illumination for enhanced depth map generation
US10145678B2 (en) 2015-04-20 2018-12-04 Samsung Electronics Co., Ltd. CMOS image sensor for depth measurement using triangulation with point scan
CN107735015B (en) 2015-05-07 2021-09-10 史赛克欧洲运营有限公司 Method and system for laser speckle imaging of tissue using a color image sensor
US10356392B2 (en) 2015-05-28 2019-07-16 University College Cork—National Univesity of Ireland, Cork Coded access optical sensor
CN107072498B (en) 2015-06-30 2019-08-20 奥林巴斯株式会社 Image processing apparatus, capsule-type endoscope system and endoscopic system
WO2017006574A1 (en) 2015-07-03 2017-01-12 オリンパス株式会社 Image processing device, image determination system, and endoscope system
WO2017008137A1 (en) 2015-07-13 2017-01-19 Synaptive Medical (Barbados) Inc. System and method for providing a contour video with a 3d surface in a medical navigation system
US9958585B2 (en) 2015-08-17 2018-05-01 Microsoft Technology Licensing, Llc Computer vision depth sensing at video rate using depth from defocus
DK178899B1 (en) 2015-10-09 2017-05-08 3Dintegrated Aps A depiction system
US10402992B2 (en) 2015-10-16 2019-09-03 Capsovision Inc. Method and apparatus for endoscope with distance measuring for object scaling
US9955861B2 (en) 2015-10-16 2018-05-01 Ricoh Company, Ltd. Construction of an individual eye model using a plenoptic camera
US11135028B2 (en) 2015-10-31 2021-10-05 Children's National Medical Center Soft surgical tools
WO2017141524A1 (en) 2016-02-18 2017-08-24 ソニー株式会社 Imaging device, imaging method, and imaging system
CA2958766C (en) 2016-02-25 2018-01-02 Synaptive Medical (Barbados) Inc. System and method for scope based depth map acquisition
EP3220351A1 (en) 2016-03-14 2017-09-20 Thomson Licensing Method and device for processing lightfield data
US20170280970A1 (en) 2016-03-31 2017-10-05 Covidien Lp Thoracic endoscope for surface scanning
US10375330B2 (en) 2016-05-27 2019-08-06 Verily Life Sciences Llc Systems and methods for surface topography acquisition using laser speckle
US10324300B2 (en) * 2016-06-07 2019-06-18 Karl Storz Se & Co. Kg Endoscope and imaging arrangement providing depth of field
US11307430B2 (en) * 2016-06-07 2022-04-19 Karl Storz Se & Co. Kg Optical device and method for providing improved depth of field and resolution modes
US20170366773A1 (en) 2016-06-21 2017-12-21 Siemens Aktiengesellschaft Projection in endoscopic medical imaging
TWI597042B (en) 2016-06-29 2017-09-01 Endoscopic with distance measuring function and distance measuring method
US10217235B2 (en) 2016-07-11 2019-02-26 Nri R&D Patent Licensing, Llc Advanced lensless light-field imaging systems and methods for enabling a wide range of entirely new applications
US9947099B2 (en) 2016-07-27 2018-04-17 Microsoft Technology Licensing, Llc Reflectivity map estimate from dot based structured light systems
US20180042466A1 (en) 2016-08-12 2018-02-15 The Johns Hopkins University Compact endoscope design for three-dimensional surgical guidance
CA3053633A1 (en) 2017-02-22 2018-08-30 Orthosoft Inc. Bone and tool tracking in robotized computer-assisted surgery
US10485629B2 (en) 2017-02-24 2019-11-26 Sony Olympus Medical Solutions Inc. Endoscope device
CN107124547B (en) * 2017-04-19 2020-10-16 宇龙计算机通信科技(深圳)有限公司 Double-camera shooting method and device
US11432712B2 (en) * 2017-06-28 2022-09-06 Karl Storz Imaging, Inc. Fluorescence imaging scope with dual mode focusing structures
CN111295135A (en) 2017-08-28 2020-06-16 东卡罗莱娜大学 Multi-spectral physiological visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in endoscopic design
CN107510430A (en) * 2017-09-23 2017-12-26 武汉迅微光电技术有限公司 Endoscopic optical imaging method and system a kind of while that obtain otherwise visible light color image and blood-stream image
CN110049921B (en) * 2017-11-03 2022-12-23 深圳市大疆创新科技有限公司 Method and system for infrared tracking
US10694117B2 (en) 2018-06-07 2020-06-23 Curadel, LLC Masking approach for imaging multi-peak fluorophores by an imaging system
JP2021526907A (en) 2018-06-08 2021-10-11 イースト カロライナ ユニバーシティ Determination of Peripheral Blood Oxygen Saturation (SpO2) and Hemoglobin Concentration Using Multispectral Laser Imaging (MSLI) Methods and Systems
US20210282654A1 (en) 2018-06-28 2021-09-16 Children's National Medical Center Methods and system for dye-free visualization of blood flow and tissue perfusion in laparoscopy
WO2020081159A2 (en) 2018-09-05 2020-04-23 East Carolina University Systems for detecting vascular and arterial disease in asymptomatic patients and related methods
US11497389B2 (en) * 2018-10-03 2022-11-15 Karl Storz Imaging, Inc. Attachment system for conditioning light between endoscope and camera
WO2020198315A1 (en) 2019-03-26 2020-10-01 East Carolina University Near-infrared fluorescence imaging for blood flow and perfusion visualization and related systems and computer program products
JP2022526626A (en) 2019-04-08 2022-05-25 アクティブ サージカル, インコーポレイテッド Systems and methods for medical imaging
CN114599263A (en) 2019-08-21 2022-06-07 艾科缇弗外科公司 System and method for medical imaging
NL2026240B1 (en) 2020-08-07 2022-04-08 Limis Dev B V Device for coupling coherent light into an endoscopic system
NL2026505B1 (en) 2020-09-18 2022-05-23 Limis Dev B V Motion-compensated laser speckle contrast imaging
WO2023091515A1 (en) 2021-11-16 2023-05-25 Activ Surgical, Inc. Systems and methods for medical imaging

Similar Documents

Publication Publication Date Title
JPWO2020210168A5 (en)
US11169370B2 (en) Multiple imaging modality light source
US11633091B2 (en) Method and apparatus for illuminating an object field imaged by an image sensor
JP7324802B2 (en) Invisible light visualization automatic matching type augmented reality glasses
EP1138255B1 (en) Fundus camera
CN101360460B (en) Imaging system
JP2007518491A (en) Convergent optical device for stereoscopic imaging system
US8132911B2 (en) Fundus photo-stimulation system and method
JP2019503516A (en) System and method for high resolution imaging using a bundle of optical fibers
EP3241481B1 (en) Dual path endoscope
US10736489B2 (en) Endoscope having an optical waveguide with emergence portion and an objective with beam splitter
JP7038102B2 (en) Full-field interference imaging system and method
JPWO2021074960A5 (en)
CN112869703A (en) Optical system of fundus camera and fundus camera
US20240111028A1 (en) Optical device and method for examining an object
WO2023045146A1 (en) Endoscopic imaging system, endoscope camera, and endoscopic camera system
JPH05344997A (en) Medical stereoscopic microscope
JP2002023067A (en) Optical system device for electronic endoscope
JP2016137309A (en) Light source device
JP2008212444A (en) Illuminating device, optical device and monitor system
CN219331594U (en) Endoscope light source and medical instrument product adopting same
JP2015100512A (en) Inspection device
JP2007252774A (en) Optical tomography imaging apparatus
JP2017146496A (en) Illumination light source
JP7213378B2 (en) OCT function expansion unit