JPWO2020129403A1 - 鋼板、部材およびこれらの製造方法 - Google Patents

鋼板、部材およびこれらの製造方法 Download PDF

Info

Publication number
JPWO2020129403A1
JPWO2020129403A1 JP2020506831A JP2020506831A JPWO2020129403A1 JP WO2020129403 A1 JPWO2020129403 A1 JP WO2020129403A1 JP 2020506831 A JP2020506831 A JP 2020506831A JP 2020506831 A JP2020506831 A JP 2020506831A JP WO2020129403 A1 JPWO2020129403 A1 JP WO2020129403A1
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
content
delayed fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020506831A
Other languages
English (en)
Other versions
JP6801818B2 (ja
Inventor
真平 吉岡
真平 吉岡
義彦 小野
義彦 小野
佑馬 本田
佑馬 本田
中村 展之
展之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6801818B2 publication Critical patent/JP6801818B2/ja
Publication of JPWO2020129403A1 publication Critical patent/JPWO2020129403A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)

Abstract

Ti及びNbの含有量が特定の関係を満足する特定の成分組成と、マルテンサイト及びベイナイトの合計の面積率が92%以上100%以下であり、残部がフェライト及び残留オーステナイトから選ばれる1種以上であり、介在物粒子間の最短距離が10μmより長い長軸長さが20μm以上80μm以下の介在物粒子および長軸長さが0.3μm以上である介在物粒子であって介在物粒子間の最短距離が10μm以下である2以上の介在物からなる介在物粒子群の長軸長さが20μm以上80μm以下の介在物粒子群の密度が10個/mm2以下である組織と、を含有し、鋼板表面から板厚方向1/4〜3/4の位置範囲における局所P濃度が0.060質量%以下であり、前記位置範囲におけるMn偏析度が1.50以下であり、引張強度が1320MPa以上である。切断端面そのものに生じる遅れ破壊に対しても優れた抑制効果を付与できる鋼板、部材及びこれらの製造方法。

Description

本発明は、自動車、家電等において冷間プレス成形工程を経て使用される冷間プレス成形用高強度鋼板、部材およびこれらの製造方法に関する。
近年、自動車車体軽量化ニーズの更なる高まりから、センターピラーR/F(レインフォースメント)等の車体骨格部品やバンパー、インパクトビーム部品等へのTSが1320〜1470MPa級の高強度鋼板の適用が進みつつある。さらなる軽量化の観点から1.8GPa級もしくはそれ以上の高強度化の検討も開始されつつある。従来は、熱間でプレスするホットプレスによる高強度化が検討されてきたが、最近ではコストおよび生産性の観点から改めて冷間プレスでの高強度鋼の適用が検討されつつある。
しかしながら、TSが1320MPa級以上の高強度鋼板を冷間プレスで成形して部品とした場合、部品内での残留応力の増加や、素材そのものの耐遅れ破壊特性の悪化により、遅れ破壊が顕在化する。ここで、遅れ破壊とは、部品に高い応力が加わった状態で部品が水素侵入環境下に置かれたとき、水素が鋼板内に侵入し、原子間結合力を低下させることや局所的な変形を生じさせることで微小亀裂が生じ、それが進展することで破壊に至る現象である。このような破壊は、実部品においてはせん断や打抜きにより切断される鋼板の端面から生じることがほとんどである。このため、実部品における目視可能な1mm以上の割れを伴う鋼板母材の耐遅れ破壊特性を改善する試みが多くなされてきた。一方、切断端面に生じる数100μmの微小な遅れ破壊についてはこれまで問題視されていなかった。しかし、こうした微小な遅れ破壊についても疲労特性や塗装密着性を低下させ、これにより、部品性能に悪影響を与える恐れがある。このため、鋼板母材だけでなく切断端面の耐遅れ破壊特性にも優れた鋼板が求められている。
鋼板の耐遅れ破壊特性を改善する技術については種々開示されている。例えば、同一強度であれば添加元素が多いほど耐遅れ破壊特性が低下するという結果に基づき、特許文献1には、C:0.008〜0.18%、Si:1%以下、Mn:1.2〜1.8%、S:0.01%以下、N:0.005%以下、O:0.005%以下を含み、CeqとTSの関係がTS≧2270×Ceq+260、Ceq≦0.5、Ceq=C+Si/24+Mn/6を満たし、ミクロ組織が体積率80%以上のマルテンサイトで構成される耐遅れ破壊特性に優れた超高強度鋼板が開示されている。
特許文献2、3、4には、鋼中のSを一定水準まで低減させ、Caを添加することで耐水素誘起割れを防止する技術が開示されている。
特許文献5には、C:0.1〜0.5%、Si:0.10〜2%、Mn:0.44〜3%、N:0.008%以下、Al:0.005〜0.1%を含有する鋼において、V:0.05〜2.82%、Mo:0.1%以上3.0%未満、Ti:0.03〜1.24%、Nb:0.05〜0.95%の1種または2種以上を含有させ水素のトラップサイトとなる微細な合金炭化物を分散させることで耐遅れ破壊特性を改善させる技術が開示されている。
特許文献6には、C:0.15%以上0.40%以下、Si:1.5%以下、Mn:0.9〜1.7%、P:0.03%以下、S:0.0020%未満、sol.Al:0.2%以下、N:0.0055%未満およびO:0.0025%以下を含有し、粗大介在物低減と炭化物の微細分散により耐遅れ破壊特性を改善させる技術が開示されている。
特許文献7には、マルテンサイト単相組織を有した鋼板にレベラー加工を施すことで残留応力を低減し切断端面に生じる遅れ破壊を抑制する技術が開示されている。
特許文献8には、面積率で90%以上のマルテンサイトおよび0.5%以上の残留オーステナイトを有したTS≧1470MPaであって切断端面の耐遅れ破壊特性に優れる超高強度鋼板が開示されている。
特許第3514276号公報 特許第5428705号公報 特開昭54−31019号公報 特許第5824401号公報 特許第4427010号公報 特許第6112261号公報 特開2015−155572号公報 特開2016−153524号公報
しかしながら、特許文献1〜6に開示された技術は、いずれも鋼板母材に生じる数mmの大きな遅れ破壊に起因した亀裂を抑制するものであり、切断端面そのものに生じる数100μmの微小な遅れ破壊に起因した亀裂を十分に抑制できるものではない。特許文献7に開示された技術では鋼板母材にレベラー加工を施す必要があり、レベラーによって導入された加工歪によって曲げ性が低下することを通じて、鋼板母材に生じる遅れ破壊特性を悪化させる恐れがある。さらに、切断後に厳しい冷間加工がなされる自動車部品において、特許文献8に開示された残留オーステナイトを分散させた鋼は、部品成形後に残留オーステナイトが硬質なマルテンサイトに変態し鋼板母材の耐遅れ破壊特性を悪化させる恐れがある。本発明は、このような課題を解決するためになされたものであり、TS≧1320MPaを有し、鋼板母材に生じる遅れ破壊だけでなく切断端面そのものに生じる遅れ破壊に対しても優れた抑制効果を付与できる鋼板、部材およびこれらの製造方法を提供することを目的とする。
本発明者らは、上記の課題を解決するために誠意検討を重ねたところ、以下の知見を得た。
1)TS≧1320MPaの超高強度鋼板の打ち抜き端面の耐遅れ破壊特性は、従来曲げ性に悪影響を与えるとされてきた直径100μm以上の介在物の低減だけでは不十分であり、個々の粒子は微細であっても、1個以上の介在物粒子から構成され、長軸の長さが20〜80μmである介在物群が、打ち抜き端面の耐遅れ破壊特性に顕著に悪影響を与えることが判明した。この介在物群を構成する個々の介在物粒子は主にMn、Ti、Zr、Ca、REM系の硫化物、Al、Ca、Mg、Si、Na系の酸化物、Ti、Zr、Nb、Al系の窒化物、Ti、Nb、Zr、Mo系の炭化物、これらが複合析出した介在物であり、鉄系の炭化物は含まれない。
2)20〜80μmの長さの介在物群を適切に制御するには、鋼中のN、S、O、Mn、Nb、Tiの含有量とスラブ加熱温度、加熱保持時間の適正化が必要であることが判明した。
3)切断端面に生じる遅れ破壊は、旧オーステナイト粒界に偏析したPによる粒界強度の低下が主要因の一つであり、Pの含有量そのものを低減するだけでなくその濃度分布を制御することが重要である。
4)さらに、板厚中心付近にMnの濃化領域が存在する場合、MnSを主体とした介在物の形成や素材強度の増大を通じて切断端面の遅れ破壊特性が悪化するので、Mnの濃度分布を制御することも重要である。
本発明は以上の知見に基づきなされたものであり、具体的には以下のものを提供する。
[1]質量%で、C:0.13%以上0.40%以下、Si:1.5%以下、Mn:1.7%超え3.5%以下、P:0.010%以下、S:0.0020%以下、sol.Al:0.20%以下、N:0.0055%未満、O:0.0025%以下、Nb:0.002%以上0.035%以下、Ti:0.002%以上0.10%以下、B:0.0002%以上0.0035%以下を含有するとともに、下記(1)、(2)式を満足し、残部がFeおよび不可避的不純物からなる成分組成と、マルテンサイトおよびベイナイトの合計の面積率が92%以上100%以下であり、残部がフェライトおよび残留オーステナイトのうちから選ばれる1種以上であり、介在物粒子間の最短距離が10μmより長い長軸長さが20μm以上80μm以下の介在物粒子の密度と、長軸長さが0.3μm以上である介在物粒子であって介在物粒子間の最短距離が10μm以下である2以上の介在物からなる介在物粒子群の長軸長さが20μm以上80μm以下の介在物粒子群の密度との合計が10個/mm以下である組織と、を有し、鋼板表面から板厚方向に1/4位置から3/4位置までにおける局所P濃度が0.060質量%以下であり、前記位置範囲におけるMn偏析度が1.50以下であり、引張強度が1320MPa以上である、鋼板。
[%Ti]+[%Nb]>0.007・・・(1)
[%Ti]×[%Nb]≦7.5×10−6・・・(2)
上記(1)、(2)式の[%Nb]、[%Ti]は鋼中のNb、Tiの含有量(%)である。
[2]前記成分組成は、さらに質量%で、Cu:0.01%以上1%以下、Ni:0.01%以上1%以下のうちから選ばれる1種以上を含有する、[1]に記載の鋼板。
[3]前記成分組成は、さらに質量%で、Cr:0.01%以上1.0%以下、Mo:0.01%以上0.3%未満、V:0.003%以上0.45%以下、Zr:0.005%以上0.2%以下、W:0.005%以上0.2%以下のうちから選ばれる1種以上を含有する、[1]または[2]に記載の鋼板。
[4]前記成分組成は、さらに質量%で、Sb:0.002%以上0.1%以下、Sn:0.002%以上0.1%以下のうちから選ばれる1種以上を含有する、[1]から[3]の何れか1つに記載の鋼板。
[5]前記成分組成は、さらに質量%で、Ca:0.0002%以上0.0050%以下、Mg:0.0002%以上0.01%以下、REM:0.0002%以上0.01%以下のうちから選ばれる1種以上を含有する、[1]から[4]の何れか1つに記載の鋼板。
[6]表面に亜鉛めっき層を有する、[1]から[5]の何れか1つに記載の鋼板。
[7][1]から[5]の何れか1つに記載の成分組成を有する溶鋼からスラブを連続鋳造するに際し、鋳造温度と凝固温度との差を10℃以上40℃以下とし、2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量が0.5L/kg以上2.5L/kg以下となるように冷却して、曲げ部および矯正部を600℃以上1100℃以下で通過させ、その後、スラブの表面温度を1220℃以上として30分以上保持し、その後、熱間圧延することで熱延鋼板とし、該熱延鋼板を40%以上の冷間圧延率で冷間圧延して冷延鋼板とし、該冷延鋼板を800℃以上で240秒以上均熱処理し、680℃以上の温度から300℃以下の温度までを10℃/s以上の平均冷却速度で冷却し、必要に応じて再加熱を行い、その後、150〜260℃の温度域で20〜1500秒保持する連続焼鈍を行う、鋼板の製造方法。
[8]前記連続焼鈍の後、めっき処理を行う、[7]に記載の鋼板の製造方法。
[9][1]から[6]のいずれか1つに記載の鋼板が、成形加工および溶接の少なくとも一方がされてなる、部材。
[10][7]または[8]に記載の鋼板の製造方法によって製造された鋼板を、成形加工および溶接の少なくとも一方を行う工程を有する、部材の製造方法。
本発明によれば、鋼板母材に生じる遅れ破壊だけでなく切断端面そのものの耐遅れ破壊特性に優れた高強度鋼板が得られる。この特性の改善により、せん断や打ち抜き加工を伴う冷間プレス成形用途での高強度鋼板の適用が可能になり、部材強度の向上や軽量化に貢献できる。
図1は、端面のせん断加工を説明する模式図である。
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に限定されない。まず、本実施形態に係る鋼板の成分組成について説明する。成分組成の説明における元素の含有量の単位の「%」は「質量%」を意味する。
C:0.13%以上0.40%以下
Cは、焼入れ性を向上させて92%以上がマルテンサイトもしくはベイナイトである組織を得るために含有される。Cは、マルテンサイトもしくはベイナイトの強度を上昇させ、TS≧1320MPaを確保するために含有される。Cは、マルテンサイト、ベイナイト内部に水素のトラップサイトとなる微細な炭化物を生成させるために含有される。Cの含有量が0.13%未満となると優れた耐遅れ破壊特性を維持して所定の強度を得ることができない。したがって、Cの含有量は0.13%以上である必要がある。優れた耐遅れ破壊特性を維持してTS≧1470MPaを得るために、Cの含有量は0.18%以上であることが好ましく、0.19以上であることがより好ましい。一方、Cの含有量が0.40%を超えると強度が高くなり過ぎて十分な耐遅れ破壊特性を得ることが難しくなる。したがって、Cの含有量は0.40%以下である必要がある。Cの含有量は0.38%以下であることが好ましく、0.34%以下であることがより好ましい。
Si:1.5%以下
Siは、固溶強化による強化元素として含有される。Siは、200℃以上の温度域で焼き戻す場合のフィルム状の炭化物の生成を抑制して耐遅れ破壊特性を改善するために含有される。Siは、板厚中央部でのMn偏析を軽減してMnSの生成を抑制するために含有される。Siの下限は規定しなくてよいが、上記効果を得るためにSiの含有量は0.02%以上であることが好ましく、0.1%以上であることがより好ましい。一方、Siの含有量が1.5%を超えるとSiの偏析量が多くなり、耐遅れ破壊特性が悪化する。Siの含有量が1.5%を超えると熱延、冷延での圧延荷重が著しく増加する。さらに、Siの含有量が1.5%を超えると鋼板の靭性も低下する。したがって、Siの含有量は1.5%以下である必要がある。Siの含有量は0.9%以下であることが好ましく、0.7%以下であることがより好ましい。
Mn:1.7%超え3.5%以下
Mnは、鋼の焼入れ性を向上させ、マルテンサイトおよびベイナイトの合計面積率を所定範囲にするために含有される。工業的に安定してマルテンサイトおよびベイナイトの合計面積率を確保するために含有される。これらの効果を得るために、Mnの含有量は1.7%超である必要がある。Mnの含有量は1.9%以上であることが好ましく、2.1%以上であることがより好ましい。一方、Mnの含有量が過剰な場合、粗大なMnSが形成し、耐遅れ破壊特性が悪化するおそれがある。したがって、Mnの含有量は3.5%以下である必要がある。Mnの含有量は3.2%以下であることが好ましく、2.8%以下であることがより好ましい。
P:0.010%以下
Pは鋼を強化する元素であるが、その含有量が多いと耐遅れ破壊特性やスポット溶接性が悪化する。したがって、Pの含有量は0.010%以下である必要がある。Pの含有量は0.008%以下であることが好ましく、0.006%以下であることがより好ましい。Pの下限は規定しなくてよいが、鋼板のPの含有量を0.002%未満とするには精錬に多大な負荷が生じ、生産能率が低下する。したがって、Pの含有量は0.002%以上であることが好ましい。
S:0.0020%以下
Sは、MnS、TiS、Ti(C、S)等の形成を通じて耐遅れ破壊特性に大きな影響を与えるので、精密に制御される必要がある。従来から曲げ性などに悪影響を与えるとされてきた80μm超えの粗大なMnSの低減だけでは不十分であり、MnSがAl、(Nb、Ti)(C、N)、TiN、TiS等の介在物粒子と複合して析出した介在物粒子も低減させて、鋼板の組織を調整する必要がある。この調整により、優れた耐遅れ破壊特性が得られる。このように、介在物群による弊害を軽減するために、Sの含有量は0.0020%以下である必要がある。耐遅れ破壊特性をさらに改善するために、Sの含有量は0.0010%以下であることが好ましく、0.0006%以下であることがより好ましい。Sの下限は規定しなくてよいが、鋼板のSの含有量を0.0002%未満にするには精錬に多大な負荷が生じ、生産能率が低下する。したがって、Sの含有量は0.0002%以上であることが好ましい。
sol.Al:0.20%以下
Alは、十分な脱酸を行い、鋼中の介在物を低減するために添加される。sol.Alの下限は規定しなくてよいが、安定して脱酸を行うために、sol.Alの含有量は0.01%以上であることが好ましく、0.02%以上であることがより好ましい。一方、sol.Alの含有量が0.20%を超えると、巻取り時に生成したセメンタイトが焼鈍過程で固溶しにくくなり、耐遅れ破壊特性が悪化する。したがって、sol.Alの含有量は0.20%以下である必要がある。sol.Alの含有量は0.10%以下であることが好ましく、0.05%以下であることがより好ましい。
N:0.0055%未満
Nは、鋼中でTiN、(Nb、Ti)(C、N)、AlN等の窒化物、炭窒化物系の介在物を形成する元素であり、これらの介在物が形成されると目標とする組織に調整できなくなり、耐遅れ破壊特性が悪化する。したがって、Nの含有量は0.0055%未満である必要がある。Nの含有量は0.0050%以下であることが好ましく、0.0045%以下であることがより好ましい。Nの下限は規定しなくてよいが、鋼板の生産能率の低下を抑制するために、Nの含有量は0.0005%以上であることが好ましい。
O:0.0025%以下
Oは、鋼中で直径1〜20μmのAl、SiO、CaO、MgO等の粒状の酸化物系介在物を形成したり、Al、Si、Mn、Na、Ca、Mg等が複合し低融点化した介在物を形成したりする。これらの介在物が形成されると耐遅れ破壊特性が悪化する。これらの介在物は、せん断破面の平滑度を悪化させ、局所的な残留応力を増加させるので、介在物単体で耐遅れ破壊特性を悪化させる。このような悪影響を小さくするため、Oの含有量は0.0025%以下である必要がある。Oの含有量は0.0018%以下であることが好ましく、0.0010%以下であることがより好ましい。Oの下限は規定しなくてよいが、生産能率の低下を抑制するために、Oの含有量は0.0005%以上であることが好ましい。
Nb:0.002%以上0.035%以下
Nbは、マルテンサイトやベイナイトの内部構造の微細化を通じて高強度化に寄与するとともに耐遅れ破壊特性を改善する。このような効果を得るために、Nbの含有量は0.002%以上である必要がある。Nbの含有量は0.004%以上であることが好ましく、0.006%以上であることがより好ましい。一方、Nbの含有量が0.035%を超えると圧延方向に点列状に分布したNb系の介在物群が多量に生成し、耐遅れ破壊特性に悪影響を及ぼすことが考えられる。このような悪影響を小さくするために、Nbの含有量は0.035%以下である必要がある。Nbの含有量は0.025%以下であることが好ましく、0.020%以下であることがより好ましい。
Ti:0.002%以上0.10%以下
Tiは、マルテンサイトやベイナイトの内部構造の微細化を通じて高強度化に寄与する。Tiは、水素トラップサイトとなる微細なTi系炭化物・炭窒化物の形成を通じて耐遅れ破壊特性を改善する。さらに、Tiは鋳造性を改善する。このような効果を得るために、Tiの含有量は0.002%以上である必要がある。Tiの含有量は0.006%以上であることが好ましく、0.010%以上であることがより好ましい。一方、Tiの含有量が過剰になると圧延方向に点列状に分布したTi系の介在物粒子群が多量に生成し、耐遅れ破壊特性に悪影響を及ぼすことが考えられる。このような悪影響を小さくするために、Tiの含有量は0.10%以下である必要がある。Tiの含有量は0.06%以下であることが好ましく、0.03%以下であることがより好ましい。
B:0.0002%以上0.0035%以下
Bは、鋼の焼入れ性を向上させる元素であり、少ないMn含有量でも所定の面積率のマルテンサイトやベイナイトを生成させる。このような効果を得るために、Bの含有量は0.0002%以上である必要がある。Bの含有量は0.0005%以上であることが好ましく、0.0010%以上であることがより好ましい。Nを固定する観点から、Bは0.002%以上のTiと複合添加されることが好ましい。一方、Bの含有量が0.0035%を超えると、その効果が飽和するだけでなく、焼鈍時のセメンタイトの固溶速度を遅延させ、未固溶のセメンタイトが残存して耐遅れ破壊特性が悪化する。したがって、Bの含有量は0.0035%以下である必要がある。Bの含有量は0.0030%以下であることが好ましく、0.0025%以下であることがより好ましい。
TiおよびNb:下記(1)(2)式を満足
[%Ti]+[%Nb]>0.007・・・(1)
[%Ti]×[%Nb]≦7.5×10−6・・・(2)
上記(1)、(2)式の[%Nb]、[%Ti]は鋼中のNb、Tiの含有量(%)である。
Ti、Nb添加による集合組織制御や微細析出物による水素トラップの効果を確保しつつ、これらの粗大析出物による遅れ破壊特性悪化の影響を小さくするには、Ti、Nbの含有量を所定範囲に制御する必要がある。
Ti、Nb添加による集合組織制御の効果や微細析出物による水素トラップの効果を得るために、NbとTiは上記(1)式を満足する必要がある。特に0.21%以上のCを含有する鋼ではNbの固溶限界量が小さく、NbとTiを複合で添加すると1200℃以上の高温でも非常に安定な(Nb,Ti)(C,N)、(Nb,Ti)(C,S)が生成しやすくなるので、Nb、Tiの固溶限界量は極めて小さくなる。このような固溶限界量の減少が原因で生じる未固溶析出物を低減させるために、NbとTiは上記(2)式を満足する必要がある。
本実施形態に係る鋼板は、必要に応じて以下の元素から選ばれる1種以上を含有してもよい。
Cu:0.01%以上1%以下
Cuは、自動車の使用環境での耐食性を向上させる元素である。Cuを含有することにより、腐食生成物が鋼板表面を被覆して鋼板への水素侵入を抑制する効果が得られる。Cuは、スクラップを原料として活用するときに混入する元素であるので、Cuの混入を許容することでリサイクル資材を原料資材として活用でき、製造コストを削減できる。これらの効果を得るために、Cuの含有量は0.01%以上であることが好ましい。鋼板の耐遅れ破壊特性をさらに向上させるために、Cuの含有量は0.05%以上であることがより好ましく、0.08%以上であることがさらに好ましい。一方、Cuの含有量が多くなりすぎると表面欠陥の原因となる場合がある。したがって、Cuの含有量は1%以下であることが好ましい。Cuの含有量は0.6%以下であることがより好ましく、0.3%以下であることがさらに好ましい。
Ni:0.01%以上1%以下
Niは、耐食性を向上させる元素である。Niは、Cuを含有する場合に生じやすい表面欠陥を低減する作用もある。したがって、Niの含有量は0.01%以上であることが好ましい。Niの含有量は0.04%以上であることがより好ましく、0.06%以上であることがさらに好ましい。一方、Niの含有量が多くなりすぎると加熱炉内でのスケール生成が不均一になり表面欠陥の原因になるとともに著しいコスト増となる。したがって、Niの含有量は1%以下であることが好ましい。Niの含有量は0.6%以下であることがより好ましく、0.3%以下であることがさらに好ましい。
本実施形態に係る鋼板は、さらに、必要に応じて以下の元素から選ばれる1種以上を含有してもよい。
Cr:0.01%以上1.0%以下
Crは、鋼の焼入れ性を向上させる元素である。その効果を得るために、Crの含有量は0.01%以上であることが好ましい。Crの含有量は0.04%以上であることがより好ましく、0.08%以上であることがさらに好ましい。一方、Cr含有量が1.0%を超えると焼鈍時のセメンタイトの固溶速度を遅延させ、未固溶のセメンタイトを残存させることで耐遅れ破壊特性を悪化させる場合がある。Cr含有量が1.0%を超えると耐孔食性を悪化させる場合もあり、化成処理性を悪化させる場合もある。したがって、Cr含有量は1.0%以下であることが好ましい。なお、Crの含有量が0.2%を超えると、耐遅れ破壊特性、耐孔食性および化成処理性が悪化し始める傾向がある。このため、Cr含有量は0.2%以下であることがより好ましく、0.15%以下であることがさらに好ましい。
Mo:0.01%以上0.3%未満
Moは、鋼の焼入れ性を向上させる元素であり、水素トラップサイトとなるMoを含む微細な炭化物を生成させる元素でもあり、マルテンサイトを微細化することによる耐遅れ破壊特性を改善させる元素でもある。Ti、Nbを多量に含有するとこれらの粗大析出物が生成し、かえって耐遅れ破壊特性は悪化する。これに対し、Moの固溶限界量はNb、Tiと比べると大きく、Mo、TiおよびNbを複合で含有すると析出物が微細化され、Moとこれらが複合した微細析出物が形成される。このため、少量のNb、TiおよびMoを含有することで、粗大な析出物を残存させずに組織を微細化しつつ微細炭化物を多量に分散させることができ、これにより、耐遅れ破壊特性が向上する。したがって、Moの含有量は0.01%以上であることが好ましい。Moの含有量は0.04%以上であることがより好ましく、0.08%以上であることがさらに好ましい。一方、Moの含有量が0.3%以上となると化成処理性を悪化させる場合がある。したがって、Moの含有量は0.3%未満であることが好ましい。Moの含有量は0.2%以下であることがより好ましく、0.15%以下であることがさらに好ましい。
V:0.003%以上0.45%以下
Vは、鋼の焼入れ性を向上させる元素であり、水素トラップサイトとなるVを含む微細な炭化物を生成させる元素でもあり、マルテンサイトを微細化することによる耐遅れ破壊特性を改善させる元素でもある。したがって、Vの含有量は0.003%以上であることが好ましい。Vの含有量は0.006%以上であることがより好ましく、0.010%以上であることがさらに好ましい。一方、Vの含有量が0.45%を超えると鋳造性が悪化する場合がある。したがって、Vの含有量は0.45%以下であることが好ましい。Vの含有量は0.30%以下であることがより好ましく、0.15%以下であることがさらに好ましい。
Zr:0.005%以上0.2%以下
Zrは、旧オーステナイト粒径の微細化やそれによるマルテンサイトやベイナイトの内部構造単位であるブロックサイズ、ベイン粒径等の低減を通じて高強度化に寄与するとともに耐遅れ破壊特性を改善する元素である。水素トラップサイトとなる微細なZr系炭化物・炭窒化物の形成を通じて、高強度化とともに耐遅れ破壊特性を改善する元素でもあり、鋳造性を改善する元素でもある。これらの効果を得るために、Zrの含有量は0.005%以上であることが好ましい。Zrの含有量は0.008%以上であることがより好ましく、0.010%以上であることがさらに好ましい。一方、Zrの含有量が0.2%を超えると熱間圧延工程のスラブ加熱時に未固溶で残存するZrN、ZrS系の粗大な析出物が増加し、耐遅れ破壊特性が悪化する場合がある。したがって、Zrの含有量は0.2%以下であることが好ましい。Zrの含有量は0.15%以下であることがより好ましく、0.10%以下であることがさらに好ましい。
W:0.005%以上0.2%以下
Wは、水素のトラップサイトとなる微細なW系炭化物・炭窒化物の形成を通じて、高強度化とともに耐遅れ破壊特性の改善に寄与する元素である。したがって、Wの含有量は0.005%以上であることが好ましい。Wの含有量は0.008%以上であることがより好ましく、0.010%以上であることがさらに好ましい。一方、Wの含有量が0.2%を超えると、熱間圧延工程のスラブ加熱時に未固溶で残存する粗大な析出物が増加し、耐遅れ破壊特性が悪化する場合がある。したがって、Wの含有量は0.2%以下であることが好ましい。Wの含有量は0.15%以下であることがより好ましく、0.10%以下であることがより好ましい。
本実施形態に係る鋼板は、さらに、必要に応じて以下の元素から選ばれる1種以上を含有してもよい。
Sb:0.002%以上0.1%以下
Sbは、表層の酸化や窒化を抑制し、これによって、表層におけるCやBの含有量の低減を抑制する元素である。CやBの含有量の低減が抑制されると表層のフェライト生成が抑制されるので、鋼板の高強度化と耐遅れ破壊特性が改善する。したがって、Sbの含有量は0.002%以上であることが好ましい。Sbの含有量は0.004%以上であることがより好ましく、0.006%以上であることがさらに好ましい。一方、Sbの含有量が0.1%を超えると鋳造性が悪化するとともに、旧オーステナイト粒界にSbが偏析して耐遅れ破壊特性を悪化させる場合がある。したがって、Sb含有量は0.1%以下であることが好ましい。Sbの含有量は0.08%以下であることがより好ましく、0.04%以下であることがさらに好ましい。
Sn:0.002%以上0.1%以下
Snは、表層の酸化や窒化を抑制し、これによって、表層におけるCやBの含有量の低減を抑制する元素である。CやBの含有量の低減が抑制されると表層のフェライト生成が抑制されるので、高強度化と耐遅れ破壊特性が改善する。したがって、Snの含有量は、0.002%以上であることが好ましい。Snの含有量は0.004%以上であることがより好ましく、0.006%以上であることがさらに好ましい。一方、Snの含有量が0.1%を超えると、鋳造性が悪化するとともに、旧オーステナイト粒界にSnが偏析して耐遅れ破壊特性を悪化させる場合がある。したがって、Snの含有量は0.1%以下であることが好ましい。Snの含有量は0.08%以下であることがより好ましく、0.04%以下であることがさらに好ましい。
本実施形態に係る鋼板は、さらに、必要に応じて以下の元素から選ばれる1種以上を含有してもよい。
Ca:0.0002%以上0.0050%以下
Caは、SをCaSとして固定し、耐遅れ破壊特性を改善する元素である。したがって、Caの含有量は0.0002%以上であることが好ましい。Caの含有量は0.0006%以上であることがより好ましく、0.0010%以上であることがさらに好ましい。一方、Caの含有量が0.0050%を超えると表面品質や曲げ性を悪化させる場合がある。したがって、Caの含有量は0.0050%以下であることが好ましい。Caの含有量は0.0045%以下であることがより好ましく、0.0035%以下であることがさらに好ましい。
Mg:0.0002%以上0.01%以下
Mgは、MgOとしてOを固定し、耐遅れ破壊特性を改善する元素である。したがって、Mgの含有量は0.0002%以上であることが好ましい。Mgの含有量は0.0004%以上であることがより好ましく、0.0006%以上であることがさらに好ましい。一方、Mgの含有量が0.01%を超えると表面品質や曲げ性を悪化させる場合がある。したがって、Mg含有量は0.01%以下であることが好ましい。Mgの含有量は0.008%以下であることがより好ましく、0.006%以下であることがさらに好ましい。
REM:0.0002%以上0.01%以下
REMは、介在物を微細化し、破壊の起点を減少させることで曲げ性や耐遅れ破壊特性を改善する元素である。したがって、REMの含有量は0.0002%以上であることが好ましい。REMの含有量は0.0004%以上であることがより好ましく、0.0006%以上であることがさらに好ましい。一方、REMの含有量が0.01%を超えると逆に介在物が粗大化し曲げ性や耐遅れ破壊特性が悪化する。したがって、REM含有量は0.01%以下であることが好ましい。REMの含有量は0.008%以下であることがより好ましく、0.006%以下であることがさらに好ましい。
本実施形態に係る鋼板は、上記成分組成を含有し、上記成分組成以外の残部はFe(鉄)および不可避的不純物を含む。上記残部は、Feおよび不可避的不純物であることが好ましい。
次に、本実施形態に係る鋼板の組織について説明する。本実施形態に係る鋼板の組織は、面積率で、マルテンサイトおよびベイナイトの合計が92%以上100%以下であり、残部がフェライトおよび残留オーステナイトのうちから選ばれる1種以上であり、かつ、介在物粒子間の最短距離が10μmより長い長軸長さが20μm以上80μm以下の介在物粒子、および、長軸長さが0.3μm以上である介在物粒子であって介在物粒子間の最短距離が10μm以下である2以上の介在物からなる介在物粒子群の長軸長さが20μm以上80μm以下の介在物粒子群の密度が10個/mm以下である。
マルテンサイトおよびベイナイトの合計の面積率:92%以上100%以下
残部:フェライトおよび残留オーステナイトのうちから選ばれる1種以上
TS≧1320MPaの高い強度と優れた耐遅れ破壊特性を両立するために、マルテンサイトおよびベイナイトの合計の面積率は92%以上である必要がある。マルテンサイトおよびベイナイトの合計の面積率は94%以上であることが好ましく、97%以上であることがより好ましい。マルテンサイトおよびベイナイトの合計の面積率が92%未満となると、フェライトおよび残留オーステナイトのいずれかが多くなり、耐遅れ破壊特性が悪化する。面積率で8%以下となるマルテンサイトおよびベイナイト以外の残部は、フェライトおよび残留オーステナイトのうちから選ばれる1種以上である。これらの組織以外は、微量の炭化物、硫化物、窒化物、酸化物である。マルテンサイトには、連続冷却中の自己焼き戻しも含めておよそ150℃以上で一定時間滞留することによる焼き戻しが生じていないマルテンサイトも含む。残部を含まず、マルテンサイトおよびベイナイトの合計の面積率が100%であってもよく、マルテンサイト100%(ベイナイト0%)、もしくはベイナイト100%(マルテンサイト0%)であってもよい。
さらに、介在物粒子間の最短距離が10μmより長く、長軸長さが20μm以上80μm以下の介在物粒子の密度と、長軸長さが0.3μm以上である介在物粒子であって介在物粒子間の最短距離が10μm以下である2以上の介在物からなる介在物粒子群の長軸長さが20μm以上80μm以下の介在物粒子群の密度との合計が10個/mm以下である必要がある。介在物粒子の長軸の長さが0.3μm以上であるものに着目する理由は、0.3μm未満の介在物は、それらが集合しても耐遅れ破壊特性を悪化させないからである。なお、介在物粒子の長軸の長さとは、圧延方向における介在物粒子の長さを意味する。
このように介在物および介在物群を定義することで、耐遅れ破壊特性に影響を与える介在物および介在物群が適切に表現され、この定義に基づく介在物群の単位面積(mm)当たりの個数を調整することで鋼板の耐遅れ破壊特性を改善できる。介在物の長手方向端部を中心点とした圧延方向に対して±10°の扇形状の領域にある介在物粒子が耐遅れ破壊に影響するので、最短距離の測定は、当該領域にある介在物粒子を対象とする(本実施形態で規定する介在物粒子または介在物粒子群の一部が上記領域に含まれる場合には対象とする)。粒子間の最短距離とは、各粒子の外周上の点同士の最短距離を意味する。
介在物群を構成する介在物粒子の形状、状態については特に限定しないが、本実施形態に係る鋼板の介在物粒子は、通常、圧延方向に伸展した介在物粒子、または、圧延方向に点列状に分布した介在物である。ここで、「圧延方向に点列状に分布した介在物粒子」とは、圧延方向に点列状に分布した2個以上の介在物粒子から構成されるものを意味する。耐遅れ破壊特性を向上させるには、MnSや酸化物、窒化物から構成される介在物群を板厚表層から中央の各領域において十分に低減させる必要がある。TS≧1320MPaの高強度鋼を使用した部品において当該介在物群の分布密度は10個/mm以下である必要がある。これにより、本実施形態に係る鋼板のせん断端面からの亀裂発生を抑制できる。
介在物および介在物群の長軸の長さが20μm未満である場合、当該介在物および介在物群は耐遅れ破壊特性にほとんど影響しないので着目しなくてよい。長軸の長さが80μm超の介在物および介在物群は、Sの含有量を0.0010%未満とすることでほとんど形成されないので着目しなくてよい。
板厚1/4位置から3/4位置までにおける局所P濃度:0.060質量%以下
板厚1/4位置から3/4位置までにおけるMn偏析度:1.50以下
本実施形態に係る鋼板の組織において、板厚1/4位置から3/4位置までにおける局所P濃度を0.060質量%以下とし、板厚1/4位置から3/4位置までにおけるMn偏析度を1.50以下とすることは、せん断端面そのものに生じる遅れ破壊を抑制するために必要である。なお、本実施形態において、局所P濃度とは、鋼板の圧延方向に平行な板厚断面におけるP濃化領域のP濃度を意味する。通常、P濃化領域は、圧延方向に伸びた分布をしており、溶鋼を鋳造する際に生じる凝固偏析に起因して板厚中心付近に多く見られる。このような、P濃化領域では、鋼の粒界強度が著しく低下しており、耐遅れ破壊特性が悪化した状態となっている。せん断端面そのものに生じる遅れ破壊は、せん断端面の板厚中心付近を起点として生じ、その破面は粒界破壊を示すことから、板厚中心におけるP濃化を軽減することはせん断端面そのものに生じる遅れ破壊を抑制するのに重要である。
P濃化領域のP濃度の測定は、EPMA(Electron Probe Micro Analyzer)を用いて、鋼板の圧延方向に平行な板厚断面の板厚1/4位置から3/4位置におけるPの濃度分布を測定する。Pの最大濃度は、EPMAの測定条件によって変化する。このため、本実施形態では、加速電圧15kV、照射電流2.5μA、積算時間0.02s/点、プローブ径を1μm、測定ピッチ1μmの一定条件で測定視野を10視野として評価する。
局所P濃度の定量化は、P濃度のばらつきを除外して評価する目的で以下のようにデータ処理する。EPMAを用いて測定されるP濃度分布において、板厚方向に1μm、圧延方向に50μmの領域の平均P濃度を計算し、板厚方向に平均P濃度のラインプロファイルを得る。このラインプロファイルにおけるPの最大濃度をその視野における局所P濃度とする。同様の処理を任意の10視野で行い局所P濃度の最大値を求める。ここで、P濃度を平均化する領域のサイズは以下のように決定する。P濃化域の厚みが数μmと薄いので、十分な分解能を得るために板厚方向の平均化範囲は1μmとする。圧延方向の平均化範囲はなるべく長い方が好ましいが、平均化範囲を50μmより長くすると、板厚方向のP濃度のばらつきの影響が顕在化する。このため、圧延方向の平均化範囲を50μmに設定した。圧延方向の平均化範囲を50μmにすることで、Pの濃化領域の変動の代表性を捉えることができる。
局所P濃度が大きいほど鋼板の脆性傾向が増加し、局所P濃度が0.060質量%を超えると、せん断端面そのものに生じる遅れ破壊が発生しやすくなる。したがって、局所P濃度は0.060質量%以下である必要がある。局所P濃度は0.040質量%以下であることが好ましく、0.030質量%以下であることがより好ましい。局所P濃度は小さい方が好ましいので、下限は規定しなくてよいが、実質的に、局所P濃度は0.010質量%以上であることが多い。
本実施形態においてMn偏析度とは、鋼板の圧延方向に並行な板厚断面における平均のMn濃度に対する局所Mn濃度の比を意味する。Pと同様にMnも板厚中心付近に偏析しやすい元素であり、Mnが偏析したMn濃化部はMnSを主体とした介在物の形成や素材強度の増大を通じてせん断端面そのものの遅れ破壊特性を悪化させる。
Mn濃度は、EPMAを用い、P濃度と同じ測定条件で測定する。なお、MnSなどの介在物が存在すると最大Mn偏析度が見かけ上大きくなるので、介在物が当たった場合にはその値は除いて評価する。EPMAで測定されるMn濃度分布において、板厚方向に1μm、圧延方向に50μmの領域の平均Mn濃度を計算し、板厚方向に平均Mn濃度のラインプロファイルを得る。そのラインプロファイルの平均値を平均のMn濃度とし、最大値を局所Mn濃度とし、平均のMn濃度に対する局所Mn濃度の比をMn偏析度とする。
このMn偏析度が1.50を超えると、せん断端面そのものに生じる遅れ破壊が発生しやすくなる。したがって、Mnの偏析度は1.50以下である必要がある。Mnの偏析度は1.30以下であることが好ましく、1.25以下であることがより好ましい。Mn偏析度の値は小さい方が好ましいので、Mn偏析度の下限は特に規定しなくてよいが、実質的にMn偏析度は1.00以上であることが多い。
引張強度(TS):1320MPa以上
耐遅れ破壊特性の悪化は、鋼板の引張強度が1320MPa以上となると著しく顕在化する。1320MPa以上でも、本実施形態に係る鋼板は、耐遅れ破壊特性が良好である点が特徴の一つである。このため、本実施形態に係る鋼板の引張強度は1320MPa以上である。
本実施形態に係る鋼板は、表面にめっき層を有してもよい。めっき層の種類は特に限定せず、Znめっき層、Zn以外の金属のめっき層のいずれであってもよい。めっき層はZn等の主となる成分以外の成分を含んでもよい。亜鉛めっき層は、例えば、溶融亜鉛めっき層、電気亜鉛めっき層である。溶融亜鉛めっき層は、合金化された合金化溶融亜鉛めっき層でもよい。
次いで、本実施形態に係る鋼板の製造方法について説明する。本実施形態に係る鋼板は、上記成分組成を有する溶鋼からスラブを連続鋳造するに際し、鋳造温度と凝固温度との差を10℃以上40℃以下とし、2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量が0.5L/kg以上2.5L/kg以下となるように冷却して、曲げ部および矯正部を600℃以上1100℃以下で通過させ、直接または一旦冷却した後、スラブの表面温度を1220℃以上として30分以上保持し、その後、熱間圧延することで熱延鋼板とし、該熱延鋼板を40%以上の冷間圧延率で冷間圧延して冷延鋼板とし、該冷延鋼板を800℃以上で240秒以上均熱処理し、680℃以上の温度から300℃以下の温度まで10℃/s以上の平均冷却速度で冷却し、必要に応じて再加熱を行い、その後、150〜260℃の温度域で20〜1500秒保持する連続焼鈍を行って製造される。
連続鋳造
溶鋼からスラブを鋳造するに際して、幅方向の濃度不均一の制御と生産性を両立するため、湾曲型、垂直型または垂直曲げ型の連続鋳造機を使用することが好ましい。本実施形態に係る鋼板では、所定の局所P濃度およびMn偏析度を得るために、PやMnの添加量を制限するだけでなく、鋳造温度や鋳造中の二次冷却における鋳型直下から凝固完了までの領域におけるスプレー冷却を制御することが重要である。
鋳造温度と凝固温度との差:10℃以上40℃以下
鋳造温度と凝固温度との差を小さくすることで凝固時に等軸晶の生成が促進され、P、Mn等の偏析を軽減できる。この効果を十分に得るために、鋳造温度と凝固温度との差は40℃以下である必要がある。鋳造温度と凝固温度との差は35℃以下であることが好ましく、30℃以下であることがより好ましい。一方、鋳造温度と凝固温度との差が10℃未満となると、鋳造時のパウダーやスラグ等の巻込みによる欠陥が増加する懸念がある。したがって、鋳造温度と凝固温度との差は10℃以上である必要がある。鋳造温度と凝固温度との差は15℃以上であることが好ましく、20℃以上であることがより好ましい。鋳造温度は、タンディッシュ内の溶鋼温度を実測することで求められる。凝固温度は、鋼の成分組成を実測して、下記(3)式で求められる。
凝固温度(℃)=1539−(70×[%C]+8×[%Si]+5×[%Mn]+30×[%P]+25×[%S]+5×[%Cu]+4×[%Ni]+1.5×[%Cr])・・・(3)
上記(3)式において[%C]、[%Si]、[%Mn]、[%P]、[%S]、[%Cu]、[%Ni]および[%Cr]は、鋼中の各元素の含有量(質量%)を意味する。
2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量:0.5L/kg以上2.5L/kg以下
凝固シェル表層部温度が900℃となるまでの比水量が2.5L/kgを超えると、鋳片のコーナー部が極端に過冷されて、周辺の高温部との熱膨張量の差に起因した引張応力が作用して横割れが増大する。したがって、凝固シェル表層部温度が900℃となるまでの比水量は2.5L/kg以下である必要がある。凝固シェル表層部温度が900℃となるまでの比水量は2.2L/kg以下であることが好ましく、1.8L/kg以下であることがより好ましい。一方、凝固シェル表層部温度が900℃となるまでの比水量が0.5L/kg未満になると、局所P濃度やMn偏析度が大きくなる。したがって、凝固シェル表層部温度が900℃となるまでの比水量は0.5L/kg以上である必要がある。凝固シェル表層部温度が900℃となるまでの比水量は0.8L/kg以上であることが好ましく、1.0L/kg以上であることがより好ましい。ここで、凝固シェル表層部とは、スラブのコーナー部から幅方向へ150mmまでの部分における、スラブ表面から2mm深さまでの領域を意味する。比水量は下記(4)式で求められる。
P=Q/(W×Vc)・・・(4)
上記(4)式において、Pは比水量(L/kg)であり、Qは冷却水量(L/min)であり、Wはスラブ単重(kg/m)であり、Vcは鋳造速度(m/min)である。
曲げ部および矯正部の通過温度:600℃以上1100℃以下
曲げ部および矯正部の通過温度を1100℃以下とすることで、鋳片のバルジングの抑制を通じて中心偏析が軽減し、せん断端面そのものに生じる遅れ破壊が抑制される。一方、曲げ部および矯正部の通過温度が1100℃を超えると上述した効果が低減する。さらに、NbやTiを含んだ析出物が粗大に析出し、介在物として悪影響する恐れもある。したがって、曲げ部および矯正部の通過温度は1100℃以下である必要がある。曲げ部および矯正部の通過温度は950℃以下であることが好ましく、900℃以下であることがより好ましい。一方、曲げ部および矯正部の通過温度が600℃未満となると、鋳片が硬質化し曲げの矯正装置の変形負荷が増大し、矯正部のロール寿命が短くなる。凝固末期のロール開度の狭小化による軽圧下が十分に作用せず、中心偏析が悪化する。したがって、曲げ部および矯正部の通過温度は600℃以上である必要がある。曲げ部および矯正部の通過温度は650℃以上であることが好ましく、700℃以上であることがより好ましい。曲げ部および矯正部の通過温度とは、曲げ部および矯正部を通過するスラブのスラブ幅中央部の表面温度である。
熱間圧延
スラブを熱間圧延する方法として、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などがある。実施形態に係る鋼板の製造方法では、これらの方法でスラブを熱間圧延する。
スラブ表面温度:1220℃以上
保持時間:30分以上
硫化物の固溶促進を図り、介在物群の大きさや介在物群の個数を低減させるために、熱間圧延では、スラブ表面温度を1220℃以上とし、保持時間を30分以上とする必要がある。これにより、上述した効果が得られるとともに、PやMnの偏析も軽減される。スラブ表面温度は1250℃以上であることが好ましく、1280℃以上であることがより好ましい。保持時間は35分以上であることが好ましく、40分以上であることがより好ましい。スラブ加熱時の平均加熱速度は、常法通り、5〜15℃/minとし、仕上げ圧延温度FTは840〜950℃とし、巻取温度CTは400〜700℃としてよい。
鋼板表面に生成した1次、2次スケールを除去するためのデスケーリングは適宜行ってよい。熱延コイルを冷間圧延する前に十分酸洗してスケールの残存を軽減することが好ましい。冷間圧延荷重低減の観点から必要に応じて熱延鋼板に焼鈍を施してもよい。以下に示す鋼板の製造方法における鋼板の温度はいずれも鋼板の表面温度である。
冷間圧延
冷間圧延率:40%以上
冷間圧延で、圧下率(冷間圧延率)を40%以上とすれば、その後の連続焼鈍における再結晶挙動、集合組織配向を安定化できる。一方、冷間圧延率が40%未満であると、焼鈍時のオーステナイト粒の一部が粗大となり、鋼板強度が低下する恐れがある。したがって、冷間圧延率は40%以上である必要がある。冷間圧延率は45%以上であることが好ましく、50以上であることがより好ましい。
連続焼鈍
焼鈍温度:800℃以上
均熱時間:240秒以上
冷間圧延後の鋼板には、CALで焼鈍と必要に応じて焼き戻し処理、調質圧延が施される。本実施形態において、所定のマルテンサイトまたはベイナイトを得るために、焼鈍温度は800℃以上であり、均熱時間は240秒以上である必要がある。焼鈍温度は820℃以上であることが好ましく、840℃以上であることがより好ましい。均熱時間は300秒以上であることが好ましく、360秒以上であることがより好ましい。一方、焼鈍温度が800℃未満または均熱時間が短いと十分なオーステナイトが生成せず、最終製品において所定のマルテンサイトまたはベイナイトが得られず、1320MPa以上の引張強度が得られない。焼鈍温度および均熱時間の上限は規定しなくてよいが、焼鈍温度や均熱時間が一定以上になると、オーステナイト粒径が粗大になり靱性が悪化する恐れがある。したがって、焼鈍温度は950℃以下であることが好ましく、920℃以下であることがより好ましい。均熱時間は900秒以下であることが好ましく、720秒以下であることがより好ましい。
680℃以上の温度から300℃以下の温度までの平均冷却速度:10℃/s以上
フェライトおよび残留オーステナイトを低減し、マルテンサイトまたはベイナイトの組織全体に対する合計の面積率を92%以上にするために、680℃以上の温度から300℃以下の温度までの平均冷却速度は10℃/s以上である必要がある。680℃以上の温度から300℃以下の温度までの平均冷却速度は20℃/s以上であることが好ましく、50℃/s以上であることがより好ましい。一方、冷却開始温度が680℃未満となるとフェライトが多く生成するとともに炭素がオーステナイトに濃化してMs点が低下し、これにより焼き戻し処理の施されないマルテンサイト(フレッシュマルテンサイト)が増加する。平均冷却速度が10℃/s未満であったり、または、冷却停止温度が300℃を超えると、上部ベイナイトおよび下部ベイナイトが生成し、残留オーステナイトやフレッシュマルテンサイトが増加する。マルテンサイト中のフレッシュマルテンサイトは、面積率でマルテンサイトを100としたときに5%まで許容できる。上述した連続焼鈍条件を採用すれば、フレッシュマルテンサイトの面積率は5%以下となる。平均冷却速度は、680℃以上の冷却開始温度と300℃以下の冷却停止温度との温度差を、冷却開始温度から冷却停止温度までの冷却に要した時間で除することで算出する。
150〜260℃の温度域での保持時間:20〜1500秒
マルテンサイトもしくはベイナイト内部に分布する炭化物は、焼き入れ後の低温域保持中に生成する炭化物であり、耐遅れ破壊特性とTS≧1320MPa確保するため、当該炭化物の生成を適正に制御する必要がある。すなわち、室温付近まで冷却した後に再加熱保持する温度もしくは急冷後の冷却停止温度を150℃以上260℃以下とし、150℃以上260℃以下の温度での保持時間を20秒以上1500秒以下とする必要がある。150℃以上260℃以下の温度での保持時間は60秒以上であることが好ましく、300秒以上であることがより好ましい。150℃以上260℃以下の温度での保持時間は1320秒以下であることが好ましく、1200秒以下であることがより好ましい。
一方、冷却停止温度が150℃未満であったり、保持時間が20秒未満であると、変態相内部の炭化物生成の制御が不十分となり、耐遅れ破壊特性が悪化する。冷却停止温度が260℃を超えると、粒内およびブロック粒界での炭化物が粗大化し、耐遅れ破壊特性が悪化する恐れがある。保持時間が1500秒を超えると、炭化物の生成および成長が飽和する上、製造コストの増加を招く。
このようにして製造された鋼板に、表面粗度の調整、板形状の平坦化などプレス成形性を安定化させる観点からスキンパス圧延を行ってもよい。この場合のスキンパス伸長率は0.1〜0.6%とするのが好ましい。この場合、スキンパスロールはダルロールであり、鋼板の粗さRaを0.3〜1.8μmに調整することが形状平坦化の観点から好ましい。
製造された鋼板に、めっき処理を施してもよい。めっき処理を施すことで表面にめっき層を有する鋼板が得られる。めっき処理の種類は、特に限定されず、溶融めっき、電気めっきのいずれでもよい。溶融めっき後に合金化を施すめっき処理を行ってもよい。めっき処理を行う場合において、上記スキンパス圧延を行う場合は、めっき処理後にスキンパス圧延を行うことが好ましい。
本実施形態に係る鋼板の製造は、連続焼鈍ラインの中で行ってもよく、或いは、オフラインで行ってもよい。
本実施形態に係る部材は、本実施形態に係る鋼板が成形加工および溶接の少なくとも一方がされてなるものである。本実施形態に係る部材の製造方法は、本実施形態に係る鋼板の製造方法によって製造された鋼板を成形加工および溶接の少なくとも一方を行う工程を有する。本実施形態に係る部材は、せん断端面そのものに生じる遅れ破壊特性に優れるので、部材としての構造面での信頼性が高い。成形加工は、プレス加工等の一般的な加工方法を制限なく用いることができる。溶接は、スポット溶接、アーク溶接等の一般的な溶接方法を制限なく用いることができる。本実施形態に係る部材は、例えば、自動車部品に好適に用いることができる。
[実施例1]
以下、本発明を、実施例に基づいて具体的に説明する。表1に示す成分組成の鋼を溶製後、表2に示すように、鋳造温度と凝固温度の差を10℃以上40℃以下とし、2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量を0.5L/kg以上2.5L/kg以下とし、曲げ部および矯正部の通過温度(T)を600〜1100℃以下としてスラブを鋳造した。なお、表1の[%Ti]×[%Nb]の項目における「E−数字」は10の−数字乗を意味する。例えば、E−07は、10−7を意味する。
Figure 2020129403
このスラブを、表2に示すように、スラブ加熱温度(SRT)を1220℃以上とし、保持時間を30分以上とし、仕上げ圧延温度を840〜950℃とし、巻取温度を400〜700℃として巻き取った。得られた熱延鋼板は、酸洗後、40%以上の圧下率にて冷間圧延し、冷延鋼板とした。スラブ加熱温度として示す温度は、スラブの表面温度である。凝固シェル表層部温度は、スラブのコーナー部から幅方向に100mmの位置のスラブ表面温度である。
得られた冷延鋼板を、連続焼鈍工程において、表2に示すように、800℃超えの焼鈍温度で240秒以上均熱処理し、680℃以上の温度から300℃以下の温度まで10℃/s以上の平均冷却速度で冷却し、その後、150〜260℃の温度域で20〜1500秒保持する処理(再加熱するものと、冷却停止温度を150〜260℃として保持したものがある)した。その後、0.1%の調質圧延を行い、鋼板を製造した。
Figure 2020129403
得られた鋼板について、組織を測定し、さらに引張試験、耐遅れ破壊特性評価試験を行った。組織の測定は、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後ナイタールで腐食させ、鋼板表面から板厚方向に1/4厚み位置においてSEMで2000倍の倍率にて4視野観察し、撮影したSEM写真を画像解析して測定した。ここで、マルテンサイトおよびベイナイトは、SEM写真における灰色を呈する領域として示される。一方、フェライトは、SEM写真における黒色のコントラストを呈する領域として示される。なお、マルテンサイトやベイナイトの内部には微量の炭化物、窒化物、硫化物、酸化物を含むが、これらを除外することは困難なので、これらを含めた領域の面積率をその面積率とした。残留オーステナイトの測定は、鋼板の表層200μmをシュウ酸で化学研磨し、板面を対象に、X線回折強度法により求めた。Mo−Kα線によって測定した(200)α、(211)α、(220)α、(200)γ、(220)γ、(311)γの回折面ピークの積分強度から残留オーステナイトの体積率を求め、これを残留オーステナイトの面積率とした。
介在物群は、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、腐食させずに鋼板表面から板厚方向に1/5厚み位置から、板厚中心を挟み、裏側表面側の1/5厚み位置までの領域において、SEMを用いて介在物分布密度の平均的な1.2mmの領域を30視野連続で撮影して計測した。この板厚範囲を測定したのは、板厚の表面には、本発明で規定する介在物群は殆ど存在しないからである。板厚表面は、MnやSの偏析が少ないことと、スラブ加熱時に、温度が高い最表面ではこれら介在物の固溶が十分に起こり、これら介在物の析出が生じにくくなるからである。
SEMを用いて、上述した領域を500倍の倍率で撮影し、当該写真を適宜拡大して介在物粒子や介在物群の長軸長さや介在物粒子間距離を測定した。長軸長さや粒子間の最短距離の判定測定が困難な場合は、5000倍の倍率で撮影したSEM写真を用いて確認した。圧延方向に伸展した介在物等を対象とするので、粒子間距離(最短距離)の測定方向は、圧延方向ないし圧延方向±10°の範囲にある場合に限定した。介在物群が、2個以上の介在物粒子から構成される場合、介在物群の長軸の長さは、介在物群の圧延方向両端に位置する介在物粒子同士の圧延方向外端部間の圧延方向の長さとした。介在物群が1個の介在物粒子で構成される場合、介在物群の長軸の長さは、この介在物粒子の圧延方向における長さとした。
局所P濃度およびMn偏析度の測定は、EPMAを用いて前述したとおりの方法で測定した。引張試験は、コイル幅1/4位置において圧延直角方向が長手方向となるようにJIS5号引張試験片を切り出し、引張試験(JIS Z2241に準拠)を実施してYP、TS、Elをそれぞれ測定した。
鋼板の耐遅れ破壊特性の評価は、せん断端面そのものに生じる遅れ破壊を評価した。せん断端面そのものに生じる遅れ破壊評価は、得られた鋼板のコイル幅1/4位置より圧延直角方向に30mm、圧延方向に110mmの短冊試験片を採取して実施した。110mm長さの端面の切出し加工はせん断加工とした。
図1は、端面のせん断加工を説明する模式図である。図1(a)は、正面図であり、図1(b)は側面図である。せん断加工は、図1(a)に示すシャー角を0度とし、図1(b)に示すクリアランスを板厚の15%として行った。評価対象は、図1の板押さえの無い自由端側とした。この理由は、経験上、自由端側の方がせん断端面そのものの遅れ破壊が発生しやすいからである。
せん断端面には高い残留応力が存在しており、酸浸漬等で水素を添加すると、曲げ等で外力を付与しなくてもせん断端面内に微細な遅れ破壊亀裂が生じる。本実施例では、サンプルのpHを3に調整した塩酸に100時間浸漬させた。
遅れ破壊亀裂の頻度や深さが外観から確認しづらかったので、短冊試験片の圧延直角断面を切出し、断面を腐食させずに研磨して光学顕微鏡で観察した。この断面観察で、せん断端面表面から深さ方向に30μm以上進展している亀裂を遅れ破壊亀裂と判定した。30μm未満の微細な亀裂は自動車用部品としての性能に悪影響を及ぼさないので、当該亀裂は遅れ破壊亀裂から除外した。遅れ破壊亀裂が生じる頻度を高精度に評価するために、1つの鋼種に対し短冊試験片を5枚用意し、1つの短冊試験片について10視野観察して遅れ破壊の発生頻度を算出した。観察用試験片は、110mm長さの短冊試験片より間隔を10mmずつあけて切出した。この遅れ破壊の発生頻度が50%以上のものを遅れ破壊特性が悪い「×」とし、50%未満のものを遅れ破壊特性が優れる「○」とし、25%以下のものを遅れ破壊特性が特に優れる「◎」として「遅れ破壊特性」の列に記載した。
Figure 2020129403
表3に示すように、成分組成、熱延条件、焼鈍条件が適正化された鋼では、1320MPa以上のTSが得られるとともに優れたせん断端面の遅れ破壊特性が得られた。
[実施例2]
実施例1の表2の製造条件No.1(本発明例)に対して、亜鉛めっき処理を行った亜鉛めっき鋼板をプレス成形して、本発明例の部材を製造した。さらに、実施例1の表2の製造条件No.1(本発明例)に対して亜鉛めっき処理を行った亜鉛めっき鋼板と、実施例1の表2の製造条件No.2(本発明例)に対して亜鉛めっき処理を行った亜鉛めっき鋼板とをスポット溶接により接合して本発明例の部材を製造した。これら本発明例の部材は、上述したせん断端面そのものに生じる遅れ破壊評価を行い遅れ破壊特性に優れる「〇」であるので、これらの部材は、自動車部品等に好適に用いれることがわかる。
同様に、実施例1の表2の製造条件No.1(本発明例)による鋼板をプレス成形して、本発明例の部材を製造した。さらに、実施例1の表2の製造条件No.1(本発明例)による鋼板と、実施例1の表2の製造条件No.2(本発明例)による鋼板とをスポット溶接により接合して本発明例の部材を製造した。これら本発明例の部材は、上述したせん断端面そのものに生じる遅れ破壊評価を行い遅れ破壊特性に優れる「〇」であるので、これらの部材は、自動車部品等に好適に用いれることがわかる。

Claims (10)

  1. 質量%で、
    C:0.13%以上0.40%以下、
    Si:1.5%以下、
    Mn:1.7%超え3.5%以下、
    P:0.010%以下、
    S:0.0020%以下、
    sol.Al:0.20%以下、
    N:0.0055%未満、
    O:0.0025%以下、
    Nb:0.002%以上0.035%以下、
    Ti:0.002%以上0.10%以下、
    B:0.0002%以上0.0035%以下を含有するとともに、下記(1)、(2)式を満足し、残部がFeおよび不可避的不純物からなる成分組成と、
    マルテンサイトおよびベイナイトの合計の面積率が92%以上100%以下であり、残部がフェライトおよび残留オーステナイトのうちから選ばれる1種以上であり、
    介在物粒子間の最短距離が10μmより長い長軸長さが20μm以上80μm以下の介在物粒子の密度と、長軸長さが0.3μm以上である介在物粒子であって介在物粒子間の最短距離が10μm以下である2以上の介在物からなる介在物粒子群の長軸長さが20μm以上80μm以下の介在物粒子群の密度との合計が10個/mm以下である組織と、を有し、
    鋼板表面から板厚方向に1/4位置から3/4位置までにおける局所P濃度が0.060質量%以下であり、前記位置範囲におけるMn偏析度が1.50以下であり、引張強度が1320MPa以上である、鋼板。
    [%Ti]+[%Nb]>0.007・・・(1)
    [%Ti]×[%Nb]≦7.5×10−6・・・(2)
    上記(1)、(2)式の[%Nb]、[%Ti]は鋼中のNb、Tiの含有量(%)である。
  2. 前記成分組成は、さらに質量%で、
    Cu:0.01%以上1%以下、
    Ni:0.01%以上1%以下のうちから選ばれる1種以上を含有する、請求項1に記載の鋼板。
  3. 前記成分組成は、さらに質量%で、
    Cr:0.01%以上1.0%以下、
    Mo:0.01%以上0.3%未満、
    V:0.003%以上0.45%以下、
    Zr:0.005%以上0.2%以下、
    W:0.005%以上0.2%以下のうちから選ばれる1種以上を含有する、請求項1または請求項2に記載の鋼板。
  4. 前記成分組成は、さらに質量%で、
    Sb:0.002%以上0.1%以下、
    Sn:0.002%以上0.1%以下のうちから選ばれる1種以上を含有する、請求項1から請求項3の何れか一項に記載の鋼板。
  5. 前記成分組成は、さらに質量%で、
    Ca:0.0002%以上0.0050%以下、
    Mg:0.0002%以上0.01%以下、
    REM:0.0002%以上0.01%以下のうちから選ばれる1種以上を含有する、請求項1から請求項4の何れか一項に記載の鋼板。
  6. 表面に亜鉛めっき層を有する、請求項1から請求項5の何れか一項に記載の鋼板。
  7. 請求項1から請求項5の何れか一項に記載の成分組成を有する溶鋼からスラブを連続鋳造するに際し、鋳造温度と凝固温度との差を10℃以上40℃以下とし、2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量が0.5L/kg以上2.5L/kg以下となるように冷却して、曲げ部および矯正部を600℃以上1100℃以下で通過させ、その後、スラブの表面温度を1220℃以上として30分以上保持し、その後、熱間圧延することで熱延鋼板とし、該熱延鋼板を40%以上の冷間圧延率で冷間圧延して冷延鋼板とし、該冷延鋼板を800℃以上で240秒以上均熱処理し、680℃以上の温度から300℃以下の温度までを10℃/s以上の平均冷却速度で冷却し、必要に応じて再加熱を行い、その後、150〜260℃の温度域で20〜1500秒保持する連続焼鈍を行う、鋼板の製造方法。
  8. 前記連続焼鈍の後、めっき処理を行う、請求項7に記載の鋼板の製造方法。
  9. 請求項1から請求項6のいずれか一項に記載の鋼板が、成形加工および溶接の少なくとも一方がされてなる、部材。
  10. 請求項7または請求項8に記載の鋼板の製造方法によって製造された鋼板を、成形加工および溶接の少なくとも一方を行う工程を有する、部材の製造方法。
JP2020506831A 2018-12-21 2019-10-25 鋼板、部材およびこれらの製造方法 Active JP6801818B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018238964 2018-12-21
JP2018238964 2018-12-21
PCT/JP2019/041818 WO2020129403A1 (ja) 2018-12-21 2019-10-25 鋼板、部材およびこれらの製造方法

Publications (2)

Publication Number Publication Date
JP6801818B2 JP6801818B2 (ja) 2020-12-16
JPWO2020129403A1 true JPWO2020129403A1 (ja) 2021-02-15

Family

ID=71101122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020506831A Active JP6801818B2 (ja) 2018-12-21 2019-10-25 鋼板、部材およびこれらの製造方法

Country Status (6)

Country Link
EP (1) EP3875616B1 (ja)
JP (1) JP6801818B2 (ja)
KR (1) KR102547460B1 (ja)
CN (1) CN113227415B (ja)
MX (1) MX2021007325A (ja)
WO (1) WO2020129403A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102221452B1 (ko) * 2019-05-03 2021-03-02 주식회사 포스코 전단가공성이 우수한 초고강도 강판 및 그 제조방법
EP4361303A1 (en) * 2021-07-09 2024-05-01 JFE Steel Corporation High-strength steel plate, high-strength plated steel plate, method for manufacturing same, and member
EP4350016A1 (en) * 2021-07-28 2024-04-10 JFE Steel Corporation Steel sheet, member, method for producing said steel sheet, and method for producing said member
MX2024002702A (es) * 2021-10-13 2024-03-20 Nippon Steel Corp Lamina de acero laminada en frio, metodo para fabricar la misma y union soldada.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008513A (ja) * 2012-06-28 2014-01-20 Jfe Steel Corp 連続鋳造スラブの製造方法および高強度冷延鋼板の製造方法
WO2016163469A1 (ja) * 2015-04-08 2016-10-13 新日鐵住金株式会社 熱処理鋼板部材およびその製造方法
WO2017138504A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2017168958A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2018062380A1 (ja) * 2016-09-28 2018-04-05 Jfeスチール株式会社 鋼板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514276B1 (ja) 1971-03-26 1976-02-10
JPS5428705U (ja) 1977-07-30 1979-02-24
JPS5431019A (en) 1977-08-12 1979-03-07 Kawasaki Steel Co Steel material having good resistance to hydrogenninduceddcracking
JPS5824401U (ja) 1981-08-11 1983-02-16 日産自動車株式会社 内燃機関の吸排気弁駆動装置
JPS6112261U (ja) 1984-06-27 1986-01-24 日本電気株式会社 半導体レ−ザ装置
JP3514276B2 (ja) 1995-10-19 2004-03-31 Jfeスチール株式会社 耐遅れ破壊特性に優れた超高強度鋼板及びその製造方法
JP4427010B2 (ja) 2004-07-05 2010-03-03 新日本製鐵株式会社 耐遅れ破壊特性に優れた高強度調質鋼およびその製造方法
JP5428705B2 (ja) 2009-09-25 2014-02-26 新日鐵住金株式会社 高靭性鋼板
JP5824401B2 (ja) 2012-03-30 2015-11-25 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびその製造方法
KR101909356B1 (ko) * 2013-12-11 2018-10-17 아르셀러미탈 지연 파괴 저항을 갖는 마텐자이트 강 및 제조 방법
CN109321821B (zh) 2014-01-14 2021-02-02 株式会社神户制钢所 高强度钢板及其制造方法
JP2016153524A (ja) 2015-02-13 2016-08-25 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
EP3276022B1 (en) * 2015-03-25 2019-09-04 JFE Steel Corporation Cold-rolled steel sheet and manufacturing method therefor
JP6005234B1 (ja) * 2015-09-29 2016-10-12 日新製鋼株式会社 疲労特性に優れた高強度ステンレス鋼板およびその製造方法
US10941471B2 (en) * 2015-12-28 2021-03-09 Jfe Steel Corporation High-strength steel sheet, high-strength galvanized steel sheet, method for manufacturing high-strength steel sheet, and method for manufacturing high-strength galvanized steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008513A (ja) * 2012-06-28 2014-01-20 Jfe Steel Corp 連続鋳造スラブの製造方法および高強度冷延鋼板の製造方法
WO2016163469A1 (ja) * 2015-04-08 2016-10-13 新日鐵住金株式会社 熱処理鋼板部材およびその製造方法
WO2017138504A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度鋼板及びその製造方法
WO2017168958A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2018062380A1 (ja) * 2016-09-28 2018-04-05 Jfeスチール株式会社 鋼板およびその製造方法

Also Published As

Publication number Publication date
WO2020129403A1 (ja) 2020-06-25
CN113227415B (zh) 2023-05-05
EP3875616A1 (en) 2021-09-08
MX2021007325A (es) 2021-07-07
KR102547460B1 (ko) 2023-06-26
CN113227415A (zh) 2021-08-06
KR20210092278A (ko) 2021-07-23
JP6801818B2 (ja) 2020-12-16
US20220090247A1 (en) 2022-03-24
EP3875616B1 (en) 2023-12-06
EP3875616A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6801819B2 (ja) 鋼板、部材およびこれらの製造方法
CN109642295B (zh) 钢板及其制造方法
US10745775B2 (en) Galvannealed steel sheet and method for producing the same
JP6354921B1 (ja) 鋼板およびその製造方法
JP6801818B2 (ja) 鋼板、部材およびこれらの製造方法
JP6296214B1 (ja) 薄鋼板およびその製造方法
CN113166865B (zh) 成形性、韧性及焊接性优异的高强度钢板及其制造方法
JP2017048412A (ja) 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
WO2020203158A1 (ja) 鋼板
JP2011026699A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2017169939A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
CN115715332B (zh) 镀锌钢板、构件和它们的制造方法
KR20210107820A (ko) 고강도 강판 및 그 제조 방법
US10822672B2 (en) Steel sheet, hot-dip galvanized steel sheet, galvanized steel sheet, and manufacturing methods therefor
JP7028379B1 (ja) 鋼板、部材及びそれらの製造方法
US12071682B2 (en) Steel sheet, member, and methods for producing them
WO2023162190A1 (ja) 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法
CN116897217A (zh) 钢板、构件和它们的制造方法
WO2022270100A1 (ja) 高強度鋼板およびその製造方法、ならびに、部材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200214

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250