JP2002023067A - Optical system device for electronic endoscope - Google Patents

Optical system device for electronic endoscope

Info

Publication number
JP2002023067A
JP2002023067A JP2000213037A JP2000213037A JP2002023067A JP 2002023067 A JP2002023067 A JP 2002023067A JP 2000213037 A JP2000213037 A JP 2000213037A JP 2000213037 A JP2000213037 A JP 2000213037A JP 2002023067 A JP2002023067 A JP 2002023067A
Authority
JP
Japan
Prior art keywords
light
polarized light
optical system
optical
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000213037A
Other languages
Japanese (ja)
Other versions
JP4394811B2 (en
Inventor
Shuichi Yamataka
修一 山高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2000213037A priority Critical patent/JP4394811B2/en
Publication of JP2002023067A publication Critical patent/JP2002023067A/en
Application granted granted Critical
Publication of JP4394811B2 publication Critical patent/JP4394811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively utilize light outputted from a light source even in a configuration using an optical objective system as an optical observation path and as an optical illumination path. SOLUTION: On the back side of an optical objective system 12, a 1/4 wavelength plate 16 and a cubic polarizing prism 17 having an optical transmission path L1 for outputting the light of the light source and an optical reflection path L2 for guiding the light from the optical objective system 12 to the side of a CCD 18 are provided. Concerning the prism 17, two rectangular prisms are combined to have a polarized light separation plane and a p-polarized light reflection film 27 is formed on this polarized light separation plane. Thus, the p-polarized light of the light source converted by the prism 17 is turned into circularly polarized light by the 1/4 wavelength plate 16 and irradiated from the optical objective system 12. Whereas, reflected light from an object to be observed is converted to s-polarized light by the 1/4 wavelength plate 16 and guided through the prism 17 to the CCD 18 by the optical reflection path L2. As a result, the loss of the light from the light source can be reduced to 1/2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子内視鏡の光学系
装置、特にライトガイドを介して被観察体を照明し、対
物光学系を介して撮像素子で撮像された被観察体を観察
する電子内視鏡の光学系部材の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system for an electronic endoscope, and more particularly to illuminating an object to be observed through a light guide and observing the object to be imaged by an image sensor through an objective optical system. The present invention relates to a configuration of an optical system member of an electronic endoscope.

【0002】[0002]

【従来の技術】電子内視鏡装置は、光ファイバー束から
なるライトガイドを介し、スコープ先端部から光を出射
することにより被観察体(内)が照明され、この被観察
体像は対物光学系を介して捉えられ、撮像素子で撮像さ
れる。この種の電子内視鏡装置では、先端部まで例えば
2本のライトガイドが設けられ、この2本のライトガイ
ドに挟まれた位置に上記対物光学系が配置されており、
これにより被観察体を良好に照明するようになってい
る。
2. Description of the Related Art In an electronic endoscope apparatus, an object to be observed (inside) is illuminated by emitting light from a distal end portion of a scope through a light guide formed of an optical fiber bundle. And captured by the image sensor. In this type of electronic endoscope apparatus, for example, two light guides are provided up to the distal end, and the objective optical system is disposed at a position sandwiched between the two light guides.
Thereby, the object to be observed is illuminated well.

【0003】ところで、上記電子内視鏡装置では、細い
体腔内等の観察部位にスコープを挿入することから、そ
の先端部及び挿入部の細径化が求められており、上述し
たライトガイドにおいても、その径を小さくすること
や、配置を工夫すること等が行われる。しかし、良好な
観察をするためには、明るい照明光が必要であり、ライ
トガイドを余り細径化することは得策ではない。
In the above-mentioned electronic endoscope apparatus, since the scope is inserted into an observation site such as a thin body cavity, it is required to reduce the diameter of the distal end portion and the insertion portion. , The diameter is reduced, and the arrangement is devised. However, bright illumination light is required for good observation, and it is not advisable to reduce the diameter of the light guide too much.

【0004】また、このような内視鏡では、対物光学系
で捉えられる撮像位置に対し、ムラのない均一の照明を
行うことは比較的困難である。即ち、上述のように、ラ
イトガイドが2本設けられる場合は、両方の光が所定位
置で重なることから、その周辺部において照明ムラが生
じる。また、ライトガイドが1本の場合は、厳密にいえ
ば照射位置に対し光が斜めに当ることから、周辺部では
同様に照明ムラが生じることになる。そこで、本願出願
人は、特開平10−99268号公報に示されるよう
に、被観察体像を捉える対物光学系部材を照明用光路と
しても利用する装置を提案している。
[0004] Further, with such an endoscope, it is relatively difficult to perform uniform illumination with no unevenness on the imaging position captured by the objective optical system. That is, as described above, when two light guides are provided, since both lights overlap at a predetermined position, illumination unevenness occurs in a peripheral portion thereof. In addition, when one light guide is used, strictly speaking, light impinges obliquely on the irradiation position, so that illumination unevenness similarly occurs in the peripheral portion. Therefore, as disclosed in Japanese Patent Application Laid-Open No. 10-99268, the present applicant has proposed an apparatus that uses an objective optical system member that captures an image of an object to be observed as an illumination optical path.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この電
子内視鏡の光学系装置では、光源からの光路と撮像素子
へ導く光路を確保するための光路結合用光学素子におい
て半透過膜を使用するため、撮像素子へ入射する光が光
源光の1/4程度になってしまい、光源の出力光を有効
に利用することができないという不都合があった。即
ち、光源光は上記半透過膜を通過するとき1/2とな
り、また被観察体からの光が半透過膜で反射されるとき
に1/2となる結果、被観察体像光は1/4となる。
However, in the optical system of the electronic endoscope, a semi-transmissive film is used in an optical path coupling optical element for securing an optical path from a light source and an optical path leading to an image pickup device. However, the light incident on the image sensor becomes about 1/4 of the light of the light source, and there is a disadvantage that the output light of the light source cannot be used effectively. That is, the light from the light source becomes と き when passing through the semi-transmissive film, and becomes と き に when light from the object is reflected by the semi-transmissive film. It becomes 4.

【0006】本発明は上記問題点に鑑みてなされたもの
であり、その目的は、対物光学系を観察光路及び照明光
路として用いる構成でも、光源出力光を有効に利用する
ことができる電子内視鏡の光学系装置を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide an electronic endoscope which can effectively use light output from a light source even when an objective optical system is used as an observation optical path and an illumination optical path. An object of the present invention is to provide a mirror optical system device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、第1請求項記載の発明に係る電子内視鏡の光学系装
置は、照明光を出力し、かつこの照明光で照明された被
観察体像を捉えるために配置された対物光学系と、この
対物光学系の後側に配置され、入射される光を互いに直
交する2つの偏光成分に分離する偏光子機能を備え、一
方の偏光成分を透過させる透過光路及び他方の偏光成分
を反射させる反射光路を確保する偏光分離光学素子と、
この偏光分離光学素子で設定された透過光路及び反射光
路のいずれか一方に光学的に接続された照明手段と、上
記光路の他方に光学的に接続された撮像素子と、上記偏
光分離光学素子の上記対物光学系側に配置され、直線偏
光と円偏光の変換をする偏光成分変換素子と、を含んで
なることを特徴とする。
In order to achieve the above object, an optical system for an electronic endoscope according to the first aspect of the present invention outputs illumination light and is illuminated with the illumination light. An objective optical system arranged to capture an image of the object to be observed, and a polarizer function arranged behind the objective optical system and separating incident light into two polarization components orthogonal to each other. A polarization separation optical element that secures a transmission optical path that transmits a polarization component and a reflection optical path that reflects the other polarization component,
An illumination unit optically connected to one of a transmission optical path and a reflection optical path set by the polarization separation optical element, an imaging element optically connected to the other of the optical paths, and the polarization separation optical element. A polarization component conversion element disposed on the side of the objective optical system for converting between linearly polarized light and circularly polarized light.

【0008】第2請求項記載の発明は、上記偏光分離光
学素子の偏光子機能を備え、光源光の全てを1つの直線
偏光成分へ変換する全変換型偏光成分変換素子を、上記
照明手段に設けたことを特徴とする。
According to a second aspect of the present invention, a full-conversion-type polarization component conversion element that has a polarizer function of the polarization separation optical element and converts all of the light from the light source into one linear polarization component is provided in the illumination means. It is characterized by having been provided.

【0009】上記の構成によれば、ライトガイドを介し
て光源から導かれるランダム光は、偏光分離光学素子の
偏光子機能によりs偏光とp偏光に分離された後、例え
ばp偏光のみが透過され、その後、偏光成分変換素子に
て円偏光へ変換される。そして、この円偏光は対物光学
系を介して被観察体へ照明光として照射される。一方、
被観察体から反射する円偏光反射光が上記対物光学系で
捉えられると、この反射円偏光は上記偏光成分変換素子
でs偏光へ変換されて偏光分離光学素子へ導かれる。こ
の偏光分離光学素子では、s偏光が偏光子機能により反
射されて撮像素子へ供給されることになり、このs偏光
によって被観察体像が撮像面に結像する。
According to the above arrangement, the random light guided from the light source via the light guide is separated into s-polarized light and p-polarized light by the polarizer function of the polarization splitting optical element, and then, for example, only the p-polarized light is transmitted. After that, the light is converted into circularly polarized light by the polarization component conversion element. Then, the circularly polarized light is irradiated as illumination light on the object to be observed via the objective optical system. on the other hand,
When circularly polarized light reflected from the object to be observed is captured by the objective optical system, the reflected circularly polarized light is converted into s-polarized light by the polarization component conversion element, and is guided to the polarization splitting optical element. In this polarization splitting optical element, the s-polarized light is reflected by the polarizer function and supplied to the imaging device, and the object image is formed on the imaging surface by the s-polarized light.

【0010】従って、照明領域と観察領域を一致させた
均一で効率のよい照明状態が得られると共に、光源から
のランダム光量が上記偏光子で1/2になるのみである
から、光量が1/4になる従来の半透過膜と比較する
と、光源の出力光を有効に利用できるという利点があ
る。また、上記第2請求項の構成によれば、光源光の全
てを直線偏光成分へ変える全変換型偏光成分変換素子を
用いたので、この場合は、光源出力光の全てを撮像に利
用することが可能になる。
Accordingly, a uniform and efficient illumination state in which the illumination region and the observation region are matched can be obtained, and the random light amount from the light source is only halved by the polarizer. 4 has the advantage that the output light of the light source can be used effectively. Further, according to the configuration of the second aspect, since the full-conversion-type polarization component conversion element that converts all of the light from the light source into a linearly polarized light component is used, in this case, all of the light output from the light source is used for imaging. Becomes possible.

【0011】[0011]

【発明の実施の形態】図1には、実施形態の第1例であ
る電子内視鏡の光学系装置の主要構成が示され、図2及
び図3には当該電子内視鏡先端部の構成が示されてい
る。まず、図2及び図3において、先端部10には、保
持部材11に保持されて対物光学系部材(鏡胴部)12
が設けられており、この対物光学系部材12には対物レ
ンズだけでなく、絞りやフィルタ等が含まれる。また、
先端部10の先端面に鉗子口14が設けられ、この鉗子
口14に処置具挿通チャンネル15が接続され、この処
置具挿通チャンネル15を介して鉗子口14から鉗子等
の各種の処置具が導出できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a main structure of an optical system of an electronic endoscope according to a first embodiment of the present invention. The configuration is shown. First, in FIGS. 2 and 3, the distal end portion 10 has an objective optical system member (barrel) 12 held by a holding member 11.
The objective optical system member 12 includes not only an objective lens but also an aperture, a filter, and the like. Also,
A forceps port 14 is provided on the distal end surface of the distal end portion 10, a treatment tool insertion channel 15 is connected to the forceps port 14, and various treatment tools such as forceps are led out of the forceps port 14 through the treatment tool insertion channel 15. it can.

【0012】更に、上記対物光学系部材12の後側に、
図1にも示されるが、偏光成分変換素子である1/4波
長板16と、偏光子が組み込まれた偏光分離光学素子で
ある立方体プリズム17が光学的に接続され、この立方
体プリズム17の下側に、撮像素子であるCCD(Char
ge Coupled Device)18が光学的に接続される。この
CCD18は、カバーガラス19で密閉されるCCDパ
ッケージ20内に収納接続され、このカバーガラス19
が上記プリズム17の下面へ接着される。なお、上記C
CDパッケージ20には、配線パターンが形成されてお
り、この配線パターンを介して、外部へ接続するための
信号線21が接続される。
Further, on the rear side of the objective optical system member 12,
As shown in FIG. 1, a quarter-wave plate 16 as a polarization component conversion element and a cubic prism 17 as a polarization splitting optical element incorporating a polarizer are optically connected. On the side, a CCD (Char
ge Coupled Device) 18 is optically connected. The CCD 18 is housed and connected in a CCD package 20 sealed with a cover glass 19.
Is adhered to the lower surface of the prism 17. The above C
A wiring pattern is formed on the CD package 20, and a signal line 21 for connection to the outside is connected via the wiring pattern.

【0013】図1において、上記立方体プリズム17
は、2個の直角プリズムを接合させ、その接合面(傾斜
面)が偏光分離面17Aとなる偏光プリズム(偏光ビー
ムスプリッター)からなり、この接合面に、s偏光(偏
光方向が90度異なるp偏光でもよい)を反射させるs
偏光反射膜(直線偏光反射膜)27を形成したものであ
る。この立方体プリズム17によれば、s偏光反射膜2
7を施した偏光分離面17Aにより、光源光であるラン
ダム光がs偏光とp偏光に分離され、s偏光を図の上側
へ反射させる一方、p偏光を通過させる。また、光源光
を対物光学系部材12へ通過させる透過光路(直進光
路)L1が設定されると共に、対物光学系部材12から
入射する光を偏光分離面17Aから下側の直角方向であ
るCCD18へ反射させる反射光路L2が形成される。
In FIG. 1, the cubic prism 17
Is composed of a polarizing prism (polarizing beam splitter) in which two right-angle prisms are joined and the joining surface (inclined surface) becomes the polarization splitting surface 17A. (May be polarized light)
A polarization reflection film (linear polarization reflection film) 27 is formed. According to the cubic prism 17, the s-polarized reflection film 2
The randomized light, which is the light source light, is separated into s-polarized light and p-polarized light by the polarized light separating surface 17A to which the s-polarized light is applied. Further, a transmission light path (straight traveling light path) L1 for passing the light from the light source to the objective optical system member 12 is set, and the light incident from the objective optical system member 12 is transmitted from the polarization separation surface 17A to the CCD 18, which is a lower right angle direction. A reflected light path L2 for reflection is formed.

【0014】そして、上記立方体プリズム17の前側の
1/4波長板16は、当該プリズム17から出力される
p偏光を円偏光に変換し、またこの円偏光による被観察
体からの反射光をs偏光に変換する。従って、この1/
4波長板16から出射されたs偏光により被観察体像が
上記反射光路L2を介してCCD18に結像することに
なる。
The quarter-wave plate 16 on the front side of the cubic prism 17 converts the p-polarized light output from the prism 17 into circularly polarized light, and converts the reflected light from the object to be observed due to the circularly polarized light into s. Convert to polarized light. Therefore, this 1 /
The s-polarized light emitted from the four-wavelength plate 16 forms an image of the object under observation on the CCD 18 via the reflection optical path L2.

【0015】更に、上記立方体プリズム17の後側に
は、集光レンズ23、拡散板24を介してライトガイド
25が配置されており、このライトガイド25は光源装
置の光出射端に接続される。上記拡散板24は、すりガ
ラス状面を形成しており、ライトガイド25の端面のフ
ァイバー束の形状をCCD18側へ逆投影させない役目
をする。
Further, a light guide 25 is disposed behind the cubic prism 17 via a condenser lens 23 and a diffusion plate 24, and the light guide 25 is connected to a light emitting end of the light source device. . The diffusion plate 24 has a ground glass surface, and serves to prevent the shape of the fiber bundle on the end face of the light guide 25 from being back-projected to the CCD 18 side.

【0016】第1例は以上の構成からなり、以下にその
作用を説明する。図1に示されるように、光源装置から
ライトガイド25を介して導かれた光は、拡散板24を
通り、集光レンズ23によって立方体プリズム17の後
面へ入射する。この光源光は、ランダム光であるが、こ
のランダム光は立方体プリズム17で直線偏光成分(s
偏光,p偏光)に分離され、一方の直線偏光成分が透過
され、他方の直線偏光成分は偏光分離面17Aで上側に
反射される。そして、例えばp偏光が透過光路L1を進
む(s偏光は反射)とすれば、このp偏光は、1/4波
長板16にて円偏光となり、対物光学系部材12を介し
照明光として被観察体へ出射されることになり、この照
明光は、被観察体像を捉える対物光学系部材12の光路
を通ることから、撮像に最適な照明パターンとなる。
The first example has the above configuration, and its operation will be described below. As shown in FIG. 1, light guided from the light source device via the light guide 25 passes through the diffusion plate 24 and is incident on the rear surface of the cubic prism 17 by the condenser lens 23. This light source light is random light, and the random light is linearly polarized component (s
(Polarized light, p-polarized light), one linearly polarized light component is transmitted, and the other linearly polarized light component is reflected upward by the polarization separation surface 17A. If, for example, the p-polarized light travels along the transmission optical path L1 (the s-polarized light is reflected), the p-polarized light becomes circularly polarized light by the quarter-wave plate 16, and is observed as illumination light via the objective optical system member 12. The illumination light is emitted to the body, and the illumination light passes through the optical path of the objective optical system member 12 that captures the image of the object to be observed.

【0017】一方、円偏光により照明された被観察体像
は対物光学系部材12により捉えられ、この被観察体反
射の円偏光は対物光学系部材12内光路を通り、1/4
波長板16により偏光方向が90度異なるs偏光へ変換
され、立方体プリズム17へ供給される。そして、この
立方体プリズム17では、上記s偏光がs偏光反射膜2
7を有する偏光分離面17Aにて直角方向の反射光路L
2へ反射されるので、図1に示されるように、CCD1
8の撮像面に被観察体の像がs偏光によって結像するこ
とになる。
On the other hand, the object image illuminated by the circularly polarized light is captured by the objective optical system member 12, and the circularly polarized light reflected from the object to be observed passes through the optical path in the objective optical system member 12 and becomes 1 /.
The light is converted into s-polarized light having a polarization direction different by 90 degrees by the wave plate 16 and supplied to the cubic prism 17. Then, in the cubic prism 17, the s-polarized light is
The reflected light path L in the direction perpendicular to the polarization separating surface 17A having
2 is reflected to the CCD 1 as shown in FIG.
An image of the object to be observed is formed on the imaging surface 8 by s-polarized light.

【0018】このような第1例によれば、光源から出力
されるランダム光が立方体プリズム17でp偏光のみと
なり、光量が1/2となり、この光量が1/4になる従
来の半透過膜に比べると、光源光を有効に利用すること
ができる。そして、基本的には、図2及び図3から理解
されるように、先端部10において対物光学系部材12
とライトガイド25が並列ではなく直列に配置されるの
で、従来のライトガイドの配置スペースが不要となり、
先端部10の細径化が図れるという利点があり、また撮
像域に最適な照明パターンが得られるので、照明ムラも
なくなり、良好な撮影が可能となる。
According to the first example, the conventional semi-transmissive film in which the random light output from the light source becomes only the p-polarized light by the cubic prism 17 and the light amount becomes 1 /, and the light amount becomes 1 /. The light source light can be used more effectively. Then, as can be understood from FIGS. 2 and 3, the objective optical system member 12
The light guide 25 and the light guide 25 are arranged in series instead of in parallel.
There is an advantage that the diameter of the distal end portion 10 can be reduced, and an illumination pattern optimal for an imaging area can be obtained. Therefore, illumination unevenness can be eliminated and good imaging can be performed.

【0019】なお、上記第1例では、立方体プリズム1
7の直線偏光反射膜としてs偏光反射膜27を形成した
が、この代わりに、p偏光反射膜を形成してもよく、こ
の場合は、立方体(偏光)プリズム17においてs偏光
を透過させ、p偏光を反射させるように構成することに
なる。
In the first example, the cubic prism 1
Although the s-polarized light reflective film 27 was formed as the linearly polarized light-reflective film 7, a p-polarized light reflective film may be formed instead. In this case, the s-polarized light is transmitted through the cubic (polarized) prism 17, It will be configured to reflect polarized light.

【0020】図4及び図5には、実施形態の第2例装置
の構成が示されており、この第2例は、偏光子機能を備
え、光源光の全てを直線偏光へ変換する全変換型偏光成
分変換素子を設けたものである。この第2例では、図4
に示されるように対物光学系12からライトガイド25
までの構成は同様となり、立方体プリズム17と光源と
の間に、光源光を例えばp偏光に変換する全変換型偏光
成分変換素子28を配置する。
FIGS. 4 and 5 show the structure of a second example of the embodiment. This second example has a polarizer function and performs a total conversion for converting all of the light from the light source into linearly polarized light. It is provided with a type polarization component conversion element. In this second example, FIG.
As shown in FIG.
The configuration up to this point is the same, and a full conversion type polarization component conversion element 28 for converting the light source light into, for example, p-polarized light is disposed between the cubic prism 17 and the light source.

【0021】図5には、この全変換型偏光成分変換素子
28の構成の一例が示されており、これは特開平5−7
2417号公報に開示されているものである。図5にお
いて、光源光を入射する立方体プリズム(偏光ビームス
プリッター)28aは、例えばp偏光を透過し、s偏光
を反射させる偏光分離面28bを有している。また、こ
の立方体プリズム28aから出力されるs偏光の光路中
に、反射板28cが配置され、この反射板28cの反射
光路に1/2波長板28dが配置される。
FIG. 5 shows an example of the configuration of the full conversion type polarization component conversion element 28.
No. 2417. In FIG. 5, a cubic prism (polarizing beam splitter) 28a that receives light from a light source has, for example, a polarization splitting surface 28b that transmits p-polarized light and reflects s-polarized light. A reflector 28c is disposed in the optical path of the s-polarized light output from the cubic prism 28a, and a half-wave plate 28d is disposed in the reflective optical path of the reflector 28c.

【0022】このような構成によれば、光源光であるラ
ンダム光が立方体プリズム28aでp偏光とs偏光に分
離され、p偏光は真っ直ぐ出力されるが、s偏光は上側
に導かれる。このs偏光は、反射板28cで直角に反射
された後、1/2波長板28dを通ることによりp偏光
へ変換され、このp偏光が出力方向へ導かれる。従っ
て、この全変換型偏光成分変換素子28によれば、光源
光の全てがp偏光へ変換されて出力される。
According to such a configuration, the random light as the light source light is separated into p-polarized light and s-polarized light by the cubic prism 28a, and the p-polarized light is output straight, but the s-polarized light is guided upward. The s-polarized light is reflected at a right angle by the reflection plate 28c, then converted into p-polarized light by passing through the half-wave plate 28d, and the p-polarized light is guided to the output direction. Therefore, according to the full conversion polarization component conversion element 28, all of the light from the light source is converted into p-polarized light and output.

【0023】そして、上記全変換型偏光成分変換素子2
8から出力されたp偏光は、ライトガイド25等を介し
て偏光分離光学素子である立方体プリズム17へ供給さ
れ、この立方体プリズム17では入射されたp偏光が全
て1/4波長板16を介して対物光学系部材12へ導か
れる。従って、この第2例では、損失なく光源光の全て
を利用してCCD18に被観察体像を形成できるという
利点がある。
The above-mentioned all conversion type polarization component conversion element 2
The p-polarized light output from 8 is supplied to a cubic prism 17 which is a polarization splitting optical element via a light guide 25 and the like, and all the p-polarized light incident on the cubic prism 17 passes through a 波長 wavelength plate 16. It is guided to the objective optical system member 12. Therefore, in the second example, there is an advantage that an image of an object to be observed can be formed on the CCD 18 using all of the light from the light source without loss.

【0024】なお、上記実施形態例では、立方体プリズ
ム17の下側にCCD18を設け、後面側にライトガイ
ド25を配置したが、この関係を逆にし、プリズム17
の下側にライトガイド25を設け、後面側にCCD18
を配置してもよい。
In the above embodiment, the CCD 18 is provided below the cubic prism 17 and the light guide 25 is provided on the rear side.
A light guide 25 is provided below the CCD 18 and a CCD 18
May be arranged.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
対物光学系の観察光路を照明光路としても利用する電子
内視鏡の光学系装置において、2つの偏光成分に分離す
る偏光子機能を備え、透過光路及び反射光路を確保する
偏光分離光学素子と、直線偏光と円偏光の変換をする偏
光成分変換素子を設けたので、細径化及びムラのない均
一な照明を達成する装置で、光源出力光を有効に利用す
ることが可能となる。
As described above, according to the present invention,
In an optical system of an electronic endoscope that also uses an observation optical path of an objective optical system as an illumination optical path, a polarization separation optical element having a polarizer function of separating two polarization components, and securing a transmission optical path and a reflection optical path, Since the polarization component conversion element for converting linearly polarized light and circularly polarized light is provided, it is possible to effectively use the light output from the light source with a device that achieves uniform illumination without reducing the diameter and unevenness.

【0026】また、第2請求項の発明によれば、光源出
力光の全てを1つの直線偏光成分へ変換する全変換型偏
光成分変換素子を設けたので、被観察体の撮像において
光源光の全てを利用することができるという利点があ
る。
According to the second aspect of the present invention, since the full conversion type polarization component conversion element for converting all of the light output from the light source into one linearly polarized light component is provided, the light source light can be used for imaging the object to be observed. There is the advantage that everything can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の第1例に係る電子内視鏡の
光学系装置の構成を示す説明図である。
FIG. 1 is an explanatory diagram illustrating a configuration of an optical system device of an electronic endoscope according to a first example of an embodiment of the present invention.

【図2】第1例の電子内視鏡先端部の構成を示す側面断
面図である。
FIG. 2 is a side sectional view showing a configuration of a distal end portion of the electronic endoscope of the first example.

【図3】図2の先端部を後側から見た図である。FIG. 3 is a view of the distal end portion of FIG. 2 as viewed from the rear side.

【図4】実施形態の第2例に係る電子内視鏡の光学系装
置の構成を示す説明図である。
FIG. 4 is an explanatory diagram illustrating a configuration of an optical system device of an electronic endoscope according to a second example of the embodiment.

【図5】第2例の全変換型偏光成分変換素子の一例を示
す構成図である。
FIG. 5 is a configuration diagram illustrating an example of a second conversion type polarization component conversion element according to a second example.

【符号の説明】[Explanation of symbols]

10 … 先端部、 12 … 対物光学系部材、 16 … 1/4波長板、 17 … 立方体プリズム(偏光プリズム)、 18 … CCD、 25 … ライトガイド、 27 … s偏光反射膜、 28 … 全変換型偏光成分変換素子。 Reference numeral 10: tip, 12: objective optical system member, 16: quarter-wave plate, 17: cubic prism (polarizing prism), 18: CCD, 25: light guide, 27: s-polarized reflection film, 28: all conversion type Polarization component conversion element.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 27/28 G02B 27/28 Z 5C022 H04N 5/225 H04N 5/225 D Fターム(参考) 2H040 BA10 CA12 CA22 CA23 CA24 GA03 2H042 CA07 CA14 CA17 2H049 BA03 BA05 BA07 BA43 BB03 BB62 BC21 2H099 AA00 BA09 BA17 CA02 CA07 DA09 4C061 CC06 FF40 LL02 RR13 5C022 AA09 AB15 AC51 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 27/28 G02B 27/28 Z 5C022 H04N 5/225 H04N 5/225 DF term (Reference) 2H040 BA10 CA12 CA22 CA23 CA24 GA03 2H042 CA07 CA14 CA17 2H049 BA03 BA05 BA07 BA43 BB03 BB62 BC21 2H099 AA00 BA09 BA17 CA02 CA07 DA09 4C061 CC06 FF40 LL02 RR13 5C022 AA09 AB15 AC51

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 照明光を出力し、かつこの照明光で照明
された被観察体像を捉えるために配置された対物光学系
と、 この対物光学系の後側に配置され、入射される光を互い
に直交する2つの偏光成分に分離する偏光子機能を備
え、一方の偏光成分を透過させる透過光路及び他方の偏
光成分を反射させる反射光路を確保する偏光分離光学素
子と、 この偏光分離光学素子で設定された透過光路及び反射光
路のいずれか一方に光学的に接続された照明手段と、 上記光路の他方に光学的に接続された撮像素子と、 上記偏光分離光学素子の上記対物光学系側に配置され、
直線偏光と円偏光の変換をする偏光成分変換素子と、を
含んでなる電子内視鏡の光学系装置。
1. An objective optical system arranged to output illumination light and capture an image of an object to be observed illuminated by the illumination light, and an incident light arranged behind the objective optical system and incident thereon. A polarization splitting optical element that has a polarizer function of splitting into two polarization components orthogonal to each other, and secures a transmission optical path for transmitting one polarization component and a reflection optical path for reflecting the other polarization component. An illumination unit optically connected to one of the transmission optical path and the reflection optical path set in the above, an imaging element optically connected to the other of the optical paths, and the objective optical system side of the polarization separation optical element Placed in
An optical system for an electronic endoscope, comprising: a polarization component conversion element that converts linearly polarized light and circularly polarized light.
【請求項2】 上記偏光分離光学素子の偏光子機能を備
え、光源光の全てを1つの直線偏光成分へ変換する全変
換型偏光成分変換素子を、上記照明手段に設けたことを
特徴とする上記第1請求項記載の電子内視鏡の光学系装
置。
2. The illumination device according to claim 1, further comprising a full-conversion-type polarization component conversion element having a polarizer function of the polarization separation optical element and converting all of the light from the light source into one linear polarization component. The optical system of an electronic endoscope according to claim 1.
JP2000213037A 2000-07-13 2000-07-13 Optical system device for tip of electronic endoscope Expired - Fee Related JP4394811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213037A JP4394811B2 (en) 2000-07-13 2000-07-13 Optical system device for tip of electronic endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213037A JP4394811B2 (en) 2000-07-13 2000-07-13 Optical system device for tip of electronic endoscope

Publications (2)

Publication Number Publication Date
JP2002023067A true JP2002023067A (en) 2002-01-23
JP4394811B2 JP4394811B2 (en) 2010-01-06

Family

ID=18708856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213037A Expired - Fee Related JP4394811B2 (en) 2000-07-13 2000-07-13 Optical system device for tip of electronic endoscope

Country Status (1)

Country Link
JP (1) JP4394811B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032731A1 (en) * 2002-10-05 2004-04-22 Karl Storz Gmbh & Co. Kg Endoscope provided with a lighting system and a combine image transmission
JP2006034330A (en) * 2004-07-22 2006-02-09 Pentax Corp Light source device
JP2009213649A (en) * 2008-03-10 2009-09-24 Olympus Medical Systems Corp Endoscope observation system
WO2011148784A1 (en) * 2010-05-26 2011-12-01 オリンパス株式会社 Image capturing unit and endoscope device
US8419616B2 (en) 2007-08-20 2013-04-16 Olympus Medical Systems Corp. Image pickup device with a protection member and an optical reflection member
DE102015002084A1 (en) * 2015-02-18 2016-08-18 Grintech Gmbh endoscope

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032731A1 (en) * 2002-10-05 2004-04-22 Karl Storz Gmbh & Co. Kg Endoscope provided with a lighting system and a combine image transmission
DE10246521A1 (en) * 2002-10-05 2004-04-22 Karl Storz Gmbh & Co. Kg Endoscope e.g. for dentistry, includes optical divider on proximal side for mutually complementary wavelength zones
DE10246521B4 (en) * 2002-10-05 2005-11-10 Karl Storz Gmbh & Co. Kg endoscope
US7662095B2 (en) 2002-10-05 2010-02-16 Karl Storz Gmbh & Co. Kg Endoscope provided with a lighting system and a combined image transmission
JP2006034330A (en) * 2004-07-22 2006-02-09 Pentax Corp Light source device
US8419616B2 (en) 2007-08-20 2013-04-16 Olympus Medical Systems Corp. Image pickup device with a protection member and an optical reflection member
JP2009213649A (en) * 2008-03-10 2009-09-24 Olympus Medical Systems Corp Endoscope observation system
WO2011148784A1 (en) * 2010-05-26 2011-12-01 オリンパス株式会社 Image capturing unit and endoscope device
DE102015002084A1 (en) * 2015-02-18 2016-08-18 Grintech Gmbh endoscope
US10736489B2 (en) 2015-02-18 2020-08-11 Karl Storz Se & Co. Kg Endoscope having an optical waveguide with emergence portion and an objective with beam splitter
DE102015002084B4 (en) 2015-02-18 2022-01-20 Grintech Gmbh endoscope

Also Published As

Publication number Publication date
JP4394811B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP2023009084A5 (en)
JP3411737B2 (en) Biological fluorescence diagnostic equipment
JPH1099268A (en) Optical device of electronic endoscope
US8358462B2 (en) Mini-scope for multi-directional imaging
US20140066781A1 (en) Medical diagnosis device and method for controlling the device
JP2001258842A (en) Ophthalmic instrument
JP2008284030A (en) Illumination light detecting optical system, optical apparatus equipped with the same, and endoscopic apparatus
JPH09131305A (en) Fluorescence observation endoscope
US20200329954A1 (en) Endoscope having an optical waveguide with emergence portion an objective beam splitter
JP2002065602A (en) Light optical system and enscopic device
US7252634B2 (en) Confocal probe having scanning mirrors mounted to a transparent substrate in an optical path of the probe
JPWO2018216386A1 (en) Color separation optical system, imaging unit and imaging device
JP2006075189A (en) Detachable filter device and endoscope device
US8390924B2 (en) Endoscope and endoscope apparatus
JP2002023067A (en) Optical system device for electronic endoscope
TWI636765B (en) Endoscope imager and associated method
US9442280B2 (en) Operation microscope
JP3943927B2 (en) Optical scanning observation system
WO2011148784A1 (en) Image capturing unit and endoscope device
KR100252014B1 (en) A three dimensional endoscopic video system using a 2d/3d converting adaptor
JP2004258142A (en) Scanning confocal probe
JP2005531792A5 (en)
JP4476060B2 (en) Light source device
CN219331594U (en) Endoscope light source and medical instrument product adopting same
JPH04246612A (en) Endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees