JP2012113071A - Method and apparatus for forming optical member and optical member - Google Patents

Method and apparatus for forming optical member and optical member Download PDF

Info

Publication number
JP2012113071A
JP2012113071A JP2010260731A JP2010260731A JP2012113071A JP 2012113071 A JP2012113071 A JP 2012113071A JP 2010260731 A JP2010260731 A JP 2010260731A JP 2010260731 A JP2010260731 A JP 2010260731A JP 2012113071 A JP2012113071 A JP 2012113071A
Authority
JP
Japan
Prior art keywords
surface shape
light
macro
mold
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010260731A
Other languages
Japanese (ja)
Other versions
JP5732622B2 (en
JP2012113071A5 (en
Inventor
Akihisa Yamada
晃久 山田
Norihiko Wada
紀彦 和田
Yoshifumi Takasu
良史 鷹巣
Yuji Yamamoto
雄士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010260731A priority Critical patent/JP5732622B2/en
Publication of JP2012113071A publication Critical patent/JP2012113071A/en
Publication of JP2012113071A5 publication Critical patent/JP2012113071A5/en
Application granted granted Critical
Publication of JP5732622B2 publication Critical patent/JP5732622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To highly accurately form a macro surface shape and a fine surface shape optically optimum by a simple method.SOLUTION: A radiation curable resin 2 is sandwiched and pressed between a fine surface forming mold 1 having a fine surface shape 1b formed thereon and a macro surface forming mold 4 having a radiation transmission area 4b formed thereon, and is irradiated with radiation 5 through the radiation transmission area 4b. Thus, the fine surface shape 1b may be transferred onto a surface of the radiation curable resin 2 and at the same time, the macro surface shape may be formed on a surface of the resin. In this manner, a macro surface shape and a fine surface shape optically optimum may be highly accurately formed by a simple method.

Description

本発明は、光学デバイスに設けられ、マクロ表面形状の上に微細な凹凸が形成される光学部材の形成方法及び形成装置、並びに光学部材に関するものである。   The present invention relates to a method and apparatus for forming an optical member that is provided in an optical device and has fine irregularities formed on a macro surface shape, and an optical member.

カメラのレンズやテレビのディスプレイ、CCD、CMOSと言った撮像デバイス、太陽電池パネルなどの光学デバイスの表面には、透明光学部材が設けられることがある。この透明光学部材には、その材料と空気との屈折率差により発生する表面での反射を少なくし、透過する光の利用効率を高くするために、一般的に光学部材表面へ反射防止技術が施されている。   A transparent optical member may be provided on the surface of an optical device such as a camera lens, a television display, an imaging device such as a CCD or CMOS, or a solar battery panel. In order to reduce the reflection on the surface caused by the difference in refractive index between the material and air and to increase the utilization efficiency of the transmitted light, this transparent optical member generally has antireflection technology on the surface of the optical member. It has been subjected.

例えば、反射防止技術の1つとして適切な干渉膜(反射防止膜)を用いる方法がある。反射防止膜としての薄膜を基材に蒸着や塗工等の技術を用いて、光学デバイス表面に直接形成もしくはフィルム上に形成し貼り付けている。反射防止膜としての薄膜は、有機材を用いる場合はフッ素系樹脂等を用い、無機系材料を用いる場合はSiOやITO等を用いる。この干渉膜は、膜厚が光の波長レベルの薄膜を単層もしくは複層に配し、反射防止効果を得ており、AR(Anti Reflective)コートやLR(Low Reflective)コートなどと呼ばれている。この場合、単層膜では効果のある帯域が狭く複層化するほど効果は高くなるが、生産コストも高くなる。 For example, there is a method using an appropriate interference film (antireflection film) as one of the antireflection techniques. A thin film as an antireflection film is directly formed on a surface of an optical device or attached on a film by using a technique such as vapor deposition or coating on a base material. For the thin film as the antireflection film, a fluorine resin or the like is used when an organic material is used, and SiO 2 or ITO is used when an inorganic material is used. This interference film has an anti-reflection effect by arranging a thin film with a light wavelength level in a single layer or multiple layers, and is called an AR (Anti Reflective) coat or an LR (Low Reflective) coat. Yes. In this case, the effect becomes higher as the effective band becomes narrower and multi-layered in a single layer film, but the production cost also increases.

また、液晶等のディスプレイには、適当な粗面を表面に設けることで反射光を表面で散乱させ、映り込みを防止する様な加工が施されているものもある。この場合は、反射防止膜を安価に生産できるが、光の透過効率は低くなる。   Some displays such as liquid crystal are processed to prevent reflection by scattering the reflected light on the surface by providing an appropriate rough surface on the surface. In this case, the antireflection film can be produced at low cost, but the light transmission efficiency is lowered.

近年、光学部材をいわゆるモスアイ(蛾の目)と呼ばれる表面構造にすることにより、反射防止効果を実現させる技術が注目され、多くの実用化技術開発が行われている。モスアイは、光の波長以下に制御された微細な凹凸(10nm〜600nm)構造を形成することにより、光学部材へ入射する光に対して屈折率を連続的に変化させる効果を得ることで反射防止効果を実現している。   In recent years, attention has been paid to a technique for realizing an antireflection effect by making an optical member a surface structure called a moth eye (brown eye), and many practical developments have been made. Moss Eye prevents reflection by forming a fine uneven structure (10 nm to 600 nm) controlled to be equal to or less than the wavelength of light, thereby obtaining an effect of continuously changing the refractive index with respect to light incident on the optical member. The effect is realized.

さらに、より広範囲の入射角度にわたって反射防止効果を得るために、荒いうねりのある形状の上に微細な凹凸構造を付与することが効果的であることが知られている。
以下、図11(a),(b),図12,図13を用いて、従来のうねり形状にモスアイが形成された光学部材について説明する。
Furthermore, in order to obtain an antireflection effect over a wider range of incident angles, it is known that it is effective to provide a fine uneven structure on a rough wavy shape.
Hereinafter, a conventional optical member in which a moth eye is formed in a wavy shape will be described with reference to FIGS. 11 (a), 11 (b), 12 and 13. FIG.

図11(a),(b)は、従来のうねり形状にモスアイが形成される光学部材の形成方法を示す図である。図12は、従来のうねり形状にモスアイが形成される光学部材の表面構造を示す模式図である。図13は、従来の光学部材の形成に用いる金型の形成方法を示す図である。   FIGS. 11A and 11B are views showing a conventional method for forming an optical member in which a moth eye is formed in a wavy shape. FIG. 12 is a schematic diagram showing a surface structure of an optical member in which a moth-eye is formed in a conventional swell shape. FIG. 13 is a diagram illustrating a method of forming a mold used for forming a conventional optical member.

従来の方法では、図11(a)に示すように、金型を用いて光学部材表面のうねりと微細な凹凸を形成する。図11(a)は、光学部材形成の過程を示す模式図であり、透明基材3上に光硬化樹脂2を塗布し、マクロ表面形状上に微細表面形状を加工した金型8を配して光硬化樹脂2の形状を型決めした状態を示す図である。図11(a)のように型決めした後、UV光源6より照射されるUV光5により、光硬化樹脂2を硬化させる。そして、図11(b),図12に示すような、光学部材表面にうねり9を形成し、うねり9が形成された表面にモスアイ10が形成された光学部材成形品を得る(特許文献1参照)。   In the conventional method, as shown in FIG. 11 (a), undulations and fine irregularities on the surface of the optical member are formed using a mold. FIG. 11A is a schematic diagram showing a process of forming an optical member, in which a photocurable resin 2 is applied on a transparent substrate 3, and a mold 8 having a fine surface shape processed on a macro surface shape is arranged. It is a figure which shows the state which determined the shape of the photocurable resin 2. After the molding as shown in FIG. 11A, the photo-curing resin 2 is cured by the UV light 5 irradiated from the UV light source 6. Then, as shown in FIGS. 11B and 12, an optical member molded product is obtained in which the undulation 9 is formed on the surface of the optical member and the moth eye 10 is formed on the surface on which the undulation 9 is formed (see Patent Document 1). ).

また、荒いうねりの上に微細な凹凸構造を付与する実用化の手段として、アルミニウムを陽極酸化することによって金型を製造する方法も考案されている。図13(a)は不純物を含むアルミニウム基材21を示す。このアルミニウム基材21を酸性またはアルカリ性の電解液中に浸漬して、アルミニウム基材21を陽極として電圧を印加することにより、基材表面で酸化と溶解が同時に進み、アルミニウム基材21表面に陽極酸化ポーラスアルミナ層が形成される。この陽極酸化ポーラスアルミナ層(図示せず)をエッチングにより拡大させて、図13(b)に示すような凹部22aを形成する。その後、特定の条件下で複数回の陽極酸化とエッチングを繰り返し行う事により、図13(c)に示すような微細な凹部22bが形成された金型を形成することができる(特許文献2参照)。   Further, as a practical means for providing a fine uneven structure on rough undulations, a method of manufacturing a mold by anodizing aluminum has been devised. FIG. 13A shows an aluminum substrate 21 containing impurities. By immersing the aluminum base material 21 in an acidic or alkaline electrolyte and applying a voltage using the aluminum base material 21 as an anode, oxidation and dissolution proceed simultaneously on the surface of the base material. An oxidized porous alumina layer is formed. This anodized porous alumina layer (not shown) is enlarged by etching to form a recess 22a as shown in FIG. 13 (b). Thereafter, by repeatedly performing anodization and etching a plurality of times under specific conditions, a mold having a fine recess 22b as shown in FIG. 13C can be formed (see Patent Document 2). ).

特表2001−517319号公報JP-T-2001-517319 WO2009/147858WO2009 / 147858

しかしながら、一般的に、金型に対する微細表面形状の形成に用いられる半導体プロセスでは、荒いうねりの上に微細な凹凸構造を実現させることは難しい。このような微細表面形状の実現には、10μmから1mmのうねり等のマクロ的な荒い形状(以下マクロ表面形状と呼ぶ)を、切削やエッチングなどを用いて形成し、その後、前記マクロ表面形状上に半導体プロセス等を用いて10nmから20μmのモスアイ等の微細な凹凸を持つ構造(以下微細表面形状と呼ぶ)を形成する必要がある。このような微細表面形状を実現するための金型は非常に高精度に形成することが要求され、大面積化が困難であり、容易に形成することができないという課題を有している。   However, in general, in a semiconductor process used for forming a fine surface shape on a mold, it is difficult to realize a fine concavo-convex structure on a rough wave. In order to realize such a fine surface shape, a macro rough shape (hereinafter referred to as a “macro surface shape”) such as a swell of 10 μm to 1 mm is formed using cutting, etching, or the like. In addition, it is necessary to form a structure (hereinafter referred to as a fine surface shape) having fine irregularities such as a moth eye of 10 nm to 20 μm using a semiconductor process or the like. A mold for realizing such a fine surface shape is required to be formed with very high accuracy, and it is difficult to increase the area, and there is a problem that it cannot be easily formed.

また、アルミニウムを陽極酸化することにより金型を形成する方法では、電解溶液の濃度や温度、複数回に渡る陽極酸化工程の時間管理の管理精度が厳しい。そのため、光学的に最適なマクロ表面形状を自由に形成が出来ないという課題も有している。   Moreover, in the method of forming a mold by anodizing aluminum, the control accuracy of the time management of the concentration and temperature of the electrolytic solution and the anodic oxidation process over a plurality of times is strict. Therefore, there is a problem that an optically optimal macro surface shape cannot be freely formed.

また、前記のような方法で光学部材の設計毎に金型を制作し、成形転写により形状を得るプロセスでは、非常に多種の高価な金型を作成する必要があり、機種の切り替え作業も膨大となり、高コストとなる。   In addition, in the process of producing a mold for each design of an optical member by the above-described method and obtaining a shape by molding transfer, it is necessary to create a very wide variety of expensive molds, and the switching work of models is enormous. It becomes high cost.

さらに、金型の離型のために、微細表面形状は全て同一方向に突出させる必要があり、法線方向等のようにマクロ表面形状に則した突出方向に微細表面形状を形成することが困難であるという問題点もある。   Furthermore, it is necessary to make all the fine surface shapes protrude in the same direction for mold release, and it is difficult to form the fine surface shape in the protruding direction according to the macro surface shape such as the normal direction. There is also a problem that it is.

本発明は前記従来の課題を解決するもので、光学部材において、光学的に最適なマクロ表面形状及び微細表面形状を高精度に実現することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to achieve an optically optimal macro surface shape and fine surface shape with high accuracy in an optical member.

上記目的を達成するための本発明の光学部材の形成方法は、マクロ表面形状および前記マクロ表面形状上の微細表面形状を光学部材の表面に形成する方法であって、光透過領域が形成されたマクロ表面形状金型上に光透過基材を載置する工程と、前記光透過基材上に光硬化樹脂を配置する工程と、微細な凹凸が形成された微細表面形状金型と前記マクロ表面形状金型とで、前記光透過基材および前記光硬化樹脂を挟み込む工程と、前記微細表面形状金型と前記マクロ表面形状金型とで前記光透過基材および前記光硬化樹脂を加圧して前記光硬化樹脂に微細表面形状を形成した後に、前記光透過領域を通して前記光硬化樹脂に光を照射して前記マクロ表面形状を形成する工程とを有することを特徴とする。   The optical member forming method of the present invention for achieving the above object is a method of forming a macro surface shape and a fine surface shape on the macro surface shape on the surface of the optical member, wherein a light transmission region is formed. A step of placing a light-transmitting substrate on a macro-surface-shaped mold, a step of placing a photocurable resin on the light-transmitting substrate, a micro-surface-shaped mold in which fine irregularities are formed, and the macro surface The step of sandwiching the light-transmitting substrate and the photocurable resin with the shape mold, and pressurizing the light-transmitting substrate and the photocurable resin with the fine surface shape mold and the macro surface shape mold And forming the macro surface shape by irradiating the photocurable resin with light through the light transmission region after forming the fine surface shape on the photocurable resin.

また、上記目的を達成するための本発明の光学部材の形成装置は、マクロ表面形状および前記マクロ表面形状上の微細表面形状を光学部材に形成する光学部材の形成装置であって、微細な凹凸が形成された微細表面形状金型と、光透過領域が形成されると共に光透過基材が載置されるマクロ表面形状金型と、前記微細表面形状金型と前記マクロ表面形状金型とで前記光透過基材および前記光透過基材上の光硬化樹脂を加圧する加圧装置と、前記光透過領域を通して前記光硬化樹脂に光を照射する光源とを備えたことを特徴とする。   In addition, an optical member forming apparatus of the present invention for achieving the above object is an optical member forming apparatus for forming a macro surface shape and a fine surface shape on the macro surface shape on the optical member. A fine surface shape mold in which a light transmissive region is formed and a light transmissive substrate is placed, and the fine surface shape mold and the macro surface shape mold A pressure device that pressurizes the light transmissive substrate and the light curable resin on the light transmissive substrate, and a light source that irradiates the light curable resin with light through the light transmissive region.

さらに、上記目的を達成するための本発明の光学部材は、マクロ表面形状と、前記マクロ表面形状上の微細表面形状とが形成された光学部材であって、前記微細表面形状が前記マクロ表面形状の法線方向に突出した形状であることを特徴とする。   Furthermore, the optical member of the present invention for achieving the above object is an optical member in which a macro surface shape and a fine surface shape on the macro surface shape are formed, and the fine surface shape is the macro surface shape. It is the shape which protruded in the normal line direction.

以上の様に、本発明によれば、光学部材において、光学的に最適なマクロ表面形状及び微細表面形状を高精度に実現することが可能となる。   As described above, according to the present invention, an optically optimal macro surface shape and fine surface shape can be realized with high accuracy in an optical member.

実施の形態1における加工装置を例示する斜視図The perspective view which illustrates the processing apparatus in Embodiment 1. (a)〜(f)実施の形態1における光学部材形成の各工程を示す模式図(A)-(f) The schematic diagram which shows each process of the optical member formation in Embodiment 1. FIG. 実施の形態1における光学部材形成のフローチャートFlowchart of optical member formation in Embodiment 1 実施の形態1におけるマクロ表面形状金型の形状を例示する平面図Plan view illustrating the shape of a macro surface shape mold in the first embodiment 実施の形態1におけるUV光の照射量により硬化速度が変化する様子を説明する図The figure explaining a mode that a cure rate changes with the irradiation amount of UV light in Embodiment 1. (a)〜(c)実施の形態1におけるマクロ表面形状形成の各工程を説明する模式図(A)-(c) The schematic diagram explaining each process of macro surface shape formation in Embodiment 1 実施の形態1における光学部材の様子を示す図The figure which shows the mode of the optical member in Embodiment 1. (a),(b)実施の形態1における微細表面形状金型により加圧する光学部材の製造方法を示す図The figure which shows the manufacturing method of the optical member pressurized with the fine surface shape metal mold | die in Embodiment 1 (a), (b). (a),(b)実施の形態2における光学部材の製造に用いるマクロ表面形状金型の構成を示す図(A), (b) The figure which shows the structure of the macro surface shape metal mold | die used for manufacture of the optical member in Embodiment 2. 実施の形態3における加工装置を示す模式図Schematic diagram showing the processing apparatus in the third embodiment (a),(b)従来のうねり形状にモスアイが形成される光学部材の形成方法を示す図(A), (b) The figure which shows the formation method of the optical member by which a moth eye is formed in the conventional wave | undulation shape 従来のうねり形状にモスアイが形成される光学部材の表面構造を示す模式図Schematic diagram showing the surface structure of an optical member in which moth-eye is formed in a conventional swell shape 従来の光学部材の形成に用いる金型の形成方法を示す図The figure which shows the formation method of the metal mold | die used for formation of the conventional optical member

以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1における加工装置(光学部材の形成装置)を例示する斜視図であり、図2(a)〜(f)は、実施の形態1における光学部材形成の各工程を示す模式図である。また、図3に実施の形態1における光学部材形成のフローチャートを示す。また、図4は、実施の形態1におけるマクロ表面形状金型の形状を例示する平面図である。また、図5は、実施の形態1におけるUV光の照射量により硬化速度が変化する様子を説明する図であり、図6(a)〜(c)は、実施の形態1におけるマクロ表面形状形成の各工程を説明する模式図である。また、図7は、実施の形態1における光学部材の様子を示す図であり、図8(a),(b)は、実施の形態1における微細表面形状金型により加圧する光学部材の製造方法を示す図である。各図において、同じ構成要素については同じ符号を用い、説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a perspective view illustrating a processing apparatus (optical member forming apparatus) according to the first embodiment of the present invention. FIGS. 2A to 2F are diagrams illustrating optical member formation according to the first embodiment. It is a schematic diagram which shows a process. FIG. 3 shows a flowchart of optical member formation in the first embodiment. FIG. 4 is a plan view illustrating the shape of the macro surface shape mold in the first embodiment. FIG. 5 is a diagram for explaining how the curing rate changes depending on the amount of UV light irradiation in the first embodiment, and FIGS. 6A to 6C illustrate macro surface shape formation in the first embodiment. It is a schematic diagram explaining each process of. FIG. 7 is a diagram showing the state of the optical member in the first embodiment, and FIGS. 8A and 8B are views showing a manufacturing method of the optical member that is pressurized by the fine surface shape mold in the first embodiment. FIG. In each figure, the same components are denoted by the same reference numerals, and description thereof is omitted.

実施の形態1において、光学部材の表面に、うねり等のマクロ表面形状とモスアイ等の微細表面形状を形成する方法を説明する。まず、図2(a)に示す様に、図1の加工装置のUV光源6上にマクロ表面形状金型4を載置し、マクロ表面形状金型4上に透光性基材の一例としての透明基材3を配置する(図3のステップS1)。そして、透明基材3上に光硬化樹脂2を塗布(配置)する(図3のステップS2)。そして、マクロ表面形状金型4と微細表面形状金型1とにより、透明基材3と光硬化樹脂2とを挟み込んで保持する。ここで、モスアイ等の微細表面形状は、うねり等のマクロ表面形状よりも小さい構造である。   In the first embodiment, a method of forming a macro surface shape such as undulation and a fine surface shape such as moth eye on the surface of the optical member will be described. First, as shown in FIG. 2A, the macro surface shape mold 4 is placed on the UV light source 6 of the processing apparatus of FIG. 1, and the macro surface shape mold 4 is an example of a translucent substrate. The transparent base material 3 is disposed (step S1 in FIG. 3). And the photocurable resin 2 is apply | coated (arrange | positioned) on the transparent base material 3 (step S2 of FIG. 3). Then, the transparent substrate 3 and the photocurable resin 2 are sandwiched and held by the macro surface shape mold 4 and the fine surface shape mold 1. Here, the fine surface shape such as moth-eye is a structure smaller than the macro surface shape such as swell.

マクロ表面形状金型4は、光硬化樹脂2の硬化反応に用いられるUV光5を遮蔽する材質であり、所望のマクロ表面形状を形成するためにUV光5を透過する孔4b(光透過領域)が設けられている。つまり、マクロ表面形状金型4は、UV光5を遮蔽する遮蔽部4aと、マクロ表面形状形成のためにUV光5を透過する孔4bとから構成される。例えば、本実施の形態1で用いるマクロ表面形状金型4は、図4に示すように、厚さ0.2mmのSUS304板材に対し、直径0.08mmの孔が重ならないように、0.1mm間隔で13個配置したものである。   The macro surface shape mold 4 is a material that shields the UV light 5 used for the curing reaction of the photo-curing resin 2, and in order to form a desired macro surface shape, a hole 4b that transmits the UV light 5 (light transmission region). ) Is provided. That is, the macro surface shape mold 4 includes a shielding portion 4a that shields the UV light 5, and a hole 4b that transmits the UV light 5 for forming the macro surface shape. For example, as shown in FIG. 4, the macro surface shape mold 4 used in the first embodiment is 0.1 mm so that a hole of 0.08 mm in diameter does not overlap with a 0.2 mm thick SUS304 plate material. 13 are arranged at intervals.

本実施の形態1で用いる透明基材3は、例えば無色透明なPET樹脂製のフィルム(厚さ250μm)である。透明基材3は、光硬化樹脂2の硬化反応に必要な波長帯の光を、硬化に十分な量以上透過させる材料でればよい。透明基材3の材料としては、PETやTAC等の樹脂であってもよいし、ガラスなどでもよい。   The transparent substrate 3 used in Embodiment 1 is, for example, a colorless transparent PET resin film (thickness: 250 μm). The transparent substrate 3 may be a material that transmits light in a wavelength band necessary for the curing reaction of the photocurable resin 2 in an amount sufficient for curing. The material of the transparent substrate 3 may be a resin such as PET or TAC, or glass.

光硬化樹脂2として、例えば、微細インプリント用のラジカル重合型のUV硬化樹脂(粘度:約10mPa/秒)を用いる。光硬化樹脂2は、バーコータ(No.2)を使用し、約5μmの厚さで均一に透明基材3上に塗布される。この時、光硬化樹脂2の塗布量は、所望のマクロ表面形状のうねりの高さによって決定され、硬化位置における微細表面形状金型1と透明基材3との間の空間を満たすのに十分な量を塗布する必要がある。微細表面形状金型1と透明基材3との距離(つまり、光硬化樹脂2の厚み)は、所望のマクロ表面形状の高さを、塗布する光硬化樹脂2の収縮率で除したものを基準とすると良い。これにより、収縮後においても、光硬化樹脂2の厚みがマクロ表面形状の必要高さを確保することができる。   As the photocurable resin 2, for example, a radical polymerization type UV curable resin (viscosity: about 10 mPa / sec) for fine imprinting is used. The photocurable resin 2 is uniformly coated on the transparent substrate 3 with a thickness of about 5 μm using a bar coater (No. 2). At this time, the coating amount of the photocurable resin 2 is determined by the height of the undulation of the desired macro surface shape, and is sufficient to fill the space between the fine surface shape mold 1 and the transparent substrate 3 at the curing position. It is necessary to apply a proper amount. The distance between the fine surface shape mold 1 and the transparent substrate 3 (that is, the thickness of the photocurable resin 2) is obtained by dividing the height of the desired macro surface shape by the shrinkage rate of the photocurable resin 2 to be applied. A good standard. Thereby, even after shrinkage | contraction, the thickness of the photocurable resin 2 can ensure the required height of a macro surface shape.

微細表面形状金型1とマクロ表面形状金型4とは、その間に透明基材3、光硬化樹脂2を挟み込む様に配置される。そして、図1に示す加工装置の加圧装置11により、微細表面形状金型1を下降させて矢印Aの方向に加圧する(図3のステップS3,S4)。微細表面形状金型1には、光硬化樹脂2と接する側に、微細な凹凸である微細表面形状を転写するためのナノメートルオーダーの微細な構造が形成されている。この微細表面形状は、反射防止構造体では円錐のアレイ状とする場合が多いが、四角錐等の多角錐や釣鐘形状、円柱形状、角柱形状、または不規則な凹凸を複数組み合わせた形状でもよく、先端に向かって階段状に細くなる形状などでも良い。階段状に細くなる形状は、離型性に優れ好ましい。また、図2(f)に示すように、マクロ表面形状の表面に形成される微細表面形状の幅tはマクロ表面形状より小さい。一般的には、マクロ表面形状表面での断面における最も長い対角線あるいは径の長さは10μm以下である。さらに、微細表面形状の幅tは、入射される光の波長より小さく、例えば、10nm〜600nmである。幅tを入射光の波長より小さくすることにより、入射光が光学部材を通過する際に、徐々に屈折率が変化する様な効果が得られる。そのため、光学部材へ入射する光に対して屈折率を連続的に変化させて、入射光の透過率が向上し、反射を抑制する効果を実現している。本実施の形態では、例として、10mm四方の石英ガラス上にリソグラフィーを用いて円筒状の微細表面形状を形成したものからニッケル電鋳により複製を作ることで、微細表面形状金型1として使用する。なお、CVD等により形成された不透明タイプの炭化珪素等を直接加工して、微細表面形状金型1としても良い。微細表面形状金型1の加圧力は0.2MPa程度である。光硬化樹脂2と微細表面形状金型1とが接する付近で、微細表面形状金型1とマクロ表面形状金型4とで挟み込む速度を非常にゆっくり(たとえば、0.1mm/分)にすると、光硬化樹脂2内の気泡が抜けやすく、特性が良好な光学部材が得られる。   The fine surface shape mold 1 and the macro surface shape mold 4 are arranged so as to sandwich the transparent base material 3 and the photocurable resin 2 therebetween. Then, the fine surface shape mold 1 is lowered and pressurized in the direction of arrow A by the pressurizing device 11 of the processing apparatus shown in FIG. 1 (steps S3 and S4 in FIG. 3). The fine surface shape mold 1 has a fine structure on the order of nanometers for transferring the fine surface shape, which is fine irregularities, on the side in contact with the photocurable resin 2. This fine surface shape is often an array of cones in the antireflection structure, but may be a polygonal pyramid such as a quadrangular pyramid, a bell shape, a cylindrical shape, a prismatic shape, or a combination of irregular irregularities. A shape that narrows stepwise toward the tip may be used. The shape which becomes thin stepwise is excellent in releasability and is preferable. Further, as shown in FIG. 2F, the width t of the fine surface shape formed on the surface of the macro surface shape is smaller than the macro surface shape. Generally, the length of the longest diagonal line or diameter in the cross section on the macro surface shape surface is 10 μm or less. Furthermore, the width t of the fine surface shape is smaller than the wavelength of incident light, for example, 10 nm to 600 nm. By making the width t smaller than the wavelength of the incident light, an effect can be obtained in which the refractive index gradually changes when the incident light passes through the optical member. Therefore, the refractive index is continuously changed with respect to the light incident on the optical member, the transmittance of the incident light is improved, and the effect of suppressing reflection is realized. In the present embodiment, as an example, a replica having a cylindrical fine surface shape formed on 10 mm square quartz glass using lithography is made by nickel electroforming to be used as a fine surface shape mold 1. . Note that the opaque surface silicon carbide formed by CVD or the like may be directly processed to form the fine surface shape mold 1. The pressing force of the fine surface shape mold 1 is about 0.2 MPa. When the speed of sandwiching between the fine surface shape mold 1 and the macro surface shape mold 4 is very slow (for example, 0.1 mm / min) in the vicinity where the photocurable resin 2 and the fine surface shape mold 1 are in contact with each other, Air bubbles in the photo-curing resin 2 can be easily removed, and an optical member having good characteristics can be obtained.

上記状態で、UV光源6よりUV光5をマクロ表面形状金型4側から光硬化樹脂2に照射し、マクロ表面形状金型4の孔4bを通して光硬化樹脂2を露光する(図2(b),図3のステップS5)。その結果、光硬化樹脂2が硬化反応を起こし、硬化が開始される(図3のステップS6)。   In the above state, UV light 5 is irradiated from the UV light source 6 to the photocurable resin 2 from the macro surface shape mold 4 side, and the photocurable resin 2 is exposed through the holes 4b of the macro surface shape mold 4 (FIG. 2B). ), Step S5 in FIG. As a result, the photo-curing resin 2 undergoes a curing reaction, and curing is started (step S6 in FIG. 3).

ここで、光硬化樹脂2の硬化反応について説明する。自由に動き回ることの出来る液体の光硬化樹脂2にUV光5が照射されると、まず、光硬化樹脂2に含まれる光重合開始剤がUV光5を吸収する。次に、UV光5を吸収した光重合開始剤が、活性化する。次に、活性化した光重合開始剤は分解等を経てモノマーやオリゴマーなどの樹脂成分に反応する。次に、この反応生成物はさらに、樹脂成分に反応し、連鎖的に反応が進行する。最終的に、3次元的に架橋化反応が進行して分子量が増大する事で、光硬化樹脂2が固体となって硬化する。   Here, the curing reaction of the photocurable resin 2 will be described. When the UV light 5 is irradiated onto the liquid photocurable resin 2 that can move freely, first, the photopolymerization initiator contained in the photocurable resin 2 absorbs the UV light 5. Next, the photopolymerization initiator that has absorbed the UV light 5 is activated. Next, the activated photopolymerization initiator reacts with resin components such as monomers and oligomers through decomposition and the like. Next, this reaction product further reacts with the resin component, and the reaction proceeds in a chain manner. Finally, the cross-linking reaction proceeds three-dimensionally and the molecular weight increases, so that the photocurable resin 2 becomes a solid and is cured.

光硬化樹脂が硬化するために必要な照射エネルギーを、露光量Eとする。露光量E(J/cm)は、次式に示すように、照射強度I(W/cm)と照射時間t(秒)との積で表される。 The exposure energy E is the irradiation energy required for the photocuring resin to cure. The exposure amount E (J / cm 2 ) is represented by the product of the irradiation intensity I (W / cm 2 ) and the irradiation time t (seconds) as shown in the following equation.

E=I×t (W×秒/cm=J/cm
このように、光硬化樹脂2が硬化するためには、所定の照射強度で、所定時間、照射が行われる必要がある。
E = I × t (W × second / cm 2 = J / cm 2 )
Thus, in order for the photocurable resin 2 to harden, it is necessary to perform irradiation for a predetermined time with a predetermined irradiation intensity.

光硬化樹脂2は、露光量Eが臨界露光量Ecに達するまでは硬化せず、液体の状態のままである。臨界露光量Ecは光硬化樹脂2が液体から固体へ変化する臨界点を示す露光量である。露光量Eが臨界露光量Ecよりも大きくなると固体状態になり、硬化という現象で現れる。露光量Eが臨界露光量Ecを超えると、露光量の対数に比例して硬化が進むことが知られている(図2(c),図2(d)に示す状態)。   The photocurable resin 2 is not cured until the exposure amount E reaches the critical exposure amount Ec, and remains in a liquid state. The critical exposure amount Ec is an exposure amount indicating a critical point at which the photocurable resin 2 changes from a liquid to a solid. When the exposure amount E is larger than the critical exposure amount Ec, it becomes a solid state and appears as a phenomenon of curing. It is known that when the exposure amount E exceeds the critical exposure amount Ec, curing proceeds in proportion to the logarithm of the exposure amount (states shown in FIGS. 2C and 2D).

硬化後に微細表面形状金型1を離型させると、図2(e)に示すように、マクロ表面形状上に微細表面形状を持つ形状2eを有する光学部材を成形品として得る事ができる。
ここで、マクロ表面形状は、光学部材の表面に連続的に、または間隔を空けて形成され、幾何学光学的特性を付与する機能を担う。ここで、マクロ表面形状は、うねりや、円錐、角錐などの錐体、台形錐、球面、曲面もしくはその一部、トロイダル面、不規則な凹凸を単独あるいは複数組み合わせた形状等とすることができる。また、マクロ表面形状の幅T(図2(f)参照)は、一般的に、10μm〜10mmである。
When the fine surface shape mold 1 is released after curing, as shown in FIG. 2E, an optical member having a shape 2e having a fine surface shape on a macro surface shape can be obtained as a molded product.
Here, the macro surface shape is formed on the surface of the optical member continuously or at intervals, and has a function of imparting geometric optical characteristics. Here, the macro surface shape can be a wave shape, a cone such as a cone or a pyramid, a trapezoidal cone, a spherical surface, a curved surface or a part thereof, a toroidal surface, a shape formed by combining irregular irregularities, or the like. . Moreover, the width T (see FIG. 2F) of the macro surface shape is generally 10 μm to 10 mm.

本実施の形態1のUV光源6は、例えば、中心波長375nmをもつLEDアレイタイプのものを用いる。UV光5の照度は約3mW/cm程度である。UV光5は光硬化樹脂2の硬化に必要な露光量を得るために、40秒照射する。 As the UV light source 6 of the first embodiment, for example, an LED array type having a center wavelength of 375 nm is used. The illuminance of the UV light 5 is about 3 mW / cm 2 . The UV light 5 is irradiated for 40 seconds in order to obtain an exposure amount necessary for curing the photocurable resin 2.

次に、図5と図6を用いて、マクロ表面形状上に微細表面形状を持つ形状2eが、マクロ表面形状金型4と微細表面形状金型1により、透明基材3上に形成されるメカニズムについて、説明する。   Next, using FIG. 5 and FIG. 6, a shape 2 e having a fine surface shape on the macro surface shape is formed on the transparent substrate 3 by the macro surface shape mold 4 and the fine surface shape mold 1. The mechanism will be described.

本実施の形態1の特徴は、微細表面形状金型1を用いると共に、硬化反応に用いるUV光5を、透過及び遮光を制御するマクロ表面形状金型4を通して光硬化樹脂2に照射し、硬化させることにある。   The feature of the first embodiment is that the fine surface-shaped mold 1 is used, and the UV light 5 used for the curing reaction is irradiated to the photo-curing resin 2 through the macro surface-shaped mold 4 that controls transmission and light shielding. There is to make it.

図5の構成において、まず、マクロ表面形状金型4の孔4bを通ったUV光5により、光硬化樹脂2の硬化が始まる。光硬化樹脂2の硬化は、照射されるUV光5の照射強度Iと照射時間tの積である露光量Eに基づいて進む。そのため、一方向よりUV光5を照射した場合は、UV光5の経路により光硬化樹脂2の硬化順序が決まる。本実施の形態1の場合、マクロ表面形状金型4の孔4b近傍でUV光源6に近い側の透明基材3との界面(図5及び図6の2z)付近より、光硬化樹脂2の硬化反応が始まる(図3のステップS7)。光硬化樹脂2中を進むUV光5の到達に従い、硬化反応は、光硬化樹脂2中(中間部2y)を経て、光硬化樹脂2と微細表面形状金型1との界面2xへ達する。   In the configuration of FIG. 5, first, the curing of the photocurable resin 2 is started by the UV light 5 that has passed through the holes 4 b of the macro surface shape mold 4. Curing of the photocurable resin 2 proceeds based on an exposure amount E that is a product of the irradiation intensity I of the irradiated UV light 5 and the irradiation time t. Therefore, when the UV light 5 is irradiated from one direction, the curing order of the photocurable resin 2 is determined by the path of the UV light 5. In the case of the first embodiment, from the vicinity of the interface (2z in FIGS. 5 and 6) with the transparent substrate 3 near the UV light source 6 in the vicinity of the hole 4b of the macro surface shape mold 4, the photocurable resin 2 The curing reaction starts (step S7 in FIG. 3). As the UV light 5 traveling through the photocurable resin 2 arrives, the curing reaction reaches the interface 2x between the photocurable resin 2 and the fine surface shape mold 1 through the photocurable resin 2 (intermediate portion 2y).

この時、UV光5の経路中の光硬化樹脂2が全て硬化しているのでは無く、UV光5の露光量に応じて硬化反応が起こっている。本実施の形態1の構成では、微細表面形状金型1と光硬化樹脂2の界面2xでUV光5が反射し、UV光5は光硬化樹脂2中へ戻り、再び光硬化樹脂2の硬化反応を促す。したがって、孔4bを通ってUV光5が照射される領域において、微細表面形状金型1と光硬化樹脂2との界面2xでは、UV光5のうちの入射光と反射光が重なり合う為、硬化反応を促進するUV光量は多くなる。また、微細表面形状金型1の表面に形成された微細表面形状1bに入り込んだ樹脂量は、周囲より相対的に少ない。そのため、微細表面形状金型1との界面2x付近における光硬化樹脂2の硬化は、微細表面形状金型1と透明基材3との中間部(図5及び図6の2y)に比べ速い。   At this time, not all the photo-curing resin 2 in the path of the UV light 5 is cured, but a curing reaction occurs according to the exposure amount of the UV light 5. In the configuration of the first embodiment, the UV light 5 is reflected at the interface 2x between the fine surface shape mold 1 and the photo-curing resin 2, and the UV light 5 returns into the photo-curing resin 2, and the photo-curing resin 2 is cured again. Encourage reaction. Accordingly, in the region irradiated with the UV light 5 through the hole 4b, the incident light and the reflected light of the UV light 5 overlap at the interface 2x between the fine surface shape mold 1 and the photo-curing resin 2, so that the curing is performed. The amount of UV light that promotes the reaction increases. In addition, the amount of resin that has entered the fine surface shape 1b formed on the surface of the fine surface shape mold 1 is relatively smaller than the surroundings. Therefore, curing of the photocurable resin 2 in the vicinity of the interface 2x with the fine surface shape mold 1 is faster than an intermediate portion (2y in FIGS. 5 and 6) between the fine surface shape mold 1 and the transparent substrate 3.

UV光5を遮蔽している遮蔽部4a上において孔4bとの境界近傍にある光硬化樹脂2は、孔4bのエッジ近傍を通るUV光5の回折効果等で硬化する。だが、遮蔽部4a上において孔4bと離れた領域の光硬化樹脂2は、微細表面形状金型1の表面反射によるUV光5及び透明基材3と光硬化樹脂2、遮蔽部4aと透明基材3との界面で再反射されるUV光5により、硬化される。このため、光硬化樹脂2は、マクロ表面形状金型4と微細表面形状金型1との中間よりややマクロ表面形状金型4よりの領域で、かつ、孔4bと孔4bの中間付近の領域(図6(a)の2w)の硬化がもっとも遅い。この領域は、微細表面形状金型1との界面2x付近の光硬化樹脂2が微細表面形状金型1の形状を転写されて硬化が完了した時点では、まだ未硬化である(図6(a),図3のステップS8)。   The photocurable resin 2 in the vicinity of the boundary with the hole 4b on the shielding portion 4a that shields the UV light 5 is cured by the diffraction effect of the UV light 5 passing near the edge of the hole 4b. However, the light-curing resin 2 in a region apart from the hole 4b on the shielding part 4a is composed of the UV light 5 and the transparent base material 3 and the light-curing resin 2 due to the surface reflection of the fine surface shape mold 1, and the shielding part 4a and the transparent base. It is cured by the UV light 5 re-reflected at the interface with the material 3. For this reason, the photo-curing resin 2 is a region slightly in the middle of the macro surface shape mold 4 between the macro surface shape mold 4 and the fine surface shape mold 1 and in the vicinity of the middle of the hole 4b and the hole 4b Curing (2w in FIG. 6 (a)) is the slowest. This region is still uncured when the photo-curing resin 2 in the vicinity of the interface 2x with the fine surface shape mold 1 is transferred with the shape of the fine surface shape die 1 and cured (FIG. 6 (a)). ), Step S8 in FIG.

さらに、光硬化樹脂2は硬化収縮特性を持っており、未硬化成分は既硬化部分の収縮を補う様に流動する。例えば、既硬化領域である孔4b近傍の界面2zや中間2yでは、硬化収縮により生まれた空間(図6(a)の2y’)が生じ、前述の遮蔽部4a上の領域2wに生じる未硬化成分(図6(a)の2w’)が空間2y’へ流動する(図6(b))。   Furthermore, the photo-curing resin 2 has a curing shrinkage property, and the uncured component flows so as to compensate for the shrinkage of the cured portion. For example, at the interface 2z and the middle 2y in the vicinity of the hole 4b, which is a hardened region, a space (2y 'in FIG. 6A) created by the curing shrinkage is generated, and the uncured that occurs in the region 2w on the shielding portion 4a described above The component (2w ′ in FIG. 6A) flows into the space 2y ′ (FIG. 6B).

結果として、遮蔽部4a上の領域では、光硬化樹脂2の量が少なくなる。それと共に、硬化の速い微細表面形状金型1との界面2xで硬化して転写形成された微細表面形状2dを保持したままで、図2(c)、(d)及び図6(c)に示す様に、垂れ下がる様な状態で完全硬化する。このようにして、本実施の形態1では、簡易な金型でマクロ表面形状上に微細表面形状をもつ光学部材を形成することが出来る(図3のステップS8)。この時、マクロ表面形状の位置と大きさは、孔4bの位置と大きさで制御できる。また、マクロ表面形状の形状は、光硬化樹脂2の硬化速度の差により制御することができる。   As a result, the amount of the photocurable resin 2 is reduced in the region on the shielding part 4a. At the same time, while maintaining the fine surface shape 2d which is cured and transferred at the interface 2x with the fast-curing fine surface shape mold 1, it is shown in FIGS. 2 (c), 2 (d) and 6 (c). As shown, it completely cures in a state of sagging. In this way, in the first embodiment, it is possible to form an optical member having a fine surface shape on a macro surface shape with a simple mold (step S8 in FIG. 3). At this time, the position and size of the macro surface shape can be controlled by the position and size of the hole 4b. Moreover, the shape of the macro surface shape can be controlled by the difference in the curing rate of the photo-curing resin 2.

図7に白色干渉顕微鏡による光学部材の観察像を示す。
図7に示すように、本発明の実施の形態1の光学部材は、マクロ表面形状2cの上に微細表面形状2dが多数形成され、これらが連続的に連なった構成である。
FIG. 7 shows an observation image of the optical member by the white interference microscope.
As shown in FIG. 7, the optical member according to Embodiment 1 of the present invention has a configuration in which a large number of fine surface shapes 2d are formed on a macro surface shape 2c, and these are continuously connected.

特に、本実施の形態1におけるマクロ表面形状の形成には、光硬化樹脂2の硬化収縮現象と未硬化成分の流動現象を利用している。そのため、光硬化樹脂2としてはカチオン型に比べ、より硬化収縮の大きいラジカル型で、低粘度のものが好ましい。   In particular, the formation of the macro surface shape in the first embodiment utilizes the curing shrinkage phenomenon of the photocurable resin 2 and the flow phenomenon of uncured components. Therefore, the photo-curing resin 2 is preferably a radical type having a higher curing shrinkage and a low viscosity than the cationic type.

また、本実施の形態1では、光硬化樹脂2の硬化反応に用いられるUV光5の露光量を制御することで、マクロ表面形状を形成している。そのため、透明基材3の領域毎に厚みや材質を変更することで、光硬化樹脂2の領域毎にUV光5の露光量を変化させ、光硬化樹脂2の硬化速度を制御して、マクロ表面形状の傾斜角度を調整することが可能となる。   In the first embodiment, the macro surface shape is formed by controlling the exposure amount of the UV light 5 used for the curing reaction of the photocurable resin 2. Therefore, by changing the thickness and material for each region of the transparent substrate 3, the exposure amount of the UV light 5 is changed for each region of the photo-curing resin 2, and the curing speed of the photo-curing resin 2 is controlled. It becomes possible to adjust the inclination angle of the surface shape.

さらに、微細表面形状金型1に用いられる材料は、その表面にある微細表面形状1b近傍における光硬化樹脂2の硬化反応を速くする必要がある。そのため、微細表面形状金型1の材料としては、光硬化樹脂2の硬化を促すUV光等の放射線に対して非透過性の材料が好ましく、放射線を反射する材料を用いるのがより好ましい。例えば、石英ガラス等の透明体を直接に微細表面形状金型1として用いることは適さず、金属等の不透明体が微細表面形状金型1として好ましい。また、微細表面形状金型1が放射線を透過する材料の場合でも、メッキ、蒸着等の手段を用いて、硬化反応に用いる波長帯の放射線を遮る様に仕上げられたものであれば良い。   Furthermore, the material used for the fine surface shape mold 1 needs to accelerate the curing reaction of the photocurable resin 2 in the vicinity of the fine surface shape 1b on the surface. Therefore, as the material of the fine surface shape mold 1, a material that is impermeable to radiation such as UV light that promotes curing of the photocurable resin 2 is preferable, and a material that reflects radiation is more preferable. For example, it is not suitable to use a transparent body such as quartz glass directly as the fine surface shape mold 1, and an opaque body such as a metal is preferable as the fine surface shape mold 1. Further, even when the fine surface shape mold 1 is a material that transmits radiation, it may be any material that is finished so as to block radiation in the wavelength band used for the curing reaction by means of plating, vapor deposition or the like.

なお、本実施の形態1で得られる光学部材は、微細表面形状の形成後にマクロ表面形状が形成されるものである。そのため、図2(f)で示す様に、本実施の形態1の光学部材の微細表面形状は、マクロ表面形状(うねった光硬化樹脂2)の表面に対し、法線方向に突出するように形成することができる。すなわち、本実施の形態1の光学部材は、マクロ表面形状に対し幾何光学的に有意な方向に微細表面形状が形成できる。そのため、様々な方向に突出した微細表面形状を形成できる。よって、どのような方向から光が入射しても、いずれかの微細表面形状に平行に入射されることになり、一定方向に微細表面形状が形成された場合に比べて、光の散乱をより効果的に防止することができる。さらに、法線方向に垂直な方向に微細表面形状を形成した場合は、離型の困難性を解消することもできる。   In the optical member obtained in the first embodiment, the macro surface shape is formed after the fine surface shape is formed. Therefore, as shown in FIG. 2 (f), the fine surface shape of the optical member of the first embodiment is projected in the normal direction with respect to the surface of the macro surface shape (undulated photocurable resin 2). Can be formed. That is, the optical member of the first embodiment can form a fine surface shape in a geometrically significant direction with respect to the macro surface shape. Therefore, a fine surface shape protruding in various directions can be formed. Therefore, no matter what direction the light is incident, it will be incident in parallel to any one of the fine surface shapes, and the light scattering will be greater than when the fine surface shape is formed in a certain direction. It can be effectively prevented. Further, when the fine surface shape is formed in the direction perpendicular to the normal direction, the difficulty of mold release can be eliminated.

以上の説明では、図2(a)〜(f)に示す様に、マクロ表面形状金型4上に透明基材3、光硬化樹脂2を載せ、微細表面形状金型1で光硬化樹脂2を加圧しUV光5を照射する構成としている。だが、図8(a),(b)に示す様に、微細表面形状金型1上に光硬化樹脂2を塗布して透明基材3を配した後に、マクロ表面形状金型4により矢印Bの方向に加圧して、UV光5を照射する構成としても、同様の光学部材が得られる。   In the above description, as shown in FIGS. 2 (a) to 2 (f), the transparent base material 3 and the photocurable resin 2 are placed on the macro surface shape mold 4, and the photocurable resin 2 is used with the fine surface shape mold 1. Is applied and UV light 5 is irradiated. However, as shown in FIGS. 8A and 8B, after applying the photocurable resin 2 on the fine surface shape mold 1 and arranging the transparent substrate 3, the macro surface shape mold 4 causes the arrow B A similar optical member can be obtained even when the UV light 5 is irradiated in the direction of the pressure.

以上のように、本実施の形態1では、微細表面形状が形成された微細表面形状金型と孔が形成されたマクロ表面形状金型とを用い、これらの金型で光硬化樹脂を挟み込んで加圧した状態で、孔を通してUV光を照射する。これにより、光硬化樹脂の表面に微細表面形状を転写すると同時に、孔を通して照射される光あるいは、微細表面形状金型またはマクロ表面形状金型で反射された光が照射される領域と照射されない領域での露光量の差に起因する硬化速度の差を生じさせる。この硬化速度の差により、光硬化樹脂に偏りが生じ、マクロ表面形状を形成することができる。このようにして、本実施の形態1を用いると、簡易な方法で光学的に最適なマクロ表面形状及び微細表面形状を高精度に形成することが可能となる。
(実施の形態2)
実施の形態1では、図2(a)〜(f)に示すように、マクロ表面形状金型4はUV光5を遮蔽する平面上に所望のマクロ表面形状の断面2次元形状に沿って孔4bを形成していた。しかしながら、遮蔽部4aと孔4bはUV光5の伝搬状態を制御する一例として用いたのであって、硬化に用いるUV光5の透過を制御するものであればよい。特に、UV光5の透過量を任意に変化させることの出来るマクロ表面形状金型4を用いれば、孔4bを形成することなく、よりマクロ表面形状を精密にコントロールする事が可能となる。
As described above, in the first embodiment, a fine surface shape mold in which a fine surface shape is formed and a macro surface shape mold in which a hole is formed are used, and a photocurable resin is sandwiched between these molds. In the pressurized state, UV light is irradiated through the hole. As a result, the area where the fine surface shape is transferred to the surface of the photo-curing resin and at the same time the light irradiated through the holes or the light reflected by the fine surface shape mold or the macro surface shape mold is irradiated and the area where the light is not irradiated This causes a difference in curing speed due to the difference in the exposure amount. Due to this difference in curing speed, the photocuring resin is biased and a macro surface shape can be formed. In this way, when the first embodiment is used, it is possible to form an optically optimal macro surface shape and fine surface shape with high accuracy by a simple method.
(Embodiment 2)
In the first embodiment, as shown in FIGS. 2A to 2F, the macro surface shape mold 4 has holes along a two-dimensional cross section of a desired macro surface shape on a plane that blocks the UV light 5. 4b was formed. However, the shielding portion 4a and the hole 4b are used as an example for controlling the propagation state of the UV light 5, and may be any device that controls the transmission of the UV light 5 used for curing. In particular, if the macro surface shape mold 4 capable of arbitrarily changing the transmission amount of the UV light 5 is used, the macro surface shape can be more precisely controlled without forming the holes 4b.

図9(a),(b)は、実施の形態2における光学部材の製造に用いるマクロ表面形状金型の構成を示す図である。図9(b)は、実施の形態2におけるマクロ表面形状金型の構成を例示する模式図であり、図9(a)は、比較のための実施の形態1におけるマクロ表面形状金型の構成を例示する模式図である。図9(b)では、マクロ表面形状金型として、ガラス基材7fの表面にアルミの蒸着による硬化反応用の光線を遮蔽する部分を形成したガラスマクロ表面形状金型7を用いている。   FIGS. 9A and 9B are diagrams showing a configuration of a macro surface shape mold used for manufacturing an optical member in the second embodiment. FIG. 9B is a schematic view illustrating the configuration of the macro surface shape mold in the second embodiment, and FIG. 9A shows the configuration of the macro surface shape mold in the first embodiment for comparison. It is a schematic diagram which illustrates this. In FIG. 9B, a glass macro surface shape mold 7 is used as a macro surface shape mold in which a portion for shielding a light for curing reaction by vapor deposition of aluminum is formed on the surface of a glass substrate 7f.

図9(b)に示すように、実施の形態2におけるガラスマクロ表面形状金型7は、ガラス基材7fの表面にアルミを蒸着させ、領域によって厚みの異なるアルミ蒸着膜を形成している。具体的には、UV光5が不透過な領域のアルミ蒸着膜7a、UV光5が25%透過する領域のアルミ蒸着膜7b、UV光5が50%透過する領域のアルミ蒸着膜7c、UV光5が75%透過する領域のアルミ蒸着膜7d、UV光5が100%透過する透過領域のアルミ蒸着膜7eをそれぞれ形成している。このように領域毎に段階的に透過率を変化させたアルミ蒸着膜を用いUV光5の透過量を調整することで、形成されるマクロ表面形状2cを精密に制御する事が可能である。本実施の形態2では、透過率の最も高いアルミ蒸着膜7eをマクロ表面形状の厚みを最も高くする位置に形成し、周囲に徐々に透過率が低くなるようにアルミ蒸着膜7d,7c,7bと形成し、それ以外のガラス基材7f表面にアルミ蒸着膜7aを形成する。これ以外の構成は実施の形態1と同様であるので説明を省略する。   As shown in FIG. 9B, the glass macro surface shape mold 7 according to the second embodiment deposits aluminum on the surface of the glass substrate 7f to form aluminum vapor deposition films having different thicknesses depending on regions. Specifically, the aluminum vapor-deposited film 7a in the region where the UV light 5 is not transmitted, the aluminum vapor-deposited film 7b in the region where the UV light 5 is transmitted 25%, the aluminum vapor-deposited film 7c in the region where the UV light 5 is transmitted 50%, the UV An aluminum vapor-deposited film 7d that transmits 75% of light 5 and an aluminum vapor-deposited film 7e that transmits 100% of UV light 5 are formed. Thus, by adjusting the transmission amount of the UV light 5 using the aluminum vapor deposition film whose transmittance is changed stepwise for each region, the formed macro surface shape 2c can be precisely controlled. In the second embodiment, the aluminum vapor deposition film 7e having the highest transmittance is formed at a position where the thickness of the macro surface shape is the highest, and the aluminum vapor deposition films 7d, 7c and 7b are gradually lowered around the periphery. And an aluminum vapor deposition film 7a is formed on the surface of the other glass substrate 7f. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.

このようなガラスマクロ表面形状金型7を用いてUV光5を照射することにより、アルミ蒸着膜7eに接する光硬化樹脂の露光量が最大となり、硬化が最も早く進む。そのため、前述の実施の形態1と同様にマクロ表面形状2cが形成される。また、同時に微細表面形状金型により微細表面形状を転写することにより、マクロ表面形状上に光学的に最適な微細表面形状を高精度に形成することが可能となる。   By irradiating the UV light 5 using such a glass macro surface shape mold 7, the exposure amount of the photo-curing resin in contact with the aluminum vapor deposition film 7e is maximized, and the curing proceeds most quickly. Therefore, the macro surface shape 2c is formed as in the first embodiment. At the same time, by transferring the fine surface shape with the fine surface shape mold, an optically optimal fine surface shape can be formed on the macro surface shape with high accuracy.

この時、ガラスマクロ表面形状金型7は透明であることから、その蒸着面は透明基材3と接する側に配置される事が望ましい。
本実施の形態2の様に、本発明に用いられるマクロ表面形状金型は必ずしも孔4bを有するものである必要は無い。本発明に用いられるマクロ表面形状金型は、透過領域の形成を、金属の蒸着、表面粗さ、段差、屈折率差のように、段差や光線の屈折、回折、反射などの現象を利用し、硬化反応に用いる光線の分布を所望のマクロ表面形状の断面2次元形状に配光する機能を有するもので良い。例えば、表面粗さを変化させると粗さにより反射率が増加して光の透過率が変化することを利用し、表面粗さにより露光量を調整してマクロ表面形状を形成することもできる。
At this time, since the glass macro surface shape mold 7 is transparent, it is desirable that the vapor deposition surface be disposed on the side in contact with the transparent substrate 3.
As in the second embodiment, the macro surface shape mold used in the present invention does not necessarily have to have the holes 4b. The macro surface shape mold used in the present invention uses a phenomenon such as a step, light refraction, diffraction, reflection, etc., such as metal deposition, surface roughness, step, refractive index difference, etc. The light distribution used for the curing reaction may have a function of distributing light to a desired two-dimensional cross-sectional shape of the macro surface shape. For example, when the surface roughness is changed, the macroscopic surface shape can be formed by adjusting the exposure amount by the surface roughness by utilizing the fact that the reflectance increases due to the roughness and the light transmittance changes.

また、金型に設けた段差によりマクロ表面形状金型の厚みを調節することでマクロ表面形状金型を透過する光の透過時間を調整し、露光量を調整することもできる。
また、材質による屈折率の差を設けることにより、光の照射領域を制御して露光量を調整することもできる。
In addition, by adjusting the thickness of the macro surface shape mold by the step provided on the mold, it is possible to adjust the transmission time of light passing through the macro surface shape mold and adjust the exposure amount.
Further, by providing a difference in refractive index depending on the material, it is also possible to adjust the exposure amount by controlling the light irradiation region.

以上の説明ではガラスを用いた例を説明したが、ガラスである必要は無く、硬化反応に必要な波長の光線を通す樹脂などの透光性の材料を用いれば良い。
このようにして精密に制御されたマクロ表面形状2cは、より精密に光線を制御することが可能となる。そのため、本実施の形態2は、実施の形態1に比べ、マクロ表面形状上に、より高精度な微細表面形状をもつ光学部材を形成できる。
Although the example using glass was demonstrated in the above description, it does not need to be glass and what is necessary is just to use translucent materials, such as resin which lets the light of the wavelength required for hardening reaction pass.
The macro surface shape 2c thus precisely controlled can control the light beam more precisely. Therefore, the second embodiment can form an optical member having a finer surface shape with higher accuracy on the macro surface shape as compared with the first embodiment.

(実施の形態3)
前述の実施の形態1及び2の光学部材形成方法は、連続的に繋がるシート状のフィルムへも対応可能であり、連続形成する事も可能である。図10を用いて、シート状のフィルムへ光学部材を形成する装置について説明する。
(Embodiment 3)
The above-described optical member forming methods of Embodiments 1 and 2 can be applied to continuously connected sheet-like films, and can be continuously formed. An apparatus for forming an optical member on a sheet-like film will be described with reference to FIG.

図10は実施の形態3における加工装置を示す模式図であり、長尺状の反射防止膜を連続的に成形する場合の装置の模式図を示す。
図10に示すように、連続的に繋がるシート状透明基材32は、ロール上に巻かれており、シート供給リール31より供給される。シート状透明基材32上には、塗布装置33により光硬化樹脂34が塗布される。光硬化樹脂34が塗布されたシート状透明基材32は、表面に微細表面形状が加工された微細表面形状ロール金型35へ巻き付けられ、圧着ロール36により微細表面形状ロール金型35へ圧着される。マクロ表面形状金型37は、両端部が接続されたベルト形状であり、実施の形態1にある様なマクロ表面形状を形成する孔を有し、シート状透明基材32と連動して周回可能な構造である。マクロ表面形状金型37は、マクロ表面形状金型送り装置38により、微細表面形状ロール金型35へ押し付けられ、微細表面形状ロール金型35の回転速度と等速で回転送りを与えられる。マクロ表面形状金型送り装置38の内側にUV光源39が備え付けられており、送られてきたシート状透明基材32を停止させた状態で、マクロ表面形状金型37の孔を通してシート状透明基材32にUV光を照射する。かかる装置により、マクロ表面形状上に微細表面形状が形成された連続したシート状光学部材40はシート巻取りリール41により巻き取られる。
FIG. 10 is a schematic view showing a processing apparatus in Embodiment 3, and shows a schematic view of the apparatus in the case of continuously forming a long antireflection film.
As shown in FIG. 10, continuously connected sheet-like transparent base materials 32 are wound on a roll and supplied from a sheet supply reel 31. On the sheet-like transparent substrate 32, a photocurable resin 34 is applied by a coating device 33. The sheet-like transparent base material 32 coated with the photo-curing resin 34 is wound around a fine surface shape roll mold 35 having a fine surface shape processed on the surface, and is pressure-bonded to the fine surface shape roll mold 35 by a pressure roll 36. The The macro surface shape mold 37 has a belt shape in which both end portions are connected, has a hole for forming a macro surface shape as in the first embodiment, and can circulate in conjunction with the sheet-like transparent substrate 32. Structure. The macro surface shape die 37 is pressed against the fine surface shape roll die 35 by the macro surface shape die feeding device 38 and is rotated at the same speed as the rotation speed of the fine surface shape roll die 35. A UV light source 39 is provided inside the macro surface shape mold feeder 38, and the sheet-like transparent base is passed through the holes of the macro surface shape die 37 in a state where the sheet-like transparent substrate 32 that has been sent is stopped. The material 32 is irradiated with UV light. With this apparatus, the continuous sheet-like optical member 40 in which the fine surface shape is formed on the macro surface shape is taken up by the sheet take-up reel 41.

この装置において、図10の矢印Xの範囲では、実施の形態1で説明したマクロ表面形状上に微細表面形状を持つ光学部材の形成形態をなしており、マクロ表面形状上に微細表面形状を有する光学部材を連続的に生産することが出来る。   In this apparatus, in the range of the arrow X in FIG. 10, the optical member having the fine surface shape is formed on the macro surface shape described in the first embodiment, and the fine surface shape is formed on the macro surface shape. Optical members can be produced continuously.

ここではマクロ表面形状金型が実施の形態1と同様の孔を持つ構成としたが、もちろん実施の形態2記載のアルミ蒸着膜等を用いたものでもよい。なお、巻き取り機構を用いているため、この場合の基材は、ガラスではなく、透光性の樹脂フィルムを使う事が好ましい。   Here, the macro surface shape mold is configured to have the same holes as in the first embodiment, but of course, an aluminum vapor deposition film described in the second embodiment may be used. In addition, since the winding mechanism is used, it is preferable to use a translucent resin film for the base material in this case, not glass.

本装置を用いることで、簡易な構造の金型で、マクロ表面形状上に微細表面形状を持つ大面積な光学部材を生産できる。
上記各実施の形態の説明では、光硬化樹脂にUV光を照射することにより、光学部材を形成する例を用いて説明したが、UV光に限らない。例えば、電磁波や粒子線等の放射線を放射線硬化性樹脂に照射することにより反射防止膜等の光学部材を形成することが可能である。この場合、透明基材に代わり放射線を透過する基材が用いられ、孔や蒸着膜により放射線の透過量を調整する。
By using this apparatus, a large-area optical member having a fine surface shape on a macro surface shape can be produced with a mold having a simple structure.
In the description of each of the above embodiments, an example in which an optical member is formed by irradiating UV light to a photocurable resin has been described. However, the present invention is not limited to UV light. For example, an optical member such as an antireflection film can be formed by irradiating radiation curable resin with radiation such as electromagnetic waves or particle beams. In this case, a substrate that transmits radiation is used instead of the transparent substrate, and the amount of transmitted radiation is adjusted by a hole or a deposited film.

また、光学素子として、光学デバイスに貼り付けられる反射防止膜を例に説明したが、その他の用途に用いる膜であっても良い。   Further, although the antireflection film attached to the optical device has been described as an example of the optical element, it may be a film used for other purposes.

本発明は、光学デバイスに設けられ、マクロ表面形状の上に微細な凹凸が形成される光学部材の形成方法及び形成装置、それに用いる金型並びに光学部材等に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a method and an apparatus for forming an optical member that is provided in an optical device and in which fine irregularities are formed on a macro surface shape, a mold used therefor, an optical member, and the like.

1 微細表面形状金型
1b 微細表面形状
2 光硬化樹脂
2c マクロ表面形状
2d 微細表面形状
2e マクロ表面形状上に微細表面形状を持つ形状
2w 領域
2w’ 未硬化成分
2x 界面
2y 中間部
2y’ 空間
2z 界面
3 透明基材
4 マクロ表面形状金型
4a 遮蔽部
4b 孔
5 UV光
6 UV光源
7 ガラスマクロ表面形状金型
7a アルミ蒸着膜(0%透過)
7b アルミ蒸着膜(25%透過)
7c アルミ蒸着膜(50%透過)
7d アルミ蒸着膜(75%透過)
7e アルミ蒸着膜(100%透過)
7f ガラス基材
8 金型
9 うねり
10 モスアイ
11 加圧装置
21 アルミニウム基材
22a 凹部
22b 微細な凹部
31 シート供給リール
32 シート状透明基材
33 塗布装置
34 光硬化樹脂
35 微細表面形状ロール金型
36 圧着ロール
37 マクロ表面形状金型
38 マクロ表面形状金型送り装置
39 UV光源
40 シート状光学部材
41 シート巻取りリール
DESCRIPTION OF SYMBOLS 1 Fine surface shape metal mold | die 1b Fine surface shape 2 Photocuring resin 2c Macro surface shape 2d Fine surface shape 2e Shape which has fine surface shape on macro surface shape 2w area | region 2w 'Uncured component 2x Interface 2y Middle part 2y' Space 2z Interface 3 Transparent substrate 4 Macro surface shape mold 4a Shielding portion 4b Hole 5 UV light 6 UV light source 7 Glass macro surface shape mold 7a Aluminum vapor deposition film (0% transmission)
7b Aluminum deposition film (25% transmission)
7c Aluminum deposition film (50% transmission)
7d Aluminum deposition film (75% transmission)
7e Aluminum deposition film (100% transmission)
7f Glass substrate 8 Mold 9 Waviness 10 Moss eye 11 Pressure device 21 Aluminum substrate 22a Recess 22b Fine recess 31 Sheet supply reel 32 Sheet-like transparent substrate 33 Coating device 34 Photo-curing resin 35 Fine surface shape roll die 36 Crimp roll 37 Macro surface shape mold 38 Macro surface shape mold feeding device 39 UV light source 40 Sheet-like optical member 41 Sheet take-up reel

Claims (12)

マクロ表面形状および前記マクロ表面形状上の微細表面形状を光学部材の表面に形成する方法であって、
光透過領域が形成されたマクロ表面形状金型上に光透過基材を載置する工程と、
前記光透過基材上に光硬化樹脂を配置する工程と、
微細な凹凸が形成された微細表面形状金型と前記マクロ表面形状金型とで、前記光透過基材および前記光硬化樹脂を挟み込む工程と、
前記微細表面形状金型と前記マクロ表面形状金型とで前記光透過基材および前記光硬化樹脂を加圧して前記光硬化樹脂に微細表面形状を形成した後に、前記光透過領域を通して前記光硬化樹脂に光を照射して前記マクロ表面形状を形成する工程と
を有すること
を特徴とする光学部材の形成方法。
A method of forming a macro surface shape and a fine surface shape on the macro surface shape on the surface of the optical member,
Placing a light transmissive substrate on a macro surface shape mold in which a light transmissive region is formed; and
Placing a photocurable resin on the light-transmitting substrate;
A step of sandwiching the light-transmitting substrate and the photocurable resin between the fine surface shape mold in which fine irregularities are formed and the macro surface shape mold,
After the light transmissive substrate and the photocurable resin are pressed by the fine surface shape mold and the macro surface shape mold to form a fine surface shape on the photocurable resin, the photocuring is performed through the light transmissive region. And a step of irradiating the resin with light to form the macro surface shape.
前記光透過領域が孔であること
を特徴とする請求項1記載の光学部材の形成方法。
The method for forming an optical member according to claim 1, wherein the light transmission region is a hole.
前記光透過領域が厚さの異なる金属膜の蒸着によって形成されると共に、前記金属膜の膜厚の差により透過率に差を持たせた領域であること
を特徴とする請求項1記載の光学部材の形成方法。
2. The optical device according to claim 1, wherein the light transmission region is formed by vapor deposition of metal films having different thicknesses, and is a region having a difference in transmittance due to a difference in thickness of the metal film. Member forming method.
前記光硬化樹脂が放射線硬化樹脂であり、前記光が放射線であること
を特徴とする請求項1〜請求項3のいずれか記載の光学部材の形成方法。
The method for forming an optical member according to claim 1, wherein the photocurable resin is a radiation curable resin, and the light is a radiation.
マクロ表面形状および前記マクロ表面形状上の微細表面形状を光学部材に形成する光学部材の形成装置であって、
微細な凹凸が形成された微細表面形状金型と、
光透過領域が形成されると共に光透過基材が載置されるマクロ表面形状金型と、
前記微細表面形状金型と前記マクロ表面形状金型とで前記光透過基材および前記光透過基材上の光硬化樹脂を加圧する加圧装置と、
前記光透過領域を通して前記光硬化樹脂に光を照射する光源と
を備えたこと
を特徴とする光学部材の形成装置。
An optical member forming apparatus for forming a macro surface shape and a fine surface shape on the macro surface shape on an optical member,
A fine surface shape mold with fine irregularities formed,
A macro surface shape mold on which a light transmissive region is formed and a light transmissive substrate is placed;
A pressurizing device that pressurizes the light-transmitting substrate and the photocurable resin on the light-transmitting substrate with the fine surface-shaped mold and the macro-surface-shaped mold;
An optical member forming apparatus comprising: a light source that irradiates light to the photocurable resin through the light transmission region.
前記微細表面形状金型が、その側面に前記凹凸が形成された回転可能な円柱形状であり、
前記マクロ表面形状金型が、前記微細表面形状金型の側面の一部と当接する環状のベルトであり、
前記微細表面形状金型と前記マクロ表面形状金型が当接する面に前記光透過領域が形成され、
シート状の前記光硬化樹脂を前記微細表面形状金型と前記マクロ表面形状金型との間に送り込む送り機構を備えること
を特徴とする請求項5記載の光学部材の形成装置。
The fine surface shape mold is a rotatable cylindrical shape having the irregularities formed on the side surfaces thereof,
The macro surface shape mold is an annular belt that contacts a part of the side surface of the fine surface shape mold,
The light transmission region is formed on a surface where the fine surface shape mold and the macro surface shape mold contact,
The optical member forming apparatus according to claim 5, further comprising a feeding mechanism that feeds the sheet-like photocurable resin between the fine surface shape mold and the macro surface shape mold.
前記光透過領域が、孔、金属の蒸着、表面粗さ、段差、屈折率差のいずれかにより、前記光の透過量を制御する機能を持つこと
を特徴とする請求項5または請求項6記載の光学部材の形成装置。
7. The light transmission region has a function of controlling the light transmission amount by any one of a hole, vapor deposition of metal, surface roughness, step, and refractive index difference. Optical member forming apparatus.
前記光硬化樹脂が放射線硬化樹脂であり、前記光が放射線であり、前記光源が放射線源であること
を特徴とする請求項5〜請求項7のいずれか記載の光学部材の形成装置。
The optical member forming apparatus according to claim 5, wherein the photocurable resin is a radiation curable resin, the light is a radiation, and the light source is a radiation source.
マクロ表面形状と、前記マクロ表面形状上の微細表面形状とが形成された光学部材であって、
前記微細表面形状が前記マクロ表面形状の法線方向に突出した形状であること
を特徴とする光学部材。
An optical member in which a macro surface shape and a fine surface shape on the macro surface shape are formed,
The optical member, wherein the fine surface shape is a shape protruding in a normal direction of the macro surface shape.
前記微細表面形状が、円錐形状、角錐形状、釣鐘形状、円柱形状、角柱形状もしくは先端に向かって階段状に細くなる形状、不規則な凹凸を複数組み合わせた形状のいずれかであること
を特徴とする請求項9記載の光学部材。
The fine surface shape is any one of a cone shape, a pyramid shape, a bell shape, a columnar shape, a prism shape, a shape that narrows in a staircase shape toward the tip, or a shape that combines a plurality of irregular irregularities. The optical member according to claim 9.
一つの前記微細表面形状の幅が10μm以下であること
を特徴とする請求項9記載の光学部材。
The optical member according to claim 9, wherein the width of one of the fine surface shapes is 10 μm or less.
一つの前記マクロ表面形状の幅が10μm〜10mmであること
を特徴とする請求項11記載の光学部材。
The optical member according to claim 11, wherein the width of one macro surface shape is 10 μm to 10 mm.
JP2010260731A 2010-11-24 2010-11-24 Optical member manufacturing equipment Expired - Fee Related JP5732622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260731A JP5732622B2 (en) 2010-11-24 2010-11-24 Optical member manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260731A JP5732622B2 (en) 2010-11-24 2010-11-24 Optical member manufacturing equipment

Publications (3)

Publication Number Publication Date
JP2012113071A true JP2012113071A (en) 2012-06-14
JP2012113071A5 JP2012113071A5 (en) 2013-06-27
JP5732622B2 JP5732622B2 (en) 2015-06-10

Family

ID=46497365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260731A Expired - Fee Related JP5732622B2 (en) 2010-11-24 2010-11-24 Optical member manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5732622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104831A1 (en) * 2015-12-18 2017-06-22 デクセリアルズ株式会社 Anti-reflection optical body forming method, display panel, and optical film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789597B2 (en) * 1988-03-18 1998-08-20 凸版印刷株式会社 Method for producing multi-faced master for hologram duplication
JP2001145959A (en) * 1999-11-19 2001-05-29 Ricoh Opt Ind Co Ltd Curved surface forming method and optical element
JP2006053220A (en) * 2004-08-10 2006-02-23 Olympus Corp Member having antireflection part, molding die for the member and method of manufacturing the die

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789597B2 (en) * 1988-03-18 1998-08-20 凸版印刷株式会社 Method for producing multi-faced master for hologram duplication
JP2001145959A (en) * 1999-11-19 2001-05-29 Ricoh Opt Ind Co Ltd Curved surface forming method and optical element
JP2006053220A (en) * 2004-08-10 2006-02-23 Olympus Corp Member having antireflection part, molding die for the member and method of manufacturing the die

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104831A1 (en) * 2015-12-18 2017-06-22 デクセリアルズ株式会社 Anti-reflection optical body forming method, display panel, and optical film
JP2017111406A (en) * 2015-12-18 2017-06-22 デクセリアルズ株式会社 Method for forming antireflective optical body, display panel and optical film
US10987884B2 (en) 2015-12-18 2021-04-27 Dexerials Corporation Method of forming antireflection optical body, display panel, and optical film

Also Published As

Publication number Publication date
JP5732622B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
KR101020634B1 (en) Manufacturing method of lens having nanopattern
US20070217008A1 (en) Polarizer films and methods of making the same
JP5971331B2 (en) Optical system, imaging device, and optical apparatus
US10732341B2 (en) Optical body, method for manufacturing optical body, and light-emitting apparatus
JP6070720B2 (en) Manufacturing method of optical element manufacturing mold and manufacturing method of optical element
JP2003090902A (en) Antireflection imparting film and antireflection processing method using the same
WO2019070071A1 (en) Optical body, method for producing optical body, light-emitting device and display device for game device
JP2017111248A (en) Coloring structure body and manufacturing method therefor
JP2013038117A (en) Transfer head for transferring micropattern and method for forming micropattern using the same
TWI805750B (en) Light control filter
JP5732622B2 (en) Optical member manufacturing equipment
TWI430879B (en) Light guide plate and manufacturing method thereof
JP6823381B2 (en) Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating
JP7360064B2 (en) Filler-filled film, sheet film, laminated film, laminate, and method for producing filler-filled film
JP7088650B2 (en) Optical body and light emitting device
US20180313980A1 (en) Optical body, master, and method for manufacturing optical body
JP5636907B2 (en) Convex / concave pattern forming sheet and method for producing the same, concave / convex pattern forming sheet duplicating process sheet master, optical element, secondary process molding, duplicating sheet
CN113777677B (en) Optical body, master, and method for manufacturing optical body
TWI404978B (en) Prism with optical layer and its making method
TW201941913A (en) Resin-stacked optical body and method of manufacture therefor
Kim et al. Fabrication of Film-Type Light Guide Plates by Using UV Nano-Imprint Lithography to Enhance Optical Properties
KR101040526B1 (en) Mold manufacturing method for light guide plate using a imprint process of hologram pattern
TWI836590B (en) Optical body, master disk, and manufacturing method of optical body
JP5463683B2 (en) Lens sheet having microlens structure
KR101219097B1 (en) Optical sheet, method for manufacturing the same, backlight unit and display device comprising the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R151 Written notification of patent or utility model registration

Ref document number: 5732622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees