JP6823381B2 - Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating - Google Patents

Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating Download PDF

Info

Publication number
JP6823381B2
JP6823381B2 JP2016103964A JP2016103964A JP6823381B2 JP 6823381 B2 JP6823381 B2 JP 6823381B2 JP 2016103964 A JP2016103964 A JP 2016103964A JP 2016103964 A JP2016103964 A JP 2016103964A JP 6823381 B2 JP6823381 B2 JP 6823381B2
Authority
JP
Japan
Prior art keywords
resin layer
optical element
diffractive optical
tapered portion
terminal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016103964A
Other languages
Japanese (ja)
Other versions
JP2017211466A5 (en
JP2017211466A (en
Inventor
窪 和人
和人 窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016103964A priority Critical patent/JP6823381B2/en
Publication of JP2017211466A publication Critical patent/JP2017211466A/en
Publication of JP2017211466A5 publication Critical patent/JP2017211466A5/ja
Application granted granted Critical
Publication of JP6823381B2 publication Critical patent/JP6823381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、カメラ等の光学機器に使用される回折光学素子に関するものである。 The present invention relates to a diffractive optical element used in an optical device such as a camera.

従来の回折光学素子は、特許文献1に記載されているように、ガラス基板と格子成形層光学材料と平坦化層光学材料が光軸方向に順に積層した構造を有する。回折格子は、格子成形層と平坦化層との間に形成されている。ガラス基板は、球面または非球面の凹凸形状を有しており、ガラスや樹脂で構成されている。格子成形層光学材料と平坦化層光学材料は、アクリル樹脂やエポキシ樹脂等の互いに異なる光学特性を有する光硬化性樹脂や熱硬化性樹脂から構成されている。 As described in Patent Document 1, the conventional diffractive optical element has a structure in which a glass substrate, a lattice forming layer optical material, and a flattening layer optical material are laminated in order in the optical axis direction. The diffraction grating is formed between the lattice forming layer and the flattening layer. The glass substrate has a spherical or aspherical uneven shape, and is made of glass or resin. The lattice forming layer optical material and the flattening layer optical material are composed of a photocurable resin or a thermosetting resin having different optical characteristics such as an acrylic resin and an epoxy resin.

格子成形層の外周部は、隣接するガラス基板の外周部よりも光軸側に位置している。且つ、平坦化層の外周部は、隣接する格子成形層の外周部よりも光軸側に位置している。格子成形層と平坦化層の光軸方向の厚さは、それぞれ50μm以上400μm以下である。 The outer peripheral portion of the lattice forming layer is located on the optical axis side of the outer peripheral portion of the adjacent glass substrate. Moreover, the outer peripheral portion of the flattening layer is located on the optical axis side of the outer peripheral portion of the adjacent lattice forming layer. The thickness of the lattice forming layer and the flattening layer in the optical axis direction is 50 μm or more and 400 μm or less, respectively.

回折光学素子の格子成形層は、ガラス基板と金型の間に充填した格子成形層光学材料を光硬化させて離型することで形成される。回折光学素子の平坦化層も同様に、先に成形した格子成形層と金型の間に充填した平坦化層光学材料を光硬化させて離型することで形成される。 The lattice forming layer of the diffractive optical element is formed by photocuring and releasing the lattice forming layer optical material filled between the glass substrate and the mold. Similarly, the flattening layer of the diffractive optical element is also formed by photocuring and releasing the flattening layer optical material filled between the previously formed lattice forming layer and the mold.

特開2012−218394号公報Japanese Unexamined Patent Publication No. 2012-218394

しかしながら、上記特許文献1に記載の従来例では、回折光学素子を成す格子成形層と平坦化層の光学有効径外の形状の影響から、回折光学素子の外観が悪化するといった解決すべき課題があった。 However, in the conventional example described in Patent Document 1, there is a problem to be solved that the appearance of the diffractive optical element deteriorates due to the influence of the shapes of the lattice forming layer and the flattening layer forming the diffractive optical element outside the optically effective diameter. there were.

具体的には、レンズ鏡筒に設置した回折光学素子の外周に2本の白い輝線が発生する。2本の輝線は、輝線の幅を不規則に変化させつつ、波状に曲折しながら回折光学素子の外周を一周しており、見る角度によってその形状が変化する。2本の輝線の位置は、格子成形層と平坦化層の光学有効径外にある。回折光学素子に発生する輝線は、鏡筒等の光学系内において目に付く(目立つ)不規則な散乱光を発生させるので、回折光学素子を含む光学系の外観を悪化させる。 Specifically, two white bright lines are generated on the outer circumference of the diffractive optical element installed in the lens barrel. The two emission lines circulate around the outer circumference of the diffractive optical element while irregularly changing the width of the emission lines and bending in a wavy shape, and the shape of the two emission lines changes depending on the viewing angle. The positions of the two emission lines are outside the optically effective diameter of the lattice forming layer and the flattening layer. The bright lines generated in the diffractive optical element generate conspicuous (conspicuous) irregular scattered light in the optical system such as the lens barrel, which deteriorates the appearance of the optical system including the diffractive optical element.

上記課題を解決するため、本出願の第一の観点に係る発明は
ラス基板と、
前記ガラス基板上に設けられ、格子を有する成形面を備える第1の樹脂層と、
前記第1の樹脂層上に設けられ、前記第1の樹脂層と接しない成形面を備える第2の樹脂層と、が順に積層され、
前記第1の樹脂層と前記第2の樹脂層との間に回折格子を有する回折光学素子であって
記第1の樹脂層および前記第2の樹脂層の各々が、前記成型面の光軸を中心とした光学有効径外に位置する円の円周上に位置する変曲点から径外周に向かって厚みが薄くなるテーパ部と、前記テーパ部の終端に位置する終端部と、を備えており、
前記終端部の厚みが5μm以上50μm未満であり、
前記終端部が前記光軸の方向に凹んだ凹形状であることを特徴とする。
To solve the above problems, the invention according to a first aspect of the present application,
And the glass substrate,
A first resin layer provided on the glass substrate and having a molding surface having a lattice,
A second resin layer provided on the first resin layer and having a molding surface not in contact with the first resin layer is laminated in order.
A diffraction optical element having a diffraction grating between the first resin layer and the second resin layer .
Each of the previous SL first resin layer and the second resin layer, the radial outer periphery of the inflexion point located on the circumference of a circle positioned at the optical effective diameter around the optical axis of the molding surface It is provided with a tapered portion that becomes thinner toward the end and a terminal portion located at the end of the tapered portion .
Ri thickness 50μm less der than 5μm of the terminal portion,
The end portion has a concave shape recessed in the direction of the optical axis .

本発明によれば、回折光学素子の外周で目に付く(目立つ)不規則な散乱光である輝線を低減できるので、外観に優れた回折光学素子を提供することができる。 According to the present invention, it is possible to reduce bright lines that are irregular scattered light that is noticeable (conspicuous) on the outer periphery of the diffractive optical element, so that it is possible to provide a diffractive optical element having an excellent appearance.

また、格子成形用の層のテーパ部や終端部からの不規則な散乱光である輝線を低減できるので、より外観に優れた回折光学素子を提供することができる。 Further, since it is possible to reduce the emission lines which are irregular scattered light from the tapered portion and the terminal portion of the layer for lattice forming, it is possible to provide a diffractive optical element having a more excellent appearance.

さらに、格子成形用の層や平坦化用の層のテーパ部や終端部からの不規則な散乱光である輝線を低減できるので、より外観に優れた回折光学素子を提供することができる。 Further, since it is possible to reduce the emission lines which are irregular scattered light from the tapered portion and the terminal portion of the layer for lattice forming and the layer for flattening, it is possible to provide a diffractive optical element having a better appearance.

また、格子成形用の層のテーパ部や平坦化用の層のテーパ部からの反射光である輝線を低減できるので、より外観に優れた回折光学素子を提供することができる。 Further, since the emission line which is the reflected light from the tapered portion of the layer for lattice forming and the tapered portion of the layer for flattening can be reduced, it is possible to provide a diffractive optical element having a more excellent appearance.

本発明の実施形態に係る回折光学素子の断面図である。It is sectional drawing of the diffraction optical element which concerns on embodiment of this invention. 本発明の実施形態に係る回折光学素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the diffractive optical element which concerns on embodiment of this invention. 本発明の実施形態に係る回折光学素子の断面図である。It is sectional drawing of the diffraction optical element which concerns on embodiment of this invention. 本発明の実施形態に係る回折光学素子の断面図である。It is sectional drawing of the diffraction optical element which concerns on embodiment of this invention. 従来技術の実施形態に係る回折光学素子の断面図である。It is sectional drawing of the diffraction optical element which concerns on embodiment of the prior art. 本発明の実施形態に係る回折光学素子の断面図である。It is sectional drawing of the diffraction optical element which concerns on embodiment of this invention. 本発明の実施形態に係る回折光学素子の断面図である。It is sectional drawing of the diffraction optical element which concerns on embodiment of this invention.

上述したように、本出願の第一の観点に係る発明は
ラス基板と、
前記ガラス基板上に設けられ、格子を有する成形面を備える第1の樹脂層と、
前記第1の樹脂層上に設けられ、前記第1の樹脂層と接しない成形面を備える第2の樹脂層と、が順に積層され、
前記第1の樹脂層と前記第2の樹脂層との間に回折格子を有する回折光学素子であって、
前記第1の樹脂層および前記第2の樹脂層の各々が、前記成型面の光軸を中心とした光学有効径外に位置する円の円周上に位置する変曲点から径外周に向かって厚みが薄くなるテーパ部と、前記テーパ部の終端に位置する終端部と、を備えており、
前記終端部の厚みが5μm以上50μm未満であり、
前記終端部が前記光軸の方向に凹んだ凹形状であることを特徴とする。
以下、かかる特徴を有する本発明の実施形態を図面を参照して詳細に説明する。
As described above, the invention according to a first aspect of the present application,
And the glass substrate,
A first resin layer provided on the glass substrate and having a molding surface having a lattice,
A second resin layer provided on the first resin layer and having a molding surface not in contact with the first resin layer is laminated in order.
A diffraction optical element having a diffraction grating between the first resin layer and the second resin layer.
Each of the first resin layer and the second resin layer is directed from an inflection point located on the circumference of a circle located outside the optical effective diameter centered on the optical axis of the molding surface toward the outer diameter. It is provided with a tapered portion that becomes thinner and a terminal portion located at the end of the tapered portion .
Ri thickness 50μm less der than 5μm of the terminal portion,
The end portion has a concave shape recessed in the direction of the optical axis .
Hereinafter, embodiments of the present invention having such characteristics will be described in detail with reference to the drawings.

図1は、本発明の一実施形態に係る回折光学素子の断面図である。本実施形態の回折光学素子は、ガラス基板1と、格子成形用の第1の樹脂層2と、平坦化用の第2の樹脂層3が光軸(図中、一点鎖線で示される)方向に順に積層されてなる構造を有する。該回折光学素子においては、第1の樹脂層2の成形面6の光学有効径外の成形面と第1の樹脂層2の外周面との交線、および第2の樹脂層3の成形面6の光学有効径外の成形面と第2の樹脂層3の外周面との交線の各々が、光軸からの距離を同じくする変曲点7の連続からなっている。すなわち、本発明において「変曲点」とは、その点を境に回折光学素子の光軸に沿った断面における第1または第2の樹脂層の外形線の傾きが非連続的に変化する点をいう。該回折光学素子の第1の樹脂層2と第2の樹脂層3は、各変曲点7から径外周方向に向けて第1の樹脂層2と第2の樹脂層3の各々の膜厚が次第に、連続的または不連続的に薄くなるテーパ部4を備えている。さらに、該回折光学素子は、テーパ部4の終端に膜厚が5μm以上50μm未満である終端部5を備えている。 FIG. 1 is a cross-sectional view of a diffractive optical element according to an embodiment of the present invention. In the diffractive optical element of the present embodiment, the glass substrate 1, the first resin layer 2 for lattice forming, and the second resin layer 3 for flattening are in the direction of the optical axis (indicated by the alternate long and short dash line in the figure). It has a structure in which they are laminated in order. In the diffractive optical element, the intersection line between the molded surface outside the optically effective diameter of the molded surface 6 of the first resin layer 2 and the outer peripheral surface of the first resin layer 2 and the molded surface of the second resin layer 3 Each of the intersecting lines between the molded surface outside the optical effective diameter of No. 6 and the outer peripheral surface of the second resin layer 3 is composed of a series of bending points 7 having the same distance from the optical axis. That is, in the present invention, the "inflection point" is a point at which the inclination of the outer line of the first or second resin layer in the cross section along the optical axis of the diffractive optical element changes discontinuously with that point as a boundary. To say. The first resin layer 2 and the second resin layer 3 of the diffractive optical element have the respective thicknesses of the first resin layer 2 and the second resin layer 3 from each inflection point 7 in the radial outer peripheral direction. Is provided with a tapered portion 4 that gradually or discontinuously thins. Further, the diffractive optical element is provided with a terminal portion 5 having a film thickness of 5 μm or more and less than 50 μm at the end of the tapered portion 4.

図6は、終端部5の形態を説明する断面図である。図6中のtは、テーパ部4と終端部5の交点からガラス基板1までの最短の長さ、すなわち終端部5の膜厚を示すものであり、具体的には5μm以上50μm未満であることが好ましい。遮光層11は、回折光学素子の全周にわたって、終端部5の全体とテーパ部4の少なくとも一部(図4中の11参照)を覆うように成膜されている。ただし、回折光学素子に求められる遮光性能によっては、遮光層11は、図6に示すように、終端部5の全体、テーパ部4の全体、および第1の樹脂層2成形面の一部を覆っていてもよい。図中のdは、テーパ部4や終端部5の表面に接する遮光層11の膜厚を示す。遮光層11は、十分な遮光性能を得るために、5μm以上の膜厚を有することが好ましい。 FIG. 6 is a cross-sectional view illustrating the form of the terminal portion 5. Reference numeral t in FIG. 6 indicates the shortest length from the intersection of the tapered portion 4 and the terminal portion 5 to the glass substrate 1, that is, the film thickness of the terminal portion 5, and is specifically 5 μm or more and less than 50 μm. Is preferable. The light-shielding layer 11 is formed so as to cover the entire terminal portion 5 and at least a part of the tapered portion 4 (see 11 in FIG. 4) over the entire circumference of the diffractive optical element. However, depending on the light-shielding performance required for the diffractive optical element, as shown in FIG. 6, the light-shielding layer 11 covers the entire terminal portion 5, the entire tapered portion 4, and a part of the first resin layer 2 molded surface. It may be covered. In the figure, d indicates the film thickness of the light-shielding layer 11 in contact with the surfaces of the tapered portion 4 and the terminal portion 5. The light-shielding layer 11 preferably has a film thickness of 5 μm or more in order to obtain sufficient light-shielding performance.

図2は、本発明の回折光学素子の製造方法の一例を説明する概略図である。格子成形用の第1の樹脂層2を成形する金型9と平坦化用の第2の樹脂層3を成形する金型10は、回折光学素子の製造装置を構成する。 FIG. 2 is a schematic view illustrating an example of a method for manufacturing a diffractive optical element of the present invention. The mold 9 for molding the first resin layer 2 for lattice molding and the mold 10 for molding the second resin layer 3 for flattening constitute an apparatus for manufacturing a diffractive optical element.

以下、本発明の回折光学素子を製造する工程を、図2を参照して順に説明する。
先ず、格子成形用の第1の樹脂層2を成形する金型9とガラス基板1の間に第1の樹脂層用の未硬化の光学材料2aを適量配置する(図2(a))。次に、第1の樹脂層用の未硬化の光学材料2aを金型9とガラス基板1の間に挟んで所望の層厚になるまで、且つ光学材料2aが光学有効径外のテーパ部4に到達するまで押し広げる(図2(b))。次に、第1の樹脂層用の未硬化の光学材料2aに対して光や熱などのエネルギーを与えて、第1の樹脂層用の光学材料2aを硬化させる。次に、硬化によりガラス基板1と一体になった第1の樹脂層用の光学材料2aを離型することで、ガラス基板1上に、テーパ部4と、その終端に終端部5を有する格子成形用の第1の樹脂層2を成形する(図2(c))。
Hereinafter, the steps of manufacturing the diffractive optical element of the present invention will be described in order with reference to FIG.
First, an appropriate amount of the uncured optical material 2a for the first resin layer is arranged between the mold 9 for forming the first resin layer 2 for lattice forming and the glass substrate 1 (FIG. 2A). Next, the uncured optical material 2a for the first resin layer is sandwiched between the mold 9 and the glass substrate 1 until the desired layer thickness is obtained, and the optical material 2a is a tapered portion 4 outside the optical effective diameter. Spread until it reaches (Fig. 2 (b)). Next, energy such as light or heat is applied to the uncured optical material 2a for the first resin layer to cure the optical material 2a for the first resin layer. Next, by releasing the optical material 2a for the first resin layer integrated with the glass substrate 1 by curing, a lattice having a tapered portion 4 on the glass substrate 1 and a terminal portion 5 at the end thereof. The first resin layer 2 for molding is molded (FIG. 2 (c)).

次に、平坦化用の第2の樹脂層3を成形する金型10と格子成形用の第1の樹脂層2の間に平坦化用の第2の樹脂層の成形用の未硬化の光学材料3aを適量配置する(図2(d))。次に、第2の樹脂層用の未硬化の光学材料3aを金型10と第1の樹脂層2の間に挟んで所望の層厚になるまで、且つ光学有効径外のテーパ部4に到達するまで押し広げる(図2(e))。次に、第2の樹脂層用の未硬化の光学材料3aに対して光や熱などのエネルギーを与えて、第2の樹脂層用の光学材料3aを硬化させる。最後に、硬化により第1の樹脂層2と一体になった第2の樹脂層用の光学材料3aを離型することで、第1の樹脂層2上に、テーパ部4と、その終端に終端部5を有する平坦化用の第2の樹脂層3を成形する(図2(f))。
なお、本発明における第1の樹脂および第2の樹脂としては、従来の回折光学素子の構成材料として用いられている光硬化性樹脂、熱硬化性樹脂を含むエネルギー硬化性樹脂を使用することができる。
Next, uncured optics for forming a second resin layer for flattening between the mold 10 for forming the second resin layer 3 for flattening and the first resin layer 2 for lattice forming. An appropriate amount of the material 3a is arranged (FIG. 2 (d)). Next, the uncured optical material 3a for the second resin layer is sandwiched between the mold 10 and the first resin layer 2 until the desired layer thickness is obtained, and the tapered portion 4 outside the optical effective diameter is formed. Spread until it reaches (Fig. 2 (e)). Next, energy such as light or heat is applied to the uncured optical material 3a for the second resin layer to cure the optical material 3a for the second resin layer. Finally, by releasing the optical material 3a for the second resin layer, which is integrated with the first resin layer 2 by curing, the tapered portion 4 and its termination are formed on the first resin layer 2. A second resin layer 3 for flattening having the end portion 5 is formed (FIG. 2 (f)).
As the first resin and the second resin in the present invention, it is possible to use an energy curable resin including a photocurable resin and a thermosetting resin used as constituent materials of a conventional diffraction optical element. it can.

(実施例1)
本実施例の回折光学素子を、図1を参照して説明する。
本実施例の回折光学素子は、光軸に対して軸対称で、ガラス基板1と格子成形用の第1の樹脂層2と平坦化用の第2の樹脂層3から構成される。回折格子8は、第1の樹脂層2と第2の樹脂層3の界面に形成される。ガラス基板1は、半径30mmの平円板ガラスである。格子成形用の第1の樹脂層2は、無色透明な光硬化性のフッ素系エポキシ樹脂からなり、光軸上の膜厚は200μmである。平坦化用の第2の樹脂層3は、無色透明な光硬化性の硫黄含有アクリル樹脂からなり、光軸上の膜厚は250μmである。
(Example 1)
The diffractive optical element of this embodiment will be described with reference to FIG.
The diffractive optical element of this embodiment is axisymmetric with respect to the optical axis and is composed of a glass substrate 1, a first resin layer 2 for lattice forming, and a second resin layer 3 for flattening. The diffraction grating 8 is formed at the interface between the first resin layer 2 and the second resin layer 3. The glass substrate 1 is a flat disk glass having a radius of 30 mm. The first resin layer 2 for lattice molding is made of a colorless and transparent photocurable fluoroepoxy resin, and has a film thickness of 200 μm on the optical axis. The second resin layer 3 for flattening is made of a colorless and transparent photocurable sulfur-containing acrylic resin, and has a film thickness of 250 μm on the optical axis.

第1の樹脂層2の変曲点7は、同一成形面内で半径28mmの光学有効径外に位置する。第2の樹脂層3の変曲点7は、同一成形面内で半径26mmの光学有効径外に位置する。本実施例の回折光学素子の光学有効径は、半径25.5mmである。 The inflection point 7 of the first resin layer 2 is located outside the optically effective diameter of a radius of 28 mm in the same molding surface. The inflection point 7 of the second resin layer 3 is located outside the optically effective diameter of a radius of 26 mm in the same molding surface. The optically effective diameter of the diffractive optical element of this embodiment is a radius of 25.5 mm.

第1の樹脂層2の変曲点7から径外周方向の半径29mmの位置まで第1の樹脂層2の膜厚が連続して薄くなるテーパ部4を備えている。さらに、第2の樹脂層3の変曲点7から径外周方向の半径27mmの位置まで第2の樹脂層3の膜厚が連続して薄くなるテーパ部4を備えている。第1の樹脂層2と第2の樹脂層3の各テーパ部4の表面は、鏡面である。 A tapered portion 4 is provided so that the film thickness of the first resin layer 2 is continuously thinned from the inflection point 7 of the first resin layer 2 to a position having a radius of 29 mm in the outer peripheral direction of the diameter. Further, the taper portion 4 is provided so that the film thickness of the second resin layer 3 is continuously thinned from the inflection point 7 of the second resin layer 3 to a position having a radius of 27 mm in the outer peripheral direction of the diameter. The surface of each tapered portion 4 of the first resin layer 2 and the second resin layer 3 is a mirror surface.

第1の樹脂層2のテーパ部4の終端には、膜厚10μmの終端部5を備えている。さらに、第2の樹脂層3のテーパ部4の終端には、膜厚20μmの終端部5を備えている。第1の樹脂層2と第2の樹脂層3のテーパ部4の断面形状は、変曲点7から終端部5まで直線となる。第1の樹脂層2の終端部5の断面形状、および第1の樹脂層2に接する第2の樹脂層3の終端部5の断面形状は、光軸方向へへこんだ凹形状となる。 A terminal portion 5 having a film thickness of 10 μm is provided at the end of the tapered portion 4 of the first resin layer 2. Further, a terminal portion 5 having a film thickness of 20 μm is provided at the end of the tapered portion 4 of the second resin layer 3. The cross-sectional shape of the tapered portion 4 of the first resin layer 2 and the second resin layer 3 is a straight line from the inflection point 7 to the end portion 5. The cross-sectional shape of the terminal portion 5 of the first resin layer 2 and the cross-sectional shape of the terminal portion 5 of the second resin layer 3 in contact with the first resin layer 2 are concave shapes dented in the optical axis direction.

本実施例の回折光学素子の製造方法を、図2を参照して順に説明する。
先ず、ガラス基板1の格子成形用の第1の樹脂層2を成形する面に、フッ素系エポキシ樹脂との密着を強くするためのシランカップリング処理を施す。
The manufacturing method of the diffractive optical element of this embodiment will be described in order with reference to FIG.
First, the surface of the glass substrate 1 on which the first resin layer 2 for lattice molding is formed is subjected to a silane coupling treatment for strengthening the adhesion with the fluoroepoxy resin.

次に、金型9上に、ガラス基板1を、そのシランカップリング処理面を金型9側に向けて配置し、金型9上の中央付近に不図示のディスペンサーによって、フッ素系エポキシ樹脂2aを600mg滴下する(図2(a))。若しくは、フッ素系エポキシ樹脂をガラス基板1のシランカップリング処理面の中央付近に滴下しても良い。 Next, the glass substrate 1 is placed on the mold 9 with its silane coupling treatment surface facing the mold 9 side, and the fluoroepoxy resin 2a is placed near the center of the mold 9 by a dispenser (not shown). 600 mg is added dropwise (FIG. 2 (a)). Alternatively, the fluorine-based epoxy resin may be dropped near the center of the silane coupling-treated surface of the glass substrate 1.

次に、ガラス基板1を金型9に対して10kgfで10秒間押圧して、ガラス基板1と金型9の間に、フッ素系エポキシ樹脂2aを押し広げ充填する(図2(b))。この時、フッ素系エポキシ樹脂2aのガラス基板1と金型9の間における光軸に沿った膜厚は200μmまで押し広げられ、且つフッ素系エポキシ樹脂2aの広がりは金型9の外周部のテーパ形状部まで到達しており、テーパ部4の終端部5の膜厚は10μmとなる。ここで、フッ素系エポキシ樹脂2aをガラス基板1と金型9の間で同心円状に充填するため、ガラス基板1または金型9を光軸周りに回転させる工程を追加しても良い。 Next, the glass substrate 1 is pressed against the mold 9 at 10 kgf for 10 seconds, and the fluorine-based epoxy resin 2a is spread and filled between the glass substrate 1 and the mold 9 (FIG. 2B). At this time, the film thickness of the fluorine-based epoxy resin 2a between the glass substrate 1 and the mold 9 along the optical axis is expanded to 200 μm, and the expansion of the fluorine-based epoxy resin 2a is the taper of the outer peripheral portion of the mold 9. It reaches the shape portion, and the film thickness of the end portion 5 of the tapered portion 4 is 10 μm. Here, in order to fill the fluorine-based epoxy resin 2a concentrically between the glass substrate 1 and the mold 9, a step of rotating the glass substrate 1 or the mold 9 around the optical axis may be added.

次に、不図示の紫外線照射ランプを用いてフッ素系エポキシ樹脂2aを光硬化する。フッ素系エポキシ樹脂2aに対して、光強度10mW/cmの紫外光を、ガラス基板1を通して10分間照射した。 Next, the fluoroepoxy resin 2a is photocured using an ultraviolet irradiation lamp (not shown). The fluorine-based epoxy resin 2a was irradiated with ultraviolet light having a light intensity of 10 mW / cm 2 for 10 minutes through the glass substrate 1.

次に、ガラス基板1と一体になった格子成形用の第1の樹脂層2を離型する(図2(c))。これにより、格子成形用の第1の樹脂層2には、金型9によって回折格子8とテーパ部4が転写され、テーパ部4の終端には終端部5が形成される。 Next, the first resin layer 2 for lattice forming integrated with the glass substrate 1 is released (FIG. 2 (c)). As a result, the diffraction grating 8 and the tapered portion 4 are transferred to the first resin layer 2 for lattice forming by the mold 9, and the terminal portion 5 is formed at the end of the tapered portion 4.

次に、金型10上に、ガラス基板1を、第1の樹脂層2を金型10側に向けて配置し、次いで、金型10上の中央付近に不図示のディスペンサーによって、硫黄含有アクリル樹脂3aを750mg滴下する(図2(d))。若しくは、硫黄含有アクリル樹脂をガラス基板1上の第1の樹脂層2の中央付近に滴下しても良い。 Next, the glass substrate 1 is placed on the mold 10 with the first resin layer 2 facing the mold 10 side, and then the sulfur-containing acrylic is placed near the center of the mold 10 by a dispenser (not shown). 750 mg of the resin 3a is added dropwise (FIG. 2 (d)). Alternatively, the sulfur-containing acrylic resin may be dropped near the center of the first resin layer 2 on the glass substrate 1.

次に、ガラス基板1を金型10に対して10kgfで15秒間押圧して、ガラス基板1上の第1の樹脂層2と金型10の間に、硫黄含有アクリル樹脂3aを押し広げ充填する(図2(e))。この時、硫黄含有アクリル樹脂3aの第1の樹脂層2と金型10の間における光軸に沿った膜厚は250μmまで押し広げられ、且つ硫黄含有アクリル樹脂3aの広がりは金型10の外周部のテーパ形状部まで到達しており、テーパ部4の終端部5の膜厚は20μmとなる。ここで、硫黄含有アクリル樹脂3aを第1の樹脂層2と金型10の間で同心円状に充填するため、ガラス基板1または金型10を光軸周りに回転させる工程を追加しても良い。 Next, the glass substrate 1 is pressed against the mold 10 at 10 kgf for 15 seconds, and the sulfur-containing acrylic resin 3a is spread and filled between the first resin layer 2 on the glass substrate 1 and the mold 10. (Fig. 2 (e)). At this time, the film thickness along the optical axis between the first resin layer 2 of the sulfur-containing acrylic resin 3a and the mold 10 is expanded to 250 μm, and the spread of the sulfur-containing acrylic resin 3a is the outer circumference of the mold 10. It reaches the tapered shape portion of the portion, and the film thickness of the terminal portion 5 of the tapered portion 4 is 20 μm. Here, in order to fill the sulfur-containing acrylic resin 3a concentrically between the first resin layer 2 and the mold 10, a step of rotating the glass substrate 1 or the mold 10 around the optical axis may be added. ..

次に、不図示の紫外線照射ランプを用いて硫黄含有アクリル樹脂3aを光硬化する。硫黄含有アクリル樹脂3aに対して、光強度20mW/cmの紫外光を、ガラス基板1と第1の樹脂層2を通して15分間照射した。 Next, the sulfur-containing acrylic resin 3a is photocured using an ultraviolet irradiation lamp (not shown). The sulfur-containing acrylic resin 3a was irradiated with ultraviolet light having a light intensity of 20 mW / cm 2 for 15 minutes through the glass substrate 1 and the first resin layer 2.

最後に、ガラス基板1および第1の樹脂層2と一体になった第2の樹脂層3を離型する(図2(f))。これにより、平坦化用の第2の樹脂層3には、金型10によって平坦面とテーパ部4が転写され、テーパ部4の終端には終端部5が形成される。 Finally, the second resin layer 3 integrated with the glass substrate 1 and the first resin layer 2 is released from the mold (FIG. 2 (f)). As a result, the flat surface and the tapered portion 4 are transferred to the second resin layer 3 for flattening by the mold 10, and the terminal portion 5 is formed at the end of the tapered portion 4.

本実施例の回折光学素子は、光学有効径外の外周に、鏡面を有するテーパ部4と終端部5を備えているので、本発明の解決課題である不規則な散乱光である輝線の発生を低減することができる。かかる低減作用を奏する理由について以下説明する。 Since the diffractive optical element of the present embodiment is provided with a tapered portion 4 having a mirror surface and a terminal portion 5 on the outer periphery outside the effective optical diameter, generation of bright lines, which are irregular scattered light, is a problem to be solved in the present invention. Can be reduced. The reason for exerting such a reducing action will be described below.

回折光学素子の周囲からテーパ部4に入射する光は、入射光の角度に対して一定の方向に反射屈折する。よって、テーパ部4から出射する光は、輝度の濃淡も無く且つ波状の曲折も無い真円状の規則性のある輝線として観察される。回折光学素子の周囲から終端部5に入射する光は、終端部5の凹形状によって散乱する。ただし、終端部5の凹形状が十分に小さいので、終端部5から散乱する光は十分に弱い。終端部5の凹形状は、第1の樹脂層2や第2の樹脂層3を構成する光学材料の硬化時の硬化収縮によって発生する。光学材料の硬化反応による体積の収縮が、硬化成形時に雰囲気と接する終端部5に集中するので、終端部5は体積の収縮分に比例して凹形状に変形する。一般的に、光学材料の硬化収縮率が大きいほど、終端部5はより大きく凹形状に変形する。また、終端部5の膜厚が厚いほど、終端部5はより大きく凹形状に変形する。本実施例の第1の樹脂層2を構成するフッ素系エポキシ樹脂の硬化収縮率は6%であり、終端部5の膜厚は10μmであるが、終端部5の凹形状の深さは3μmであった。本実施例の第2の樹脂層3を構成する硫黄含有アクリル樹脂の硬化収縮率は8%であり、終端部5の膜厚は20μmであるが、終端部5の凹形状の深さは8μmであった。 The light incident on the tapered portion 4 from the periphery of the diffractive optical element is reflected and refracted in a certain direction with respect to the angle of the incident light. Therefore, the light emitted from the tapered portion 4 is observed as a perfectly circular regular emission line with no shading of brightness and no wavy bending. The light incident on the terminal portion 5 from the periphery of the diffractive optical element is scattered by the concave shape of the terminal portion 5. However, since the concave shape of the terminal portion 5 is sufficiently small, the light scattered from the terminal portion 5 is sufficiently weak. The concave shape of the end portion 5 is generated by curing shrinkage during curing of the optical material constituting the first resin layer 2 and the second resin layer 3. Since the volume shrinkage due to the curing reaction of the optical material is concentrated on the terminal portion 5 in contact with the atmosphere during curing molding, the terminal portion 5 is deformed into a concave shape in proportion to the volume shrinkage. Generally, the larger the curing shrinkage rate of the optical material, the larger the end portion 5 is deformed into a concave shape. Further, the thicker the film thickness of the end portion 5, the larger the end portion 5 is deformed into a concave shape. The curing shrinkage of the fluorine-based epoxy resin constituting the first resin layer 2 of this embodiment is 6%, the film thickness of the terminal portion 5 is 10 μm, but the depth of the concave shape of the terminal portion 5 is 3 μm. Met. The curing shrinkage rate of the sulfur-containing acrylic resin constituting the second resin layer 3 of this embodiment is 8%, the film thickness of the terminal portion 5 is 20 μm, but the depth of the concave shape of the terminal portion 5 is 8 μm. Met.

従来技術の回折光学素子においては、光学有効径外の外周にテーパ部が無く、終端部5の凹形状の大きさが異なるので、本発明の課題である不規則な散乱光である輝線の発生を低減することができない。 In the diffractive optical element of the prior art, since there is no tapered portion on the outer periphery outside the effective optical diameter and the size of the concave shape of the terminal portion 5 is different, the generation of bright lines, which is irregular scattered light, is a subject of the present invention. Cannot be reduced.

図5は、従来技術の一例として挙げる回折光学素子の断面図である。図5に示される素子の形態と本発明に係る素子の形態とは、第1の樹脂層2と第2の樹脂層3の光学有効径外の外周形状が異なる。当該従来技術の素子には、本発明におけるテーパ部4に相当する部分が無いので、終端部5の膜厚は、本発明におけるテーパ部4を備えた終端部5の膜厚よりも大きくなる。さらに、終端部5の膜厚が厚いので、終端部5に形成される凹形状も大きくなる。第1の樹脂層2と第2の樹脂層3の硬化成形時に雰囲気と接する終端部5には硬化収縮が集中するので、終端部5の凹形状の面には不規則に複数の凹凸が発生する。 FIG. 5 is a cross-sectional view of a diffractive optical element given as an example of the prior art. The form of the element shown in FIG. 5 and the form of the element according to the present invention are different from each other in the outer peripheral shapes of the first resin layer 2 and the second resin layer 3 outside the optically effective diameter. Since the element of the prior art does not have a portion corresponding to the tapered portion 4 in the present invention, the film thickness of the terminal portion 5 is larger than the film thickness of the terminal portion 5 provided with the tapered portion 4 in the present invention. Further, since the film thickness of the end portion 5 is large, the concave shape formed in the end portion 5 also becomes large. Since the curing shrinkage is concentrated on the end portion 5 which is in contact with the atmosphere during the curing molding of the first resin layer 2 and the second resin layer 3, a plurality of irregularities are irregularly generated on the concave surface of the end portion 5. To do.

回折光学素子の周囲から終端部5に入射する光は、終端部5の凹形状によって散乱する。終端部5の凹形状が大きいので、終端部5から散乱する光は多くなる。さらに、終端部5の凹形状の面にある複数の凹凸によって、散乱光の強さに周方向の分布が生じるので、輝度に濃淡のある不規則な輝線が観察される。また、第1の樹脂層2と第2の樹脂層3の充填形状が光軸に対して真円状でなければ、終端部5は周方向に波状に曲折しながら回折光学素子の外周を一周するので、終端部5による輝線も同じく波状に観察される。本発明に係る素子の形態においては、終端部5が素子の周方向に波状に曲折していても終端部5が十分に小さいので、目に付く(目立つ)輝線を大幅に低減することができる。 The light incident on the terminal portion 5 from the periphery of the diffractive optical element is scattered by the concave shape of the terminal portion 5. Since the concave shape of the end portion 5 is large, a large amount of light is scattered from the end portion 5. Further, since the intensity of the scattered light is distributed in the circumferential direction due to the plurality of irregularities on the concave surface of the terminal portion 5, irregular bright lines with shading in brightness are observed. Further, if the filling shapes of the first resin layer 2 and the second resin layer 3 are not perfectly circular with respect to the optical axis, the terminal portion 5 goes around the outer circumference of the diffractive optical element while bending in a wavy shape in the circumferential direction. Therefore, the emission line due to the terminal portion 5 is also observed in a wavy shape. In the form of the element according to the present invention, even if the end portion 5 is bent in a wavy shape in the circumferential direction of the element, the end portion 5 is sufficiently small, so that the conspicuous (conspicuous) emission line can be significantly reduced. ..

このように本実施例によれば、回折光学素子の外周で目に付く(目立つ)不規則な散乱光である輝線を、第1の樹脂層2と第2の樹脂層3のテーパ部4と終端部5によって低減できるので、外観に優れた回折光学素子を提供することができる。 As described above, according to the present embodiment, the emission lines, which are irregular scattered light that is conspicuous (conspicuous) on the outer periphery of the diffractive optical element, are formed on the tapered portion 4 of the first resin layer 2 and the second resin layer 3. Since it can be reduced by the terminal portion 5, it is possible to provide a diffractive optical element having an excellent appearance.

(比較例1)
比較例1は、第1の樹脂層2の終端部5の膜厚が実施例1と異なるだけで、その他の構成は同じである。比較例1の第1の樹脂層2の終端部5の膜厚は50μmであり、実施例1のそれよりも厚い。
(Comparative Example 1)
In Comparative Example 1, the film thickness of the terminal portion 5 of the first resin layer 2 is different from that of Example 1, and the other configurations are the same. The film thickness of the terminal portion 5 of the first resin layer 2 of Comparative Example 1 is 50 μm, which is thicker than that of Example 1.

比較例1の構成によれば、第1の樹脂層2の終端部5の膜厚が厚いので、終端部5からの散乱光がさらに多くなる。第1の樹脂層2の終端部5の膜厚が50μm以上になると、終端部5からの目に付く(目立つ)不規則な輝線が増えて回折光学素子の外観が大幅に悪化した。第1の樹脂層2の場合に限らず、第2の樹脂層3においても同様の現象を確認した。 According to the configuration of Comparative Example 1, since the film thickness of the end portion 5 of the first resin layer 2 is thick, the scattered light from the end portion 5 is further increased. When the film thickness of the end portion 5 of the first resin layer 2 is 50 μm or more, the irregular bright lines that are noticeable (conspicuous) from the end portion 5 increase, and the appearance of the diffractive optical element is significantly deteriorated. A similar phenomenon was confirmed not only in the case of the first resin layer 2 but also in the second resin layer 3.

(比較例2)
比較例2は、第1の樹脂層2の終端部5の膜厚が実施例1と異なるだけで、その他の構成は同じである。比較例2の第1の樹脂層2の終端部5の膜厚は4μmであり、実施例1のそれよりも薄い。
(Comparative Example 2)
In Comparative Example 2, the film thickness of the terminal portion 5 of the first resin layer 2 is different from that of Example 1, and the other configurations are the same. The film thickness of the terminal portion 5 of the first resin layer 2 of Comparative Example 2 is 4 μm, which is thinner than that of Example 1.

比較例2の構成によれば、第1の樹脂層2の終端部5の膜厚が薄いので、第1の樹脂層2のテーパ部4や終端部5が精度良く成形できなくなる。具体的には、終端部5の膜厚を薄くするほどテーパ部4と終端部5の膜厚比が大きくなるので、テーパ部4や終端部5に硬化収縮によるヒケが発生して、当該部の形状が大きく不規則に変形する。 According to the configuration of Comparative Example 2, since the film thickness of the terminal portion 5 of the first resin layer 2 is thin, the tapered portion 4 and the terminal portion 5 of the first resin layer 2 cannot be molded with high accuracy. Specifically, the thinner the film thickness of the end portion 5, the larger the film thickness ratio between the taper portion 4 and the end portion 5, so that sink marks occur in the taper portion 4 and the end portion 5 due to curing shrinkage, and the portion concerned. The shape of is large and irregularly deformed.

よって、比較例2の構成によれば、テーパ部4や終端部5が所望の形状でないので、テーパ部4や終端部5からの不規則な散乱光がさらに多くなる。第1の樹脂層2の終端部5の膜厚が5μm未満になると、テーパ部4や終端部5からの目に付く(目立つ)不規則な輝線が増えて回折光学素子の外観が大幅に悪化した。第1の樹脂層2の場合に限らず、第2の樹脂層3においても同様の現象を確認した。 Therefore, according to the configuration of Comparative Example 2, since the tapered portion 4 and the terminal portion 5 do not have a desired shape, irregular scattered light from the tapered portion 4 and the terminal portion 5 is further increased. When the film thickness of the end portion 5 of the first resin layer 2 is less than 5 μm, the irregular emission lines that are noticeable (conspicuous) from the taper portion 4 and the end portion 5 increase, and the appearance of the diffractive optical element is significantly deteriorated. did. A similar phenomenon was confirmed not only in the case of the first resin layer 2 but also in the second resin layer 3.

(実施例2)
本実施例の回折光学素子を、図3を参照して説明する。
本実施例の回折光学素子は、光軸に対して軸対称で、ガラス基板1と格子成形用の第1の樹脂層2と平坦化用の第2の樹脂層3から構成される。回折格子8は、第1の樹脂層2と第2の樹脂層3の界面に形成される。ガラス基板1は、ガラス製で半径40mmのメニスカスレンズである。第1の樹脂層2は、無色透明な屈折率1.557の熱硬化性のエポキシ樹脂からなり、光軸上の膜厚は300μmである。また、第2の樹脂層3は、無色透明な屈折率1.528の光硬化性のフッ素系アクリル樹脂からなり、光軸上の膜厚は100μmである。
(Example 2)
The diffractive optical element of this embodiment will be described with reference to FIG.
The diffractive optical element of this embodiment is axisymmetric with respect to the optical axis and is composed of a glass substrate 1, a first resin layer 2 for lattice forming, and a second resin layer 3 for flattening. The diffraction grating 8 is formed at the interface between the first resin layer 2 and the second resin layer 3. The glass substrate 1 is a meniscus lens made of glass and having a radius of 40 mm. The first resin layer 2 is made of a colorless and transparent thermosetting epoxy resin having a refractive index of 1.557, and has a film thickness of 300 μm on the optical axis. The second resin layer 3 is made of a colorless and transparent photocurable fluoroacrylic resin having a refractive index of 1.528, and has a film thickness of 100 μm on the optical axis.

第1の樹脂層2の変曲点7は、同一成形面内で半径37.4mmの光学有効径外に位置する。第2の樹脂層3の変曲点7は、同一成形面内で半径37.5mmの光学有効径外に位置する。本実施例の回折光学素子の光学有効径は、半径36.5mmである。 The inflection point 7 of the first resin layer 2 is located outside the optically effective diameter of a radius of 37.4 mm in the same molding surface. The inflection point 7 of the second resin layer 3 is located outside the optically effective diameter of a radius of 37.5 mm in the same molding surface. The optically effective diameter of the diffractive optical element of this embodiment is a radius of 36.5 mm.

第1の樹脂層2の変曲点7から径外周方向の半径38mmの位置まで第1の樹脂層2の膜厚が連続して薄くなるテーパ部4を備える。第2の樹脂層3の変曲点7から径外周方向の半径39mmの位置まで第2の樹脂層3の膜厚が連続して薄くなるテーパ部4を備える。第1の樹脂層2と第2の樹脂層3のテーパ部4の表面は、鏡面である。 A tapered portion 4 is provided in which the film thickness of the first resin layer 2 is continuously thinned from the inflection point 7 of the first resin layer 2 to a position having a radius of 38 mm in the outer peripheral direction of the diameter. A tapered portion 4 is provided in which the film thickness of the second resin layer 3 is continuously thinned from the inflection point 7 of the second resin layer 3 to a position having a radius of 39 mm in the outer peripheral direction of the diameter. The surfaces of the tapered portion 4 of the first resin layer 2 and the second resin layer 3 are mirror surfaces.

第1の樹脂層2のテーパ部4の終端には、膜厚5μmの終端部5を備える。第2の樹脂層3のテーパ部4の終端には、膜厚45μmの終端部5を備える。第1の樹脂層2と第2の樹脂層3のテーパ部4の断面形状は、変曲点7から終端部5まで曲線となる。第1の樹脂層2の終端部5の断面形状、および第1の樹脂層2に接する第2の樹脂層3の終端部5の断面形状は、光軸方向へへこんだ凹形状となる。 A terminal portion 5 having a film thickness of 5 μm is provided at the end of the tapered portion 4 of the first resin layer 2. A terminal portion 5 having a film thickness of 45 μm is provided at the end of the tapered portion 4 of the second resin layer 3. The cross-sectional shape of the tapered portion 4 of the first resin layer 2 and the second resin layer 3 is curved from the inflection point 7 to the end portion 5. The cross-sectional shape of the terminal portion 5 of the first resin layer 2 and the cross-sectional shape of the terminal portion 5 of the second resin layer 3 in contact with the first resin layer 2 are concave shapes dented in the optical axis direction.

本実施例の回折光学素子の製造方法を、図2を参照して順に説明する。
先ず、ガラス基板1の格子成形用の第1の樹脂層2を成形する凹面に、エポキシ樹脂との密着を強くするためのシランカップリング処理を施す。
次に、金型9上に、ガラス基板1をシランカップリング処理面を金型9側に向けて配置する。
The manufacturing method of the diffractive optical element of this embodiment will be described in order with reference to FIG.
First, the concave surface of the glass substrate 1 for forming the first resin layer 2 for lattice forming is subjected to a silane coupling treatment for strengthening the adhesion with the epoxy resin.
Next, the glass substrate 1 is arranged on the mold 9 with the silane coupling treated surface facing the mold 9.

次に、金型9上の中央付近に不図示のディスペンサーによって、エポキシ樹脂2aを900mg滴下する(図2(a))。若しくは、エポキシ樹脂2aをガラス基板1のシランカップリング処理面の中央付近に滴下しても良い。 Next, 900 mg of epoxy resin 2a is dropped near the center of the mold 9 by a dispenser (not shown) (FIG. 2 (a)). Alternatively, the epoxy resin 2a may be dropped near the center of the silane coupling-treated surface of the glass substrate 1.

次に、ガラス基板1を毎秒20μmの速度で金型9に接近させて、ガラス基板1と金型9の間に、エポキシ樹脂2aを押し広げ充填する(図2(b))。この時、エポキシ樹脂2aのガラス基板1と金型9の間における光軸に沿った膜厚は300μmまで押し広げられ、且つエポキシ樹脂2aの広がりは金型9の外周部のテーパ形状部まで到達しており、テーパ部4の終端部5の膜厚は5μmとなる。ここで、エポキシ樹脂2aをガラス基板1と金型9の間で同心円状に充填するため、ガラス基板1または金型9を光軸周りに回転させる工程を追加しても良い。 Next, the glass substrate 1 is brought close to the mold 9 at a speed of 20 μm per second, and the epoxy resin 2a is spread and filled between the glass substrate 1 and the mold 9 (FIG. 2B). At this time, the film thickness of the epoxy resin 2a between the glass substrate 1 and the mold 9 along the optical axis is expanded to 300 μm, and the spread of the epoxy resin 2a reaches the tapered shape portion on the outer periphery of the mold 9. The film thickness of the end portion 5 of the taper portion 4 is 5 μm. Here, in order to fill the epoxy resin 2a concentrically between the glass substrate 1 and the mold 9, a step of rotating the glass substrate 1 or the mold 9 around the optical axis may be added.

次に、不図示の加熱源を用いて、エポキシ樹脂を80℃で30分加熱することで、エポキシ樹脂を熱硬化させる。
次に、ガラス基板1と一体になった第1の樹脂層2を離型する(図2(c))。第1の樹脂層2には、金型9によって回折格子8とテーパ部4が転写され、テーパ部4の終端には終端部5が形成される。
Next, the epoxy resin is thermoset by heating the epoxy resin at 80 ° C. for 30 minutes using a heating source (not shown).
Next, the first resin layer 2 integrated with the glass substrate 1 is released from the mold (FIG. 2 (c)). The diffraction grating 8 and the tapered portion 4 are transferred to the first resin layer 2 by the mold 9, and the terminal portion 5 is formed at the end of the tapered portion 4.

次に、金型10上に、ガラス基板1を第1の樹脂層2を金型10側に向けて配置する。
次に、金型10上の中央付近に不図示のディスペンサーによって、フッ素系アクリル樹脂3aを300mg滴下する(図2(d))。若しくは、フッ素系アクリル樹脂3aをガラス基板1上の第1の樹脂層2の中央付近に滴下しても良い。
Next, the glass substrate 1 is arranged on the mold 10 with the first resin layer 2 facing the mold 10.
Next, 300 mg of the fluoroacrylic resin 3a is dropped near the center of the mold 10 by a dispenser (not shown) (FIG. 2 (d)). Alternatively, the fluoroacrylic resin 3a may be dropped near the center of the first resin layer 2 on the glass substrate 1.

次に、ガラス基板1を毎秒10μmの速度で金型10に接近させて、ガラス基板1上の第1の樹脂層2と金型10の間に、フッ素系アクリル樹脂3aを押し広げ充填する(図2(e))。この時、フッ素系アクリル樹脂3aの第1の樹脂層2と金型10の間の光軸に沿った膜厚は100μmまで押し広げられ、且つ第1の樹脂層2は第2の樹脂層3に覆われる。フッ素系アクリル樹脂の広がりは金型10の外周部のテーパ形状部まで到達しており、テーパ部4の終端部5の膜厚は45μmとなる。ここで、フッ素系アクリル樹脂を第1の樹脂層2と金型10の間で同心円状に充填するため、ガラス基板1または金型10を光軸周りに回転させる工程を追加しても良い。 Next, the glass substrate 1 is brought close to the mold 10 at a speed of 10 μm per second, and the fluorine-based acrylic resin 3a is spread and filled between the first resin layer 2 and the mold 10 on the glass substrate 1 ( FIG. 2 (e). At this time, the film thickness along the optical axis between the first resin layer 2 and the mold 10 of the fluorine-based acrylic resin 3a is expanded to 100 μm, and the first resin layer 2 is the second resin layer 3. Covered in. The spread of the fluoroacrylic resin reaches the tapered portion of the outer peripheral portion of the mold 10, and the film thickness of the end portion 5 of the tapered portion 4 is 45 μm. Here, in order to fill the fluorine-based acrylic resin concentrically between the first resin layer 2 and the mold 10, a step of rotating the glass substrate 1 or the mold 10 around the optical axis may be added.

次に、不図示の紫外線照射ランプを用いてフッ素系アクリル樹脂を光硬化する。フッ素系アクリル樹脂に対して、光強度30mW/cmの紫外光を、ガラス基板1と第1の樹脂層2を通して10分間照射した。 Next, the fluoroacrylic resin is photocured using an ultraviolet irradiation lamp (not shown). The fluoroacrylic resin was irradiated with ultraviolet light having a light intensity of 30 mW / cm 2 for 10 minutes through the glass substrate 1 and the first resin layer 2.

最後に、ガラス基板1および第1の樹脂層2と一体になった第2の樹脂層3を離型する(図2(f))。第2の樹脂層3には、金型10によって平坦面とテーパ部4が転写され、テーパ部4の終端には終端部5が形成される。 Finally, the second resin layer 3 integrated with the glass substrate 1 and the first resin layer 2 is released from the mold (FIG. 2 (f)). The flat surface and the tapered portion 4 are transferred to the second resin layer 3 by the mold 10, and the terminal portion 5 is formed at the end of the tapered portion 4.

本実施例の回折光学素子は、光学有効径外の外周に、鏡面を有するテーパ部4と終端部5を備え、加えて第2の樹脂層3が第1の樹脂層2を覆っているので、本発明の課題である不規則な散乱光である輝線の発生をさらに低減することができる。 Since the diffractive optical element of this embodiment is provided with a tapered portion 4 having a mirror surface and a terminal portion 5 on the outer periphery outside the effective optical diameter, and the second resin layer 3 covers the first resin layer 2. It is possible to further reduce the generation of emission lines, which are irregular scattered light, which is a subject of the present invention.

本実施例における第2の樹脂層3のテーパ部4と終端部5が不規則な散乱光である輝線を低減する作用については、実施例1で説明した内容と同じであるので省略する。本実施例では加えて、第2の樹脂層3が第1の樹脂層2を覆っているので、第1の樹脂層2のテーパ部4や終端部5における第2の樹脂層3と第1の樹脂層2からなる界面の屈折率差が小さくなる。具体的には、第1の樹脂層2と空気からなる界面の屈折率差が1.557であるのに対して、本実施例の第1の樹脂層2と第2の樹脂層3からなる界面の屈折率差は0.029となる。これにより、本実施例の回折光学素子の外周への入射光に対して、第1の樹脂層2のテーパ部4や終端部5からの反射光や散乱光を低減できるので、当該部からの輝線の発生をさらに低減することができる。第1の樹脂層2と第2の樹脂層3の屈折率差が小さいほど、第1の樹脂層2のテーパ部4や終端部5からの輝線を低減できる。 The action of the tapered portion 4 and the terminal portion 5 of the second resin layer 3 in the present embodiment to reduce the emission lines, which are irregular scattered light, is the same as that described in the first embodiment, and is therefore omitted. In this embodiment, in addition, since the second resin layer 3 covers the first resin layer 2, the second resin layers 3 and the first in the tapered portion 4 and the terminal portion 5 of the first resin layer 2 are covered. The difference in the refractive index of the interface composed of the resin layer 2 of the above is reduced. Specifically, the difference in refractive index at the interface between the first resin layer 2 and air is 1.557, whereas the first resin layer 2 and the second resin layer 3 of this embodiment are composed of the first resin layer 2 and the second resin layer 3. The difference in refractive index at the interface is 0.029. As a result, the reflected light and scattered light from the tapered portion 4 and the terminal portion 5 of the first resin layer 2 can be reduced with respect to the incident light on the outer periphery of the diffractive optical element of the present embodiment. The generation of bright lines can be further reduced. The smaller the difference in refractive index between the first resin layer 2 and the second resin layer 3, the more the emission lines from the tapered portion 4 and the terminal portion 5 of the first resin layer 2 can be reduced.

本実施例においては、テーパ部4の変曲点7から終端部5までの断面形状を連続した曲線としたが、不連続な段差形状でも同様の効果を得ることができる。 In this embodiment, the cross-sectional shape of the tapered portion 4 from the inflection point 7 to the end portion 5 is a continuous curve, but the same effect can be obtained even with a discontinuous stepped shape.

このように本実施例によれば、回折光学素子の外周で目に付く(目立つ)不規則な散乱光である輝線を、第1の樹脂層2と第2の樹脂層3のテーパ部4と終端部5によってさらに低減できるので、より外観に優れた回折光学素子を提供することができる。 As described above, according to the present embodiment, the emission lines, which are irregular scattered light that is conspicuous (conspicuous) on the outer periphery of the diffractive optical element, are formed on the tapered portion 4 of the first resin layer 2 and the second resin layer 3. Since it can be further reduced by the terminal portion 5, it is possible to provide a diffractive optical element having a better appearance.

(実施例3)
本実施例の回折光学素子の構成は、終端部5に接する遮光層とテーパ部4の表面粗さが実施例1の表面粗さと異なるだけで、その他の構成は同じである。
(Example 3)
The configuration of the diffractive optical element of this embodiment is the same as the other configurations except that the surface roughness of the light-shielding layer in contact with the terminal portion 5 and the tapered portion 4 is different from the surface roughness of Example 1.

本実施例の回折光学素子の外周部の断面構造を、図4を参照して説明する。遮光層11は黒色の光硬化性のエポキシ材料からなり、終端部5とテーパ部4の少なくとも一部を覆っている。終端部5の成形面6側の端点12における遮光層11の最小の膜厚は、5μmである。テーパ部4の表面粗さは、Raで10μmである。 The cross-sectional structure of the outer peripheral portion of the diffractive optical element of this embodiment will be described with reference to FIG. The light-shielding layer 11 is made of a black photocurable epoxy material and covers at least a part of the terminal portion 5 and the tapered portion 4. The minimum film thickness of the light-shielding layer 11 at the end point 12 on the molding surface 6 side of the terminal portion 5 is 5 μm. The surface roughness of the tapered portion 4 is 10 μm in Ra.

本実施例の回折光学素子の製造方法は、終端部5に接する遮光層11の形成工程を実施例1に追加しただけで、その他の構成は同じである。 The method for manufacturing the diffractive optical element of this embodiment is the same except that the step of forming the light-shielding layer 11 in contact with the terminal portion 5 is added to the first embodiment.

本実施例における遮光層11は、黒色の光硬化性のエポキシ材料をテーパ部4や端点12を含む終端部5に塗布して、紫外線を照射することで形成される。遮光層11を終端部5の成形面6側の端点12上に形成することは難しいが、本実施例では、エポキシ材料の端点12への塗布直後にエポキシ材料を光硬化させることでこれを実現した。端点12を含む終端部5へエポキシ材料を塗布したまま放置すると、エポキシ材料の表面張力や粘性の影響で、端点12上のエポキシ材料は終端部5の凹部へ移動するので、結果として端点12上に所望の遮光層11を形成することができない。遮光層11の形成装置には、3Dプリンターを用いても良い。 The light-shielding layer 11 in this embodiment is formed by applying a black photocurable epoxy material to the end portion 5 including the taper portion 4 and the end point 12 and irradiating with ultraviolet rays. It is difficult to form the light-shielding layer 11 on the end point 12 on the molding surface 6 side of the terminal portion 5, but in this embodiment, this is realized by photocuring the epoxy material immediately after applying the epoxy material to the end point 12. did. If the epoxy material is left applied to the end point 5 including the end point 12, the epoxy material on the end point 12 moves to the recess of the end point 5 due to the influence of the surface tension and viscosity of the epoxy material. The desired light-shielding layer 11 cannot be formed on the surface. A 3D printer may be used as a device for forming the light-shielding layer 11.

また、本実施例の表面粗さを有するテーパ部4を成形するには、金型のテーパ部4の転写面に同じ表面粗さの形状を形成しておく必要がある。本実施例のテーパ部4を有する金型は、切削加工で製作した。 Further, in order to form the tapered portion 4 having the surface roughness of this embodiment, it is necessary to form a shape having the same surface roughness on the transfer surface of the tapered portion 4 of the mold. The mold having the tapered portion 4 of this embodiment was manufactured by cutting.

本実施例の回折光学素子は、光学有効径外の外周に、表面粗さを有するテーパ部4と終端部5を備え、加えてテーパ部4や終端部5が遮光層11に覆われているので、本発明の課題である不規則な散乱光である輝線の発生をさらに低減することができる。 The diffractive optical element of this embodiment is provided with a tapered portion 4 having a surface roughness and a terminal portion 5 on the outer periphery outside the effective optical diameter, and the tapered portion 4 and the terminal portion 5 are covered with a light-shielding layer 11. Therefore, it is possible to further reduce the generation of emission lines, which are irregular scattered light, which is a subject of the present invention.

本実施例におけるテーパ部4と終端部5が不規則な輝線を低減する作用については、実施例1で説明した内容と同じであるので省略する。本実施例では、加えて、遮光層11がテーパ部4や終端部5を覆っているので、当該テーパ部4や終端部5からの一部散乱光や透過光を遮光層11によって吸収することができる。さらに、テーパ部4の表面を粗面とすることで、当該テーパ部4からの反射光を低減することができる。 The action of the tapered portion 4 and the terminal portion 5 in the present embodiment to reduce irregular emission lines is the same as that described in the first embodiment, and is therefore omitted. In this embodiment, in addition, since the light-shielding layer 11 covers the tapered portion 4 and the terminal portion 5, the light-shielding layer 11 absorbs partially scattered light and transmitted light from the tapered portion 4 and the terminal portion 5. Can be done. Further, by making the surface of the tapered portion 4 a rough surface, the reflected light from the tapered portion 4 can be reduced.

このように本実施例によれば、回折光学素子の外周で目に付く(目立つ)不規則な散乱光である輝線を、第1の樹脂層2と第2の樹脂層3の遮光層11を備えるテーパ部4と終端部5によってさらに低減できるので、外観に優れた回折光学素子を提供することができる。 As described above, according to the present embodiment, the emission lines, which are irregular scattered light that is conspicuous (conspicuous) on the outer periphery of the diffractive optical element, are transmitted to the light-shielding layer 11 of the first resin layer 2 and the second resin layer 3. Since it can be further reduced by the tapered portion 4 and the terminal portion 5 provided, it is possible to provide a diffractive optical element having an excellent appearance.

(実施例4)
本実施例の回折光学素子の構成は、テーパ部4の形状が実施例1と異なるだけで、その他の構成は同じである。本実施例の回折光学素子の外周部の断面構造を、図7を参照して説明する。テーパ部4は、径外周方向に向けて膜厚が薄くなるテーパ形状を有し、表面に不連続な凹凸形状を備える。当該凹凸形状は、幅20μm深さ5μmのラインアンドスペース構造である。
(Example 4)
The configuration of the diffractive optical element of this embodiment is the same except that the shape of the tapered portion 4 is different from that of the first embodiment. The cross-sectional structure of the outer peripheral portion of the diffractive optical element of this embodiment will be described with reference to FIG. The tapered portion 4 has a tapered shape in which the film thickness decreases toward the outer peripheral direction of the diameter, and has a discontinuous uneven shape on the surface. The uneven shape is a line-and-space structure having a width of 20 μm and a depth of 5 μm.

本実施例の回折光学素子の製造方法は、第1の樹脂層2と第2の樹脂層3の成形工程において、不連続な凹凸形状をテーパ部に備えた金型を用いただけで、その他の構成は実施例1に同じである。本実施例の不連続な凹凸形状を有するテーパ部4を成形するには、金型のテーパ部4の転写面に同構造の反転形状を形成しておく必要がある。本実施例のテーパ部4を有する金型は、切削加工やエッチング加工で製作した。 In the method for manufacturing the diffractive optical element of the present embodiment, in the molding process of the first resin layer 2 and the second resin layer 3, only a mold having a discontinuous uneven shape in the tapered portion is used, and other methods are used. The configuration is the same as in Example 1. In order to form the tapered portion 4 having the discontinuous uneven shape of this embodiment, it is necessary to form an inverted shape having the same structure on the transfer surface of the tapered portion 4 of the mold. The mold having the tapered portion 4 of this embodiment was manufactured by cutting or etching.

本実施例の回折光学素子は、光学有効径外の外周に、不連続な凹凸形状を有するテーパ部4と終端部5を備えているので、本発明の課題である不規則な散乱光である輝線の発生をより低減することができる。 Since the diffractive optical element of the present embodiment is provided with a tapered portion 4 and a terminal portion 5 having a discontinuous uneven shape on the outer periphery outside the effective optical diameter, it is an irregular scattered light which is a subject of the present invention. The generation of bright lines can be further reduced.

本実施例における終端部5が不規則な輝線を低減する作用については、実施例1で説明した内容と同じであるので省略する。本実施例では、加えて、テーパ部4の表面を不連続な凹凸形状とすることで、当該テーパ部4へ入射する光を複数方向へ規則的に反射または回折させることができる。本実施例では、当該凹凸形状を幅20μm、深さ5μmのラインアンドスペース構造としたが、同様の効果を得られる形状であれば、この構造に限らない。 The action of the terminal portion 5 in the present embodiment to reduce irregular emission lines is the same as that described in the first embodiment, and is therefore omitted. In this embodiment, in addition, by forming the surface of the tapered portion 4 into a discontinuous uneven shape, light incident on the tapered portion 4 can be regularly reflected or diffracted in a plurality of directions. In this embodiment, the uneven shape has a line-and-space structure having a width of 20 μm and a depth of 5 μm, but the shape is not limited to this structure as long as the same effect can be obtained.

このように本実施例によれば、回折光学素子の外周で目に付く(目立つ)不規則な散乱光である輝線を、不連続な凹凸形状を備えるテーパ部4と終端部5によってより低減できるので、外観に優れた回折光学素子を提供することができる。 As described above, according to the present embodiment, the emission lines, which are irregular scattered light that is noticeable (conspicuous) on the outer periphery of the diffractive optical element, can be further reduced by the tapered portion 4 and the terminal portion 5 having a discontinuous uneven shape. Therefore, it is possible to provide a diffractive optical element having an excellent appearance.

なお、上述した各実施例において、基材としてガラス基板を用いているが、ガラス基板は無機ガラス基板に限られるものではなく、いわゆる有機ガラス基板(プラスチック基板)であってもよい。 Although a glass substrate is used as the base material in each of the above-described embodiments, the glass substrate is not limited to the inorganic glass substrate, and may be a so-called organic glass substrate (plastic substrate).

1 ガラス基板
2 第1の樹脂層
3 第2の樹脂層
4 テーパ部
5 終端部
6 成形面
7 変曲点
8 回折格子
9 金型
10 金型
11 遮光層
12 端点
1 Glass substrate 2 First resin layer 3 Second resin layer 4 Tapered part 5 Termination part 6 Molding surface 7 Inflection point 8 Diffraction grating 9 Mold 10 Mold 11 Light-shielding layer 12 End point

Claims (9)

ガラス基板と、
前記ガラス基板上に設けられ、格子を有する成形面を備える第1の樹脂層と、
前記第1の樹脂層上に設けられ、前記第1の樹脂層と接しない成形面を備える第2の樹脂層と、が順に積層され、
前記第1の樹脂層と前記第2の樹脂層との間に回折格子を有する回折光学素子であって
記第1の樹脂層および前記第2の樹脂層の各々が、前記成形面の光軸を中心とした光学有効径外に位置する円の円周上に位置する変曲点から外周に向かって厚みが薄くなるテーパ部と、前記テーパ部の終端に位置する終端部と、を備えており、
前記終端部の厚みが5μm以上50μm未満であり、
前記終端部が前記光軸の方向に凹んだ凹形状であることを特徴とする回折光学素子。
With a glass substrate
A first resin layer provided on the glass substrate and having a molding surface having a lattice,
A second resin layer provided on the first resin layer and having a molding surface not in contact with the first resin layer is laminated in order.
A diffraction optical element having a diffraction grating between the first resin layer and the second resin layer .
Each of the previous SL first resin layer and the second resin layer, the radial outer periphery of the inflexion point located on the circumference of a circle positioned at the optical effective diameter around the optical axis of the molding surface It is provided with a tapered portion that becomes thinner toward the end and a terminal portion located at the end of the tapered portion .
Ri thickness 50μm less der than 5μm of the terminal portion,
Diffractive optical element in which the terminal end is characterized concave der Rukoto recessed in the direction of the optical axis.
前記第1の樹脂層の前記成形面は、前記第2の樹脂層の前記成形面より広いことを特徴とする請求項1に記載の回折光学素子。The diffractive optical element according to claim 1, wherein the molded surface of the first resin layer is wider than the molded surface of the second resin layer. 前記第1樹脂層の前記テーパ部及び前記終端部が、前記第2の樹脂層に覆われていることを特徴とする請求項1に記載の回折光学素子。The diffractive optical element according to claim 1, wherein the tapered portion and the terminal portion of the first resin layer are covered with the second resin layer. 前記第2の樹脂層の前記成形面が平坦な部分を有していることを特徴とする請求項1〜3のいずれか一項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 3, wherein the molded surface of the second resin layer has a flat portion. 前記第1の樹脂層および前記第2の樹脂層の少なくとも一方の前記テーパ部の少なくとも一部と前記終端部の表面に膜厚が5μm以上の遮光層が形成されていることを特徴とする請求項1またはに記載の回折光学素子。 Claims, characterized in that the film thickness is formed is 5μm or more light-shielding layer on at least a portion the surface of the end portion of at least one of the tapered portion of the first resin layer and the second resin layer Item 2. The diffractive optical element according to item 1 or 2 . 前記第1の樹脂層および前記第2の樹脂層の少なくとも一方のテーパ部の表面が粗面であることを特徴とする請求項1〜5のいずれか一項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 5, wherein the surface of at least one of the tapered portion of the first resin layer and the second resin layer is a rough surface. 前記第1の樹脂層および前記第2の樹脂層の少なくとも一方のテーパ部の表面が凹凸形状を有していることを特徴とする請求項1〜5のいずれか一項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 5, wherein the surface of at least one of the tapered portion of the first resin layer and the second resin layer has an uneven shape. .. 請求項1〜7のいずれか一項に記載の回折光学素子を備えた光学機器。 An optical device comprising the diffractive optical element according to any one of claims 1 to 7. 請求項1〜7のいずれか一項に記載の回折光学素子を備えたカメラ。 A camera provided with the diffractive optical element according to any one of claims 1 to 7.
JP2016103964A 2016-05-25 2016-05-25 Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating Active JP6823381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016103964A JP6823381B2 (en) 2016-05-25 2016-05-25 Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016103964A JP6823381B2 (en) 2016-05-25 2016-05-25 Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating

Publications (3)

Publication Number Publication Date
JP2017211466A JP2017211466A (en) 2017-11-30
JP2017211466A5 JP2017211466A5 (en) 2019-06-27
JP6823381B2 true JP6823381B2 (en) 2021-02-03

Family

ID=60475526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016103964A Active JP6823381B2 (en) 2016-05-25 2016-05-25 Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating

Country Status (1)

Country Link
JP (1) JP6823381B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021989A1 (en) 2018-07-23 2020-01-30 株式会社日立ハイテクノロジーズ Method and device for manufacturing concave diffraction grating, and concave diffraction grating
WO2020100890A1 (en) 2018-11-13 2020-05-22 株式会社ダイセル Optical member, laser module including said optical member, and laser device
JP6966517B2 (en) * 2018-11-13 2021-11-17 株式会社ダイセル Optical members, laser modules and laser devices containing the optical members

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963099A (en) * 1995-08-28 1997-03-07 Sharp Corp Optical information read-out device
JP2001076363A (en) * 1999-09-02 2001-03-23 Sony Corp Hologram element, optical integrated element, optical pickup, and optical information processor
JP2005099131A (en) * 2003-09-22 2005-04-14 Olympus Corp Objective lens for microscope
AU2010240707B2 (en) * 2009-04-20 2014-01-30 Snap Inc. Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
JP2012042744A (en) * 2010-08-19 2012-03-01 Canon Inc Liquid lens
JP2012128319A (en) * 2010-12-17 2012-07-05 Canon Inc Laminated diffractive optical element and manufacturing method of laminated diffractive optical element
JP2012252307A (en) * 2011-06-07 2012-12-20 Canon Inc Composite optical element and imaging optical system
EP2662205B1 (en) * 2012-05-11 2020-06-24 Canon Kabushiki Kaisha Laminated diffraction optical element and production method thereof
JP2015114600A (en) * 2013-12-13 2015-06-22 キヤノン株式会社 Method for manufacturing optical lens, optical lens and light-shielding film
JP6486042B2 (en) * 2014-09-12 2019-03-20 キヤノン株式会社 Laminated diffractive optical element

Also Published As

Publication number Publication date
JP2017211466A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
KR101020634B1 (en) Manufacturing method of lens having nanopattern
JP6238562B2 (en) Composite optical element and method for manufacturing the same
JP5590851B2 (en) Diffractive optical element, laminated diffractive optical element and method of manufacturing the same
JP6823381B2 (en) Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating
JP2005157119A (en) Reflection preventing optical element and optical system using the same
JP6486042B2 (en) Laminated diffractive optical element
TW201403132A (en) Manufacturing method of apodizer and optical module
KR100733758B1 (en) Lenticular lens sheet, rear projection type screen, and rear projection type projector, and lenticular lens sheet producing method
JPH07174902A (en) Microlens array and its production
JP6732735B2 (en) Manufacturing of optical elements by replication and corresponding replication tools and optical devices
JP2006263975A (en) Manufacturing method of optical element
JP2012128319A (en) Laminated diffractive optical element and manufacturing method of laminated diffractive optical element
JP5359624B2 (en) Method and apparatus for manufacturing diffractive optical element
JP5732622B2 (en) Optical member manufacturing equipment
JP4419665B2 (en) Optical element manufacturing method
JP5816107B2 (en) Micro lens array element
WO2017195879A1 (en) Molded resin article molding method and molded resin article
JP3849217B2 (en) Manufacturing method and manufacturing apparatus for resin-bonded lens
JP7204363B2 (en) Diffractive optical element, manufacturing method thereof, and optical apparatus
JP5525860B2 (en) Lens manufacturing method
WO2012161316A1 (en) Wafer lens manufacturing method, shaping metal mold, transfer mold, and transfer mold manufacturing method
JP2007326331A (en) Optical element molding method and light guide plate
JP2004317755A (en) Optical element and method for manufacturing optical element
JP2020008720A (en) Reflection type optical diffraction element, manufacturing method of reflection type optical diffraction element
JP2019164332A5 (en)

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210108

R151 Written notification of patent or utility model registration

Ref document number: 6823381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151