JP2013160773A - Manufacturing method of diffraction optical element, and diffraction optical element - Google Patents

Manufacturing method of diffraction optical element, and diffraction optical element Download PDF

Info

Publication number
JP2013160773A
JP2013160773A JP2012019539A JP2012019539A JP2013160773A JP 2013160773 A JP2013160773 A JP 2013160773A JP 2012019539 A JP2012019539 A JP 2012019539A JP 2012019539 A JP2012019539 A JP 2012019539A JP 2013160773 A JP2013160773 A JP 2013160773A
Authority
JP
Japan
Prior art keywords
molding
diffraction grating
optical element
mold
lens substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012019539A
Other languages
Japanese (ja)
Other versions
JP2013160773A5 (en
Inventor
Maiko Niwa
麻衣子 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012019539A priority Critical patent/JP2013160773A/en
Publication of JP2013160773A publication Critical patent/JP2013160773A/en
Publication of JP2013160773A5 publication Critical patent/JP2013160773A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a diffraction optical element capable of solving the problem in which since deformation and transfer of a lens substrate for molding is restricted by an embankment, there occurs transfer failure of a diffraction grating in an optical effective part in the vicinity of the embankment, in a step of using a mold having at an end part the embankment for controlling the height of a molding to mold the diffraction optical element with an optical resin for molding.SOLUTION: In a manufacturing method of a diffraction optical element that has a step of using a mold having an embankment for controlling the height of a molding outside an optical effective diameter to transfer the shape of the mold with an optical member for molding, the diffraction optical element is manufacture using the mold that has a groove whose cross-sectional shape is formed of obtuse angles between the embankment of the mold and the outermost part of an optical effective part, or whose cross-sectional shape is formed of a smoothly curved line.

Description

本発明は、カメラやビデオ等の光学機器に使用される回折光学素子の製造方法および回折光学素子に関するものである。   The present invention relates to a method for manufacturing a diffractive optical element used in an optical apparatus such as a camera or a video, and a diffractive optical element.

成形用光学樹脂により成形型の形状を転写することで得られる光学素子の製造において、従来、光学素子成形品の高さを制御するため、特許文献1に記載されているように、土手を有する成形型が用いられている。ここで、土手は成形型の光学有効径外の端部に形成されており、所望の光学素子成形品の高さと土手の高さは一致している。成形用レンズ基板が成形型の土手に接した状態で成形することで、回折格子成形用樹脂の高さを制御する構成となっている。   In the manufacture of an optical element obtained by transferring the shape of a molding die with a molding optical resin, conventionally, in order to control the height of an optical element molded product, as described in Patent Document 1, a bank is provided. A mold is used. Here, the bank is formed at an end portion outside the optical effective diameter of the mold, and the height of the desired optical element molded product and the height of the bank coincide. The height of the diffraction grating molding resin is controlled by molding the molding lens substrate in contact with the bank of the molding die.

特開2002−210755号公報JP 2002-210755 A

しかしながら、上記特許文献1に記載の従来例を回折光学素子の製造に用いると、成形型の土手近傍にある光学有効部内の最外部で転写性の低下が生じ、回折光学素子の回折格子の転写不良という解決すべき課題が発生する。回折格子の転写不良とは、回折光学素子の回折格子先端部において、成形型の形状が転写されていない状況をいう。この転写不良は、成形用光学樹脂の硬化収縮により硬化途中で成形用光学樹脂が成形型から剥離することによって発生する。回折格子先端部の転写不良により、回折光学素子の回折効率は低下し、光学性能の劣化を招く。   However, when the conventional example described in Patent Document 1 is used in the manufacture of a diffractive optical element, transferability deteriorates at the outermost portion in the optically effective portion near the bank of the mold, and the transfer of the diffraction grating of the diffractive optical element occurs. A problem to be solved that is defective occurs. The defective transfer of the diffraction grating means a state where the shape of the molding die is not transferred at the front end of the diffraction grating of the diffractive optical element. This transfer failure occurs when the molding optical resin is peeled off from the mold during curing due to curing shrinkage of the molding optical resin. Due to the transfer failure of the front end of the diffraction grating, the diffraction efficiency of the diffractive optical element is lowered, and the optical performance is deteriorated.

回折光学素子の回折格子を成形する工程において、成形用光学樹脂の硬化収縮により回折格子の先端部の樹脂内で収縮応力が集中する。また、土手を有する成形型を用いて成型品の高さを制御する場合には、土手の上部の成形用レンズ基板が拘束される。これにより、土手近傍の有効径の最外部では、その上部において成形用レンズ基板の移動や変形が抑制されており、土手近傍で回折格子先端の樹脂内の収縮応力が特に大きくなり、回折格子の転写不良が発生する。   In the step of forming the diffraction grating of the diffractive optical element, the shrinkage stress is concentrated in the resin at the tip of the diffraction grating due to curing shrinkage of the molding optical resin. Further, when the height of the molded product is controlled using a mold having a bank, the molding lens substrate on the upper part of the bank is restrained. As a result, at the outermost portion of the effective diameter near the bank, movement and deformation of the molding lens substrate are suppressed at the upper part, and the shrinkage stress in the resin at the tip of the diffraction grating becomes particularly large near the bank, and the diffraction grating Transfer defects occur.

上記課題を解決するため、本出願に係る第1の発明は、光学有効部の外周の外側に土手を有する成形型を用い、成形用光学材料により成形型の形状を転写する工程を有する回折光学素子の製造方法において、前記成形型の土手と光学有効部の最外部との間に、光学有効部の最深部よりも深く、かつ、断面形状の成す角が全て鈍角である溝を有した成形型を用いることを特徴とする。   In order to solve the above-mentioned problem, a first invention according to the present application is a diffractive optical system including a step of transferring a shape of a molding die using a molding optical material, using a molding die having a bank outside the outer periphery of the optically effective portion. In the element manufacturing method, a molding having a groove between the bank of the mold and the outermost portion of the optically effective portion that is deeper than the deepest portion of the optically effective portion and whose cross-sectional angles are all obtuse angles. It is characterized by using a mold.

上記課題を解決するため、本出願に係る第2の発明は、光学有効部の外周の外側に土手を有する成形型を用い、成形用光学材料により成形型の形状を転写する工程を有する回折光学素子の製造方法において、前記成形型の土手と光学有効部の最外部との間に、光学有効部の最深部よりも深く、断面形状が滑らかな曲線から成る溝を有した成形型を用いることを特徴とする。   In order to solve the above-mentioned problem, a second invention according to the present application uses a molding die having a bank outside the outer periphery of the optically effective portion, and has a step of transferring the shape of the molding die using a molding optical material. In the element manufacturing method, use a mold having a groove having a curve having a smooth cross-sectional shape between the bank of the mold and the outermost part of the optically effective part, which is deeper than the deepest part of the optically effective part. It is characterized by.

本発明による回折光学素子の製造方法によれば、成形品の高さを制御した状態で、かつ、回折格子の先端部に転写不良を生じさせることなく回折光学素子を製造できるので、光学性能に優れた回折光学素子を製造することができる。さらに、転写不良の発生を抑制することにより生産の歩留まりが向上するため、回折光学素子の製造コストを安くすることができる。   According to the method for manufacturing a diffractive optical element according to the present invention, a diffractive optical element can be manufactured in a state in which the height of a molded product is controlled and without causing a transfer defect at the tip of the diffraction grating. An excellent diffractive optical element can be manufactured. Furthermore, since the production yield is improved by suppressing the occurrence of transfer defects, the manufacturing cost of the diffractive optical element can be reduced.

また、本発明の別の態様による回折光学素子によれば、回折光学素子の回折格子先端部の転写性が安定しているので、回折光学素子を搭載するカメラやビデオ等の光学機器の光学性能を向上させることができる。   Further, according to the diffractive optical element according to another aspect of the present invention, the transferability of the diffraction grating tip of the diffractive optical element is stable, so that the optical performance of an optical device such as a camera or video equipped with the diffractive optical element is provided. Can be improved.

本発明の実施の形態に係わる回折光学素子の成形時の断面図である。It is sectional drawing at the time of shaping | molding of the diffractive optical element concerning embodiment of this invention. 本発明の実施の形態に係わる回折光学素子の成形方法の説明図である。It is explanatory drawing of the shaping | molding method of the diffractive optical element concerning embodiment of this invention. 本発明の実施の形態に係わる金型の端部の断面図である。It is sectional drawing of the edge part of the metal mold | die concerning embodiment of this invention. 本発明の実施の形態に係わる回折光学素子の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the diffractive optical element concerning embodiment of this invention.

図2は、本発明の回折光学素子の成形方法を示している。1は、回折格子成形用レンズ基板である。2は、成形型である。3は、回折格子成形用光学材料である。4は、成形型の光学有効部の外周の外側に位置する土手である。6はイジェクタである。   FIG. 2 shows a method for forming a diffractive optical element of the present invention. Reference numeral 1 denotes a diffraction grating molding lens substrate. 2 is a mold. Reference numeral 3 denotes an optical material for forming a diffraction grating. 4 is a bank located outside the outer periphery of the optically effective portion of the mold. 6 is an ejector.

以下に、回折光学素子を製造する工程を、図2を参照して説明する。
まず、回折格子成形用レンズ基板1の成形面側に回折格子成形用光学材料3を滴下し、成形型2上に回折格子成形用レンズ基板1を載せる。または、成形用光学材料3を、成形型2の成形面の中央付近に滴下するか、若しくは回折格子成形用レンズ基板1と成形型2の両方に滴下したのち、成形型2上に回折格子成形用レンズ基板1を載せてもよい。(図2(a))。
Below, the process of manufacturing a diffractive optical element will be described with reference to FIG.
First, the diffraction grating shaping optical material 3 is dropped on the molding surface side of the diffraction grating shaping lens substrate 1, and the diffraction grating shaping lens substrate 1 is placed on the mold 2. Alternatively, the molding optical material 3 is dropped near the center of the molding surface of the molding die 2, or after being dropped onto both the diffraction grating molding lens substrate 1 and the molding die 2, a diffraction grating is formed on the molding die 2. A lens substrate 1 may be placed. (FIG. 2 (a)).

次に、回折格子成形用レンズ基板1を成形型2に近づけ、回折格子成形用レンズ基板1が成形型2の外周部にある土手4に接しており、回折格子成形用光学材料3が土手4の内側まで充填している状態とする(図2(b))。ここで、回折格子成形用材料3を充填するため、回折格子成形用レンズ基板1を押圧し、土手4に接する方法も有効となる。土手4に回折格子成形用レンズ基板1が接することにより、成形品の高さが土手により固定されるため、成形品の高さは土手の高さで制御することができる。次に、回折格子成形用レンズ基板1が土手4に接した状態で、成形型2に充填された回折格子成形用光学材料3を硬化する。回折格子成形用光学材料3は成形型2から離型できる硬化度まで反応が進んでいれば、完全に硬化する必要はない。最後に、回折格子成形用レンズ基板1をイジェクタ6により持ち上げることで、硬化した回折格子成形用光学材料3とともに回折格子成形用レンズ基板1を成形型から離型する(図2(c))。   Next, the diffraction grating molding lens substrate 1 is brought close to the mold 2, the diffraction grating molding lens substrate 1 is in contact with the bank 4 on the outer periphery of the molding mold 2, and the diffraction grating molding optical material 3 is the bank 4. It is set as the state filled to the inside (FIG.2 (b)). Here, since the diffraction grating molding material 3 is filled, a method of pressing the diffraction grating molding lens substrate 1 and contacting the bank 4 is also effective. Since the height of the molded product is fixed by the bank when the diffraction grating molding lens substrate 1 is in contact with the bank 4, the height of the molded product can be controlled by the height of the bank. Next, the diffraction grating shaping optical material 3 filled in the mold 2 is cured in a state where the diffraction grating shaping lens substrate 1 is in contact with the bank 4. The diffraction grating molding optical material 3 does not need to be completely cured as long as the reaction has progressed to a degree of cure that can be released from the mold 2. Finally, the diffraction grating molding lens substrate 1 is lifted by the ejector 6 to release the diffraction grating molding lens substrate 1 from the molding die together with the hardened diffraction grating molding optical material 3 (FIG. 2C).

図1は、本発明の回折光学素子の成形時の断面図である。5は、成形型の土手4と光学有効部の最外部との間にある溝である。溝5は、光学有効部の最深部よりも深く、断面形状の成す角が全て鈍角となっている。土手4および溝5を持つ成形型2を用いて、回折光学素子を成形する。成形型2は、マスター型からの成形により得られたものでもよいし、母材もしくは母材上に形成されたメッキ層への切削や研磨等によって形成されてもよい。   FIG. 1 is a cross-sectional view of the diffractive optical element of the present invention during molding. Reference numeral 5 denotes a groove between the bank 4 of the mold and the outermost portion of the optically effective portion. The groove 5 is deeper than the deepest portion of the optically effective portion, and all the angles formed by the cross-sectional shape are obtuse angles. A diffractive optical element is molded using a mold 2 having a bank 4 and a groove 5. The molding die 2 may be obtained by molding from a master die, or may be formed by cutting or polishing a base material or a plating layer formed on the base material.

土手4により、回折格子成形用レンズ基板1は成形型2方向への移動や変形が抑制されるため、光学有効部内の外周部で回折格子の転写不良が発生する。しかし、これと同時に有効部内の回折格子よりも深い溝5を土手4と光学有効部内との間に設けることで、光学有効部内の転写不良を改善することができる。これは溝5が光学有効部内の形状よりも深いため、溝5での樹脂の収縮により回折格子成形用レンズ基板1に大きな応力がかかり、溝5の上部の回折格子成形用レンズ基板1が成形型2方向へ大きく移動・変形するためである。   The bank 4 suppresses the movement and deformation of the diffraction grating molding lens substrate 1 in the direction of the mold 2, so that a transfer failure of the diffraction grating occurs at the outer peripheral portion in the optically effective portion. However, at the same time, by providing the groove 5 deeper than the diffraction grating in the effective portion between the bank 4 and the optical effective portion, transfer defects in the optical effective portion can be improved. This is because the groove 5 is deeper than the shape in the optically effective portion, so that a large stress is applied to the diffraction grating molding lens substrate 1 due to the shrinkage of the resin in the groove 5, and the diffraction grating molding lens substrate 1 above the groove 5 is molded. This is because it moves and deforms greatly in the mold 2 direction.

ここで、溝5は光学有効部内よりも深いことから、溝5に充填された成形用光学材料3は収縮応力が大きくなり、成形型2から剥離しやすくなるという新たな課題が発生する。溝5に充填された成形用光学材料3が成形型2から剥離すると、溝5の上部における回折格子成形用レンズ基板1の移動・変形が発生しないため、回折格子の転写不良を改善することができない。このため、図3(a)に示すように、溝の断面の成す角を全て鈍角となる形状とし、成形型2からの剥離を防止する。図3(a)の7は、光学有効部の最外部を示している。溝5は、土手4と光学有効部の最外部7との間に配置する。溝5の断面形状に鋭角を成す部分があると、鋭角の先端部で成形用光学材料3の硬化収縮による応力が集中し、鋭角の部分の成形用光学材料3が成形型2から剥離が発生する。断面形状が全て鈍角からなる溝であれば、局所的な応力集中を発生させることなく、成形用光学材料3の成形型2からの剥離を防止することができる。また、断面形状が滑らかな曲線から成る形状であっても局所的な応力の集中が発生しないため、同様の効果を得ることができる。ここで、断面形状が滑らかであるとは、光軸と平行にy軸、y軸に垂直で断面方向にx軸をとった座標系において、断面部において溝5が、y=f(x)と表されるとき、dy/dx=df/dxが連続であることを意味する。   Here, since the groove 5 is deeper than the inside of the optically effective portion, the molding optical material 3 filled in the groove 5 has a new shrinkage stress, which causes a new problem that it is easy to peel from the mold 2. When the molding optical material 3 filled in the groove 5 is peeled from the mold 2, the diffraction grating molding lens substrate 1 is not moved or deformed in the upper part of the groove 5. Can not. For this reason, as shown to Fig.3 (a), all the angles which the cross section of a groove | channel makes are obtuse angles, and peeling from the shaping | molding die 2 is prevented. 7 in FIG. 3A shows the outermost part of the optically effective portion. The groove 5 is disposed between the bank 4 and the outermost part 7 of the optically effective portion. If there is an acute angle portion in the cross-sectional shape of the groove 5, stress due to curing shrinkage of the molding optical material 3 is concentrated at the sharp tip portion, and the molding optical material 3 at the acute angle portion is peeled off from the mold 2. To do. If the cross-sectional shape is a groove having an obtuse angle, peeling of the molding optical material 3 from the molding die 2 can be prevented without causing local stress concentration. Even if the cross-sectional shape is a smooth curve, local stress concentration does not occur, and the same effect can be obtained. Here, the smooth cross-sectional shape means that in the coordinate system in which the y-axis is parallel to the optical axis, the x-axis is perpendicular to the y-axis and the x-axis is in the cross-sectional direction, the groove 5 is y = f (x) Dy / dx = df / dx means continuous.

このように、光学有効部の最外部7と土手4の横に断面形状が全て鈍角からなる、または滑らかな曲線からなる溝5を設ける。これにより、土手4による回折格子成形用レンズ基板1の変形抑制と同時に、溝5による回折格子成形用レンズ基板1の大きな変形・移動を発生させることができ、光学有効部の転写不良が改善される。   In this way, the groove 5 having an obtuse angle or a smooth curve is provided on the side of the outermost portion 7 and the bank 4 of the optically effective portion. As a result, the deformation of the diffraction grating molding lens substrate 1 by the bank 4 can be suppressed, and at the same time, the diffraction grating molding lens substrate 1 can be greatly deformed and moved by the grooves 5, thereby improving the transfer failure of the optically effective portion. The

[実施例1]
本実施例において製造される回折光学素子を、図2(a)を参照して説明する。
[Example 1]
The diffractive optical element manufactured in this example will be described with reference to FIG.

本実施例の回折光学素子は、回折格子成形用レンズ基板1と、ITO(酸化インジウム)微粒子を分散したフッ素樹脂およびアクリル樹脂から構成される成形用光学材料3とから成る。回折格子成形用レンズ基板1は、φ50mm、厚さ5mmの平板形状を有する。ITO微粒子を分散したフッ素樹脂3は光硬化性を有しており、フッ素樹脂中にナノサイズのITO微粒子を20vol%で均一に分散させているので、濃青色の外観である。成形する回折光学素子の回折格子は、回折格子高さ9〜11μm、回折格子幅0.1〜10mmのブレーズ型回折格子であり、同心円状に形成されている。   The diffractive optical element of this embodiment includes a diffraction grating molding lens substrate 1 and a molding optical material 3 composed of a fluororesin and an acrylic resin in which ITO (indium oxide) fine particles are dispersed. The lens substrate 1 for forming a diffraction grating has a flat plate shape with a diameter of 50 mm and a thickness of 5 mm. The fluororesin 3 in which the ITO fine particles are dispersed has photocurability, and the nano-sized ITO fine particles are uniformly dispersed at 20 vol% in the fluororesin, so that it has a dark blue appearance. The diffraction grating of the diffractive optical element to be molded is a blazed diffraction grating having a diffraction grating height of 9 to 11 μm and a diffraction grating width of 0.1 to 10 mm, and is formed concentrically.

本実施例の回折光学素子の成形に用いる成形型2を、図1を参照して説明する。   A molding die 2 used for molding the diffractive optical element of this embodiment will be described with reference to FIG.

成形型2は、その成形面に所望の回折格子の反転形状と、光学有効部の外周に土手4と溝5を有する。成形型2の成形面は、金属母材上にメッキ層として形成されたNiP上への切削によって形成される。成形型2の成形面の回折格子は、回折格子高さ9〜11μm、回折格子幅0.1〜10mmのブレーズ型回折格子であり、中心への凹部で同心円状に形成されている。   The molding die 2 has a reverse shape of a desired diffraction grating on its molding surface, and a bank 4 and a groove 5 on the outer periphery of the optically effective portion. The molding surface of the mold 2 is formed by cutting onto NiP formed as a plating layer on a metal base material. The diffraction grating on the molding surface of the mold 2 is a blazed diffraction grating having a diffraction grating height of 9 to 11 μm and a diffraction grating width of 0.1 to 10 mm, and is formed concentrically with a concave portion at the center.

成形型2の有効径外に位置する土手4の高さは、回折格子高さ+2μm(11〜13μm)であり、この土手4に回折格子成形用レンズ基板1が接するように押圧しながら成形することで、成形品全体の高さを±0.5μmで制御することができる。本実施例で用いるITO微粒子を分散させた樹脂は濃青色であり、低波長の光透過性が悪い。そのため、回折格子を除いた成形品の高さを2±0.5μmで制御する必要があり、光学有効部の外周に土手4を有する成形型2での成形が必要となる。また、溝5は光学有効の最外部と土手の間に位置し、最大深さは30μm、横幅が0.8mmであり、金型の断面形状は3つの角を持ち、その成す角度が100〜120°の全て鈍角となっている。ITO微粒子を分散したフッ素樹脂3は、成形型2の回折格子および溝5に過不足なく充填される。   The height of the bank 4 positioned outside the effective diameter of the molding die 2 is the diffraction grating height + 2 μm (11 to 13 μm), and is molded while being pressed so that the diffraction grating molding lens substrate 1 is in contact with the bank 4. Thus, the overall height of the molded product can be controlled at ± 0.5 μm. The resin in which the ITO fine particles used in this example are dispersed is dark blue and has low light transmittance at a low wavelength. Therefore, it is necessary to control the height of the molded product excluding the diffraction grating at 2 ± 0.5 μm, and it is necessary to mold with the molding die 2 having the bank 4 on the outer periphery of the optically effective portion. Further, the groove 5 is located between the optically effective outermost part and the bank, the maximum depth is 30 μm, the lateral width is 0.8 mm, and the cross-sectional shape of the mold has three angles, and the angle formed is 100˜ All of them have an obtuse angle of 120 °. The fluororesin 3 in which the ITO fine particles are dispersed fills the diffraction grating and the groove 5 of the mold 2 without excess or deficiency.

本実施例の回折光学素子の成形方法を、図2を参照して順に説明する。   A method of molding the diffractive optical element of this example will be described in order with reference to FIG.

まず、回折格子成形用レンズ基板1の成形面に、成形用光学材料3であるITO微粒子を分散したフッ素樹脂との密着を強くするためのシランカップリング処理を施す。   First, the molding surface of the diffraction grating molding lens substrate 1 is subjected to a silane coupling treatment for strengthening the close contact with the fluororesin in which ITO fine particles as the molding optical material 3 are dispersed.

次に、回折格子成形用レンズ基板1のシランカップリング処理面の中央付近に、成形用光学材料3を適量滴下する(図2(a))。次に、成形型2上に載せた回折格子成形用レンズ基板1を300kgfで押圧して、回折格子成形用レンズ基板1を成形型2上の土手4に接触させる(図2(b))。回折格子成形用レンズ基板1を押圧することで、成形用光学材料3は土手4の高さまで均一に引き延ばされる。成形用光学材料3であるITO微粒子を分散したフッ素樹脂は、濃青色の外観を有するため、厚さを2μmまで引き延ばして透明性を高める必要があり、土手4に回折格子成形用レンズ基板1を押し当てることにより、成形品の回折格子部分を除く厚さは2±0.5μmに制御される。   Next, an appropriate amount of the molding optical material 3 is dropped near the center of the silane coupling treatment surface of the diffraction grating molding lens substrate 1 (FIG. 2A). Next, the diffraction grating molding lens substrate 1 placed on the molding die 2 is pressed with 300 kgf to bring the diffraction grating molding lens substrate 1 into contact with the bank 4 on the molding die 2 (FIG. 2B). By pressing the diffraction grating molding lens substrate 1, the molding optical material 3 is uniformly extended to the height of the bank 4. Since the fluororesin in which ITO fine particles dispersed as the molding optical material 3 have a dark blue appearance, it is necessary to extend the thickness to 2 μm to increase transparency, and the diffraction grating molding lens substrate 1 is provided on the bank 4. By pressing, the thickness excluding the diffraction grating portion of the molded product is controlled to 2 ± 0.5 μm.

次に、充填した成形用光学材料3に対して、不図示の紫外線照射ランプによる紫外光を照射して、成形用光学材料3を硬化させる。このとき、成形用光学材料3の反応を緩やかに進めることで硬化収縮による応力の集中を緩和させるため、まず400nmのローパスフィルターを用いて低波長の光を遮断した状態で15J(15mW/cm×1000秒)照射する。その後、離型できるまで反応を進めるため、ローパスフィルターを取り外した紫外光を0.3J(3mW/cm×100秒)照射する。 Next, the filled optical molding material 3 is irradiated with ultraviolet light from an unillustrated ultraviolet irradiation lamp to cure the molding optical material 3. At this time, in order to relieve stress concentration due to curing shrinkage by slowly advancing the reaction of the molding optical material 3, first, 15J (15 mW / cm 2) is used in a state where low-wavelength light is blocked using a 400 nm low-pass filter. X 1000 seconds). Then, in order to advance reaction until it can mold-release, the ultraviolet light which removed the low-pass filter is irradiated for 0.3J (3mW / cm < 2 > * 100 second).

成形用光学材料3であるITO微粒子を分散したフッ素樹脂は、硬化時に10%ほど収縮する。成形用光学材料3の収縮により、回折格子成形用レンズ基板1は成形型2の方向に引っ張られ、移動・変形を起こす。回折格子成形用レンズ基板1の土手4に接している部分では成形型2の方向への移動が拘束されており、成形用光学材料3の収縮に応じた移動・変形が生じない。また溝5は光学有効部よりも深い形状であるため、溝5の上部での回折格子成形用レンズ基板1には、溝5内の成形用光学材料3の硬化収縮により成形型2方向に大きな移動・変形を起こす。この溝5により、土手4の変形抑制の影響を緩和することができ、転写不良の発生を抑制することができる。   The fluororesin in which ITO fine particles, which are the molding optical material 3, are dispersed, shrinks by about 10% when cured. Due to the shrinkage of the molding optical material 3, the diffraction grating molding lens substrate 1 is pulled in the direction of the molding die 2 to move and deform. In the portion of the diffraction grating molding lens substrate 1 that is in contact with the bank 4, the movement in the direction of the molding die 2 is restricted, and movement / deformation corresponding to the shrinkage of the molding optical material 3 does not occur. Further, since the groove 5 is deeper than the optically effective portion, the diffraction grating molding lens substrate 1 above the groove 5 is larger in the direction of the mold 2 due to curing shrinkage of the molding optical material 3 in the groove 5. Causes movement and deformation. The grooves 5 can alleviate the influence of deformation suppression of the bank 4 and can suppress the occurrence of transfer failure.

本実施例に用いる成形型の溝を、図3を参照して説明する。   The groove | channel of the shaping | molding die used for a present Example is demonstrated with reference to FIG.

溝5は30μmであり回折光学素子の回折格子よりも深いため、溝5内の成形用光学材料3は、硬化収縮による応力の集中が大きい。特に、溝に断面形状が鋭角となる部分があると、その箇所で局所的に大きな応力集中が発生し、成形用光学材料3が成形型2から剥離する。そのため、溝5は図3(a)のように断面形状が全て鈍角を成している形状、もしくは図3(b)のように滑らかな曲線から成る形状である必要がある。   Since the groove 5 is 30 μm deeper than the diffraction grating of the diffractive optical element, the molding optical material 3 in the groove 5 has a large concentration of stress due to curing shrinkage. In particular, when the groove has a portion with a sharp cross-sectional shape, a large stress concentration is locally generated at the portion, and the molding optical material 3 is peeled off from the molding die 2. Therefore, the groove 5 needs to have a shape in which the cross-sectional shape forms an obtuse angle as shown in FIG. 3A, or a shape formed of a smooth curve as shown in FIG.

最後に、イジェクタ6を成形型2に対して上昇させることで、硬化した成形用光学材料3を回折格子成形用レンズ基板1とともに離型する(図2(c))。   Finally, the ejector 6 is raised relative to the mold 2 to release the cured molding optical material 3 together with the diffraction grating molding lens substrate 1 (FIG. 2C).

このように、本実施例によれば、成形品の高さを制御した状態で、かつ、回折格子の先端部の形状が安定した回折光学素子を製造できるので、光学性能に優れた回折光学素子を製造することができる。さらに、転写不良の発生を抑制することにより生産の歩留まりが向上するため、回折光学素子の製造コストを安くすることができる。また、回折光学素子の回折格子先端部の形状安定性が良好であるので、回折光学素子を搭載するカメラやビデオ等の光学機器の光学性能を向上させることができる。   Thus, according to this example, a diffractive optical element with excellent optical performance can be manufactured in a state in which the height of the molded product is controlled and the shape of the tip of the diffraction grating is stable. Can be manufactured. Furthermore, since the production yield is improved by suppressing the occurrence of transfer defects, the manufacturing cost of the diffractive optical element can be reduced. In addition, since the shape stability of the diffraction grating tip of the diffractive optical element is good, the optical performance of an optical device such as a camera or video equipped with the diffractive optical element can be improved.

[比較例1]
実施例1の回折光学素子の製造方法において、溝5の形状を最大深さが10μmであり、断面形状の成す角度が全て鈍角である場合に、同様の成形を行った。
回折格子成形用レンズ基板1の土手4に接している部分では成形型2の方向への移動が拘束されており、成形用光学材料3の収縮に応じた移動・変形が生じない。さらに、溝5の最大深さが10μmである場合には、回折光学素子の回折格子よりも深さが浅いため、溝5の上部での回折格子成形用レンズ基板1は、溝5内の成形用光学材料3の硬化収縮による成形型2方向への移動や変形が少ない。そのため、溝5による土手4の変形抑制の影響を緩和する効果が十分ではなく、転写不良が発生する。
溝5の最大深さが10μmである場合には、光学有効部の外周から0.3mmまでに存在する回折格子で転写不良が発生し、所望の形状から100〜300nm異なる形状となった。この転写不良により、光学有効部の外周で回折効率の低下が見られ、光学性能上問題となる結果となった。この結果から、溝5は最大深さが回折格子の形状よりも深い必要があると言える。
[Comparative Example 1]
In the manufacturing method of the diffractive optical element of Example 1, when the maximum depth of the groove 5 was 10 μm and the angles formed by the cross-sectional shapes were all obtuse, the same molding was performed.
In the portion of the diffraction grating molding lens substrate 1 that is in contact with the bank 4, the movement in the direction of the molding die 2 is restricted, and movement / deformation corresponding to the shrinkage of the molding optical material 3 does not occur. Further, when the maximum depth of the groove 5 is 10 μm, since the depth is shallower than the diffraction grating of the diffractive optical element, the lens substrate 1 for forming a diffraction grating at the upper part of the groove 5 is formed in the groove 5. There is little movement or deformation in the direction of the mold 2 due to curing shrinkage of the optical material 3 for use. Therefore, the effect of alleviating the influence of the deformation suppression of the bank 4 by the grooves 5 is not sufficient, and a transfer failure occurs.
When the maximum depth of the groove 5 was 10 μm, transfer failure occurred in the diffraction grating existing from the outer periphery of the optically effective portion to 0.3 mm, resulting in a shape different from the desired shape by 100 to 300 nm. Due to this transfer failure, a decrease in diffraction efficiency was observed on the outer periphery of the optically effective portion, resulting in a problem in optical performance. From this result, it can be said that the maximum depth of the groove 5 needs to be deeper than the shape of the diffraction grating.

[実施例2]
実施例1の回折光学素子の製造方法において、溝5の形状の最大深さは30μmであり、横幅が0.5mm、断面形状の成す角度が全て鈍角である場合に、同様の成形を行った。
溝5の最大深さは30μmであり、回折光学素子の回折格子よりも深い形状となっているため、溝5の上部での回折格子成形用レンズ基板1は、溝5内の成形用光学材料3の硬化収縮による成形型2方向へ大きく移動・変形が起きる。この移動・変形により、溝5による土手4の変形抑制の影響を緩和する効果により、光学有効部の外周での転写不良を抑制することができる。
溝5の横幅が0.5mmである場合にも、光学有効部の外周に存在する回折格子で転写不良は全く発生しなかった。この結果から、溝5は最大深さが回折格子の形状よりも深く、断面が全て鈍角から成る形状であれば、横幅に依存せず、転写不良を抑制する効果を発現することができると言える。
[Example 2]
In the manufacturing method of the diffractive optical element of Example 1, when the maximum depth of the shape of the groove 5 was 30 μm, the lateral width was 0.5 mm, and the angles formed by the cross-sectional shapes were all obtuse, the same molding was performed. .
Since the maximum depth of the groove 5 is 30 μm and is deeper than the diffraction grating of the diffractive optical element, the lens substrate 1 for forming the diffraction grating at the upper part of the groove 5 is formed by the molding optical material in the groove 5. 3 greatly moves and deforms in the direction of the mold 2 due to curing shrinkage. By this movement / deformation, the transfer defect on the outer periphery of the optically effective portion can be suppressed due to the effect of alleviating the influence of the deformation suppression of the bank 4 by the groove 5.
Even when the lateral width of the groove 5 was 0.5 mm, no transfer failure occurred at all in the diffraction grating present on the outer periphery of the optically effective portion. From this result, it can be said that if the groove 5 has a maximum depth deeper than the shape of the diffraction grating and the cross section has an obtuse angle, the groove 5 can exhibit the effect of suppressing the transfer failure without depending on the lateral width. .

[実施例3]
本実施例において製造される回折光学素子を、図4(d)を参照して説明する。
[Example 3]
The diffractive optical element manufactured in this example will be described with reference to FIG.

本実施例の回折光学素子は、回折格子成形用レンズ基板1とZrO(酸化ジルコニア)微粒子を分散したエポキシ樹脂3と、TiO(酸化チタン)微粒子を分散したアクリル樹脂3と接合用レンズ基板9から構成される。回折格子成形用レンズ基板1は、φ60mmで最大厚さ3mmの凹レンズの形状である。ZrO微粒子を分散したエポキシ樹脂3は、光硬化性を有しており、エポキシ樹脂中にナノサイズのZrO微粒子を5vol%で均一に分散させており、無色透明の外観である。TiO微粒子を分散したアクリル樹脂8は、同様に光硬化性を有しており、アクリル樹脂中にナノサイズのTiO微粒子を10vol%で均一に分散させているので、白色の外観である。接合用レンズ基板9は、φ58mmで最大厚さ10mmの凸レンズの形状である。ZrO微粒子を分散したエポキシ樹脂3とTiO微粒子を分散したアクリル樹脂8の間の回折格子は、回折格子高さ15μm、回折格子幅0.5〜3mmのブレーズ型回折格子であり、同心円状に形成されている。 The diffractive optical element of the present embodiment includes a diffraction grating molding lens substrate 1, an epoxy resin 3 in which ZrO 2 (zirconia oxide) fine particles are dispersed, an acrylic resin 3 in which TiO 2 (titanium oxide) fine particles are dispersed, and a bonding lens substrate. It is composed of nine. The diffraction grating molding lens substrate 1 has a concave lens shape with a diameter of 60 mm and a maximum thickness of 3 mm. The epoxy resin 3 in which the ZrO 2 fine particles are dispersed has photocurability, and nano-sized ZrO 2 fine particles are uniformly dispersed in the epoxy resin at 5 vol%, and has a colorless and transparent appearance. The acrylic resin 8 in which the TiO 2 fine particles are dispersed similarly has photocurability and has a white appearance because the nano-sized TiO 2 fine particles are uniformly dispersed at 10 vol% in the acrylic resin. The bonding lens substrate 9 has a convex lens shape with a diameter of 58 mm and a maximum thickness of 10 mm. The diffraction grating between the epoxy resin 3 in which the ZrO 2 fine particles are dispersed and the acrylic resin 8 in which the TiO 2 fine particles are dispersed is a blazed diffraction grating having a diffraction grating height of 15 μm and a diffraction grating width of 0.5 to 3 mm. Is formed.

本実施例の回折光学素子の成形に用いる成形型を、図4(a)を参照して説明する。成形型2は、その成形面に所望の回折格子の反転形状と溝5を形成するための凸部10および土手4を形成するための凹部11を有する。成形型2の成形面の回折格子は、回折格子高さ15μm、回折格子幅0.5〜3mmのブレーズ型回折格子であり、中心への凸部で同心円状に形成されている。溝5を形成するための凸部10は、光学有効径外の外周部に高さ30μmで断面形状が全て鈍角となり、同心円状に形成されている。また、土手4を形成するための凹部11は、深さが20μmである。成形型2の成形面は、金属母材上にメッキ層として形成されたOpt−Cu上への切削によって形成される。   A molding die used for molding the diffractive optical element of this example will be described with reference to FIG. The molding die 2 has, on its molding surface, a reversal shape of a desired diffraction grating and a convex portion 10 for forming a groove 5 and a concave portion 11 for forming a bank 4. The diffraction grating on the molding surface of the mold 2 is a blazed diffraction grating having a diffraction grating height of 15 μm and a diffraction grating width of 0.5 to 3 mm, and is formed concentrically with a convex portion toward the center. The convex portions 10 for forming the grooves 5 are concentrically formed on the outer peripheral portion outside the optical effective diameter with a height of 30 μm and an obtuse cross section. Further, the recess 11 for forming the bank 4 has a depth of 20 μm. The molding surface of the mold 2 is formed by cutting onto Opt-Cu formed as a plating layer on a metal base material.

本実施例の回折光学素子の製造方法を、図4を参照して順に説明する。   A method of manufacturing the diffractive optical element of this example will be described in order with reference to FIG.

先ず、回折格子成形用レンズ基板1の片面に、ZrO微粒子を分散したエポキシ樹脂3との密着を強くするためのシランカップリング処理を施す。 First, a silane coupling process is performed on one surface of the diffraction grating molding lens substrate 1 in order to strengthen the adhesion with the epoxy resin 3 in which ZrO 2 fine particles are dispersed.

回折格子成形用レンズ基板1のシランカップリング処理面の中央付近にディスペンサーにて、ZrO微粒子を分散したエポキシ樹脂3を適量滴下する。若しくは、ZrO微粒子を分散したエポキシ樹脂3を、成形型2の成形面の中央付近に滴下しても良い。 An appropriate amount of epoxy resin 3 in which ZrO 2 fine particles are dispersed is dropped in the vicinity of the center of the silane coupling surface of the diffraction grating molding lens substrate 1 with a dispenser. Alternatively, the epoxy resin 3 in which ZrO 2 fine particles are dispersed may be dropped near the center of the molding surface of the mold 2.

次に、成形型2上に載せた回折格子成形用レンズ基板1を、ZrO微粒子を分散したエポキシ樹脂3を成形型2上に充填する(図4(a))。充填したZrO微粒子を分散したエポキシ樹脂3に対して、紫外線照射ランプによる紫外光を30J(100[mW/cm]×300秒)照射して、ZrO微粒子を分散したエポキシ樹脂3を硬化させる。 Next, the diffraction grating molding lens substrate 1 placed on the mold 2 is filled with an epoxy resin 3 in which ZrO 2 fine particles are dispersed (FIG. 4A). The epoxy resin 3 in which the filled ZrO 2 fine particles are dispersed is irradiated with 30 J (100 [mW / cm 2 ] × 300 seconds) of ultraviolet light from an ultraviolet irradiation lamp to cure the epoxy resin 3 in which the ZrO 2 fine particles are dispersed. Let

次に、硬化したエポキシ樹脂3と回折格子成形用レンズ基板1を離型するため、液体窒素により回折格子成形用レンズ基板1を冷却する。冷却することで、回折格子成形用レンズ基板1上に成形されたエポキシ樹脂3は、外周部から成形型2と剥離を始める。剥離の開始とともに、イジェクタ6を成形型2に対して上昇させ、回折格子成形用レンズ基板1を持ちあげていくことで全面が離型され、成形品が得られる(図4(b))。   Next, in order to release the cured epoxy resin 3 and the diffraction grating molding lens substrate 1, the diffraction grating molding lens substrate 1 is cooled with liquid nitrogen. By cooling, the epoxy resin 3 molded on the diffraction grating molding lens substrate 1 begins to peel from the molding die 2 from the outer periphery. When the peeling is started, the ejector 6 is raised relative to the mold 2 and the diffraction grating molding lens substrate 1 is lifted to release the entire surface, and a molded product is obtained (FIG. 4B).

続いて、接合用レンズ基板9の片面に、TiO微粒子を分散したアクリル樹脂8との密着を強くするためのシランカップリング処理を施す。 Subsequently, a silane coupling process is performed on one surface of the bonding lens substrate 9 in order to strengthen the adhesion with the acrylic resin 8 in which TiO 2 fine particles are dispersed.

接合用レンズ基板9のシランカップリング処理面の中央付近にディスペンサーにて、TiO微粒子を分散したアクリル樹脂8を適量滴下する。若しくはTiO微粒子を分散したアクリル樹脂8を、回折格子成形用レンズ基板1の上に成形したZrO微粒子を分散したエポキシ樹脂3から成る回折格子面の中央付近に滴下しても良い(図4(c))。 An appropriate amount of acrylic resin 8 in which TiO 2 fine particles are dispersed is dropped in the vicinity of the center of the silane coupling treatment surface of the bonding lens substrate 9 with a dispenser. Alternatively, the acrylic resin 8 in which TiO 2 fine particles are dispersed may be dropped near the center of the diffraction grating surface made of the epoxy resin 3 in which ZrO 2 fine particles formed on the diffraction grating molding lens substrate 1 are dispersed (FIG. 4). (C)).

次に、ZrO微粒子を分散したエポキシ樹脂3上に載せた接合用レンズ基板9を300kgfで押圧して、TiO微粒子を分散したアクリル樹脂8を接合用レンズ基板9上に充填する。接合用レンズ基板9を300kgfで押圧することで、ZrO微粒子を分散したエポキシ樹脂3で成形された土手4と接合用レンズ基板9を接触させる(図4(d))。土手4と接合用レンズ基板9を接触させることで、TiO微粒子を分散したアクリル樹脂8は土手4の高さまで均一に引き延ばされる。TiO微粒子を分散したアクリル樹脂8は白色の外観を有するため、厚さを5μmまで引き延ばして透明性を高める必要があり、土手4に接合用レンズ基板9を押し当てることにより、TiO微粒子を分散したアクリル樹脂8の回折格子部分を除く厚さは制御される。 Next, the bonding lens substrate 9 placed on the epoxy resin 3 in which the ZrO 2 fine particles are dispersed is pressed with 300 kgf, and the acrylic resin 8 in which the TiO 2 fine particles are dispersed is filled on the bonding lens substrate 9. By pressing the bonding lens substrate 9 with 300 kgf, the bank 4 formed of the epoxy resin 3 in which ZrO 2 fine particles are dispersed is brought into contact with the bonding lens substrate 9 (FIG. 4D). By bringing the bank 4 and the bonding lens substrate 9 into contact, the acrylic resin 8 in which the TiO 2 fine particles are dispersed is uniformly stretched to the height of the bank 4. Since the acrylic resin 8 in which the TiO 2 fine particles are dispersed has a white appearance, it is necessary to increase the transparency by increasing the thickness to 5 μm. By pressing the bonding lens substrate 9 against the bank 4, the TiO 2 fine particles are The thickness of the dispersed acrylic resin 8 excluding the diffraction grating portion is controlled.

次に、充填したTiO微粒子を分散したアクリル樹脂8に対して、不図示の紫外線照射ランプによる紫外光を15J(50[mW/cm]×300秒)照射して硬化させる。 Next, the acrylic resin 8 in which the filled TiO 2 fine particles are dispersed is cured by irradiating with ultraviolet light of 15 J (50 [mW / cm 2 ] × 300 seconds) by an ultraviolet irradiation lamp (not shown).

TiO微粒子を分散したアクリル樹脂8は硬化時に収縮するため、接合用レンズ基板9は成形型2の方向に引っ張られ、移動・変形を起こす。接合用レンズ基板9の土手4に接している部分では成形型2の方向への移動が拘束されており、TiO微粒子を分散したアクリル樹脂8の収縮に応じた移動・変形が生じない。また溝5は光学有効部よりも深い形状であるため、溝5の上部での接合用レンズ基板9には、溝5内のTiO微粒子を分散したアクリル樹脂8の硬化収縮により成形型2方向に大きな移動・変形を起こす。この溝5により、土手4の変形抑制の影響を緩和することができ、転写不良の発生を改善することができる。 Since the acrylic resin 8 in which the TiO 2 fine particles are dispersed shrinks when cured, the bonding lens substrate 9 is pulled in the direction of the mold 2 and is moved and deformed. The portion of the bonding lens substrate 9 that is in contact with the bank 4 is restrained from moving in the direction of the mold 2 and does not move or deform according to the contraction of the acrylic resin 8 in which the TiO 2 fine particles are dispersed. Since the groove 5 is deeper than the optically effective portion, the bonding lens substrate 9 at the upper part of the groove 5 is formed in the two directions of the mold by curing shrinkage of the acrylic resin 8 in which the TiO 2 fine particles in the groove 5 are dispersed. Cause significant movement and deformation. The groove 5 can alleviate the influence of deformation suppression of the bank 4 and can improve the occurrence of transfer failure.

このように、本実施例によれば、回折光学素子の高さを制御した状態で、かつ回折格子の先端部の形状が安定した回折光学素子を製造できるので、光学性能に優れた回折光学素子を製造することができる。さらに、転写不良の発生を抑制することにより生産の歩留まりが向上するため、回折光学素子の製造コストを安くすることができる。また、回折光学素子の回折格子先端部の形状安定性が良好であるので、回折光学素子を搭載するカメラやビデオ等の光学機器の光学性能を向上させることができる。   Thus, according to the present embodiment, a diffractive optical element with excellent optical performance can be manufactured in a state in which the height of the diffractive optical element is controlled and the shape of the tip of the diffraction grating is stable. Can be manufactured. Furthermore, since the production yield is improved by suppressing the occurrence of transfer defects, the manufacturing cost of the diffractive optical element can be reduced. In addition, since the shape stability of the diffraction grating tip of the diffractive optical element is good, the optical performance of an optical device such as a camera or video equipped with the diffractive optical element can be improved.

1 回折格子成形用レンズ基板
2 成形型
3 回折格子成形用光学材料
4 土手
5 溝
6 イジェクタ
7 光学有効部の最外部
8 接合用光学材料
9 接合用レンズ基板
10 溝形成のための凸部
11 土手形成のための凹部
DESCRIPTION OF SYMBOLS 1 Diffraction-grating lens substrate 2 Mold 3 Diffraction-grating optical material 4 Bank 5 Groove 6 Ejector 7 Optical outermost part 8 Bonding optical material 9 Bonding lens substrate 10 Convex part 11 for groove formation Recess for forming

Claims (3)

光学有効部の外周の外側に土手を有する成形型を用い、成形用光学材料により成形型の形状を転写する工程を有する回折光学素子の製造方法において、前記成形型の土手と光学有効部の最外部との間に、光学有効部の最深部よりも深く、かつ、断面形状の成す角が全て鈍角である溝を有した成形型を用いることを特徴とする回折光学素子の製造方法。   In a method for manufacturing a diffractive optical element, which includes a step of transferring a shape of a molding die using a molding optical material, using a molding die having a bank outside the outer periphery of the optically effective portion, the outermost of the molding die and the optically effective portion. A method for manufacturing a diffractive optical element, comprising using a molding die having a groove deeper than a deepest portion of an optically effective portion and having an obtuse angle with a cross-sectional shape between the outside and the outside. 光学有効部の外周の外側に土手を有する成形型を用い、成形用光学材料により成形型の形状を転写する工程を有する回折光学素子の製造方法において、前記成形型の土手と光学有効部の最外部との間に、光学有効部の最深部よりも深く、かつ、断面形状が滑らかな曲線から成る溝を有した成形型を用いることを特徴とする回折光学素子の製造方法。   In a method for manufacturing a diffractive optical element, which includes a step of transferring a shape of a molding die using a molding optical material, using a molding die having a bank outside the outer periphery of the optically effective portion, the outermost of the molding die and the optically effective portion. A method for producing a diffractive optical element, comprising using a molding die having a groove that is deeper than the deepest portion of the optically effective portion and has a smooth cross-sectional shape between the outside and the outside. 請求項1又は2に記載の製造方法を用いて製造されたことを特徴とする回折光学素子。   A diffractive optical element manufactured using the manufacturing method according to claim 1.
JP2012019539A 2012-02-01 2012-02-01 Manufacturing method of diffraction optical element, and diffraction optical element Pending JP2013160773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019539A JP2013160773A (en) 2012-02-01 2012-02-01 Manufacturing method of diffraction optical element, and diffraction optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019539A JP2013160773A (en) 2012-02-01 2012-02-01 Manufacturing method of diffraction optical element, and diffraction optical element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016169093A Division JP6385402B2 (en) 2016-08-31 2016-08-31 Method for manufacturing diffractive optical element and diffractive optical element

Publications (2)

Publication Number Publication Date
JP2013160773A true JP2013160773A (en) 2013-08-19
JP2013160773A5 JP2013160773A5 (en) 2015-03-19

Family

ID=49173093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019539A Pending JP2013160773A (en) 2012-02-01 2012-02-01 Manufacturing method of diffraction optical element, and diffraction optical element

Country Status (1)

Country Link
JP (1) JP2013160773A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995977A1 (en) 2014-09-12 2016-03-16 Canon Kabushiki Kaisha Multilayer diffractive optical element
JP2016206688A (en) * 2016-08-31 2016-12-08 キヤノン株式会社 Manufacturing method of diffraction optical element, and diffraction optical element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141918A (en) * 1999-09-03 2001-05-25 Canon Inc Diffraction optical device and its production method
JP2002210755A (en) * 2001-01-15 2002-07-30 Canon Inc Manufacturing method of optical element, optical element by its manufacturing method, display element and display means each having this optical element and camera element and camera means each having the optical element
JP2003011150A (en) * 2001-07-04 2003-01-15 Canon Inc Mold, method for manufacturing optical element, and optical element
JP2010269572A (en) * 2009-05-25 2010-12-02 Idemitsu Kosan Co Ltd Manufacturing process for molding, mold and molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141918A (en) * 1999-09-03 2001-05-25 Canon Inc Diffraction optical device and its production method
JP2002210755A (en) * 2001-01-15 2002-07-30 Canon Inc Manufacturing method of optical element, optical element by its manufacturing method, display element and display means each having this optical element and camera element and camera means each having the optical element
JP2003011150A (en) * 2001-07-04 2003-01-15 Canon Inc Mold, method for manufacturing optical element, and optical element
JP2010269572A (en) * 2009-05-25 2010-12-02 Idemitsu Kosan Co Ltd Manufacturing process for molding, mold and molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995977A1 (en) 2014-09-12 2016-03-16 Canon Kabushiki Kaisha Multilayer diffractive optical element
JP2016061796A (en) * 2014-09-12 2016-04-25 キヤノン株式会社 Stack type diffraction optical element
US9696469B2 (en) 2014-09-12 2017-07-04 Canon Kabushiki Kaisha Multilayer diffractive optical element
JP2016206688A (en) * 2016-08-31 2016-12-08 キヤノン株式会社 Manufacturing method of diffraction optical element, and diffraction optical element

Similar Documents

Publication Publication Date Title
CN111971611B (en) Method for imprinting oblique angle grating
JP6238562B2 (en) Composite optical element and method for manufacturing the same
JP6385402B2 (en) Method for manufacturing diffractive optical element and diffractive optical element
JPWO2013191089A1 (en) Method for producing antireflection film
JP2016096275A (en) Imprinting mold, imprinting method, manufacturing method of wire grid polarizer, and wire grid polarizer
JP2013160773A (en) Manufacturing method of diffraction optical element, and diffraction optical element
JP5885394B2 (en) Method for manufacturing composite diffractive optical element
TWI430879B (en) Light guide plate and manufacturing method thereof
JP2006053220A (en) Member having antireflection part, molding die for the member and method of manufacturing the die
US11577342B2 (en) Pulsed laser printing module for contact lens
JP2009098641A (en) Liquid crystal fresnel lens, fresnel lens molding metal mold, and method of manufacturing molding metal mold
JP6823381B2 (en) Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating
JP5349777B2 (en) Optical element manufacturing method
JP2012128319A (en) Laminated diffractive optical element and manufacturing method of laminated diffractive optical element
JP5926561B2 (en) Method for producing thermosetting composition
JP2017173690A (en) Method for manufacturing antireflection article and method for manufacturing mold for shaping
JP2017072791A (en) Molding with nanostructure
KR101806562B1 (en) Apparatus And Method Of Fabricating Light Guide Panel
JP4419665B2 (en) Optical element manufacturing method
KR101006839B1 (en) Manufacturing method of light guide for backlight unit
JP2003011150A (en) Mold, method for manufacturing optical element, and optical element
TWI439744B (en) Method of manufacturing light guide plate
WO2017146203A1 (en) Method for producing molded resin article, and molded resin article
TW201217153A (en) having smaller imprint areas to make it easier for the control of pressure uniformity and provide a high transcription rate and reduce defect generation
JP2007290223A (en) Manufacturing method for substrate sheet and releasing device

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160531