JP2006053220A - Member having antireflection part, molding die for the member and method of manufacturing the die - Google Patents

Member having antireflection part, molding die for the member and method of manufacturing the die Download PDF

Info

Publication number
JP2006053220A
JP2006053220A JP2004233167A JP2004233167A JP2006053220A JP 2006053220 A JP2006053220 A JP 2006053220A JP 2004233167 A JP2004233167 A JP 2004233167A JP 2004233167 A JP2004233167 A JP 2004233167A JP 2006053220 A JP2006053220 A JP 2006053220A
Authority
JP
Japan
Prior art keywords
mold
antireflection
curved surface
fine periodic
concavo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004233167A
Other languages
Japanese (ja)
Inventor
Satoshi Teramoto
諭 寺本
Atsushi Goto
篤史 後藤
Toshiaki Oimizu
利明 生水
Kazuhiro Hane
一博 羽根
Yoshiaki Kanamori
義明 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Olympus Corp
Original Assignee
Tohoku University NUC
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Olympus Corp filed Critical Tohoku University NUC
Priority to JP2004233167A priority Critical patent/JP2006053220A/en
Publication of JP2006053220A publication Critical patent/JP2006053220A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member having an antireflection part reducing the effects of the incident angle of light, the curvature and area of the surface of the member, etc., and making the antireflection effect of the entire curved face uniform. <P>SOLUTION: At least a part of a virtual curved face 12 forming the member 10 has an antireflection part 11 composed of a minute cyclic recess-and-projection structure formed at a pitch not longer than the wavelength of light to be prevented from being reflected. The center lines of the recesses and projections 11a and 11b forming the antireflection part are made to almost coincide with the vector of the normal of the curved face 12 obtained through the calculation in which the antireflection part 11 is assumed not to be present. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、レンズ表面の如き曲面に微細周期凹凸構造からなる反射防止部を形成した部材、その成形型及び該成形型の製造方法に関し、特に、前記曲面の全体における反射防止効果の均一化を図ることができ、部材表面の曲率が大きい場合や大面積の場合でも反射防止効果を全体的に有効に発揮することができる反射防止部を有する部材、その成形型及び該成形型の製造方法に関する。   The present invention relates to a member in which an antireflection portion having a fine periodic concavo-convex structure is formed on a curved surface such as a lens surface, a molding die thereof, and a method of manufacturing the molding die, and in particular, uniform antireflection effect over the entire curved surface. A member having an antireflection part capable of effectively exhibiting the antireflection effect as a whole even when the surface of the member has a large curvature or a large area, its mold, and production of the mold Regarding the method.

従来から、レンズ等の光学素子の表面における反射戻り光を減少させるため、該光学素子の表面にSub−Wavelength−Structure(SWS)と呼ばれる微細な凹凸構造からなる反射防止部を設けることが知られている。 Conventionally, in order to reduce reflected return light on the surface of an optical element such as a lens, it has been known to provide an antireflection portion having a fine concavo-convex structure called Sub-Wavelength-Structure (SWS) on the surface of the optical element. ing.

例えば、特開2003−43203では、目的とする光学素子の反転形状の成形面を成形型に形成し、次いで、成形面にエッチング速度傾斜材料からなる層を形成し、該傾斜材料層を、マスクを介してエッチングして前記成形面に多数の微細な凹凸部を略稠密状に形成し、この成形面上に光学素子となる原料を供給しプレス成形し、さらに原料を紫外線などで硬化させることで得られる光学素子、その成形型及び該光学素子の製造方法が提案されている。
特開2003−43203号公報(段落番号0012〜0026及び図1参照)
For example, in Japanese Patent Application Laid-Open No. 2003-43203, an inversion-shaped molding surface of a target optical element is formed on a molding die, and then a layer made of an etching rate gradient material is formed on the molding surface, and the gradient material layer is used as a mask. Etching to form a large number of fine irregularities on the molding surface, supplying a raw material to be an optical element on the molding surface, press molding, and further curing the raw material with ultraviolet rays or the like The optical element obtained by this, its shaping | molding die, and the manufacturing method of this optical element are proposed.
Japanese Patent Laying-Open No. 2003-43203 (see paragraph numbers 0012 to 0026 and FIG. 1)

しかし、上述した従来のSWS構造では、図8に示すように、該光学素子100の仮想曲面(SWS構造111が存在しないと仮定したときの曲面)112に、多数の微細な凹凸部111a,111bを全て鉛直方向に向かって突設した構成となっていた。このため、図9に示すように、凹凸部111a,111bに対する光線入射角θが大きくなるほど光線の反射率が高くなり、この結果、鉛直方向以外の方向から光線が入射された場合は、光学素子100の中心部から周辺部に近づくほど反射防止効果が低下してしまうという問題があった。   However, in the conventional SWS structure described above, as shown in FIG. 8, a large number of fine irregularities 111a and 111b are formed on a virtual curved surface (curved surface assuming that the SWS structure 111 does not exist) 112 of the optical element 100. All of them were configured to project in the vertical direction. For this reason, as shown in FIG. 9, as the light incident angle θ with respect to the concavo-convex portions 111a and 111b increases, the reflectance of the light increases, and as a result, when the light is incident from a direction other than the vertical direction, There is a problem in that the antireflection effect decreases as the distance from the central portion of 100 approaches the peripheral portion.

この結果、上述した従来技術では、光学素子の中心部と周辺部とで反射防止効果が不均一となり、光学素子の表面の曲率が小さい場合や大面積の場合は、反射防止効果を全体的に有効に発揮することができないという問題もあった。   As a result, in the above-described conventional technology, the antireflection effect is not uniform between the central portion and the peripheral portion of the optical element, and when the surface curvature of the optical element is small or large, the antireflection effect is generally improved. There was also a problem that it could not be used effectively.

本発明は上記問題点に鑑みてなされたものであり、光線入射角,部材表面の曲率及び面積等の影響を軽減し、前記曲面全体における反射防止効果の均一化を図ることができる反射防止部を有する部材、その成形型及び該成形型の製造方法の提供を目的とする。   The present invention has been made in view of the above problems, and it is possible to reduce the influence of the light incident angle, the curvature and area of the surface of the member, and to make the antireflection effect uniform over the entire curved surface. It aims at providing the member which has, its shaping | molding die, and the manufacturing method of this shaping | molding die.

上記目的を達成するために、本発明に係る反射防止部を有する部材は、部材を形成する現実又は仮想の曲面の少なくとも一部に、反射防止対象となる光線の波長以下のピッチで形成した微細周期凹凸構造からなる反射防止部を有し、該反射防止部を形成する個々の凹凸部の中心線を、前記反射防止部が存在しないと仮定したときの前記曲面の法線ベクトルとほぼ一致させた構成としてある。   In order to achieve the above object, a member having an antireflection portion according to the present invention is a fine material formed on at least a part of an actual or virtual curved surface forming a member with a pitch equal to or less than the wavelength of a light beam to be antireflection. An antireflection portion having a periodic concavo-convex structure is provided, and the center line of each concavo-convex portion forming the antireflection portion is made to substantially coincide with the normal vector of the curved surface when it is assumed that the antireflection portion does not exist. As a configuration.

好ましくは、前記反射防止部を形成する凹凸部のピッチを100〜400nmとした構成、前記部材の曲面を球面,非球面又は自由曲面とした構成、又は、前記部材を光学素子とした構成としてもよい。   Preferably, a configuration in which the pitch of the concavo-convex portions forming the antireflection portion is 100 to 400 nm, a configuration in which the curved surface of the member is a spherical surface, an aspherical surface, or a free curved surface, or a configuration in which the member is an optical element. Good.

また、上記目的を達成するために、本発明に係る成形型は、前記反射防止部を有する部材を製造するための成形型であって、型面を形成する現実又は仮想の曲面の少なくとも一部に、前記反射防止部を反転させた微細周期凹凸部を有し、該微細周期凹凸部を形成する個々の凹凸部の中心線を、前記微細周期凹凸部が存在しないと仮定したときの前記曲面の法線ベクトルとほぼ一致させた構成としてある。   In order to achieve the above object, a mold according to the present invention is a mold for manufacturing a member having the antireflection portion, and is at least a part of a real or virtual curved surface forming the mold surface. The curved surface when it is assumed that there is no fine periodic concavo-convex portion, and the center line of each of the concavo-convex portions forming the fine periodic concavo-convex portion has a fine periodic concavo-convex portion obtained by inverting the antireflection portion. The normal vector is substantially the same.

好ましくは、前記微細周期凹凸部を形成する凹凸部のピッチを100〜400nmとした構成、前記型面を形成する曲面を球面,非球面又は自由曲面とした構成、又は、前記成形型を光学素子の製造用とした構成とする。   Preferably, the pitch of the concave and convex portions forming the fine periodic concave and convex portions is 100 to 400 nm, the curved surface forming the mold surface is a spherical surface, an aspherical surface, or a free curved surface, or the mold is an optical element. It is set as the structure for manufacture of this.

さらに、上記目的を達成するために、本発明に係る成形型の製造方法は、前記成形型又は該成形型を製造するための鋳型の曲面に、前記微細周期凹凸部又はこれを反転させた微細周期凹凸部を、陽極酸化処理によって形成する工程を含む手順としてある。   Furthermore, in order to achieve the above-mentioned object, the manufacturing method of the molding die according to the present invention includes the fine periodic concavo-convex portion or a microscopic surface obtained by inverting this on the curved surface of the molding die or the mold for producing the molding die. This is a procedure including a step of forming the periodic irregularities by anodizing.

好ましくは、アルミニウムを陽極酸化処理することにより前記微細周期凹凸部又は該微細周期凹凸部を反転させた微細周期凹凸部を形成する工程を含む手順とするとともに、前記アルミニウムの純度を99%以上とし、又は、前記アルミニウムの表面粗さを50nm以下とする。より好ましくは、前記成形型又は鋳型となる基体に前記アルミニウムを成膜して陽極酸化するとともに、前記成形型又は鋳型となる基体に成膜した前記アルミニウムの膜厚を2μm以上とする。また、陽極酸化法により形成した前記微細周期凹凸部又はこれを反転させた微細周期凹凸部をNiメッキしてもよい。   Preferably, the procedure includes a step of forming the fine periodic concavo-convex part or the fine periodic concavo-convex part obtained by inverting the fine periodic concavo-convex part by anodizing aluminum, and the purity of the aluminum is 99% or more. Alternatively, the surface roughness of the aluminum is 50 nm or less. More preferably, the aluminum film is formed on the mold or mold base and anodized, and the film thickness of the aluminum film formed on the mold or mold base is 2 μm or more. Further, the fine periodic concavo-convex portion formed by the anodic oxidation method or the fine periodic concavo-convex portion obtained by inverting this may be plated with Ni.

本発明に係る反射防止部を有する部材によれば、該反射防止部を形成する個々の凹凸部を、それぞれ前記曲面(反射防止部が存在しないと仮定したときの曲面)の法線方向に向かってそれぞれ突出させたことにより、個々の凹凸部がそれぞれ前記曲面の曲率に応じた傾きをもつようになり、これが光線入射角,前記曲面の曲率及び面積等の影響を軽減し、前記曲面の中心部から周辺部にわたる全体の反射防止効果を均一化することができる。これにより、当該部材の表面の曲率が小さい場合や大面積の場合でも反射防止効果を全体的に有効に発揮することができる。   According to the member having the antireflection portion according to the present invention, each of the concavo-convex portions forming the antireflection portion is directed toward the normal direction of the curved surface (the curved surface when it is assumed that there is no antireflection portion). Each of the protrusions and protrusions has an inclination corresponding to the curvature of the curved surface, which reduces the influence of the light incident angle, the curvature and area of the curved surface, and the center of the curved surface. The overall antireflection effect from the part to the peripheral part can be made uniform. Thereby, even when the curvature of the surface of the member is small or large, the antireflection effect can be effectively exhibited as a whole.

また、本発明に係る反射防止部を有する成形型によれば、微細周期凹凸部の形状を成形材料に転写することで、上述した反射防止効果の均一な反射防止部を有する部材を安価且つ大量に製造することができる。   Further, according to the molding die having the antireflection portion according to the present invention, the shape of the fine periodic unevenness portion is transferred to the molding material, so that the above-described member having the antireflection portion having the uniform antireflection effect can be manufactured at low cost and in large quantities. Can be manufactured.

さらに、本発明に係る反射防止部を有する成形型の製造方法によれば、前記成形型又は該成形型の製造に用いる鋳型の曲面に、陽極酸化処理によって微細周期凹凸部を形成しているので、該微細周期凹凸部を構成する個々の凹凸部を、前記曲面の法線ベクトルの方向に向かせることができ、特に、前記曲面が広い面積であっても一様なピッチで該微細周期凹凸部を形成することができる。   Furthermore, according to the method for manufacturing a mold having an antireflection portion according to the present invention, the fine periodic unevenness is formed by anodizing on the curved surface of the mold or the mold used for manufacturing the mold. The individual irregularities constituting the fine periodic irregularities can be directed in the direction of the normal vector of the curved surface, and in particular, even if the curved surface has a large area, the fine periodic irregularities are uniform. The part can be formed.

以下、本発明の一実施形態に係る反射防止部を有する部材、その成形型及び該成形型の製造方法について図面を参照しつつ説明する。まず、本発明の一実施形態に係る反射防止部を有する部材について、図1を参照しつつ説明する。図1は本実施形態に係る反射防止部を有する部材(光学素子)を示す側面図である。   Hereinafter, a member having an antireflection portion according to an embodiment of the present invention, a molding die thereof, and a manufacturing method of the molding die will be described with reference to the drawings. First, a member having an antireflection portion according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a side view showing a member (optical element) having an antireflection portion according to this embodiment.

同図において、光学素子(反射防止部を有する部材)10は両凸レンズであり、一方の凸面に反射防止部11を有している。該反射防止部11は、反射防止対象となる光線の波長以下のピッチで形成した多数の微細周期凹凸構造からなり、該反射防止部11を形成する個々の凹凸部11a,11bの中心線(図1中の拡大図における鎖線参照)を、該反射防止部11が存在しないと仮定したときの仮想曲面12の法線ベクトル(図1中の拡大図における前記鎖線参照)とほぼ一致させてある。   In the figure, an optical element (a member having an antireflection portion) 10 is a biconvex lens, and has an antireflection portion 11 on one convex surface. The antireflection portion 11 is composed of a large number of fine periodic concavo-convex structures formed at a pitch equal to or less than the wavelength of the light beam to be antireflective, and the center lines of the individual concavo-convex portions 11a and 11b forming the antireflection portion 11 (see FIG. 1 is substantially matched with the normal vector of the virtual curved surface 12 (see the chain line in the enlarged view in FIG. 1) when it is assumed that the antireflection portion 11 does not exist.

このように、個々の凹凸部11a,11bの中心線を、該反射防止部11が存在しないと仮定したときの仮想曲面12の法線ベクトルと一致させたことにより、個々の凹凸部11a,11bの中心線は、それぞれ仮想曲面12の一点を通り、その点における接平面に直交している。すなわち、個々の凹凸部11a,11bは、それぞれが概念的に接する仮想曲面12に対してほぼ90°の方向を向いている。   As described above, the center lines of the individual concavo-convex portions 11a and 11b are made to coincide with the normal vector of the virtual curved surface 12 when it is assumed that the antireflection portion 11 does not exist. The center lines pass through one point of the virtual curved surface 12 and are orthogonal to the tangent plane at that point. That is, each uneven | corrugated | grooved part 11a, 11b has faced the direction of about 90 degrees with respect to the virtual curved surface 12 which each contact | connects conceptually.

反射防止部11を形成する個々の凹凸部11a,11bは、それぞれがバラツキなく仮想曲面12に対してほぼ90°の方向を向いていることが望ましいが、型から部品を剥離する工程において、個々の凹凸形状には少なからずの撓みが発生し、剥離完了後に完全に復元しない場合を考慮すると、±5°程度の誤差は許容される。また、凸部11bの形状は、例えば、円錐,四角錐,三角錐等の錐体形状とし、反射防止効果が得られるならば、これら以外の釣り鐘状等の形状とすることもできる。   It is desirable that each of the uneven portions 11a and 11b forming the antireflection portion 11 is oriented substantially at 90 ° with respect to the virtual curved surface 12 without variation. In consideration of the case where the concavo-convex shape of the film is not bent and is not completely restored after the peeling is completed, an error of about ± 5 ° is allowed. Moreover, the shape of the convex part 11b can be made into cone shapes, such as a cone, a quadrangular pyramid, and a triangular pyramid, for example, and if it is possible to obtain an antireflection effect, it can also be made into a bell-like shape other than these.

さらに、本実施形態では、反射防止部11を形成する凹凸部11a,11bのピッチを可視光線の領域以下の100〜400nmとしてある。これにより、反射防止部11が可視光線を確実に透過して顕著な反射防止効果を奏することができる。これに加えて、光学素子10の仮想曲面12は、通常、レンズ面を形成する球面,非球面又は自由曲面のいずれでもよい。   Furthermore, in this embodiment, the pitch of the concavo-convex portions 11a and 11b forming the antireflection portion 11 is set to 100 to 400 nm below the visible light region. Thereby, the anti-reflective part 11 can permeate | transmit visible light reliably, and there exists a remarkable anti-reflective effect. In addition to this, the virtual curved surface 12 of the optical element 10 may normally be any of a spherical surface, an aspherical surface, and a free curved surface forming a lens surface.

このような本実施形態に係る光学素子10によれば、反射防止部11を形成する個々の凹凸部11a,11bが、それぞれが接している仮想曲面12の法線方向を向いているので、個々の凹凸部11a,11bがそれぞれ仮想曲面12の曲率に応じた傾きをもつようになり、これが光線入射角θ(図8,9参照),仮想曲面12の曲率及び面積等の影響を軽減し、仮想曲面12の中心部から周辺部にわたる全体の反射防止効果を均一化することができる。これにより、当該光学素子10のレンズ面の曲率が小さい場合や大面積の場合でも反射防止効果を全体的に有効に発揮することができる。   According to such an optical element 10 according to the present embodiment, the individual concavo-convex portions 11a and 11b that form the antireflection portion 11 face the normal direction of the virtual curved surface 12 that is in contact with each other. Of the concavo-convex portions 11a and 11b each have an inclination corresponding to the curvature of the virtual curved surface 12, which reduces the influence of the light incident angle θ (see FIGS. 8 and 9), the curvature and area of the virtual curved surface 12, and the like. The entire antireflection effect from the central part to the peripheral part of the virtual curved surface 12 can be made uniform. Thereby, even when the curvature of the lens surface of the optical element 10 is small or large, the antireflection effect can be effectively exhibited as a whole.

なお、上述した本実施形態では、反射防止部11を有する光学素子10の場合について説明したが、本発明の対象となる部材は、レンズや光学的な表示部等の光学素子に限定されるものではなく、例えば、光学素子を支持するための枠体など、光学素子以外の反射防止が必要な種々の部品又は完成品が対象となる。   In addition, although this embodiment mentioned above demonstrated the case of the optical element 10 which has the reflection preventing part 11, the member used as the object of this invention is limited to optical elements, such as a lens and an optical display part. Instead, for example, various parts or finished products other than the optical element that require antireflection, such as a frame for supporting the optical element, are targeted.

次に、本発明に係る反射防止部を有する部材を製造するための成形型の実施形態について、図面を参照しつつ説明する。本実施形態に係る成形型は、紫外線硬化型樹脂の注型成形により両凸レンズを製造する場合のものであり、上型と下型それぞれが前記両凸レンズの両方のレンズ面に反射防止部を形成するようにしてある。   Next, an embodiment of a mold for manufacturing a member having an antireflection portion according to the present invention will be described with reference to the drawings. The mold according to the present embodiment is a case where a biconvex lens is manufactured by cast molding of an ultraviolet curable resin, and each of the upper mold and the lower mold forms an antireflection portion on both lens surfaces of the biconvex lens. It is supposed to be.

図2(a)〜(e)は本実施形態に係る成形型(上型)であるNi型の製造工程を示す説明図である。また、図3(a)〜(e)は本実施形態に係る成形型(下型)であるガラス型の製造工程を示す説明図である。   FIGS. 2A to 2E are explanatory views showing a manufacturing process of a Ni mold which is a mold (upper mold) according to the present embodiment. FIGS. 3A to 3E are explanatory views showing a manufacturing process of a glass mold which is a mold (lower mold) according to this embodiment.

図2(e)において、上型であるNi(ニッケル)型30は、前記光学素子(両凸レンズ)の一方のレンズ面及び反射防止部を形成するためのものであり、その型面に多数の微細周期凹凸部31を有している。該微細周期凹凸部31を形成する個々の凹凸部の中心線は、該微細周期凹凸部31が存在しないと仮定したときの仮想曲面(同図(d)に示す該Ni型30が未だNi基体300であったときの現実の曲面310参照)の法線ベクトルとほぼ一致させてある。これにより、上述した光学素子10(図1参照)と同様の作用効果を奏する反射防止部を型成形することができる。なお、該Ni型30の微細周期凹凸部31も、可視光線反射の観点から凹凸部のピッチを100〜400nmとしてある。   In FIG. 2 (e), an Ni (nickel) mold 30 which is an upper mold is for forming one lens surface and an antireflection portion of the optical element (biconvex lens), and a large number of mold surfaces are formed on the mold surface. A fine periodic uneven portion 31 is provided. The center line of each uneven portion forming the fine periodic uneven portion 31 is an imaginary curved surface when the fine periodic uneven portion 31 does not exist (the Ni mold 30 shown in FIG. The normal vector of the actual curved surface 310 when it is 300 is substantially matched. Thereby, the anti-reflective part which has an effect similar to the optical element 10 (refer FIG. 1) mentioned above can be shape-molded. In addition, the fine periodic uneven | corrugated | grooved part 31 of this Ni type | mold 30 is also 100-400 nm in the pitch of an uneven | corrugated | grooved part from a viewpoint of visible light reflection.

図3(d)において、下型であるガラス型40は、前記光学素子(両凸レンズ)の他方のレンズ面及び反射防止部を形成するためのものであり、その型面に上述したNi型30と同一の多数の微細周期凹凸部43を有している。   In FIG. 3D, a glass mold 40 which is a lower mold is for forming the other lens surface and antireflection portion of the optical element (biconvex lens), and the Ni mold 30 described above is formed on the mold surface. And a plurality of fine periodic concavo-convex portions 43 which are the same as those in FIG.

このような本実施形態に係るNi型30,ガラス型40によれば、微細周期凹凸部31又は43の形状を成形材料に転写することで、上述したような反射防止効果の均一な反射防止部を有する光学素子を安価且つ大量に製造することができる。   According to the Ni mold 30 and the glass mold 40 according to this embodiment as described above, the shape of the fine periodic concavo-convex portion 31 or 43 is transferred to the molding material, so that the antireflection portion having the uniform antireflection effect as described above is obtained. It is possible to manufacture an optical element having a large amount at a low cost.

なお、上述したように、本発明に係る反射防止部を有する部材が光学素子に限定されないことより、本発明に係る成形型も、光学素子以外の部材に適用することが可能である。   As described above, since the member having the antireflection portion according to the present invention is not limited to the optical element, the molding die according to the present invention can also be applied to members other than the optical element.

次に、本発明に係る成形型の製造方法の実施形態について、図2〜図3を参照しつつ説明する。まず、上述したNi型30の製造方法について図2(a)〜(e)を参照しつつ説明する。   Next, an embodiment of a method for manufacturing a mold according to the present invention will be described with reference to FIGS. First, the manufacturing method of the Ni mold 30 described above will be described with reference to FIGS.

図2(a)において、200は、Ni型30に微細周期凹凸部31を形成するための鋳型20となるAl(アルミニウム)基体である。該Al基体200を陽極(+極)として電解浴中で陽極酸化処理を行うと、Al基体200の曲面210に、図2(b)に示すような微細で周期的な多数の凹凸部220a,220bからなるポーラス層220が形成される。   In FIG. 2A, reference numeral 200 denotes an Al (aluminum) substrate that serves as the mold 20 for forming the fine periodic concavo-convex portion 31 in the Ni mold 30. When anodizing is performed in an electrolytic bath using the Al base 200 as an anode (+ electrode), a large number of fine and periodic uneven portions 220a, as shown in FIG. A porous layer 220 made of 220b is formed.

個々の凹凸部220a,220bの中心線は、該凹凸部220a,220bが存在しないと仮定したときの曲面210の法線ベクトルとほぼ一致してしており(同図(b)拡大図中の鎖線参照)、個々の凹凸部220a,220bは、曲面210に対してほぼ90°の方向を向いている。   The center lines of the individual concavo-convex portions 220a and 220b substantially coincide with the normal vector of the curved surface 210 when it is assumed that the concavo-convex portions 220a and 220b do not exist (FIG. The individual concavo-convex portions 220 a and 220 b are oriented in the direction of approximately 90 ° with respect to the curved surface 210.

次いで、図2(c)に示すように、Al基体200のポーラス層220を構成する凹凸部220a,220bを湿式又は乾式エッチングすることによって錐体状の凹凸部22a,22bに整形すると、微細周期凹凸部22を有する鋳型20が完成する。   Next, as shown in FIG. 2C, when the concave and convex portions 220a and 220b constituting the porous layer 220 of the Al base 200 are shaped into cone-shaped concave and convex portions 22a and 22b by wet or dry etching, a fine period is obtained. The mold 20 having the uneven portion 22 is completed.

その後、図2(d)に示すように、上述した鋳型20の微細周期凹凸部22に、Ni型30となるNi基体300が得られるまで電鋳によりNiを析出積層させる。これにより、該Ni基体300の曲面310上には、鋳型20の微細周期凹凸部22を精度よく反転させた形状の微細周期凹凸部31が形成される。最後に、Al溶解処理によって鋳型20を除去することにより、図2(e)に示すNi型30が完成する。   Thereafter, as shown in FIG. 2 (d), Ni is deposited and laminated on the fine periodic concavo-convex portion 22 of the above-described mold 20 by electroforming until a Ni base 300 to be the Ni mold 30 is obtained. Thereby, on the curved surface 310 of the Ni substrate 300, the fine periodic concavo-convex portion 31 having a shape obtained by accurately inverting the fine periodic concavo-convex portion 22 of the mold 20 is formed. Finally, the Ni mold 30 shown in FIG. 2E is completed by removing the mold 20 by Al dissolution treatment.

次に、上述したガラス型40の製造方法について、図3(a)〜(e)を参照しつつ説明する。上述したように、図3(a)〜(e)はガラス型40の製造工程を示すものである。   Next, the manufacturing method of the glass mold 40 mentioned above is demonstrated, referring FIG. 3 (a)-(e). As described above, FIGS. 3A to 3E show the manufacturing process of the glass mold 40.

図3(a)において、400は、ガラス型40となるガラス基体であり、型面のベースを形成する曲面410を有している。まず、図3(b)に示すように、ガラス基体400の曲面410に、スパッタリングや真空蒸着などの物理蒸着によってAl膜420を成膜する。   In FIG. 3A, reference numeral 400 denotes a glass substrate that becomes the glass mold 40, and has a curved surface 410 that forms the base of the mold surface. First, as shown in FIG. 3B, an Al film 420 is formed on the curved surface 410 of the glass substrate 400 by physical vapor deposition such as sputtering or vacuum vapor deposition.

ここで、本実施形態では、Al膜420を形成するアルミニウムの純度を99%以上とするとともに、成膜した該アルミニウムの表面粗さを約50nm以下としている。これにより、後述する陽極酸化処理により形成される微細周期凹凸部43の個々の凹凸部43a,43bの均一性の向上を図ることができる。   Here, in this embodiment, the purity of aluminum forming the Al film 420 is 99% or more, and the surface roughness of the formed aluminum is about 50 nm or less. Thereby, the uniformity of each uneven part 43a, 43b of the fine periodic uneven part 43 formed by the anodizing process mentioned later can be aimed at.

また、図3(b)のようにAl膜420を成膜する場合は、好ましくは、約2μm以上の膜厚を確保すべきである。仮に、Al膜420の膜厚を約2μm未満とした場合は、後述する陽極酸化処理において、成膜したアルミニウムが全て溶けてしまい、ガラス基体400が露出してしまうからである。   Further, when the Al film 420 is formed as shown in FIG. 3B, it is preferable to secure a film thickness of about 2 μm or more. If the film thickness of the Al film 420 is less than about 2 μm, all of the deposited aluminum is melted and the glass substrate 400 is exposed in an anodic oxidation process described later.

次いで、Al膜420を成膜したガラス基体400を陽極として電解浴中で陽極酸化処理を行うと、図3(c)に示すように、微細で周期的な多数の凹凸部430a,430bからなるポーラス層430が形成される。   Next, when anodizing is performed in an electrolytic bath using the glass substrate 400 on which the Al film 420 is formed as an anode, as shown in FIG. 3 (c), a plurality of fine and periodic concavo-convex portions 430a and 430b are formed. A porous layer 430 is formed.

個々の凹凸部430a,430bの中心線は、該凹凸部430a,430bが存在しないと仮定したときの曲面410の法線ベクトルとほぼ一致してしており(同図(c)拡大図中の鎖線参照)、個々の凹凸部430a,430bは、曲面410に対してほぼ90°の方向を向いている。   The center lines of the individual concavo-convex portions 430a and 430b substantially coincide with the normal vector of the curved surface 410 when the concavo-convex portions 430a and 430b are assumed not to exist ((c) in the enlarged view). The individual concavo-convex portions 430 a and 430 b are oriented in a direction of approximately 90 ° with respect to the curved surface 410.

その後、図3(d)に示すように、ガラス基体400のポーラス層430を構成する凹凸部430a,430bを、湿式又は乾式エッチングすることによって錐体状の凹凸部43a,43bを形成する。さらに、この状態においてエッチングを継続すると、図3(e)に示すように、ガラス基体400の曲面410に微細凹凸形状が形成される。そして、残存したAl層を溶解等の手段で除去することにより、微細周期凹凸部43を有するガラス型40が完成する。また、図示しないが、Al膜420の微細周期凹凸部43をNiメッキすることによって、成形型としての強度及び耐久性の向上を図ることができる。   Thereafter, as shown in FIG. 3D, the concave and convex portions 430a and 430b constituting the porous layer 430 of the glass substrate 400 are wet or dry etched to form cone-shaped concave and convex portions 43a and 43b. Further, when the etching is continued in this state, a fine uneven shape is formed on the curved surface 410 of the glass substrate 400 as shown in FIG. Then, the remaining Al layer is removed by means such as melting, whereby the glass mold 40 having the fine periodic concavo-convex portions 43 is completed. Moreover, although not shown, the strength and durability of the mold can be improved by Ni-plating the fine periodic uneven portion 43 of the Al film 420.

このような本実施形態のNi型30及びガラス型40の製造方法によれば、成形型の基体又は成形型の製造に用いる鋳型の基体200,400の曲面210,410に、陽極酸化処理によって微細周期凹凸部22,43を形成しているので、該微細周期凹凸部22,43を構成する個々の凹凸部22a,22b又は43a,43bを、曲面210,410の法線ベクトルの方向に向かせることができ、特に、曲面210,410が広い面積であっても一様なピッチで該微細周期凹凸部22,43を形成することができる。   According to the method for manufacturing the Ni mold 30 and the glass mold 40 of the present embodiment, the surface of the mold base 200 or the curved surfaces 210 and 410 of the mold base 200 and 400 used for manufacturing the mold are finely processed by anodization. Since the periodic uneven portions 22 and 43 are formed, the individual uneven portions 22a and 22b or 43a and 43b constituting the fine periodic uneven portions 22 and 43 are directed in the direction of the normal vector of the curved surfaces 210 and 410. In particular, even when the curved surfaces 210 and 410 have a large area, the fine periodic uneven portions 22 and 43 can be formed at a uniform pitch.

次に、上述した本実施形態のNi型30及びガラス型40を用いた光学素子の製造方法について、図4(a),(b)及び図5(a),(b)を参照しつつ説明する。図4(a),(b)はNi型30及びガラス型40への樹脂材料の供給工程を示す説明図、図5(a)は樹脂材料の硬化工程,図5(b)は離型工程を示す説明図である。   Next, a method for manufacturing an optical element using the Ni mold 30 and the glass mold 40 of the present embodiment described above will be described with reference to FIGS. 4 (a) and 4 (b) and FIGS. 5 (a) and 5 (b). To do. 4 (a) and 4 (b) are explanatory diagrams showing a resin material supply process to the Ni mold 30 and the glass mold 40, FIG. 5 (a) is a resin material curing process, and FIG. 5 (b) is a mold release process. It is explanatory drawing which shows.

図4(a)おいて、Ni型30を上型、ガラス型40を下型として配置し、両成形型30,40を相対接近させて、図4(b)に示すような、微細周期凹凸部31,43に囲まれたキャビティを形成する。そして、図示しない樹脂材料供給装置に接続したシリンジ50によって紫外線硬化樹脂700(図5(a)参照)を前記キャビティ内に充填する。   In FIG. 4 (a), the Ni mold 30 is arranged as the upper mold, the glass mold 40 is arranged as the lower mold, and the two molds 30 and 40 are moved relatively close to each other so that the fine periodic irregularities as shown in FIG. A cavity surrounded by the portions 31 and 43 is formed. And the ultraviolet curable resin 700 (refer FIG. 5A) is filled in the said cavity with the syringe 50 connected to the resin material supply apparatus which is not shown in figure.

次いで、図5(a)に示すように、ガラス型40を介して、紫外線照射装置60により紫外線を照射して前記キャビティ内の紫外線硬化樹脂700を硬化させる。その後、図5(b)に示すように、Ni型30及びガラス型40を離型して、成形品たる光学素子(両凸レンズ)70を取り出す。該光学素子70は、その光学面に微細周期凹凸部31,43の反転形状である反射防止部71,72を有し、これら反射防止部71,72を形成する個々の凹凸部は、それぞれが概念的に接する仮想曲面(図示せず)の法線方向を向いている(図1の拡大図参照)。   Next, as illustrated in FIG. 5A, the ultraviolet curable resin 700 in the cavity is cured by irradiating the ultraviolet rays with the ultraviolet irradiation device 60 through the glass mold 40. Thereafter, as shown in FIG. 5B, the Ni mold 30 and the glass mold 40 are released, and the optical element (biconvex lens) 70 as a molded product is taken out. The optical element 70 has antireflection portions 71 and 72 that are inverted shapes of the fine periodic concavo-convex portions 31 and 43 on the optical surface, and the individual concavo-convex portions that form the antireflection portions 71 and 72 are respectively It faces the normal direction of a virtual curved surface (not shown) that conceptually touches (see the enlarged view of FIG. 1).

ここで、これら反射防止部71,72の個々の凹凸部が仮想曲面(図示せず)の法線方向を向いているため、図5(b)における離型にはアンダカットを考慮する必要がある。そこで、例えば、Ni型30を図6に示すような分割型30A,30B,30C,30D,30Eに五分割し、図面に付した「1」〜「5」の順番で、分割型30Aを垂直方向にスライドさせた後、分割型30B,30C,30D,30Eを、反射防止部71,72の個々の凹凸部の向きである前記仮想曲面の法線方向にスライドさせることにより、スムーズに離型することができる。   Here, since each uneven part of these anti-reflective parts 71 and 72 faces the normal line direction of a virtual curved surface (not shown), it is necessary to consider an undercut in the mold release in FIG. is there. Therefore, for example, the Ni mold 30 is divided into five divided molds 30A, 30B, 30C, 30D, and 30E as shown in FIG. 6, and the divided mold 30A is vertically arranged in the order of “1” to “5” attached to the drawing. After sliding in the direction, the molds 30B, 30C, 30D, and 30E are smoothly released by sliding in the normal direction of the virtual curved surface, which is the direction of the individual uneven portions of the antireflection portions 71 and 72. can do.

さらに、図7(a)〜(c)に示すように、成形品たる光学素子80が凹レンズのような場合は、例えば、Ni型30を同図(a)に示すような分割型30A,30B,30C,30D,30Eに五分割し、図面に付した「1」〜「5」の順番で、分割型30Aを垂直方向にスライドさせた後、分割型30B,30C,30D,30Eを、反射防止部81の個々の凹凸部の向きである仮想曲面の法線方向(同図(b),(c)中の「1」〜「5」の番号を付した矢印方向)にスライドさせることにより、スムーズに離型することができる。   Furthermore, as shown in FIGS. 7A to 7C, when the optical element 80 as a molded product is a concave lens, for example, the Ni mold 30 is divided into divided molds 30A and 30B as shown in FIG. , 30C, 30D, and 30E, and the divided mold 30A is slid vertically in the order of "1" to "5" attached to the drawing, and then the divided molds 30B, 30C, 30D, and 30E are reflected. By sliding in the normal direction of the virtual curved surface which is the direction of the individual concavo-convex portions of the prevention portion 81 (the arrow direction with the numbers “1” to “5” in FIGS. 5B and 5C) Can be released smoothly.

なお、図6及び図7いずれの場合も、分割型30Aを最初にスライドさせることは必須であるが、分割型30B,30C,30D,30Eは、全て同時又は図面に付した「2」〜「5」とは異なる順序でスライドさせてもかまわない。また、Ni型30に限らず、ガラス型40の場合も上記と同様である。また、アンダカットが多少の場合は成形型を分割することなく垂直に離型することが可能な場合もある。   6 and 7, it is essential to slide the split mold 30A first, but the split molds 30B, 30C, 30D, and 30E are all the same or “2” to “ It may be slid in an order different from “5”. Further, not only the Ni mold 30 but also the glass mold 40 is the same as described above. Moreover, when there is some undercut, it may be possible to release the mold vertically without dividing the mold.

本発明の一実施形態に係る反射防止部を有する部材(光学素子)を示す側面図である。It is a side view which shows the member (optical element) which has the reflection preventing part which concerns on one Embodiment of this invention. 同図(a)〜(e)は本実施形態に係る成形型(上型)であるNi型の製造工程を示す説明図である。FIGS. 4A to 4E are explanatory views showing a manufacturing process of a Ni mold that is a mold (upper mold) according to the present embodiment. 同図(a)〜(e)は本実施形態に係る成形型(下型)であるガラス型の製造工程を示す説明図である。The same figure (a)-(e) is explanatory drawing which shows the manufacturing process of the glass type | mold which is a shaping | molding die (lower mold | type) which concerns on this embodiment. 同図(a),(b)は上記Ni型及びガラス型を用いた光学素子の製造方法における成形型への樹脂材料供給工程を示す説明図である。(A), (b) is an explanatory view showing a resin material supplying step to a mold in the method of manufacturing an optical element using the Ni mold and the glass mold. 同じく上記Ni型及びガラス型を用いた光学素子の製造方法を示すものであり、同図(a)は樹脂材料の硬化工程,同図(b)は離型工程を示す説明図である。Similarly, the manufacturing method of the optical element using the said Ni type | mold and a glass type | mold is shown, The figure (a) is a hardening process of a resin material, The figure (b) is explanatory drawing which shows a mold release process. 上記Ni型の分割型とその離型の順序を示す説明図である。It is explanatory drawing which shows the order of the said Ni type | mold division | segmentation type | mold and its mold release. 同じく上記Ni型の分割型とその離型の順序を示す説明図であり、同図(a)は平面図,同図(b)は同図(a)のA−A線矢視図,同図(c)は同図(a)のB−B線矢視図である。It is explanatory drawing which similarly shows the order of the said Ni type | mold division | segmentation type | mold and its mold release, The figure (a) is a top view, The figure (b) is the AA arrow directional view of the figure (a), the figure. Fig. (C) is a view taken along line BB in Fig. (A). 従来の反射防止部(SWS構造)を有する光学素子を示す側面図である。It is a side view which shows the optical element which has the conventional antireflection part (SWS structure). 従来の反射防止部(SWS構造)の光線入射角θと反射率の関係を示すグラフである。It is a graph which shows the relationship between the light beam incident angle (theta) and the reflectance of the conventional antireflection part (SWS structure).

符号の説明Explanation of symbols

10 光学素子(反射防止部を有する部材)
11 反射防止部(微細周期凹凸構造)
11a,11b 凹凸部
12 曲面
20 鋳型
22 微細周期凹凸部
22a,22b 凹凸部
30 Ni型(成形型)
31 微細周期凹凸部
40 ガラス型(成形型)
43 微細周期凹凸部
43a,43b 凹凸部
50 シリンジ
60 紫外線照射装置
70 光学素子(反射防止部を有する部材)
71,72 反射防止部(微細周期凹凸構造)

10 Optical element (member having antireflection part)
11 Anti-reflective part (fine periodic uneven structure)
11a, 11b Uneven portion 12 Curved surface 20 Mold 22 Fine periodic uneven portion 22a, 22b Uneven portion 30 Ni type (molding die)
31 Fine periodic irregularities 40 Glass mold (molding mold)
43 fine period uneven part 43a, 43b uneven part 50 syringe 60 ultraviolet irradiation device 70 optical element (member having antireflection part)
71, 72 Anti-reflective part (fine periodic uneven structure)

Claims (15)

部材を形成する現実又は仮想の曲面の少なくとも一部に、反射防止対象となる光線の波長以下のピッチで形成した微細周期凹凸構造からなる反射防止部を有し、該反射防止部を形成する個々の凹凸部の中心線を、前記反射防止部が存在しないと仮定したときの前記曲面の法線ベクトルとほぼ一致させたことを特徴とする反射防止部を有する部材。   Each of the antireflection portions having a fine periodic uneven structure formed at a pitch equal to or less than the wavelength of the light ray to be antireflective is formed on at least a part of the actual or virtual curved surface forming the member. A member having an antireflection portion, characterized in that a center line of the concavo-convex portion substantially coincides with a normal vector of the curved surface when it is assumed that the antireflection portion does not exist. 前記反射防止部を形成する凹凸部のピッチを100〜400nmとしたことを特徴とする請求項1記載の反射防止部を有する部材。   2. The member having an antireflection part according to claim 1, wherein the pitch of the concavo-convex parts forming the antireflection part is 100 to 400 nm. 前記部材の曲面を球面,非球面又は自由曲面としたことを特徴とする請求項1又は2記載の反射防止部を有する部材。   3. The member having an antireflection portion according to claim 1, wherein the curved surface of the member is a spherical surface, an aspherical surface, or a free curved surface. 前記部材を光学素子としたことを特徴とする請求項1,2又は3記載の反射防止部を有する部材。   4. The member having an antireflection portion according to claim 1, wherein the member is an optical element. 請求項1,2,3又は4記載の反射防止部を有する部材を製造するための成形型であって、型面を形成する現実又は仮想の曲面の少なくとも一部に、前記反射防止部を反転させた微細周期凹凸部を有し、該微細周期凹凸部を形成する個々の凹凸部の中心線を、前記微細周期凹凸部が存在しないと仮定したときの前記曲面の法線ベクトルとほぼ一致させたことを特徴とする成形型。   A mold for producing a member having an antireflection part according to claim 1, 2, 3, or 4, wherein the antireflection part is inverted at least in part of a real or virtual curved surface forming a mold surface. And the center line of each of the irregularities forming the fine periodic irregularities is substantially matched with the normal vector of the curved surface when the fine periodic irregularities are not present. A mold characterized by that. 前記微細周期凹凸部を形成する凹凸部のピッチを100〜400nmとしたことを特徴とする請求項5記載の成形型。   6. The mold according to claim 5, wherein a pitch of the uneven portions forming the fine periodic uneven portions is set to 100 to 400 nm. 前記型面を形成する曲面を球面,非球面又は自由曲面としたことを特徴とする請求項5又は6記載の成形型。   7. The mold according to claim 5, wherein the curved surface forming the mold surface is a spherical surface, an aspherical surface, or a free curved surface. 前記成形型を光学素子の製造用としたことを特徴とする請求項5,6又は7記載の成形型。   8. The mold according to claim 5, 6 or 7, wherein the mold is used for manufacturing an optical element. 請求項5,6,7又は8記載の成形型を製造するための方法であって、前記成形型又は該成形型を製造するための鋳型の曲面に、前記微細周期凹凸部又はこれを反転させた微細周期凹凸部を、陽極酸化処理によって形成する工程を含むことを特徴とする成形型の製造方法。   9. A method for producing a mold according to claim 5, 6, 7 or 8, wherein the fine periodic concavo-convex portion or the same is inverted on the curved surface of the mold or the mold for producing the mold. The manufacturing method of the shaping | molding die characterized by including the process of forming the fine periodic uneven | corrugated | grooved part by an anodizing process. アルミニウムを陽極酸化処理することにより前記微細周期凹凸部又は該微細周期凹凸部を反転させた微細周期凹凸部を形成する工程を含むことを特徴とする請求項9記載の成形型の製造方法。   The method for producing a mold according to claim 9, further comprising a step of forming the fine periodic concavo-convex part or the fine periodic concavo-convex part obtained by inverting the fine periodic concavo-convex part by anodizing aluminum. 前記アルミニウムの純度を99%以上としたことを特徴とする請求項10記載の成形型の製造方法。   The method for producing a mold according to claim 10, wherein the purity of the aluminum is 99% or more. 前記アルミニウムの表面粗さを50nm以下としたことを特徴とする請求項10又は11記載の成形型の製造方法。   The method for producing a mold according to claim 10 or 11, wherein the surface roughness of the aluminum is 50 nm or less. 前記成形型又は鋳型となる基体に前記アルミニウムを成膜して陽極酸化することを特徴とする請求項10,11又は12記載の成形型の製造方法。   13. The method for producing a molding die according to claim 10, 11 or 12, wherein the aluminum is formed into a film on the base to be the molding die or the mold and anodized. 前記成形型又は鋳型となる基体に成膜した前記アルミニウムの膜厚を2μm以上としたことを特徴とする請求項13記載の成形型の製造方法。   14. The method for manufacturing a mold according to claim 13, wherein the film thickness of the aluminum film formed on the substrate serving as the mold or the mold is 2 μm or more. 陽極酸化法により形成した前記微細周期凹凸部又はこれを反転させた微細周期凹凸部をNiメッキすることを特徴とする請求項9,10,11,12,13又は14記載の成形型の製造方法。

15. The method for producing a mold according to claim 9, 10, 11, 12, 13, or 14, wherein the fine periodic irregularities formed by anodizing or the fine periodic irregularities obtained by inverting the fine periodic irregularities are plated with Ni. .

JP2004233167A 2004-08-10 2004-08-10 Member having antireflection part, molding die for the member and method of manufacturing the die Pending JP2006053220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233167A JP2006053220A (en) 2004-08-10 2004-08-10 Member having antireflection part, molding die for the member and method of manufacturing the die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233167A JP2006053220A (en) 2004-08-10 2004-08-10 Member having antireflection part, molding die for the member and method of manufacturing the die

Publications (1)

Publication Number Publication Date
JP2006053220A true JP2006053220A (en) 2006-02-23

Family

ID=36030759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233167A Pending JP2006053220A (en) 2004-08-10 2004-08-10 Member having antireflection part, molding die for the member and method of manufacturing the die

Country Status (1)

Country Link
JP (1) JP2006053220A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148718A1 (en) * 2006-06-21 2007-12-27 Panasonic Corporation Optical member, and optical system, optical unit and optical device provided with the optical member
JP2008037089A (en) * 2006-03-17 2008-02-21 Canon Inc Manufacturing process of mold with rugged structure and mold for optical element, and optical element
JPWO2008001662A1 (en) * 2006-06-30 2009-11-26 パナソニック株式会社 Optical member and optical apparatus provided with the same
JP2012008419A (en) * 2010-06-25 2012-01-12 Hoya Corp Optical element forming mold, optical element, and manufacturing method thereof
JP2012113071A (en) * 2010-11-24 2012-06-14 Panasonic Corp Method and apparatus for forming optical member and optical member
EP2546682A2 (en) 2011-07-15 2013-01-16 Canon Kabushiki Kaisha Optical element, method for manufacturing the same, and light-shielding coating material for the same
WO2014112593A1 (en) * 2013-01-17 2014-07-24 コニカミノルタ株式会社 Method for producing optical element and method for producing anti-reflective structure
US8905559B2 (en) 2010-01-18 2014-12-09 Canon Kabushiki Kaisha Optical lens having sub-wavelength structure containing aluminum or aluminum oxide, method of manufacturing optical lens, and imaging optical system including optical lens
US9279916B2 (en) 2012-04-04 2016-03-08 Panasonic Intellectual Property Management Co., Ltd. Optical element, imaging apparatus including the element, and method of manufacturing the optical element
US9285509B2 (en) 2012-04-04 2016-03-15 Panasonic Intellectual Property Management Co., Ltd. Optical element, imaging apparatus including the element, and method of manufacturing the optical element
US9310528B2 (en) 2012-02-06 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Optical element, imaging apparatus including the same, and method for fabricating the same
CN109423668A (en) * 2017-09-01 2019-03-05 泉州市同兴反光材料有限公司 A kind of four square plate process flows making reflecting mould

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296902A (en) * 1985-10-24 1987-05-06 Seiko Epson Corp Antireflection plastic
JPH10121292A (en) * 1996-08-26 1998-05-12 Nippon Telegr & Teleph Corp <Ntt> Formation of porous anodized alumina film
JP2002261261A (en) * 2001-02-28 2002-09-13 Toppan Printing Co Ltd Imaging device and manufacturing method
JP2003215314A (en) * 2002-01-18 2003-07-30 Dainippon Printing Co Ltd Antireflection article
JP2003294910A (en) * 2002-04-08 2003-10-15 Sanyo Electric Co Ltd Optical element and light source device
JP2003531962A (en) * 2000-04-28 2003-10-28 アルコーブ サーフィシーズ ゲーエムベーハー Embossing tool, method of manufacturing the same, method of constructing the surface of a workpiece, and use of anodized surface layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296902A (en) * 1985-10-24 1987-05-06 Seiko Epson Corp Antireflection plastic
JPH10121292A (en) * 1996-08-26 1998-05-12 Nippon Telegr & Teleph Corp <Ntt> Formation of porous anodized alumina film
JP2003531962A (en) * 2000-04-28 2003-10-28 アルコーブ サーフィシーズ ゲーエムベーハー Embossing tool, method of manufacturing the same, method of constructing the surface of a workpiece, and use of anodized surface layer
JP2002261261A (en) * 2001-02-28 2002-09-13 Toppan Printing Co Ltd Imaging device and manufacturing method
JP2003215314A (en) * 2002-01-18 2003-07-30 Dainippon Printing Co Ltd Antireflection article
JP2003294910A (en) * 2002-04-08 2003-10-15 Sanyo Electric Co Ltd Optical element and light source device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037089A (en) * 2006-03-17 2008-02-21 Canon Inc Manufacturing process of mold with rugged structure and mold for optical element, and optical element
WO2007148718A1 (en) * 2006-06-21 2007-12-27 Panasonic Corporation Optical member, and optical system, optical unit and optical device provided with the optical member
JPWO2008001662A1 (en) * 2006-06-30 2009-11-26 パナソニック株式会社 Optical member and optical apparatus provided with the same
US8905559B2 (en) 2010-01-18 2014-12-09 Canon Kabushiki Kaisha Optical lens having sub-wavelength structure containing aluminum or aluminum oxide, method of manufacturing optical lens, and imaging optical system including optical lens
JP2012008419A (en) * 2010-06-25 2012-01-12 Hoya Corp Optical element forming mold, optical element, and manufacturing method thereof
JP2012113071A (en) * 2010-11-24 2012-06-14 Panasonic Corp Method and apparatus for forming optical member and optical member
EP2546682A2 (en) 2011-07-15 2013-01-16 Canon Kabushiki Kaisha Optical element, method for manufacturing the same, and light-shielding coating material for the same
US9310528B2 (en) 2012-02-06 2016-04-12 Panasonic Intellectual Property Management Co., Ltd. Optical element, imaging apparatus including the same, and method for fabricating the same
US9279916B2 (en) 2012-04-04 2016-03-08 Panasonic Intellectual Property Management Co., Ltd. Optical element, imaging apparatus including the element, and method of manufacturing the optical element
US9285509B2 (en) 2012-04-04 2016-03-15 Panasonic Intellectual Property Management Co., Ltd. Optical element, imaging apparatus including the element, and method of manufacturing the optical element
CN104937444A (en) * 2013-01-17 2015-09-23 柯尼卡美能达株式会社 Method for producing optical element and method for producing anti-reflective structure
WO2014112593A1 (en) * 2013-01-17 2014-07-24 コニカミノルタ株式会社 Method for producing optical element and method for producing anti-reflective structure
JPWO2014112593A1 (en) * 2013-01-17 2017-01-19 コニカミノルタ株式会社 Manufacturing method of optical element and manufacturing method of antireflection structure
CN109423668A (en) * 2017-09-01 2019-03-05 泉州市同兴反光材料有限公司 A kind of four square plate process flows making reflecting mould

Similar Documents

Publication Publication Date Title
JP2006053220A (en) Member having antireflection part, molding die for the member and method of manufacturing the die
JP7216666B2 (en) Spectacle lens mold manufacturing method and spectacle lens manufacturing method
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
JP2011107195A (en) Optical element, method of manufacturing the same, minutely rugged structure, and molding die
WO2006109921A1 (en) Manufacturing method of slanted-pyramid microlens and its application to light guide plate
JP5490216B2 (en) Optical element and optical element manufacturing method
JP2006235195A (en) Method for manufacturing member with antireflective structure
JP2004322566A (en) Forming sheet and its manufacturing method
JP6167694B2 (en) Template substrate, nanoimprint template, and method for producing nanoimprint template
WO2013150742A1 (en) Optical element, imaging device provided therewith, and optical element manufacturing method
JP2002321227A (en) Method for manufacturing matrix for molding optical element, method for manufacturing optical element using matrix and optical element by the manufacturing method
JP2001030306A (en) Resin erect lens array and its manufacture
JP2002321227A5 (en) Method of manufacturing optical element molding master, and method of manufacturing optical element using the mother die
JP4820871B2 (en) Antireflection structure and manufacturing method thereof
TWI317321B (en)
JP6385402B2 (en) Method for manufacturing diffractive optical element and diffractive optical element
JP2017173690A (en) Method for manufacturing antireflection article and method for manufacturing mold for shaping
CN111856631A (en) Light homogenizing sheet and TOF module
JP4814938B2 (en) Antireflection structure and manufacturing method thereof
KR20210028829A (en) Micro product with high aspect ratio micro pattern and manufacturing mehtod thereof
JP4094439B2 (en) Processing method of light guide plate mold
JPS6410169B2 (en)
JP2013160773A (en) Manufacturing method of diffraction optical element, and diffraction optical element
CN212623162U (en) Light homogenizing sheet and TOF module
JP4108722B2 (en) Optical element and optical element manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831