JP4345123B2 - Resin bonded optical element and manufacturing method thereof - Google Patents

Resin bonded optical element and manufacturing method thereof Download PDF

Info

Publication number
JP4345123B2
JP4345123B2 JP4636399A JP4636399A JP4345123B2 JP 4345123 B2 JP4345123 B2 JP 4345123B2 JP 4636399 A JP4636399 A JP 4636399A JP 4636399 A JP4636399 A JP 4636399A JP 4345123 B2 JP4345123 B2 JP 4345123B2
Authority
JP
Japan
Prior art keywords
resin
lens
mold
mold surface
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4636399A
Other languages
Japanese (ja)
Other versions
JP2000241608A (en
Inventor
恵都夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4636399A priority Critical patent/JP4345123B2/en
Publication of JP2000241608A publication Critical patent/JP2000241608A/en
Application granted granted Critical
Publication of JP4345123B2 publication Critical patent/JP4345123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、基材上に樹脂層と光学薄膜層を設けてなる樹脂接合型光学素子とその製造方法に関するものである。
【0002】
【従来の技術】
光学素子であるレンズには、表面形状が非球面の非球面レンズがある。非球面レンズは、球面レンズによる球面収差や広角レンズにおけるディストーションを除去できることから重用されている。
現在、量産性に優れた非球面レンズとして樹脂接合型非球面レンズがある。このレンズは、図1に示すような薄い(例えば、5〜 100μm の厚さの)硬化樹脂層12と基体(基材)たるレンズ11により構成されている。
【0003】
なお、図1のレンズでは、レンズ基材11が球面を有し、その球面上に硬化樹脂層12が非球面を形成するような厚さ分布をもって接合されている。また、硬化樹脂層12及びレンズ基材11の光学面上には更に光学薄膜層13がそれぞれ形成されている。
この様な樹脂接合型非球面レンズにおけるレンズ基材と硬化樹脂層の接合は、例えば図2に示す工程により行われる。尚、以下の工程説明において、括弧内の数字は図2の工程(1)〜工程(4)に対応する。
【0004】
(1)所定の表面形状(平面、球面、非球面等)を有する金型23を水平に置き、前記表面の中央部に所定量の光硬化型樹脂液22aを垂らす。
(2)レンズ基材(光学素子基材)21を金型23に向かって降下させ、基材21を金型23に接近させることにより、樹脂液22aを基材21と金型23の間隙で押し広げる。
【0005】
ここで、基材21の材料としては、ガラスや結晶性光学材料を用いる。また、基材21の表面には、樹脂層との接着力向上を目的としてシランカップリング処理を施しておいても良い。
(3)レンズ基材21と金型23との間隔が所定値となるように両者を接近させ、この状態を保持して、光(紫外線)24を基材21を通して樹脂液22aに照射する。樹脂液22aは、重合反応により硬化して樹脂硬化層(硬化樹脂層)22が形成される。
【0006】
(4)レンズ基材21と一体化された樹脂硬化層22を金型23との界面から剥離する。
以上のような工程により、樹脂接合型非球面レンズ(樹脂接合型光学素子)におけるレンズ基材と硬化樹脂層の接合を行うことができる。
この後、光学素子の使用目的に応じて、例えば反射防止膜等の光学薄膜を基材上の硬化樹脂層の表面に、或いは前記硬化樹脂層表面及び基材面(前記硬化樹脂層が形成されていない基材面)の両方に設けると、樹脂接合型光学素子が完成する。
【0007】
なお、基材面側の光学薄膜の形成は、樹脂層の接合工程前、工程後のいずれで行っても良い。また、光学薄膜の形成方法としては例えば、真空蒸着、スパッタリング、プラズマCVD、ディップコーティング等が使用できる。
【0008】
【発明が解決しようとする課題】
この様な従来法により製造される樹脂接合型光学素子は、その光学面が非球面であることが多く、収差等の光学性能の向上を目的として、例えばカメラのレンズ等に組み込まれて使用される。
しかし、この様な樹脂接合型光学素子の樹脂層表面は、従来から使用されているガラス製光学素子の研磨面に比べて表面粗さが大きいという問題がある。
【0009】
そして一般に、基材上に光学薄膜を形成すると、形成された光学薄膜の表面粗さが基材の表面粗さより大きくなり、その程度は基材の表面粗さに依存する。
即ち、表面粗さが小さい従来のガラスレンズ上に形成した光学薄膜の表面粗さはガラスレンズのそれと大差なく問題はないが、表面粗さが大きい樹脂層表面に形成した光学薄膜の表面粗さは、樹脂層表面よりも更に大きくなり問題がある。
【0010】
そのため、樹脂接合型光学素子を使用した場合には、一部の光学性能(収差等)の向上を可能にするものの、樹脂層の光学面における散乱が大きい、フレアーを生じる等、他の光学性能を劣化させるという問題があった。
本発明は、かかる問題に鑑みてなされたものであり、光学薄膜の表面粗さを従来よりも低減して、散乱やフレアー等の光学性能劣化現象を防止した樹脂接合型光学素子とその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
【0012】
本発明は「金型母材の表面にメッキ層を形成する工程と、前記メッキ層の平均表面粗さRaが4nm以下になるように前記メッキ層を研磨して金型面を形成する工程と、平均表面粗さRaが4nm以下であるレンズ基材と前記金型面との間に光硬化型樹脂液を挟む工程と、前記樹脂液を押し広げながら、前記レンズ基材と前記金型面との間隔が所定値または所定範囲となる位置まで両者を接近させる工程と、前記レンズ基材及び前記金型面の位置を保持した状態で前記樹脂液に光を照射することにより前記樹脂液を硬化させ、硬化樹脂層を形成して前記レンズ基材と一体化させるとともに、該硬化樹脂層の表面に前記金型面の形状を転写して前記硬化樹脂層の平均表面粗さRaを前記金型面の平均表面粗さRaと略同一にする工程と、前記硬化樹脂層が形成された前記レンズ基材を前記金型面から剥離する工程と、前記硬化樹脂層の表面及び前記硬化樹脂層が形成されていない前記レンズ基材の表面に、平均表面粗さRaが5nm以下の光学薄膜層を形成する工程と、を備えた樹脂接合型レンズの製造方法(請求項1)」を提供する。
【0013】
また、本発明は「請求項1に記載された樹脂接合型レンズの製造方法であって、前記金型を前記金型面が上に向くように略水平に設置する工程と、前記金型面に所定量の前記樹脂液を滴下する工程と、前記レンズ基材を前記樹脂液の上に略水平に載置し、かつ前記レンズ基材と前記金型面との間隔を制御することにより、前記樹脂液を前記レンズ基材と前記金型面との間隙において中央部から周辺部に向け所定範囲まで押し広げる工程とを備えた樹脂接合型レンズの製造方法。(請求項3)」を提供する。
【0014】
また、本発明は「請求項2に記載された樹脂接合型レンズの製造方法であって、前記金型面の中央付近に所定量の前記樹脂液を滴下する工程と、前記レンズ基材を前記金型上方に、前記金型面の光学中心軸と前記前記レンズ基材の光学中心軸とが一致するように略水平に載置する工程とを備えた樹脂接合型レンズの製造方法請求項4)」を提供する。
【0015】
また、本発明は「請求項3に記載された樹脂接合型レンズの製造方法であって、金型面の光学中心軸と前記レンズ基材の光学中心軸とを一致させたまま、前記金型と前記レンズ基材との間隔を近づけることにより、前記金型面の中央付近と前記樹脂液とを接触させ、かつ前記レンズ基材と前記金型面との間隔を制御することにより、前記樹脂液を前記レンズ基材と前記金型面との間隙において中央部から周辺部に向け所定範囲まで押し広げる工程とを備えた樹脂接合型レンズの製造方法請求項5)」を提供する。
【0019】
【発明の実施形態】
本発明者は鋭意研究の結果、樹脂接合型光学素子における散乱やフレアー等の光学性能劣化を防止するためには、光学面に形成された光学薄膜の表面粗さ(Ra)を5nm以下にする必要があることを見いだした。
そこで、基材上に樹脂層と光学薄膜層を設けてなる本発明(請求項1〜8)にかかる樹脂接合型光学素子では、樹脂層の光学面上に、或いは樹脂層の光学面上及び基材上(樹脂層が設けられていない基材面)に、設けた光学薄膜層の平均表面粗さ(Ra)を5nm以下とした。
【0020】
本発明(請求項1〜8)にかかる樹脂接合型光学素子によれば、光学薄膜の表面粗さを従来よりも低減して、散乱やフレアー等の光学性能劣化現象を防止することができる。
さらに、本発明者は鋭意研究の結果、以下のことを見いだした。
1)樹脂成型時に使用する金型の表面粗さ(Ra)と樹脂成形面の表面粗さ(Ra)はほぼ同じになる。
2)光学薄膜の表面粗さを決定する要因には、薄膜形成時の装置条件と基材の表面粗さがあるが、基材の表面粗さのほうがその影響が大きい。
3)光学薄膜の平均表面粗さ(Ra)が5nm以下であるためには、その基材の光学面の平均表面粗さ(Ra)が4nm以下であることが必要である。
【0021】
そして、本発明者はこれに基づいて、基材上に樹脂層と光学薄膜層を設けてなる樹脂接合型光学素子であり、樹脂層の光学面上に、或いは樹脂層の光学面上及び基材上(樹脂層が設けられていない基材面)に、設けた光学薄膜層の平均表面粗さ(Ra)が5nm以下となる樹脂接合型光学素子を得るために、平均表面粗さ(Ra)が4nm以下の金型面を有する金型を使用して行う請求項2〜8にかかる製造方法を採用することとした。
【0022】
例えば、本発明にかかる樹脂接合型光学素子は、平均表面粗さ(Ra)が4nm以下の金型面を有する金型を使用して光学素子基材と樹脂層とを接合し、その後、樹脂層表面に反射防止膜等の光学薄膜を形成することにより得ることができる。本発明は、使用する金型の材質や製造方法にはよらないが、例えば以下のような方法により製造した金型を使用することができる。
【0023】
1)ステンレス製のブロックを旋盤で加工することにより金型形状にして金型母材とする。
2)金型母材にNi-Pメッキ層を形成する。
3)超精密旋盤で金型面(Ni-P層)を切削して、所望の金型面形状にする。
4)金型面を研磨して所望の表面粗さにする。
【0024】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの例に限定されるものではない。
【0025】
【実施例】
基材上に樹脂層と光学薄膜層を設けてなる実施例1〜3にかかる樹脂接合型光学素子では、光学薄膜層は樹脂層の光学面上及び基材上(樹脂層が設けられていない基材面)の両方に設けられ、光学薄膜層の平均表面粗さ(Ra)が5nm以下である。
【0026】
実施例1〜3にかかる樹脂接合型光学素子によれば、光学薄膜の表面粗さを従来よりも低減して、散乱やフレアー等の光学性能劣化現象を防止することができる。
実施例1〜3にかかる樹脂接合型光学素子は、請求項2〜8に記載の方法により製造した。
[実施例1]
請求項2〜8に記載の製造方法において、ステンレス製の金型母材の表面に形成した100μm厚さのNi-Pメッキ層を研磨し、金型面の表面粗さ(Ra)を0.3nmとした金型を使用して、本実施例の樹脂接合型光学素子を製造した。
【0027】
なお、金型面の平均表面粗さ(Ra)の測定は、Park Scientific Instruments社製の走査型プローブ顕微鏡M5を使用し、5μm角の測定範囲にて、金型面全域から5カ所を選択して行った。
本実施例にかかる樹脂層の平均表面粗さ(Ra)を測定したところ0.4nmであった。
【0028】
さらに、樹脂層表面に真空蒸着法により反射防止膜(光学薄膜層)を形成して、その平均表面粗さ(Ra)を測定したところ0.7nmであった。
本実施例の樹脂接合型光学素子をカメラレンズに組み込んで確認したところ、散乱やフレアーがなく光学素子として十分な性能を有していた。
[実施例2]
請求項2〜8に記載の製造方法において、ステンレス製の金型母材の表面に形成した100μm厚さのNi-Pメッキ層を研磨し、金型面の平均表面粗さ(Ra)を1.2nmとした金型を使用して、本実施例の樹脂接合型光学素子を製造した。
【0029】
なお、金型面の平均表面粗さ(Ra)の測定は、実施例1と同様に行った。
本実施例にかかる樹脂層の平均表面粗さ(Ra)を測定したところ1.2nmであった。
さらに、樹脂層表面にスパッタリング法により反射防止膜(光学薄膜層)を形成して、その平均表面粗さ(Ra)を測定したところ1.2nmであった。
【0030】
本実施例の樹脂接合型光学素子をカメラレンズに組み込んで確認したところ、散乱やフレアーがなく光学素子として十分な性能を有していた。
[実施例3]
請求項2〜8に記載の製造方法において、ステンレス(商品名:STAVAX)製の金型母材を研磨し、金型面の平均表面粗さ(Ra)を3.7nmとした金型を使用して、本実施例の樹脂接合型光学素子を製造した。
【0031】
なお、金型面の平均表面粗さ(Ra)の測定は、実施例1と同様に行った。
本実施例にかかる樹脂層の平均表面粗さ(Ra)を測定したところ3.6nmであった。
さらに、樹脂層表面にスパッタリング法により反射防止膜(光学薄膜層)を形成して、その平均表面粗さ(Ra)を測定したところ4.9nmであった。
【0032】
本実施例の樹脂接合型光学素子をカメラレンズに組み込んで確認したところ、散乱やフレアーがなく光学素子として十分な性能を有していた。
なお、上記各実施例にかかる樹脂液には、商品名アロニックスUV3700又はアロニックス3033HV(東亜合成化学株式会社製)を用いて、ディスペンサーにより所定量を滴下した。
【0033】
また、硬化樹脂層との接着力を向上させるために、光学素子基材の表面にはシランカップリング処理を施した。シランカップリング剤としては、商品名KBM503(信越化学株式会社製)をエタノールに希釈して2wt%エタノール溶液としたものを使用した。
また、光源として出力 150Wのキセノンランプを用いて60秒間照射して、樹脂液を重合反応させることにより硬化樹脂層を形成した。
【0034】
【発明の効果】
以上説明したように、本発明(請求項1〜8)にかかる樹脂接合型光学素子によれば、光学薄膜の表面粗さを従来よりも低減して、散乱やフレアー等の光学性能劣化現象を防止することができる。
本発明によれば、光学薄膜の表面粗さが小さく、散乱やフレアーの少ない樹脂接合型光学素子を提供することができる。
【図面の簡単な説明】
【図1】は、樹脂接合型光学素子の一例を示す断面図である。
【図2】は、樹脂接合型光学素子における樹脂層と光学素子基材の接合方法の一例を示す工程図である。
【符号の説明】
11,21・・・光学素子基材
12,22・・・硬化樹脂層
22a・・・樹脂液
13・・・光学薄膜層、23・・・金型 以上
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin-bonded optical element in which a resin layer and an optical thin film layer are provided on a substrate, and a method for producing the same.
[0002]
[Prior art]
As a lens which is an optical element, there is an aspherical lens whose surface shape is an aspherical surface. Aspherical lenses are used heavily because they can eliminate spherical aberration caused by spherical lenses and distortion in wide-angle lenses.
Currently, there is a resin-bonded aspheric lens as an aspheric lens excellent in mass productivity. This lens is composed of a thin cured resin layer 12 (for example, having a thickness of 5 to 100 μm) as shown in FIG. 1 and a lens 11 as a substrate (base material).
[0003]
In the lens of FIG. 1, the lens substrate 11 has a spherical surface, and the cured resin layer 12 is bonded on the spherical surface with a thickness distribution that forms an aspherical surface. Further, optical thin film layers 13 are further formed on the optical surfaces of the cured resin layer 12 and the lens substrate 11, respectively.
The lens base material and the cured resin layer in such a resin-bonded aspheric lens are bonded by, for example, a process shown in FIG. In the following description of steps, the numbers in parentheses correspond to steps (1) to (4) in FIG.
[0004]
(1) A mold 23 having a predetermined surface shape (planar surface, spherical surface, aspherical surface, etc.) is placed horizontally, and a predetermined amount of photocurable resin liquid 22a is hung on the center of the surface.
(2) The lens base material (optical element base material) 21 is lowered toward the mold 23, and the base material 21 is brought close to the mold 23, so that the resin liquid 22 a is formed in the gap between the base material 21 and the mold 23. Push out.
[0005]
Here, as the material of the base material 21, glass or a crystalline optical material is used. Further, the surface of the base material 21 may be subjected to a silane coupling treatment for the purpose of improving the adhesive strength with the resin layer.
(3) The lens base material 21 and the mold 23 are brought close to each other so that the distance between the lens base material 21 and the mold 23 becomes a predetermined value, and this state is maintained, and light (ultraviolet rays) 24 is irradiated to the resin liquid 22a through the base material 21. The resin liquid 22a is cured by a polymerization reaction to form a cured resin layer (cured resin layer) 22.
[0006]
(4) The cured resin layer 22 integrated with the lens substrate 21 is peeled off from the interface with the mold 23.
Through the steps as described above, the lens substrate and the cured resin layer in the resin-bonded aspheric lens (resin-bonded optical element) can be bonded.
Thereafter, depending on the purpose of use of the optical element, for example, an optical thin film such as an antireflection film is applied to the surface of the cured resin layer on the substrate, or the surface of the cured resin layer and the substrate surface (the cured resin layer is formed). If it is provided on both of the uncoated base material surfaces, a resin-bonded optical element is completed.
[0007]
The optical thin film on the substrate surface side may be formed either before or after the resin layer joining step. Moreover, as a method for forming an optical thin film, for example, vacuum deposition, sputtering, plasma CVD, dip coating, or the like can be used.
[0008]
[Problems to be solved by the invention]
The resin-bonded optical element manufactured by such a conventional method often has an aspheric optical surface, and is incorporated into a camera lens or the like for the purpose of improving optical performance such as aberration. The
However, there is a problem that the surface of the resin layer of such a resin-bonded optical element has a larger surface roughness than the polished surface of a conventionally used glass optical element.
[0009]
In general, when an optical thin film is formed on a substrate, the surface roughness of the formed optical thin film is larger than the surface roughness of the substrate, and the degree depends on the surface roughness of the substrate.
That is, the surface roughness of an optical thin film formed on a conventional glass lens with a small surface roughness is not much different from that of a glass lens, but there is no problem, but the surface roughness of an optical thin film formed on the surface of a resin layer with a large surface roughness. Has a problem that it becomes larger than the surface of the resin layer.
[0010]
Therefore, when a resin-bonded optical element is used, some optical performance (such as aberrations) can be improved, but other optical performance such as large scattering on the optical surface of the resin layer, flare, etc. There was a problem of deteriorating.
The present invention has been made in view of such problems, and has a resin-bonded optical element in which the surface roughness of an optical thin film is reduced as compared with the prior art to prevent optical performance deterioration phenomena such as scattering and flare, and a method for manufacturing the same. The purpose is to provide.
[0011]
[Means for Solving the Problems]
[0012]
The present invention includes the steps of forming a plating layer on the surface of a mold base material, and forming a mold surface by polishing the plating layer so that the average surface roughness Ra of the plating layer is 4 nm or less. A step of sandwiching a photocurable resin liquid between a lens base material having an average surface roughness Ra of 4 nm or less and the mold surface, and the lens base material and the mold surface while spreading the resin liquid. And a step of bringing both of them closer to a position where the distance between them is a predetermined value or a predetermined range, and irradiating the resin liquid with light while maintaining the positions of the lens base and the mold surface. Curing and forming a cured resin layer to be integrated with the lens base material, and transferring the shape of the mold surface to the surface of the cured resin layer so that the average surface roughness Ra of the cured resin layer is the metal mold. a step of substantially equal to the average surface roughness Ra of the mold surface, the hard A step of removing the lens substrate on which a resin layer is formed from the mold surface, the surface and the not hardened resin layer is formed surface of the lens base material of the cured resin layer, the average surface roughness Ra Forming an optical thin film layer of 5 nm or less, and a method for manufacturing a resin-bonded lens (claim 1).
[0013]
Further, the present invention is “a method for manufacturing a resin-bonded lens according to claim 1, wherein the mold is disposed substantially horizontally such that the mold surface faces upward, and the mold surface” Dropping the predetermined amount of the resin liquid on, placing the lens base material substantially horizontally on the resin liquid, and controlling the distance between the lens base material and the mold surface, A method for manufacturing a resin-bonded lens, comprising: a step of pushing the resin liquid to a predetermined range from a central part toward a peripheral part in a gap between the lens base material and the mold surface. To do.
[0014]
Further, the present invention is “a method for producing a resin-bonded lens according to claim 2, wherein a step of dropping a predetermined amount of the resin liquid near the center of the mold surface; the mold upward, the production method (claim of resin bonding type lens that includes a step of mounting substantially horizontally such that the optical center axis of said mold surface and said lens base material of the optical center axis coincides 4 ) ”.
[0015]
Further, the present invention is “a method for manufacturing a resin-bonded lens according to claim 3, wherein the mold has the optical center axis of the mold surface and the optical center axis of the lens substrate coincide with each other. By making the distance between the lens base and the lens base close, the resin liquid is brought into contact with the vicinity of the center of the mold surface, and the distance between the lens base and the mold surface is controlled. to provide a method of manufacturing a resin bonding type lens (claim 5) "that includes a step of pushing to a predetermined extent toward the peripheral portion from the central portion in the gap between the liquid and the lens substrate the mold surface.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As a result of diligent research, the present inventors have determined that the surface roughness (Ra) of the optical thin film formed on the optical surface is 5 nm or less in order to prevent optical performance deterioration such as scattering and flare in the resin-bonded optical element. I found it necessary.
Therefore, in the resin-bonded optical element according to the present invention (claims 1 to 8) in which a resin layer and an optical thin film layer are provided on a base material, on the optical surface of the resin layer, or on the optical surface of the resin layer and The average surface roughness (Ra) of the optical thin film layer provided on the base material (base material surface provided with no resin layer) was 5 nm or less.
[0020]
According to the resin-bonded optical element according to the present invention (claims 1 to 8), the surface roughness of the optical thin film can be reduced as compared with the prior art, and optical performance deterioration phenomena such as scattering and flare can be prevented.
Furthermore, the present inventors have found the following as a result of earnest research.
1) The surface roughness (Ra) of the mold used during resin molding and the surface roughness (Ra) of the resin molding surface are substantially the same.
2) Factors that determine the surface roughness of the optical thin film include the apparatus conditions at the time of thin film formation and the surface roughness of the base material. The surface roughness of the base material has a greater effect.
3) In order for the average surface roughness (Ra) of the optical thin film to be 5 nm or less, the average surface roughness (Ra) of the optical surface of the substrate needs to be 4 nm or less.
[0021]
Based on this, the present inventor is a resin-bonded optical element in which a resin layer and an optical thin film layer are provided on a base material. In order to obtain a resin-bonded optical element having an average surface roughness (Ra) of 5 nm or less on the material (substrate surface on which no resin layer is provided), the average surface roughness (Ra The manufacturing method according to claims 2 to 8 is carried out using a mold having a mold surface of 4 nm or less.
[0022]
For example, the resin-bonded optical element according to the present invention uses a mold having a mold surface with an average surface roughness (Ra) of 4 nm or less to bond the optical element substrate and the resin layer, and then the resin It can be obtained by forming an optical thin film such as an antireflection film on the surface of the layer. Although this invention does not depend on the material and manufacturing method of the metal mold | die to be used, the metal mold | die manufactured by the following methods can be used, for example.
[0023]
1) A stainless steel block is machined with a lathe to form a mold and a mold base material.
2) A Ni-P plating layer is formed on the mold base material.
3) Cutting the mold surface (Ni-P layer) with an ultra-precision lathe to obtain the desired mold surface shape.
4) Polish the mold surface to the desired surface roughness.
[0024]
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0025]
【Example】
In the resin-bonded optical elements according to Examples 1 to 3 in which the resin layer and the optical thin film layer are provided on the base material, the optical thin film layer is on the optical surface of the resin layer and on the base material (no resin layer is provided). The average surface roughness (Ra) of the optical thin film layer is 5 nm or less.
[0026]
According to the resin-bonded optical elements according to Examples 1 to 3, the surface roughness of the optical thin film can be reduced as compared with the prior art, and optical performance deterioration phenomena such as scattering and flare can be prevented.
The resin-bonded optical elements according to Examples 1 to 3 were manufactured by the method according to claims 2 to 8.
[Example 1]
9. The manufacturing method according to claim 2, wherein a 100 μm-thick Ni—P plating layer formed on the surface of a stainless steel mold base material is polished, and the surface roughness (Ra) of the mold surface is 0.3 nm. A resin-bonded optical element of this example was manufactured using the mold described above.
[0027]
The average surface roughness (Ra) of the mold surface was measured using a scanning probe microscope M5 manufactured by Park Scientific Instruments, and 5 locations were selected from the entire mold surface within a 5 μm square measurement range. I went.
It was 0.4 nm when the average surface roughness (Ra) of the resin layer concerning a present Example was measured.
[0028]
Furthermore, an antireflection film (optical thin film layer) was formed on the surface of the resin layer by vacuum deposition, and the average surface roughness (Ra) was measured to be 0.7 nm.
When the resin-bonded optical element of this example was incorporated into a camera lens and confirmed, it was free from scattering and flare and had sufficient performance as an optical element.
[Example 2]
9. The manufacturing method according to claim 2, wherein a 100 μm-thick Ni—P plating layer formed on the surface of a stainless steel mold base material is polished, and an average surface roughness (Ra) of the mold surface is 1.2. A resin-bonded optical element of this example was manufactured using a mold having a thickness of nm.
[0029]
The average surface roughness (Ra) of the mold surface was measured in the same manner as in Example 1.
The average surface roughness (Ra) of the resin layer according to this example was measured and found to be 1.2 nm.
Further, an antireflection film (optical thin film layer) was formed on the surface of the resin layer by sputtering, and the average surface roughness (Ra) was measured to be 1.2 nm.
[0030]
When the resin-bonded optical element of this example was incorporated into a camera lens and confirmed, it was free from scattering and flare and had sufficient performance as an optical element.
[Example 3]
9. The manufacturing method according to claim 2, wherein a mold base material made of stainless steel (trade name: STAVAX) is polished and an average surface roughness (Ra) of the mold surface is 3.7 nm. Thus, a resin-bonded optical element of this example was manufactured.
[0031]
The average surface roughness (Ra) of the mold surface was measured in the same manner as in Example 1.
It was 3.6 nm when the average surface roughness (Ra) of the resin layer concerning a present Example was measured.
Furthermore, when an antireflection film (optical thin film layer) was formed on the surface of the resin layer by sputtering, and the average surface roughness (Ra) was measured, it was 4.9 nm.
[0032]
When the resin-bonded optical element of this example was incorporated into a camera lens and confirmed, it was free from scattering and flare and had sufficient performance as an optical element.
In addition, the predetermined amount was dripped at the resin liquid concerning each said Example with a dispenser using brand name Aronix UV3700 or Aronix 3033HV (made by Toa Gosei Chemical Co., Ltd.).
[0033]
Moreover, in order to improve the adhesive force with the cured resin layer, the surface of the optical element substrate was subjected to silane coupling treatment. As the silane coupling agent, a product name KBM503 (manufactured by Shin-Etsu Chemical Co., Ltd.) diluted in ethanol to give a 2 wt% ethanol solution was used.
In addition, a cured resin layer was formed by polymerizing the resin liquid by irradiating for 60 seconds using a xenon lamp with an output of 150 W as a light source.
[0034]
【The invention's effect】
As described above, according to the resin-bonded optical element according to the present invention (Claims 1 to 8), the surface roughness of the optical thin film is reduced as compared with the prior art, and optical performance deterioration phenomena such as scattering and flare are reduced. Can be prevented.
ADVANTAGE OF THE INVENTION According to this invention, the surface roughness of an optical thin film is small, and it can provide the resin bonded optical element with few scattering and flare.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a resin-bonded optical element.
FIG. 2 is a process diagram showing an example of a method for joining a resin layer and an optical element substrate in a resin-bonded optical element.
[Explanation of symbols]
11, 21 ... optical element base material 12, 22 ... cured resin layer 22 a ... resin liquid 13 ... optical thin film layer, 23 ... mold

Claims (4)

金型母材の表面にメッキ層を形成する工程と、
前記メッキ層の平均表面粗さRaが4nm以下になるように前記メッキ層を研磨して金型面を形成する工程と、
平均表面粗さRaが4nm以下であるレンズ基材と前記金型面との間に光硬化型樹脂液を挟む工程と、
前記樹脂液を押し広げながら、前記レンズ基材と前記金型面との間隔が所定値または所定範囲となる位置まで両者を接近させる工程と、
前記レンズ基材及び前記金型面の位置を保持した状態で前記樹脂液に光を照射することにより前記樹脂液を硬化させ、硬化樹脂層を形成して前記レンズ基材と一体化させるとともに、該硬化樹脂層の表面に前記金型面の形状を転写して前記硬化樹脂層の平均表面粗さRaを前記金型面の平均表面粗さRaと略同一にする工程と、
前記硬化樹脂層が形成された前記レンズ基材を前記金型面から剥離する工程と、
前記硬化樹脂層の表面及び前記硬化樹脂層が形成されていない前記レンズ基材の表面に、平均表面粗さRaが5nm以下の光学薄膜層を形成する工程と、を備えた樹脂接合型レンズの製造方法。
Forming a plating layer on the surface of the mold base material;
Polishing the plated layer to form a mold surface such that the average surface roughness Ra of the plated layer is 4 nm or less;
Sandwiching a photocurable resin liquid between a lens substrate having an average surface roughness Ra of 4 nm or less and the mold surface;
While spreading the resin liquid, the step of bringing both closer to a position where the distance between the lens substrate and the mold surface is a predetermined value or a predetermined range;
The resin liquid is cured by irradiating the resin liquid with light while maintaining the position of the lens base and the mold surface, and a cured resin layer is formed and integrated with the lens base. Transferring the shape of the mold surface to the surface of the cured resin layer to make the average surface roughness Ra of the cured resin layer substantially the same as the average surface roughness Ra of the mold surface;
Peeling the lens substrate on which the cured resin layer is formed from the mold surface;
Forming an optical thin film layer having an average surface roughness Ra of 5 nm or less on the surface of the cured resin layer and the surface of the lens base material on which the cured resin layer is not formed. Production method.
請求項1に記載された樹脂接合型レンズの製造方法であって、
前記金型を前記金型面上に向くように略水平設置する工程と、
前記金型面に所定量の前記樹脂液を滴下する工程と、
前記レンズ基材を前記樹脂液の上略水平載置し、かつ前記レンズ基材と前記金型との間隔を制御することにより、前記樹脂液を前記レンズ基材と前記金型との間隙において中央部から周辺部に向け所定範囲まで押し広げる工程を備えた樹脂接合型レンズの製造方法。
A method for producing a resin-bonded lens according to claim 1,
A step of installing a substantially horizontal countercurrent memorial said mold on said mold surface,
Dropping a predetermined amount of the resin liquid onto the mold surface;
Placed substantially horizontally on top of the resin solution the lens substrate, and by controlling the distance between the lens substrate and the mold surface, the mold surface and the lens substrate the resin solution method for manufacturing a resin bonding type lens that includes a step of pushing to a predetermined extent toward the peripheral portion from the central portion in the gap between the.
請求項2に記載された樹脂接合型レンズの製造方法であって、
前記金型面中央付近所定量の前記樹脂液を滴下する工程と、
前記レンズ基材を前記金型上方に、前記金型面の光学中心軸と前記前記レンズ基材の光学中心軸とが一致するよう略水平載置する工程を備えた樹脂接合型レンズの製造方法。
A method for producing a resin-bonded lens according to claim 2,
A step of dropping the liquid resin of a predetermined amount near the center of the mold surface,
Wherein the lens substrate in the mold upper, resin bonding type lens that includes a step in which the optical center axis of said mold surface and said optical center of the lens substrate axis is placed substantially horizontally to match Manufacturing method.
請求項3に記載された樹脂接合型レンズの製造方法であって、
金型面の光学中心軸と前記レンズ基材の光学中心軸とを一致させたまま、前記金型と前記レンズ基材との間隔を近づけることにより、前記金型面中央付近前記樹脂液を接触させ、かつ前記レンズ基材と前記金型との間隔を制御することにより、前記樹脂液を前記レンズ基材と前記金型との間隙において中央部から周辺部に向け所定範囲まで押し広げる工程を備えた樹脂接合型レンズの製造方法。
It is a manufacturing method of the resin junction type lens according to claim 3,
While is matched with the optical center axis of the optical center axis of the mold surface lens substrate, by approximating the distance between the lens substrate and the mold, near the center and the resin liquid of the mold surface And controlling the distance between the lens base material and the mold surface to allow the resin liquid to flow in a predetermined range from the central part to the peripheral part in the gap between the lens base material and the mold surface. method for manufacturing a resin bonding type lens that includes a step of pushing up.
JP4636399A 1999-02-24 1999-02-24 Resin bonded optical element and manufacturing method thereof Expired - Fee Related JP4345123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4636399A JP4345123B2 (en) 1999-02-24 1999-02-24 Resin bonded optical element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4636399A JP4345123B2 (en) 1999-02-24 1999-02-24 Resin bonded optical element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000241608A JP2000241608A (en) 2000-09-08
JP4345123B2 true JP4345123B2 (en) 2009-10-14

Family

ID=12745082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4636399A Expired - Fee Related JP4345123B2 (en) 1999-02-24 1999-02-24 Resin bonded optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4345123B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597816A (en) * 2009-09-14 2012-07-18 珀莱特公司 Optical power switch (OPS)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140033A1 (en) 2003-12-31 2005-06-30 Essilor International Compagnie Generale D'optique Process for making a coated optical article free of visible fining lines
JP4632403B2 (en) * 2004-03-26 2011-02-16 大日本印刷株式会社 Antireflection film
JP5288442B2 (en) * 2008-01-17 2013-09-11 株式会社Ihiエアロスペース Shock-resistant optical seeker and its manufacturing method
CN101609201B (en) * 2009-07-10 2012-12-19 西可通信技术设备(河源)有限公司 High-pixel optical lens assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597816A (en) * 2009-09-14 2012-07-18 珀莱特公司 Optical power switch (OPS)
CN102597816B (en) * 2009-09-14 2015-04-22 珀莱特公司 Optical power switch (OPS)

Also Published As

Publication number Publication date
JP2000241608A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
US6530554B2 (en) Molding die for use with a sol-gel composition
US6753064B1 (en) Multi-layered coated substrate and method of production thereof
KR101020634B1 (en) Manufacturing method of lens having nanopattern
US20050093210A1 (en) Method for producing optical element having antireflection structure, and optical element having antireflection structure produced by the method
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
WO2005092588A1 (en) Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold
JP4739729B2 (en) Method for manufacturing member having antireflection structure
JP4345123B2 (en) Resin bonded optical element and manufacturing method thereof
WO2009069940A1 (en) Device and method for fabricating lens
JP2006308669A (en) Compound lens, method of manufacturing the compound lens, and optical apparatus with the compound lens
JPH0226843A (en) Mold for molding glass
JP2002228805A (en) Resin joined optical element, molding tool for the same and optical article
JPH11221774A (en) Precision grinding method of a spherical non-flat surface
TWI317321B (en)
JPH0243380A (en) Metallic mold for forming optical disk substrate and production thereof
KR100820349B1 (en) Method for manufacturing microlens array device
US6036873A (en) Process for generating precision polished non-plannar aspherical surfaces
JPH10231129A (en) Mold for press molding and glass molded product by the mold
EP0675790B1 (en) Replication of optically flat surfaces
JP2002326231A (en) Mold for optical element, optical element and master mold
JP2011213005A (en) Molding die, reproducing method for molding die, and manufacturing method for resin product
JP4171936B2 (en) Resin-molding mold for resin-bonded optical element and manufacturing method
JP2003266450A (en) Optical element and manufacturing method therefor
JP2612622B2 (en) Roll type stamper, method of manufacturing the same and forming roll
JP2003159717A (en) Method for manufacturing compound aspheric lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150724

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150724

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150724

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees