JPWO2020168295A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2020168295A5 JPWO2020168295A5 JP2021547192A JP2021547192A JPWO2020168295A5 JP WO2020168295 A5 JPWO2020168295 A5 JP WO2020168295A5 JP 2021547192 A JP2021547192 A JP 2021547192A JP 2021547192 A JP2021547192 A JP 2021547192A JP WO2020168295 A5 JPWO2020168295 A5 JP WO2020168295A5
- Authority
- JP
- Japan
- Prior art keywords
- waveguide display
- display substrates
- substrates
- substrate
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims description 86
- 238000000034 method Methods 0.000 claims description 12
- 239000011521 glass Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
Description
本開示の主題の1つまたは複数の実施形態の詳細が、付属の図面および説明において記述される。本主題の他の特徴、側面および利点が、本説明、図面および特許請求の範囲から明白となるであろう。
本発明は、例えば、以下を提供する。
(項目1)
複数の導波路ディスプレイ基板であって、各導波路ディスプレイ基板は、
直径および平面を有する円柱部分と、
該基板にわたる厚みの非線形変化を定義し、該円柱部分に対して最大高さDを有する、該平面と逆側の曲がった部分と、
該基板にわたる厚みの線形変化を定義し、該円柱部分に対して最大高さWを有する、該円柱部分と該曲がった部分との間のウェッジ部分と
を有し、
該曲がった部分の標的最大高さD
t
は、該直径の10
-7
から10
-6
倍であり、Dは、D
t
の70%と130%との間にあり、Wは、D
t
の30%より低く、
該複数の導波路ディスプレイ基板に対するDのアベレージは、D
mean
であり、該複数の導波路ディスプレイ基板に対する最大のDは、D
max
であり、該複数の導波路ディスプレイ基板に対する最小のDは、D
min
であり、該複数の導波路ディスプレイ基板に対する最大のWは、W
max
である、
複数の導波路ディスプレイ基板。
(項目2)
前記厚みの非線形変化は、厚みの二次の変化である、項目1に記載の複数の導波路ディスプレイ基板。
(項目3)
前記曲がった部分は、ドームの形態にある、項目1に記載の複数の導波路ディスプレイ基板。
(項目4)
前記ドームは、球面状である、項目1に記載の複数の導波路ディスプレイ基板。
(項目5)
前記複数の導波路ディスプレイ基板のアベレージ厚みは、約200ミクロンと約2000ミクロンとの間にある、項目1に記載の複数の導波路ディスプレイ基板。
(項目6)
前記複数の導波路ディスプレイ基板のアベレージ直径は、約2センチメートルと約50センチメートルとの間にある、項目1に記載の複数の導波路ディスプレイ基板。
(項目7)
W
max
/D
mean
は、約0.3より低い、項目1に記載の複数の導波路ディスプレイ基板。
(項目8)
(D
mean
-D
min
)/D
mean
は、約0.3より低い、項目1に記載の複数の導波路ディスプレイ基板。
(項目9)
(D
max
-D
min
)/D
mean
は、約0.3より低い、項目1に記載の複数の導波路ディスプレイ基板。
(項目10)
Dは、約0.1ミクロンから約5ミクロンの範囲内にある、項目1に記載の複数の導波路ディスプレイ基板。
(項目11)
Wは、0から約1.5ミクロンの範囲内にある、項目1に記載の複数の導波路ディスプレイ基板。
(項目12)
前記複数の基板のアベレージ全厚みばらつきは、約0.1ミクロンと約6.5ミクロンとの間にある、項目1に記載の複数の導波路ディスプレイ基板。
(項目13)
前記導波路ディスプレイ基板は、成形されたポリマーを備える、項目1に記載の複数の導波路ディスプレイ基板。
(項目14)
前記導波路ディスプレイ基板は、研磨されたガラス、シリコンまたは金属の基板を備える、項目1に記載の複数の導波路ディスプレイ基板。
(項目15)
複数の導波路ディスプレイ基板を作製するための方法であって、各導波路ディスプレイ基板は、
直径および平面を有する円柱部分と、
該基板にわたる厚みの非線形変化を定義し、該円柱部分に対して最大高さDを有する、該平面と逆側の曲がった部分と、
該基板にわたる厚みの線形変化を定義し、該円柱部分に対して最大高さWを有する、該円柱部分と該曲がった部分との間のウェッジ部分と
を有し、
該曲がった部分の標的最大高さD
t
は、該直径の10
-7
から10
-6
倍であり、Dは、D
t
の70%と130%との間にあり、Wは、D
t
の30%より低く、
該複数の研磨された導波路ディスプレイ基板に対するDのアベレージは、D
mean
であり、該複数の研磨された導波路ディスプレイ基板に対する最大のDは、D
max
であり、該複数の研磨された導波路ディスプレイ基板に対する最小のDは、D
min
であり、該複数の研磨された導波路ディスプレイ基板に対する最大のWは、W
max
である、
方法。
(項目16)
前記複数の導波路ディスプレイ基板を作製することは、該導波路ディスプレイ基板を研磨することを備え、該導波路ディスプレイ基板は、ガラス、金属またはシリコンから形成される、項目15に記載の方法。
(項目17)
前記複数の導波路ディスプレイ基板を作製することは、ポリマーの導波路ディスプレイ基板を成形することを備える、項目15に記載の方法。
(項目18)
前記導波路ディスプレイ基板の各々の上に1つまたは複数の導波路を形成することをさらに備える、項目15に記載の方法。
(項目19)
前記1つまたは複数の導波路は、少なくとも2つの導波路を備え、該導波路は、各導波路ディスプレイ基板上に放射状パターンに位置付けられる、項目18に記載の方法。
The details of one or more embodiments of the disclosed subject matter are set forth in the accompanying drawings and description. Other features, aspects and advantages of the present subject matter will become apparent from the description, drawings and claims.
The present invention provides, for example, the following.
(Item 1)
A plurality of waveguide display substrates, each waveguide display substrate comprising:
a cylindrical portion having a diameter and a plane;
a bent portion opposite the plane defining a non-linear variation in thickness across the substrate and having a maximum height D relative to the cylindrical portion;
a wedge portion between the cylindrical portion and the curved portion defining a linear variation in thickness across the substrate and having a maximum height W for the cylindrical portion;
has
The target maximum height D t of the curved portion is 10 −7 to 10 −6 times the diameter , D is between 70% and 130% of D t and W is lower than 30%,
The average of D for the plurality of waveguide display substrates is Dmean , the maximum D for the plurality of waveguide display substrates is Dmax , and the minimum D for the plurality of waveguide display substrates is D and the maximum W for the plurality of waveguide display substrates is W max .
Multiple waveguide display substrates.
(Item 2)
A plurality of waveguide display substrates according to item 1, wherein the non-linear change in thickness is a quadratic change in thickness.
(Item 3)
A plurality of waveguide display substrates according to item 1, wherein said curved portion is in the form of a dome.
(Item 4)
A plurality of waveguide display substrates according to item 1, wherein the dome is spherical.
(Item 5)
A plurality of waveguide display substrates according to item 1, wherein an average thickness of said plurality of waveguide display substrates is between about 200 microns and about 2000 microns.
(Item 6)
The plurality of waveguide display substrates of item 1, wherein an average diameter of the plurality of waveguide display substrates is between about 2 centimeters and about 50 centimeters.
(Item 7)
A plurality of waveguide display substrates according to item 1, wherein W max /D mean is less than about 0.3.
(Item 8)
A plurality of waveguide display substrates according to item 1, wherein (D mean - D min )/D mean is less than about 0.3.
(Item 9)
A plurality of waveguide display substrates according to item 1, wherein (D max −D min )/D mean is less than about 0.3.
(Item 10)
A plurality of waveguide display substrates according to item 1, wherein D is in the range of about 0.1 microns to about 5 microns.
(Item 11)
A plurality of waveguide display substrates according to item 1, wherein W is in the range of 0 to about 1.5 microns.
(Item 12)
A plurality of waveguide display substrates according to item 1, wherein the average total thickness variation of said plurality of substrates is between about 0.1 microns and about 6.5 microns.
(Item 13)
A plurality of waveguide display substrates according to item 1, wherein said waveguide display substrates comprise molded polymer.
(Item 14)
A plurality of waveguide display substrates according to item 1, wherein said waveguide display substrates comprise polished glass, silicon or metal substrates.
(Item 15)
A method for making a plurality of waveguide display substrates, each waveguide display substrate comprising:
a cylindrical portion having a diameter and a plane;
a bent portion opposite the plane defining a non-linear variation in thickness across the substrate and having a maximum height D relative to the cylindrical portion;
a wedge portion between the cylindrical portion and the curved portion defining a linear variation in thickness across the substrate and having a maximum height W for the cylindrical portion;
has
The target maximum height D t of the curved portion is 10 −7 to 10 −6 times the diameter , D is between 70% and 130% of D t and W is lower than 30%,
The average of D for the plurality of polished waveguide display substrates is Dmean , the maximum D for the plurality of polished waveguide display substrates is Dmax , and the plurality of polished waveguides The minimum D for a display substrate is D min and the maximum W for the plurality of polished waveguide display substrates is W max .
Method.
(Item 16)
16. The method of item 15, wherein fabricating the plurality of waveguide display substrates comprises polishing the waveguide display substrates, the waveguide display substrates being formed from glass, metal or silicon.
(Item 17)
16. The method of item 15, wherein fabricating the plurality of waveguide display substrates comprises molding a polymeric waveguide display substrate.
(Item 18)
16. The method of item 15, further comprising forming one or more waveguides on each of the waveguide display substrates.
(Item 19)
19. The method of item 18, wherein the one or more waveguides comprise at least two waveguides positioned in a radial pattern on each waveguide display substrate.
Claims (19)
直径および平面を有する円柱部分と、
該基板にわたる厚みの非線形変化を定義し、該円柱部分に対して最大高さDを有する、該平面と逆側の曲がった部分と、
該基板にわたる厚みの線形変化を定義し、該円柱部分に対して最大高さWを有する、該円柱部分と該曲がった部分との間のウェッジ部分と
を有し、
該曲がった部分の標的最大高さDtは、該直径の10-7から10-6倍であり、Dは、Dtの70%と130%との間にあり、Wは、Dtの30%より低く、
該複数の導波路ディスプレイ基板に対するDのアベレージは、Dmeanであり、該複数の導波路ディスプレイ基板に対する最大のDは、Dmaxであり、該複数の導波路ディスプレイ基板に対する最小のDは、Dminであり、該複数の導波路ディスプレイ基板に対する最大のWは、Wmaxである、
複数の導波路ディスプレイ基板。 A plurality of waveguide display substrates, each waveguide display substrate comprising:
a cylindrical portion having a diameter and a plane;
a bent portion opposite the plane defining a non-linear variation in thickness across the substrate and having a maximum height D relative to the cylindrical portion;
a wedge portion between the cylindrical portion and the curved portion defining a linear variation in thickness across the substrate and having a maximum height W with respect to the cylindrical portion;
The target maximum height D t of the curved portion is 10 −7 to 10 −6 times the diameter , D is between 70% and 130% of D t and W is lower than 30%,
The average of D for the plurality of waveguide display substrates is Dmean , the maximum D for the plurality of waveguide display substrates is Dmax , and the minimum D for the plurality of waveguide display substrates is D and the maximum W for the plurality of waveguide display substrates is W max .
Multiple waveguide display substrates.
直径および平面を有する円柱部分と、
該基板にわたる厚みの非線形変化を定義し、該円柱部分に対して最大高さDを有する、該平面と逆側の曲がった部分と、
該基板にわたる厚みの線形変化を定義し、該円柱部分に対して最大高さWを有する、該円柱部分と該曲がった部分との間のウェッジ部分と
を有し、
該曲がった部分の標的最大高さDtは、該直径の10-7から10-6倍であり、Dは、Dtの70%と130%との間にあり、Wは、Dtの30%より低く、
該複数の研磨された導波路ディスプレイ基板に対するDのアベレージは、Dmeanであり、該複数の研磨された導波路ディスプレイ基板に対する最大のDは、Dmaxであり、該複数の研磨された導波路ディスプレイ基板に対する最小のDは、Dminであり、該複数の研磨された導波路ディスプレイ基板に対する最大のWは、Wmaxである、
方法。 A method for making a plurality of waveguide display substrates, each waveguide display substrate comprising:
a cylindrical portion having a diameter and a plane;
a bent portion opposite the plane defining a non-linear variation in thickness across the substrate and having a maximum height D relative to the cylindrical portion;
a wedge portion between the cylindrical portion and the curved portion defining a linear variation in thickness across the substrate and having a maximum height W with respect to the cylindrical portion;
The target maximum height D t of the curved portion is 10 −7 to 10 −6 times the diameter , D is between 70% and 130% of D t and W is lower than 30%,
The average of D for the plurality of polished waveguide display substrates is Dmean , the maximum D for the plurality of polished waveguide display substrates is Dmax , and the plurality of polished waveguides The minimum D for a display substrate is D min and the maximum W for the plurality of polished waveguide display substrates is W max .
Method.
19. The method of Claim 18, wherein the one or more waveguides comprise at least two waveguides, the waveguides being positioned in a radial pattern on each waveguide display substrate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023120631A JP7528325B2 (en) | 2019-02-14 | 2023-07-25 | Biased total thickness variations in waveguide display substrates |
JP2024118436A JP2024149510A (en) | 2019-02-14 | 2024-07-24 | Biased total thickness variations in waveguide display substrates. |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962805832P | 2019-02-14 | 2019-02-14 | |
US62/805,832 | 2019-02-14 | ||
US201962820769P | 2019-03-19 | 2019-03-19 | |
US62/820,769 | 2019-03-19 | ||
PCT/US2020/018437 WO2020168295A1 (en) | 2019-02-14 | 2020-02-14 | Biased total thickness variations in waveguide display substrates |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023120631A Division JP7528325B2 (en) | 2019-02-14 | 2023-07-25 | Biased total thickness variations in waveguide display substrates |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022519892A JP2022519892A (en) | 2022-03-25 |
JPWO2020168295A5 true JPWO2020168295A5 (en) | 2023-02-22 |
JP7376602B2 JP7376602B2 (en) | 2023-11-08 |
Family
ID=72041994
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021547192A Active JP7376602B2 (en) | 2019-02-14 | 2020-02-14 | Biased total thickness variation in waveguide display substrates |
JP2023120631A Active JP7528325B2 (en) | 2019-02-14 | 2023-07-25 | Biased total thickness variations in waveguide display substrates |
JP2024118436A Pending JP2024149510A (en) | 2019-02-14 | 2024-07-24 | Biased total thickness variations in waveguide display substrates. |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023120631A Active JP7528325B2 (en) | 2019-02-14 | 2023-07-25 | Biased total thickness variations in waveguide display substrates |
JP2024118436A Pending JP2024149510A (en) | 2019-02-14 | 2024-07-24 | Biased total thickness variations in waveguide display substrates. |
Country Status (5)
Country | Link |
---|---|
US (4) | US11022753B2 (en) |
EP (2) | EP3924771B1 (en) |
JP (3) | JP7376602B2 (en) |
CN (2) | CN113439232B (en) |
WO (1) | WO2020168295A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020168295A1 (en) | 2019-02-14 | 2020-08-20 | Christophe Peroz | Biased total thickness variations in waveguide display substrates |
CN114180826A (en) * | 2020-09-14 | 2022-03-15 | 肖特股份有限公司 | Low optical loss glass articles |
DE102021125476A1 (en) | 2021-09-30 | 2023-03-30 | Schott Ag | Method of modifying at least a portion of a surface or portion of a substrate and substrate |
CN118922749A (en) * | 2022-03-25 | 2024-11-08 | 奇跃公司 | Method and system for variable optical thickness waveguide for augmented reality devices |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5555160A (en) * | 1991-06-27 | 1996-09-10 | Nissen Chemitec Co., Ltd. | Light-guiding panel for surface lighting and a surface lighting body |
US5914760A (en) | 1996-06-21 | 1999-06-22 | Casio Computer Co., Ltd. | Surface light source device and liquid crystal display device using the same |
US5888122A (en) * | 1997-04-10 | 1999-03-30 | Prism Ophthalmics, L.L.C. | Method for manufacturing an intraocular lens |
JP2000056151A (en) * | 1998-08-06 | 2000-02-25 | Nippon Telegr & Teleph Corp <Ntt> | Optical intersection waveguide |
US6206535B1 (en) * | 1999-11-30 | 2001-03-27 | Hayashi Telempu Co., Ltd. | Planar lighting device and method of making light guides used therein |
WO2005045908A1 (en) * | 2003-11-06 | 2005-05-19 | Matsushita Electric Industrial Co., Ltd. | Method for bonding substrate, bonded substrate, and direct bonded substrate |
US7808706B2 (en) * | 2004-02-12 | 2010-10-05 | Tredegar Newco, Inc. | Light management films for displays |
WO2005094449A2 (en) * | 2004-03-23 | 2005-10-13 | California Institute Of Technology | Forward scanning imaging optical fiber probe |
US7190876B2 (en) * | 2005-06-06 | 2007-03-13 | Xerox Corporation | Image input scanner having a waveguide platen |
KR20140131598A (en) * | 2006-12-28 | 2014-11-13 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | A sapphire substrate |
US7646949B2 (en) * | 2007-07-27 | 2010-01-12 | Kotura, Inc. | Efficient transfer of light signals between optical devices |
US8830584B2 (en) * | 2007-12-17 | 2014-09-09 | Nokia Corporation | Exit pupil expanders with spherical and aspheric substrates |
JP5335351B2 (en) | 2008-10-01 | 2013-11-06 | Hoya株式会社 | Mask blank substrate set, mask blank set, photomask set, and semiconductor device manufacturing method |
KR20120015428A (en) * | 2009-04-15 | 2012-02-21 | 스미토모덴키고교가부시키가이샤 | Substrate, substrate provided with thin film, semiconductor device, and method for manufacturing semiconductor device |
JP5650328B2 (en) | 2010-09-03 | 2015-01-07 | エーファウ・グループ・エー・タルナー・ゲーエムベーハー | Apparatus and method for reducing wedge error |
CN102183819B (en) * | 2011-03-30 | 2012-05-23 | 西安盛佳光电有限公司 | Method for manufacturing lensed fiber |
JP2013186198A (en) * | 2012-03-06 | 2013-09-19 | Citizen Holdings Co Ltd | Display device |
US20140168260A1 (en) | 2012-12-13 | 2014-06-19 | Paul M. O'Brien | Waveguide spacers within an ned device |
US9519095B2 (en) * | 2013-01-30 | 2016-12-13 | Cree, Inc. | Optical waveguides |
JP6030471B2 (en) * | 2013-02-18 | 2016-11-24 | 株式会社神戸製鋼所 | Shape measuring device |
US9874749B2 (en) | 2013-11-27 | 2018-01-23 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
WO2015125794A1 (en) | 2014-02-21 | 2015-08-27 | 旭硝子株式会社 | Light-guiding element and video display device |
CN105700143A (en) * | 2016-03-01 | 2016-06-22 | 陈超平 | Optical display device facing augment reality |
US10353202B2 (en) | 2016-06-09 | 2019-07-16 | Microsoft Technology Licensing, Llc | Wrapped waveguide with large field of view |
US10757400B2 (en) | 2016-11-10 | 2020-08-25 | Manor Financial, Inc. | Near eye wavefront emulating display |
US10061073B2 (en) | 2017-01-20 | 2018-08-28 | Oculus Vr, Llc | Circular backlight for a liquid crystal display |
TWI771375B (en) | 2017-02-24 | 2022-07-21 | 美商康寧公司 | High aspect ratio glass wafer |
KR102642282B1 (en) * | 2017-07-12 | 2024-02-28 | 호야 가부시키가이샤 | Light guide plate and image display device |
FI128028B (en) | 2017-12-22 | 2019-08-15 | Dispelix Oy | Multilayer waveguide display element |
WO2020168295A1 (en) | 2019-02-14 | 2020-08-20 | Christophe Peroz | Biased total thickness variations in waveguide display substrates |
-
2020
- 2020-02-14 WO PCT/US2020/018437 patent/WO2020168295A1/en unknown
- 2020-02-14 JP JP2021547192A patent/JP7376602B2/en active Active
- 2020-02-14 CN CN202080014679.3A patent/CN113439232B/en active Active
- 2020-02-14 US US16/792,083 patent/US11022753B2/en active Active
- 2020-02-14 EP EP20756563.1A patent/EP3924771B1/en active Active
- 2020-02-14 EP EP24165152.0A patent/EP4365664A3/en active Pending
- 2020-02-14 CN CN202211247290.0A patent/CN115793139A/en active Pending
-
2021
- 2021-05-05 US US17/308,407 patent/US11487061B2/en active Active
-
2022
- 2022-10-07 US US17/938,869 patent/US11860416B2/en active Active
-
2023
- 2023-07-25 JP JP2023120631A patent/JP7528325B2/en active Active
- 2023-11-09 US US18/505,762 patent/US20240077676A1/en active Pending
-
2024
- 2024-07-24 JP JP2024118436A patent/JP2024149510A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6539750B1 (en) | Glass substrate forming mold and production method for glass substrate | |
US7611648B2 (en) | Method for forming an optical element | |
KR101656978B1 (en) | Method for manufacturing mold, and method for manufacturing molded article having fine uneven structure on surface | |
JP2023133425A5 (en) | ||
US20230026965A1 (en) | Biased total thickness variations in waveguide display substrates | |
JP2000322780A (en) | Stamper for information recording disk, its production, information recording disk and production of information recording disk | |
JPWO2020168295A5 (en) | ||
KR101502337B1 (en) | Press forming die for optical lens, glass optical lens, and manufacturing method for glass optical lens | |
JP4668718B2 (en) | Ceramic mold | |
JP5838777B2 (en) | Manufacturing method of mold for molding | |
JP2006053220A (en) | Member having antireflection part, molding die for the member and method of manufacturing the die | |
JPH0226843A (en) | Mold for molding glass | |
JP2007517253A (en) | Production of polymer optical waveguides using molds | |
JP4533730B2 (en) | Fine structure molding material, method for producing fine structure molding material, and method for forming fine structure | |
JPH11277543A (en) | Production of mold for molding micro-lens array | |
JP2003139920A (en) | Method of manufacturing microlens | |
JP4345123B2 (en) | Resin bonded optical element and manufacturing method thereof | |
EP3640689B1 (en) | Toric lens, optical element, and image forming apparatus | |
JP6372145B2 (en) | Imprint mold manufacturing method, imprint mold, and hierarchical structure formed body | |
US6510709B1 (en) | Shaping mold optical fiber guide block processes for the production thereof and optical fiber array | |
US20040021963A1 (en) | Micromirror having counterbalancing structures and method for manufacturing same | |
JP3264704B2 (en) | Optical element molding die and method of manufacturing the same | |
JP4779866B2 (en) | Method for manufacturing antireflection structure | |
JP2612622B2 (en) | Roll type stamper, method of manufacturing the same and forming roll | |
JP4361186B2 (en) | Microlens manufacturing method |