JP4394811B2 - Optical system device for tip of electronic endoscope - Google Patents

Optical system device for tip of electronic endoscope Download PDF

Info

Publication number
JP4394811B2
JP4394811B2 JP2000213037A JP2000213037A JP4394811B2 JP 4394811 B2 JP4394811 B2 JP 4394811B2 JP 2000213037 A JP2000213037 A JP 2000213037A JP 2000213037 A JP2000213037 A JP 2000213037A JP 4394811 B2 JP4394811 B2 JP 4394811B2
Authority
JP
Japan
Prior art keywords
light
optical system
polarized light
polarized
polarization separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000213037A
Other languages
Japanese (ja)
Other versions
JP2002023067A (en
Inventor
修一 山高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2000213037A priority Critical patent/JP4394811B2/en
Publication of JP2002023067A publication Critical patent/JP2002023067A/en
Application granted granted Critical
Publication of JP4394811B2 publication Critical patent/JP4394811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電子内視鏡先端部の光学系装置、特にライトガイドを介して被観察体を照明し、対物光学系を介して撮像素子で撮像された被観察体を観察する内視鏡先端部の光学系部材の構成に関する。
【0002】
【従来の技術】
電子内視鏡装置は、光ファイバー束からなるライトガイドを介し、スコープ先端部から光を出射することにより被観察体(内)が照明され、この被観察体像は対物光学系を介して捉えられ、撮像素子で撮像される。この種の電子内視鏡装置では、先端部まで例えば2本のライトガイドが設けられ、この2本のライトガイドに挟まれた位置に上記対物光学系が配置されており、これにより被観察体を良好に照明するようになっている。
【0003】
ところで、上記電子内視鏡装置では、細い体腔内等の観察部位にスコープを挿入することから、その先端部及び挿入部の細径化が求められており、上述したライトガイドにおいても、その径を小さくすることや、配置を工夫すること等が行われる。しかし、良好な観察をするためには、明るい照明光が必要であり、ライトガイドを余り細径化することは得策ではない。
【0004】
また、このような内視鏡では、対物光学系で捉えられる撮像位置に対し、ムラのない均一の照明を行うことは比較的困難である。即ち、上述のように、ライトガイドが2本設けられる場合は、両方の光が所定位置で重なることから、その周辺部において照明ムラが生じる。また、ライトガイドが1本の場合は、厳密にいえば照射位置に対し光が斜めに当ることから、周辺部では同様に照明ムラが生じることになる。
そこで、本願出願人は、特開平10−99268号公報に示されるように、被観察体像を捉える対物光学系部材を照明用光路としても利用する装置を提案している。
【0005】
【発明が解決しようとする課題】
しかしながら、この電子内視鏡の光学系装置では、光源からの光路と撮像素子へ導く光路を確保するための光路結合用光学素子において半透過膜を使用するため、撮像素子へ入射する光が光源光の1/4程度になってしまい、光源の出力光を有効に利用することができないという不都合があった。即ち、光源光は上記半透過膜を通過するとき1/2となり、また被観察体からの光が半透過膜で反射されるときに1/2となる結果、被観察体像光は1/4となる。
【0006】
本発明は上記問題点に鑑みてなされたものであり、その目的は、対物光学系を観察光路及び照明光路として用いる構成でも、光源出力光を有効に利用することができる電子内視鏡先端部の光学系装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、第1請求項記載の発明に係る電子内視鏡先端部の光学系装置は、内視鏡先端部に配置され、照明光で照明された被観察体像を捉える対物光学系部材と、この対物光学系部材の後側で上記先端部内に配置され、入射される光を互いに直交する2つの偏光成分に分離する偏光子機能を備え、一方の偏光成分を透過させる透過光路及び他方の偏光成分を反射させる反射光路を確保する偏光分離光学素子と、この偏光分離光学素子で設定された透過光路及び反射光路のいずれか一方に光学的に接続され、光源光を上記先端部へ導くためのライトガイドと、上記光路の他方に光学的に接続された撮像素子と、上記偏光分離光学素子の前側に配置され、直線偏光と円偏光の変換をする偏光成分変換素子と、を含み、光源からの光を上記ライトガイドから上記偏光分離光学素子、偏光成分変換素子及び対物光学系部材を介して出力することを特徴とする。
【0008】
請求項2記載の発明は、上記偏光分離光学素子の偏光子機能を備え、光源光の全てを1つの直線偏光成分へ変換する全変換型偏光成分変換素子を、上記ライトガイドと上記偏光分離光学素子との間に配置したことを特徴とする。
【0009】
上記の構成によれば、ライトガイドを介して光源から導かれるランダム光は、偏光分離光学素子の偏光子機能によりs偏光とp偏光に分離された後、例えばp偏光のみが透過され、その後、偏光成分変換素子にて円偏光へ変換される。そして、この円偏光は対物光学系を介して被観察体へ照明光として照射される。一方、被観察体から反射する円偏光反射光が上記対物光学系で捉えられると、この反射円偏光は上記偏光成分変換素子でs偏光へ変換されて偏光分離光学素子へ導かれる。この偏光分離光学素子では、s偏光が偏光子機能により反射されて撮像素子へ供給されることになり、このs偏光によって被観察体像が撮像面に結像する。
【0010】
従って、照明領域と観察領域を一致させた均一で効率のよい照明状態が得られると共に、光源からのランダム光量が上記偏光子で1/2になるのみであるから、光量が1/4になる従来の半透過膜と比較すると、光源の出力光を有効に利用できるという利点がある。
また、上記請求項2の構成によれば、光源光の全てを直線偏光成分へ変える全変換型偏光成分変換素子を用いたので、この場合は、光源出力光の全てを撮像に利用することが可能になる。
【0011】
【発明の実施の形態】
図1には、実施形態の第1例である電子内視鏡先端部の光学系装置の主要構成が示され、図2及び図3には当該電子内視鏡先端部の構成が示されている。まず、図2及び図3において、先端部10には、保持部材11に保持されて対物光学系部材(鏡胴部)12が設けられており、この対物光学系部材12には対物レンズだけでなく、絞りやフィルタ等が含まれる。また、先端部10の先端面に鉗子口14が設けられ、この鉗子口14に処置具挿通チャンネル15が接続され、この処置具挿通チャンネル15を介して鉗子口14から鉗子等の各種の処置具が導出できる。
【0012】
更に、上記対物光学系部材12の後側に、図1にも示されるが、偏光成分変換素子である1/4波長板16と、偏光子が組み込まれた偏光分離光学素子である立方体プリズム17が光学的に接続され、この立方体プリズム17の下側に、撮像素子であるCCD(Charge Coupled Device)18が光学的に接続される。このCCD18は、カバーガラス19で密閉されるCCDパッケージ20内に収納接続され、このカバーガラス19が上記プリズム17の下面へ接着される。なお、上記CCDパッケージ20には、配線パターンが形成されており、この配線パターンを介して、外部へ接続するための信号線21が接続される。
【0013】
図1において、上記立方体プリズム17は、2個の直角プリズムを接合させ、その接合面(傾斜面)が偏光分離面17Aとなる偏光プリズム(偏光ビームスプリッター)からなり、この接合面に、s偏光(偏光方向が90度異なるp偏光でもよい)を反射させるs偏光反射膜(直線偏光反射膜)27を形成したものである。この立方体プリズム17によれば、s偏光反射膜27を施した偏光分離面17Aにより、光源光であるランダム光がs偏光とp偏光に分離され、s偏光を図の上側へ反射させる一方、p偏光を通過させる。また、光源光を対物光学系部材12へ通過させる透過光路(直進光路)L1が設定されると共に、対物光学系部材12から入射する光を偏光分離面17Aから下側の直角方向であるCCD18へ反射させる反射光路L2が形成される。
【0014】
そして、上記立方体プリズム17の前側の1/4波長板16は、当該プリズム17から出力されるp偏光を円偏光に変換し、またこの円偏光による被観察体からの反射光をs偏光に変換する。従って、この1/4波長板16から出射されたs偏光により被観察体像が上記反射光路L2を介してCCD18に結像することになる。
【0015】
更に、上記立方体プリズム17の後側には、集光レンズ23、拡散板24を介してライトガイド25が配置されており、このライトガイド25は光源装置の光出射端に接続される。上記拡散板24は、すりガラス状面を形成しており、ライトガイド25の端面のファイバー束の形状をCCD18側へ逆投影させない役目をする。
【0016】
第1例は以上の構成からなり、以下にその作用を説明する。図1に示されるように、光源装置からライトガイド25を介して導かれた光は、拡散板24を通り、集光レンズ23によって立方体プリズム17の後面へ入射する。この光源光は、ランダム光であるが、このランダム光は立方体プリズム17で直線偏光成分(s偏光,p偏光)に分離され、一方の直線偏光成分が透過され、他方の直線偏光成分は偏光分離面17Aで上側に反射される。そして、例えばp偏光が透過光路L1を進む(s偏光は反射)とすれば、このp偏光は、1/4波長板16にて円偏光となり、対物光学系部材12を介し照明光として被観察体へ出射されることになり、この照明光は、被観察体像を捉える対物光学系部材12の光路を通ることから、撮像に最適な照明パターンとなる。
【0017】
一方、円偏光により照明された被観察体像は対物光学系部材12により捉えられ、この被観察体反射の円偏光は対物光学系部材12内光路を通り、1/4波長板16により偏光方向が90度異なるs偏光へ変換され、立方体プリズム17へ供給される。そして、この立方体プリズム17では、上記s偏光がs偏光反射膜27を有する偏光分離面17Aにて直角方向の反射光路L2へ反射されるので、図1に示されるように、CCD18の撮像面に被観察体の像がs偏光によって結像することになる。
【0018】
このような第1例によれば、光源から出力されるランダム光が立方体プリズム17でp偏光のみとなり、光量が1/2となり、この光量が1/4になる従来の半透過膜に比べると、光源光を有効に利用することができる。そして、基本的には、図2及び図3から理解されるように、先端部10において対物光学系部材12とライトガイド25が並列ではなく直列に配置されるので、従来のライトガイドの配置スペースが不要となり、先端部10の細径化が図れるという利点があり、また撮像域に最適な照明パターンが得られるので、照明ムラもなくなり、良好な撮影が可能となる。
【0019】
なお、上記第1例では、立方体プリズム17の直線偏光反射膜としてs偏光反射膜27を形成したが、この代わりに、p偏光反射膜を形成してもよく、この場合は、立方体(偏光)プリズム17においてs偏光を透過させ、p偏光を反射させるように構成することになる。
【0020】
図4及び図5には、実施形態の第2例装置の構成が示されており、この第2例は、偏光子機能を備え、光源光の全てを直線偏光へ変換する全変換型偏光成分変換素子を設けたものである。この第2例では、図4に示されるように対物光学系12からライトガイド25までの構成は同様となり、立方体プリズム17と光源との間に、光源光を例えばp偏光に変換する全変換型偏光成分変換素子28を配置する。
【0021】
図5には、この全変換型偏光成分変換素子28の構成の一例が示されており、これは特開平5−72417号公報に開示されているものである。図5において、光源光を入射する立方体プリズム(偏光ビームスプリッター)28aは、例えばp偏光を透過し、s偏光を反射させる偏光分離面28bを有している。また、この立方体プリズム28aから出力されるs偏光の光路中に、反射板28cが配置され、この反射板28cの反射光路に1/2波長板28dが配置される。
【0022】
このような構成によれば、光源光であるランダム光が立方体プリズム28aでp偏光とs偏光に分離され、p偏光は真っ直ぐ出力されるが、s偏光は上側に導かれる。このs偏光は、反射板28cで直角に反射された後、1/2波長板28dを通ることによりp偏光へ変換され、このp偏光が出力方向へ導かれる。従って、この全変換型偏光成分変換素子28によれば、光源光の全てがp偏光へ変換されて出力される。
【0023】
そして、上記全変換型偏光成分変換素子28から出力されたp偏光は、ライトガイド25等を介して偏光分離光学素子である立方体プリズム17へ供給され、この立方体プリズム17では入射されたp偏光が全て1/4波長板16を介して対物光学系部材12へ導かれる。従って、この第2例では、損失なく光源光の全てを利用してCCD18に被観察体像を形成できるという利点がある。
【0024】
なお、上記実施形態例では、立方体プリズム17の下側にCCD18を設け、後面側にライトガイド25を配置したが、この関係を逆にし、プリズム17の下側にライトガイド25を設け、後面側にCCD18を配置してもよい。
【0025】
【発明の効果】
以上説明したように、本発明によれば、対物光学系の観察光路を照明光路としても利用する電子内視鏡先端部の光学系装置において、2つの偏光成分に分離する偏光子機能を備え、透過光路及び反射光路を確保する偏光分離光学素子と、直線偏光と円偏光の変換をする偏光成分変換素子を設けたので、細径化及びムラのない均一な照明を達成する装置で、光源出力光を有効に利用することが可能となる。
【0026】
また、請求項2の発明によれば、光源出力光の全てを1つの直線偏光成分へ変換する全変換型偏光成分変換素子を設けたので、被観察体の撮像において光源光の全てを利用することができるという利点がある。
【図面の簡単な説明】
【図1】 本発明の実施形態の第1例に係る電子内視鏡先端部の光学系装置の構成を示す説明図である。
【図2】第1例の電子内視鏡先端部の構成を示す側面断面図である。
【図3】図2の先端部を後側から見た図である。
【図4】 実施形態の第2例に係る電子内視鏡先端部の光学系装置の構成を示す説明図である。
【図5】第2例の全変換型偏光成分変換素子の一例を示す構成図である。
【符号の説明】
10 … 先端部、
12 … 対物光学系部材、
16 … 1/4波長板、
17 … 立方体プリズム(偏光プリズム)、
18 … CCD、
25 … ライトガイド、
27 … s偏光反射膜、
28 … 全変換型偏光成分変換素子。
[0001]
BACKGROUND OF THE INVENTION
The present invention is the endoscope distal end portion for observing the optical device of the electronic endoscope tip to illuminate the object to be observed in particular through the light guide, the object to be observed which is captured by the image sensor via the objective optical system This relates to the configuration of the optical system member.
[0002]
[Prior art]
In the electronic endoscope apparatus, the object to be observed (inside) is illuminated by emitting light from the distal end of the scope through a light guide made of an optical fiber bundle, and the image of the object to be observed is captured via the objective optical system. The image is picked up by the image sensor. In this type of electronic endoscope apparatus, for example, two light guides are provided up to the tip, and the objective optical system is disposed at a position sandwiched between the two light guides, whereby the object to be observed is arranged. Is designed to illuminate well.
[0003]
By the way, in the electronic endoscope apparatus, since the scope is inserted into an observation site such as a thin body cavity, the diameter of the distal end portion and the insertion portion is required to be reduced. Is made smaller, the arrangement is devised, and the like. However, bright illumination light is necessary for good observation, and it is not a good idea to make the light guide too thin.
[0004]
Moreover, with such an endoscope, it is relatively difficult to perform uniform illumination without unevenness on the imaging position captured by the objective optical system. That is, as described above, when two light guides are provided, since both lights overlap at a predetermined position, illumination unevenness occurs in the peripheral portion. Further, in the case where there is one light guide, strictly speaking, since light strikes obliquely with respect to the irradiation position, illumination unevenness similarly occurs in the peripheral portion.
Therefore, the applicant of the present application has proposed an apparatus that uses an objective optical system member that captures an object image as an illumination optical path as disclosed in Japanese Patent Laid-Open No. 10-99268.
[0005]
[Problems to be solved by the invention]
However, in this electronic endoscope optical system apparatus, a semi-transmissive film is used in the optical path coupling optical element for securing the optical path from the light source and the optical path leading to the imaging element. There is a disadvantage that the output light of the light source cannot be used effectively because it becomes about 1/4 of the light. That is, the light source light becomes 1/2 when passing through the semi-transmissive film, and becomes 1/2 when light from the object to be observed is reflected by the semi-transmissive film. 4
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a distal end portion of an electronic endoscope that can effectively use light source output light even in a configuration in which an objective optical system is used as an observation optical path and an illumination optical path. An optical system apparatus is provided.
[0007]
[Means for Solving the Problems]
To achieve the above object, the optical system device of an electronic endoscope tip according to the invention of the first aspect, wherein is arranged in the endoscope tip portion captures the object under observation image illuminated with illumination light a pair product optical member that, in this side of the objective optical system member is disposed in the distal end portion, provided with a polarizer function of separating into two orthogonal polarization components of light that is incident to one another, the one polarization component A polarization separation optical element that secures a transmission optical path to transmit and a reflection optical path to reflect the other polarization component, and a light source light that is optically connected to either the transmission optical path or the reflection optical path set by the polarization separation optical element A light guide for guiding the light to the tip, an imaging device optically connected to the other end of the optical path, and a polarization component conversion arranged on the front side of the polarization separation optical device to convert linearly polarized light and circularly polarized light includes a device, a from a light source The and outputs via the polarization separating optical element, the polarization component conversion element and an objective optical member from said light guide.
[0008]
According to a second aspect of the present invention, there is provided a total conversion type polarization component conversion element that has a polarizer function of the polarization separation optical element and converts all of the light source light into one linearly polarized light component, the light guide and the polarization separation optical. It arrange | positions between elements .
[0009]
According to the above configuration, random light guided from the light source via the light guide is separated into s-polarized light and p-polarized light by the polarizer function of the polarization separating optical element, for example, only p-polarized light is transmitted, and then It is converted into circularly polarized light by the polarization component conversion element. Then, this circularly polarized light is irradiated as illumination light to the object to be observed through the objective optical system. On the other hand, when circularly polarized reflected light reflected from the object to be observed is captured by the objective optical system, the reflected circularly polarized light is converted into s-polarized light by the polarization component conversion element and guided to the polarization separation optical element. In this polarization separation optical element, the s-polarized light is reflected by the polarizer function and supplied to the image sensor, and the observed object image is formed on the imaging surface by the s-polarized light.
[0010]
Accordingly, a uniform and efficient illumination state in which the illumination area and the observation area are matched is obtained, and the random light amount from the light source is only halved by the polarizer, so the light amount is ¼. Compared with a conventional semi-transmissive film, there is an advantage that the output light of the light source can be used effectively.
According to the configuration of the second aspect, since the all conversion type polarization component conversion element that converts all of the light source light into the linearly polarized light component is used, in this case, all of the light source output light can be used for imaging. It becomes possible.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a main configuration of an optical system device for a distal end portion of an electronic endoscope as a first example of the embodiment, and FIGS. 2 and 3 show a configuration of the distal end portion of the electronic endoscope. Yes. 2 and 3, the distal end portion 10 is provided with an objective optical system member (lens barrel portion) 12 held by a holding member 11, and the objective optical system member 12 includes only an objective lens. And a diaphragm, a filter, etc. are included. Further, a forceps port 14 is provided at the distal end surface of the distal end portion 10, and a treatment tool insertion channel 15 is connected to the forceps port 14, and various treatment tools such as forceps are passed from the forceps port 14 through the treatment tool insertion channel 15. Can be derived.
[0012]
Further, as shown in FIG. 1, on the rear side of the objective optical system member 12, a quarter wavelength plate 16 that is a polarization component conversion element and a cubic prism 17 that is a polarization separation optical element in which a polarizer is incorporated. Are connected optically, and a CCD (Charge Coupled Device) 18 as an imaging device is optically connected to the lower side of the cubic prism 17. The CCD 18 is housed and connected in a CCD package 20 sealed with a cover glass 19, and the cover glass 19 is bonded to the lower surface of the prism 17. Note that a wiring pattern is formed in the CCD package 20, and a signal line 21 for connecting to the outside is connected through the wiring pattern.
[0013]
In FIG. 1, the cubic prism 17 is composed of a polarizing prism (polarizing beam splitter) in which two right-angle prisms are joined and the joining surface (inclined surface) is a polarization separating surface 17A. An s-polarization reflection film (linear polarization reflection film) 27 for reflecting (which may be p-polarized light whose polarization direction is different by 90 degrees) is formed. According to this cubic prism 17, random light as light source light is separated into s-polarized light and p-polarized light by the polarization separation surface 17A provided with the s-polarized reflection film 27, while reflecting the s-polarized light upward in the figure, while p Pass polarized light. In addition, a transmission light path (straight forward optical path) L1 for allowing the light source light to pass to the objective optical system member 12 is set, and light incident from the objective optical system member 12 is directed to the CCD 18 which is the lower right angle direction from the polarization separation surface 17A. A reflected light path L2 to be reflected is formed.
[0014]
The quarter-wave plate 16 on the front side of the cubic prism 17 converts the p-polarized light output from the prism 17 into circularly polarized light, and converts the reflected light from the observed object by the circularly polarized light into s-polarized light. To do. Accordingly, an object image to be observed is formed on the CCD 18 through the reflected light path L2 by the s-polarized light emitted from the quarter-wave plate 16.
[0015]
Further, a light guide 25 is disposed on the rear side of the cubic prism 17 via a condenser lens 23 and a diffusion plate 24, and the light guide 25 is connected to a light emitting end of the light source device. The diffusing plate 24 forms a ground glass surface, and serves to prevent the shape of the fiber bundle on the end face of the light guide 25 from being back-projected to the CCD 18 side.
[0016]
The first example has the above configuration, and its operation will be described below. As shown in FIG. 1, the light guided from the light source device through the light guide 25 passes through the diffusion plate 24 and is incident on the rear surface of the cubic prism 17 by the condenser lens 23. This light source light is random light, but this random light is separated into linearly polarized components (s-polarized light and p-polarized light) by the cubic prism 17, one linearly polarized component is transmitted, and the other linearly polarized component is polarized and separated. Reflected upward at the surface 17A. For example, if p-polarized light travels along the transmission optical path L1 (s-polarized light is reflected), the p-polarized light becomes circularly polarized light by the quarter-wave plate 16 and is observed as illumination light through the objective optical system member 12. Since the illumination light passes through the optical path of the objective optical system member 12 that captures the image of the object to be observed, the illumination pattern is optimal for imaging.
[0017]
On the other hand, the observed object image illuminated by the circularly polarized light is captured by the objective optical system member 12, and the circularly polarized light reflected by the observed object passes through the optical path in the objective optical system member 12 and is polarized by the quarter wavelength plate 16. Are converted into s-polarized light different by 90 degrees and supplied to the cubic prism 17. In the cubic prism 17, the s-polarized light is reflected by the polarization separation surface 17A having the s-polarized reflection film 27 to the reflected light path L2 in the perpendicular direction, so that it is reflected on the imaging surface of the CCD 18 as shown in FIG. An image of the object to be observed is formed by s-polarized light.
[0018]
According to such a first example, the random light output from the light source becomes only p-polarized light by the cubic prism 17, and the amount of light is halved, compared to a conventional transflective film in which the amount of light is ¼. The light source light can be used effectively. Basically, as can be understood from FIGS. 2 and 3, the objective optical system member 12 and the light guide 25 are arranged in series instead of in parallel at the distal end portion 10. Is not required, and the tip portion 10 can be reduced in diameter, and an optimal illumination pattern can be obtained in the imaging area, so that illumination unevenness is eliminated and good imaging is possible.
[0019]
In the first example, the s-polarized reflective film 27 is formed as the linearly polarized reflective film of the cubic prism 17, but a p-polarized reflective film may be formed instead. In this case, the cubic (polarized) The prism 17 is configured to transmit s-polarized light and reflect p-polarized light.
[0020]
4 and 5 show the configuration of a second example device according to the embodiment. This second example has a polarizer function and converts all light source light into linearly polarized light. A conversion element is provided. In the second example, the configuration from the objective optical system 12 to the light guide 25 is the same as shown in FIG. 4, and a full conversion type that converts light source light into, for example, p-polarized light between the cubic prism 17 and the light source. A polarization component conversion element 28 is disposed.
[0021]
FIG. 5 shows an example of the configuration of this all-conversion-type polarization component conversion element 28, which is disclosed in Japanese Patent Laid-Open No. 5-72417. In FIG. 5, a cubic prism (polarization beam splitter) 28a that receives light from a light source has a polarization separation surface 28b that transmits, for example, p-polarized light and reflects s-polarized light. Further, a reflection plate 28c is disposed in the optical path of s-polarized light output from the cubic prism 28a, and a half-wave plate 28d is disposed in the reflection light path of the reflection plate 28c.
[0022]
According to such a configuration, random light as light source light is separated into p-polarized light and s-polarized light by the cubic prism 28a, and p-polarized light is output straight, but s-polarized light is guided upward. The s-polarized light is reflected at right angles by the reflecting plate 28c and then converted to p-polarized light by passing through the half-wave plate 28d, and the p-polarized light is guided to the output direction. Therefore, according to the total conversion type polarization component conversion element 28, all of the light source light is converted into p-polarized light and output.
[0023]
Then, the p-polarized light output from the all-conversion-type polarization component converting element 28 is supplied to the cubic prism 17 which is a polarization separation optical element through the light guide 25 and the like, and the incident p-polarized light is input to the cubic prism 17. All are guided to the objective optical system member 12 through the quarter-wave plate 16. Therefore, the second example has an advantage that an object to be observed can be formed on the CCD 18 using all of the light source light without loss.
[0024]
In the above embodiment, the CCD 18 is provided on the lower side of the cubic prism 17 and the light guide 25 is arranged on the rear surface side. However, this relationship is reversed, the light guide 25 is provided on the lower side of the prism 17, and the rear surface side is arranged. The CCD 18 may be disposed on the front side.
[0025]
【The invention's effect】
As described above, according to the present invention, in the optical system device at the distal end portion of the electronic endoscope that also uses the observation optical path of the objective optical system as an illumination optical path, it is provided with a polarizer function that separates into two polarization components, A polarization separation optical element that secures the transmission optical path and reflection optical path and a polarization component conversion element that converts linearly polarized light and circularly polarized light are provided. Light can be used effectively.
[0026]
According to the second aspect of the present invention, since the total conversion type polarization component conversion element for converting all of the light source output light into one linearly polarized light component is provided, all of the light source light is used for imaging the object to be observed. There is an advantage that you can.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a configuration of an optical system device for a distal end portion of an electronic endoscope according to a first example of an embodiment of the present invention.
FIG. 2 is a side cross-sectional view showing the configuration of the distal end portion of the electronic endoscope of the first example.
3 is a view of the front end portion of FIG. 2 as viewed from the rear side.
FIG. 4 is an explanatory diagram illustrating a configuration of an optical system device at a distal end portion of an electronic endoscope according to a second example of an embodiment.
FIG. 5 is a configuration diagram showing an example of a full conversion type polarization component conversion element of a second example.
[Explanation of symbols]
10 ... tip,
12 ... Objective optical system member,
16: 1/4 wavelength plate,
17 ... Cubic prism (polarizing prism),
18 ... CCD,
25 ... Light guide,
27 ... s-polarized reflective film,
28: All conversion type polarization component conversion element.

Claims (2)

内視鏡先端部に配置され、照明光で照明された被観察体像を捉える対物光学系部材と、
この対物光学系部材の後側で上記先端部内に配置され、入射される光を互いに直交する2つの偏光成分に分離する偏光子機能を備え、一方の偏光成分を透過させる透過光路及び他方の偏光成分を反射させる反射光路を確保する偏光分離光学素子と、
この偏光分離光学素子で設定された透過光路及び反射光路のいずれか一方に光学的に接続され、光源光を上記先端部へ導くためのライトガイドと、
上記光路の他方に光学的に接続された撮像素子と、
上記偏光分離光学素子の前側に配置され、直線偏光と円偏光の変換をする偏光成分変換素子と、を含み、
光源からの光を上記ライトガイドから上記偏光分離光学素子、偏光成分変換素子及び対物光学系部材を介して出力する電子内視鏡先端部の光学系装置。
Disposed endoscope tip portion, and a pair product optical member Ru capturing the object to be observed image illuminated by the illumination light,
A transmission optical path that transmits one polarized component and the other polarized light that is disposed in the tip portion on the rear side of the objective optical system member and has a polarizer function for separating incident light into two polarized components orthogonal to each other. A polarization separation optical element that secures a reflection optical path for reflecting the component;
A light guide that is optically connected to either the transmitted light path or the reflected light path set by the polarization separation optical element, and guides the light source light to the tip part ;
An image sensor optically connected to the other of the optical paths;
A polarization component conversion element that is disposed on the front side of the polarization separation optical element and converts linearly polarized light and circularly polarized light,
An optical system device at a distal end portion of an electronic endoscope that outputs light from a light source from the light guide via the polarization separation optical element, a polarization component conversion element, and an objective optical system member .
上記偏光分離光学素子の偏光子機能を備え、光源光の全てを1つの直線偏光成分へ変換する全変換型偏光成分変換素子を、上記ライトガイドと上記偏光分離光学素子との間に配置したことを特徴とする請求項1記載の電子内視鏡先端部の光学系装置。A total conversion type polarization component conversion element that has the polarizer function of the polarization separation optical element and converts all of the light source light into one linearly polarized light component is disposed between the light guide and the polarization separation optical element. The optical system apparatus for a distal end portion of an electronic endoscope according to claim 1 .
JP2000213037A 2000-07-13 2000-07-13 Optical system device for tip of electronic endoscope Expired - Fee Related JP4394811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213037A JP4394811B2 (en) 2000-07-13 2000-07-13 Optical system device for tip of electronic endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213037A JP4394811B2 (en) 2000-07-13 2000-07-13 Optical system device for tip of electronic endoscope

Publications (2)

Publication Number Publication Date
JP2002023067A JP2002023067A (en) 2002-01-23
JP4394811B2 true JP4394811B2 (en) 2010-01-06

Family

ID=18708856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213037A Expired - Fee Related JP4394811B2 (en) 2000-07-13 2000-07-13 Optical system device for tip of electronic endoscope

Country Status (1)

Country Link
JP (1) JP4394811B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10246521B4 (en) * 2002-10-05 2005-11-10 Karl Storz Gmbh & Co. Kg endoscope
JP4476060B2 (en) * 2004-07-22 2010-06-09 Hoya株式会社 Light source device
JP5041925B2 (en) 2007-08-31 2012-10-03 オリンパスメディカルシステムズ株式会社 Imaging unit
JP5100457B2 (en) * 2008-03-10 2012-12-19 オリンパスメディカルシステムズ株式会社 Endoscope observation system
JP2011245019A (en) * 2010-05-26 2011-12-08 Olympus Corp Image capturing unit and endoscope device
DE102015002084B4 (en) * 2015-02-18 2022-01-20 Grintech Gmbh endoscope

Also Published As

Publication number Publication date
JP2002023067A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
JP2023009084A5 (en)
JP5133595B2 (en) Illumination light detection optical system, and optical apparatus and endoscope apparatus including the same
US7835074B2 (en) Mini-scope for multi-directional imaging
JPH1099268A (en) Optical device of electronic endoscope
US7101334B2 (en) Optical observation device and 3-D image input optical system therefor
JP3411737B2 (en) Biological fluorescence diagnostic equipment
US7455638B2 (en) Endoscope apparatus with a fluorescent member
JP2001258842A (en) Ophthalmic instrument
US20070127927A1 (en) Communication optical system and free-space optics communication apparatus
US20200329954A1 (en) Endoscope having an optical waveguide with emergence portion an objective beam splitter
JP4394811B2 (en) Optical system device for tip of electronic endoscope
JP2001174747A5 (en)
JP2006075189A (en) Detachable filter device and endoscope device
US20120120487A1 (en) Endoscope and endoscope apparatus
JP2003195186A5 (en)
WO2011148784A1 (en) Image capturing unit and endoscope device
KR101516318B1 (en) Endoscopy lighting module improving light efficiency
JP4476060B2 (en) Light source device
JP2005531792A5 (en)
JP2004258142A (en) Scanning confocal probe
JP4338538B2 (en) Prism fixing method and stereoscopic rigid endoscope
JPH0756113A (en) Stereoscopic optical device
JPH04246612A (en) Endoscope
JPH046005Y2 (en)
JPH01116522A (en) Optical directional coupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees