JPWO2020095597A1 - エリア構築方法 - Google Patents

エリア構築方法 Download PDF

Info

Publication number
JPWO2020095597A1
JPWO2020095597A1 JP2020556699A JP2020556699A JPWO2020095597A1 JP WO2020095597 A1 JPWO2020095597 A1 JP WO2020095597A1 JP 2020556699 A JP2020556699 A JP 2020556699A JP 2020556699 A JP2020556699 A JP 2020556699A JP WO2020095597 A1 JPWO2020095597 A1 JP WO2020095597A1
Authority
JP
Japan
Prior art keywords
area
building
base station
construction method
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020556699A
Other languages
English (en)
Other versions
JP7500431B2 (ja
Inventor
筒井 多圭志
多圭志 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SoftBank Corp
Original Assignee
SoftBank Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SoftBank Corp filed Critical SoftBank Corp
Publication of JPWO2020095597A1 publication Critical patent/JPWO2020095597A1/ja
Application granted granted Critical
Publication of JP7500431B2 publication Critical patent/JP7500431B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

ミリ波を使用した5G移動無線通信ネットワークサービス(以下5Gサービス)を提供するエリア構築方法であって、ビームフォーミング技術を用いて基地局から発射された電波の、損失が大きい回折現象を利用せずに、前記電波の見通し伝搬と、前記電波の路面での粗面散乱とを利用して、且つ、コの字型UEリレーまたはCPEを用いて無線通信エリアを構築するエリア構築方法を提供する。

Description

本発明は、ミリ波帯の5G(5th Generation)を用いた回折現象を基本的に使用しないことを特徴とした、エリア構築方法とサービス方法に関する。
5Gにおいて、28GHz帯などのミリ波の周波数帯を使用した通信が検討されている(例えば、特許文献1参照)。
電柱は数十mおきで設置されているためストリートセルを構築するのに都合が良かったが、昨今は電柱地中化により今後の展開には課題がある。ミリ波では直進性が高く、回折による伝搬が非常に乏しいため、従来の基地局と比べるとセル半径が小さく、従来と同様なエリアを構築するためには高密度に、例えば20mおきに置局する必要があり莫大な費用がかかってしまう。
現在高ゲインステアリングアンテナの開発が各国で進んでいるが、移動端末に搭載された場合、固定設置で利用している場合に比べでゲインが安定せず無線リンクの確立が難しい。一方、移動端末においては効果的な利用が難しい高ゲインステアリングアンテナを、FWA(Fixed Wireless Access)装置としてのコの字型UE(User Equipment)リレーないしCPE(Customer Premises Equipment)に利用することで、路面あるいは石積み壁面等の粗い壁面(以下、粗壁面)からの粗面散乱波および反射波等を利用し無線リンクを確立することができ、上記コの字型UEリレーないしCPEを設置したフロアをエリア化し、例えば1フロア10Gbps程度のキャパシティを持ったエリアを構築することが可能となる。
[先行技術文献]
[特許文献]
[特許文献1]特開2018−033121号公報
解決しようとする課題
ミリ波は従来セルラー通信に用いてきた電波の波長(30cmや12cm)と比べて、波長が短く(1cm以下)、回折による損失が大きいため、従来のセルラー基地局と同様のマクロ置局を用いて置局設計を行うと、見通しのエリアのみしか使えず、ビル影等がエリアにできず、5Gをサービスするには20mおきにストリートセルを置局しないといけないが、そのため莫大なCAPEX(Capital expenditure)、OPEX(Operating expenditure)が必要になる。本発明の実施形態において、例えばGOB(Grid Of Beams)方式のコストのかからない基地局装置を最小限設置し、見通し伝搬を積極的に利用し、路面ならびに粗壁面の粗面散乱を利用しエリア化することでCAPEX、OPEXが最小限に抑えられる。
ミリ波を用いた通信では、波長が短いため建物の縁等における回折損失が大きく見通し外にサービスを浸透させることが困難であった。このためミリ波を用いた5G通信が使えるエリアが限定されてしまう。この問題の対策として上述のように、路面ならびに粗壁面の粗面散乱と、コの字型UEリレーないしCPE等を利用してエリア化する手法を用いる。一般に路面等からの散乱波は端末から見て電波の到来方向が定まらず、容易には効果的な指向性アンテナでは設置できないが、固定的に設置されたコの字型UEリレーないしCPE側が高ゲインステアラブルアンテナを有することで、路面ならびに粗壁面で粗面散乱された電波を受信することができ、通信を可能とし得る。
市街地のビル街において基地局を設置する際、基地局のアンテナ指向方向を道路延伸方向、または水平に近い向きに向けた場合、Sub6GHz帯の電波を使用する場合は回折現象によりビル影の見通し外にも伝搬し、地面の高さで端末を利用する際においても、他の基地局から発射された電波と干渉を起こしてしまうことがあるが、28GHzの電波を使用する場合は建物角での回折による減衰が大きいため回折波による影響は小さく、さらに、端末が10dBi程度の高利得アンテナを有する事によりセル間の電波干渉はほとんど問題とならない。一方、Sub6GHzは、周波数が低いために携帯アンテナに十分な利得を備えたステアラブルアンテナは搭載できない。
ミリ波は、伝搬損失が大きく、屋内の窓際をエリアにするだけでも極めて困難で、直接波、あるいは路面散乱波等のセミLOS波で、窓際で、受かるようにするだけで精一杯である。オフィス等では金属製のベネチアンブラインドにより、UEリレーを窓際から離れた屋内に設置しても電波が届かない。そのため、窓ガラスの外側にUEリレーを設置する事を考えたが、その場合、リレー装置への給電方法が問題となる(窓の外のベランダ等にコンセント等が設置されてない建物が多いため)。一方、マンション等の屋内においては、ラック、戸棚等の上で、直接波を当てるような置局をした場合はUEリレーないしCPEにリンクを立てることは可能である。
また、窓ガラスが熱線対策等を施した特殊なガラスでない場合は、その追加浸透損失は10dB程度であるため、屋内窓際UEリレーを設置することもありうるが、窓にブラインドがある場合、ブラインドにより、更に追加浸透損失が発生し、基地局との間に安定的な無線リンクが確立できなくなる事が考えうる。このため、基地局側と接続するためのアンテナ(所謂ドナーアンテナ)は窓とブラインドの間、屋内側カバーのためのアンテナ(所謂サービスアンテナ)はブラインドより屋内側に設置する等の工夫が必要となる。しかし、このようなアンテナの設置はアンテナケーブルの配線工事等が煩雑となる問題が発生する。
これらの問題を解決するため、UEリレーをコの字型にし、金属製のブラインドをコの字形状の凹面に挟むように設置し、煩雑なアンテナケーブル配線工事無しで、ドナーアンテナをブラインドと窓の間、サービスアンテナをブラインドの屋内側に設置するという形態を容易に実現できる。
携帯端末に高ゲインアンテナを使用した場合、建物の目の前に存在する反射物(例:車、人)等の移動により基地局からのビーム到来方向が頻繁に変化し、無線リンクが極めて不安定になる。このため高ゲインアンテナをつけると寧ろ無線リンクが切れやすくなることがあり得る。このようなビーム到来方向の変化に対応する手段として、高ゲインステアラブルアンテナを用いたビームステアリング手法が知られている。しかしながら、いわゆるスマホ等の手持ち型の携帯端末等にはそれら端末に要求される小型性・移動性等の条件から、ステアラブルビームに対応した高ゲインアンテナを具備しても効果をあげるのはむしろ困難となる。
コの字型UEリレーないしCPE等の設置型端末の場合は、高ゲインステアラブルアンテナを具備する事が比較的容易であり、これらコの字型UEリレーないしCPEを、建物近辺の人、車、樹木等の障害物を避けるために3〜4階以上の建物の窓際に設置すると、基地局との間が見通し環境で無い場合においても、アンテナのピーク方向をステアリング機能により、例えば見通し先の粗面散乱する路面あるいは粗壁面等に向ける事により、効率的に安定的な無線リンクを確立しうる。
従来の発想を転換し、グランドフロアカバレッジを実現するための路面店のコの字型UEリレーないしCPE端末に注力するのではなく、上述のように、目の前の移動物・障害物に左右されないビルの中層階以上にコの字型UEリレーないしCPE端末の設置に注力する事により、直接波、反射波、或いは路面あるいは粗壁面等の粗面散乱波を用いたビームを利用し、ドナー基地局に対する安定的な無線リンク、ひいては安定的なサービスエリアを確立することが可能となる。
一般的開示
本発明の実施態様によれば、ミリ波を使用した5G移動無線通信ネットワークサービス(以下5Gサービス)を提供するエリア構築方法が提供される。エリア構築方法は、ミリ波において著しく損失が大きい回折現象を利用せず、ビームフォーミング技術を用いて基地局から発射された電波の、見通し伝搬と、前記電波の路面及び石積み等の粗い壁面での粗面散乱を利用して、無線通信エリアを構築してよい。上記エリア構築方法は、道路方向にアラインしたビームの見通し伝搬と、路面および建物壁面による正反射および粗面散乱とを経路として伝搬した電波によって屋外のエリアを構築し、上記見通し伝搬、上記正反射および上記粗面散乱により伝搬した電波が建物内部方向に反射または散乱した電波によって屋内のエリアを構築してよい。
上記エリア構築方法は、上記基地局からGoB(Grid of Beam)方式でビーム状の電波を道路延伸方向に発射し、上記電波の見通し伝搬、建物壁面および路面による上記電波の正反射、および粗面散乱を介して、道路沿いの建物の内部方向に反射または散乱した電波を、建物の窓際に設置された、ビームステアリングアンテナを搭載したコの字型UEリレーないしCPEにて受信し、当該UEリレーないしCPEがWiFiアクセスポイント、5G基地局、またはLTE(Long Term Evolution)基地局として動作することによって、上記屋内のエリアを構築してよく、上記コの字型UEリレーないしCPEは、窓側にミリ波5G、ならびにSub6GHzのUEを備え、反対側の内側に、WiFiアンテナ、或いは4Gまたは5Gのフェムト基地局機能を備え、コの字型形状は、金属製のベネチアンブラインドの影響を避ける事を目的とする。
上記エリア構築方法は、ミリ波を使用した5Gサービスを高層建築物の中層階および高層階内部に提供するために、上記高層建築物から予め定められた距離以上離れた位置から上記高層建築物に対してミリ波の電波を直接波を照射することによって、コの字型UEリレーないしCPEを用いて建物内部に電波を浸透させることを特徴とする、エリア構築方法であってよい。
上記エリア構築方法は、ミリ波が路面あるいは粗壁面にて粗面散乱する性質を利用して、通り沿いの店舗の開口している窓から建物内に電波を入射させることで、基地局からの直接波、または屋内設置のコの字型UEリレーないしCPEを用いたインドアカバレッジを実現すべく、5G仕様による基地局のビームフォーミング機能を用いて、ミリ波帯の電波のビームを路面あるいは粗壁面に向けて照射する、エリア構築方法であってよい。
上記路面はアスファルト舗装されており、上記路面のアスファルト舗装を構成するアスファルト混合物に含まれる粗骨材の大きさが最大で20mmのサイズであり、上記エリア構築方法は、上記基地局の出力増幅器に使用するCMOSの使用限界を超えない周波数の範囲で、28GHz帯よりも高い周波数の帯域幅の電波を、意図してアスファルト路面に当てて粗面散乱させてUEやCPEへのドナーを構成しエリア構築する、エリア構築方法であってよい。
上記エリア構築方法は、上記基地局が、66GHz帯、76GHz帯、80GHz帯、90GHz帯の少なくともいずれかの帯域幅の電波を出力する、エリア構築方法であってよい。
上記エリア構築方法は、ストリート伝搬を使用せず、LOS(Line of Sight)を確保すべく高い位置に設置された基地局からGoB方式でビームを道路延伸方向に向けて発射することにより、LOSまたはsemiLOSでエリアを構築する、エリア構築方法であってよい。上記基地局は建物に設置され、十字路に位置する建物に設置された上記基地局は、道路延伸方向に2セクタまたは4セクタのセクタ構成を有し、三叉路に位置する建物に設置された上記基地局は、3セクタのセクタ構成を有する、通常の繰り返し3セクター置局とは全く異なるスキームのエリア構築方法であってよい。
上記エリア構築方法は、エリア化の対象となるエリアとして、高い建物が多い都心部と、その周辺、または木が植えられていないようなスーパールーラルエリアを対象とし、サブアーバンはエリア化の対象としないことを特徴とする、エリア構築方法であってよい。
上記エリア構築方法は、上記基地局から高層建築物に向けて電波を発射する場合に、衛星宇宙局および地球局に対する干渉を発生させないように、上記高層建築物の形状に合わせて、上記基地局から発射されるビームの範囲を選択する、エリア構築方法であってよい。
上記エリア構築方法は、基地局の共通チャネルビームパターンを形成する場合において、基地局を設置する際に撮影した基地局からの見晴らし写真に基づいて、ビル壁面、路面、ビル屋上面に関わらず、空以外のすべての見通し箇所に対してビームを設定するビーム設計方式により、高利得ビームステアリングアンテナを備えたUEリレーまたはCPE、もしくは受信専用のさらに高利得なビームステアリングアンテナを備えたコの字型UEリレーないしCPEに対して、路面あるいは粗壁面の粗面散乱波や正反射波が加わって、最大の場所率を確保する置局設計方式を利用する、エリア構築方法であってよい。
上記エリア構築方法は、3GPPのRelease17等で将来規定されると予測される、ダウンリンクオンリーリンクを用いて、さらに高利得(30dBi等)の受信専用ビームステアリングアンテナを持ったコの字型UEリレーないしCPEを用いて、遠方の路面による粗面散乱やビルの反射波等(遠いがためにワイドなエリアをピンポイントで狙うことができる)を利用して、安定的なリンクバジェットを確保する、エリア構築方法であってよい。
上記UEリレーを用いたエリア構築方法は、上記UEリレーの屋内サービス側に出力する電波の周波数に、屋外では衛星通信との干渉の問題のため広範囲で使用することが難しいと言われている3.6GHz〜4.2GHzのLTEまたは5Gのシステムを用いることで、衛星通信との共存を可能とする、エリア構築方法であってよい。
上記エリア構築方法は、エリア化の対象となる建物と道路との間に街路樹が植えられている場合は、上記建物の2階から4階はエリア化の対象外とし、その他のフロアにのみ路面あるいは粗壁面での粗面散乱した電波、または見通し伝搬した電波が入射することで、上記建物に設置されたCPEまたはUEリレーと基地局との通信を確保する、エリア構築方法であってよい。
上記エリア構築方法は、上記UEリレーが、ドナー側とサービス側で同じ周波数を使用する場合、ドナー側とサービス側の電波干渉を避けるべく、HetNet(Heterogenious Network)機能を動作させる、エリア構築方法であってよい。
上記エリア構築方法は、都心部では、人通りの多いメイン通りを縦縦横横、格子状にカバーし、エリア化の対象となる通りに面した建物以外は原則エリア外とする、断捨離を実行したエリア構築方法であってよい。
上記エリア構築方法は、上記UEリレーが、住居用または小規模オフィス用のマンションでベランダなどの屋外スペースがある場合、手すりに引っ掛ける形状のフラワーポット型UEリレーの、コの字型になっている外側に面した部分にビームステアリングアンテナを持つ、エリア構築方法であってよい。
上記エリア構築方法は、住居用または小規模オフィス用のマンションでコの字型UEリレーないしCPEを置く場合は、基地局から発射された電波がマンションの窓から入射し、直接あるいは部屋の天井において1回ランバート反射することを利用して、上記コの字型UEリレーないしCPEの受信電波強度が最も強くなる場所にお客様が自ら設置してもらうことを特徴とする、エリア構築方法であってよい。
上記エリア構築方法は、道路延伸方向に向けて電波を発射する場合もダウンチルトをかけずに、基地局足元ばかりをエリア化する設計にせず、建物中層階、および高層階に直接入射するビームも含めて置局設計する、エリア構築方法であってよい。
上記エリア構築方法は、上記基地局が、基本として2セクタで構成されるが、建物の中層階、高層階を対象としてビームを発射する場合は上記2セクタに、中層階または高層階を目標とする1セクタを追加した3セクタ構成とし、建物に対して周囲2、3方向から照射することで建物内をエリア化するが、建物が立っていない方向にはビームを向けず、連続的なエリアを構築しないことを特徴とする、エリア構築方法であってよい。
上記エリア構築方法は、28GHz帯はサブアーバンや細い裏路地などの見通し外をエリアの対象としないことを特徴とするため、従来の6GHz以下の周波数帯における場所率の考え方を改める必要があり、対象エリアのみを考慮して場所率を計算することを特徴とする、エリア構築方法であってよい。
上記エリア構築方法は、基地局から発射された電波が、ビルの壁面で1回または2回反射して見通し外のエリアに到達し、地平線より上方向にビームを向けたコの字型UEリレーないしCPEにて受信することで、地上を走行する自動車や歩行者の影響を軽減し、通信の品質を向上させることを特徴とする、エリア構築方法であってよい。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係るシステム10における複数の基地局100の設置環境の一例を概略的に示す。 UE500におけるステアリングアンテナを用いたビーム選択機能の一例を概略的に示す。 これまでに考案されているミリ波ネットワーク700の一例を概略的に示す。 本実施形態に係るシステム10によって実現されるミリ波ネットワークの一例を概略的に示す。 粗面による電波の散乱を用いて屋内を通信可能なエリアとする方法の一例を概略的に示す。 高層建築物の屋内を通信可能とするための方法の一例を概略的に示す。 基地局100により建物50の屋内に通信エリアを形成する方法の一例を概略的に示す。 基地局100によって建物50に向けて発射されたビーム102の例を示す。 基地局100が高層建築物に電波を照射する方法の一例を概略的に示す 基地局100から発射されるビームパターン106の一例を概略的に示す。 路面にて電波が散乱し、建物低層階に到達し、サービスを提供する方法の一例を概略的に示す。 路面にて電波が散乱し、建物中層階に到達し、サービスを提供する方法の一例を概略的に示す。 中継装置200の一例を概略的に示す。 マンション向けの中継装置300の一例を概略的に示す。 高ゲインビームステアリングアンテナを有する中継装置200が、基地局100によって発射された電波を受信する受信環境の一例を概略的に示す。 粗面散乱のリンクバジェットの一例を概略的に示す。 基地局ービル窓間がLOSのリンクバジェットの一例を概略的に示す。 基地局100の機能構成の一例を概略的に示す。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本実施形態に係るシステム10における複数の基地局100の設置環境の一例を概略的に示す。本実施形態に係るシステム10は、無線通信エリアを構築するための各種エリア構築方法を実行し得る。
基地局100は、例えば、ビルの屋上やビルの壁面等、建物の外部に設置される。基地局100が設置されるのは建物に限らず、任意の場所に設置されてよい。例えば、基地局100は、電柱等に設置される。
図1に示す例において、基地局100は、ビームフォーミング技術を用いて、道路延伸方向に沿って、ミリ波のビーム102を発射することにより通信エリアを形成する。基地局100が発射するビーム102の周波数帯は、ミリ波であればどのような周波数帯であってもよい。
基地局100は、例えば、28GHz帯の電波のビーム102を発射する。また、基地局100は、例えば、60GHzから80GHz帯の電波のビーム102を発射する。基地局100は、66GHz帯の電波のビーム102を発射してよい。基地局100は、76GHz帯の電波のビーム102を発射してよい。基地局100は、80GHz帯の電波のビーム102を発射してよい。
図1では、複数の基地局100を用いることによって主要な道路を通信可能なエリアとし、例えば東京都心部のような人が密集する繁華街をカバーする例を示す。本実施形態に係るシステム10は、都心部では、人通りの多いメイン通りを縦縦横横、格子状にカバーし、エリア化の対象となる通りに面した建物以外は原則エリア外とする、断捨離を実行したエリア構築方法を採用し得る。また、本実施形態に係るシステム10は、エリア化の対象となるエリアとして、高い建物が多い都心部と、その周辺と、木が植えられていないようなスーパールーラルエリアとを対象とし、サブアーバンはエリア化の対象としないエリア構築方法を採用し得る。
図2は、UE500の干渉除去機能の一例を概略的に示す。UE500は、複数のアンテナを有する。UE500が有するアンテナの数は、任意の数であってよく、例えば4本である。UE500は、複数のアンテナのそれぞれで受信した電波の位相をプリセットされたオフセットでフェーズシフターで適切なアングルに設定し、希望する電波の強度が最も強くなるプリセットを選択する。この機能は携帯端末のために開発されたものだが、それをUEリレーないしCPEにおいて使用すると、定点設置で、電波反射面、散乱面から十分距離を取れるため寧ろ有効であり、携帯端末に装備する場合は、却って安定的な利得は得られない。これにより、例えば、図1に示すような環境における交差点のように、複数の方向から基地局100による電波が到来するような場所においても、電波がそれぞれ干渉することなく、希望する電波のみを高い品質で受信することが可能となる。
図3は、これまでに考案されているミリ波ネットワーク700の一例を概略的に示す。図4は、本実施形態に係るシステム10によって実現されるミリ波ネットワークの一例を概略的に示す。図3および図4により、これまでに考案されているミリ波ネットワーク700と、本実施形態に係るシステム10によって実現されるミリ波ネットワークとの相違を説明する。
これまでに考案されているミリ波ネットワーク700は、図3に示すように、建物20や、平均的なビルの高さを超える建物から、下に向かって電波710を発射することで広い範囲を通信可能にしようとするものであった。ミリ波ネットワーク700のように、複数の基地局が真上から電波710を発射する場合、セル間干渉が多く発生してしまう。
それに対して、本実施形態に係るシステム10によって実現されるミリ波ネットワークは、図4に示すように、平均的なビルの高さと同じ、またはそれより低い高さに設置した基地局100から水平に近い角度でミリ波の電波を発射することによって、主に主要な道路沿いのみを通信可能なエリアとするものである。本実施形態に係るシステム10は、道路沿いのみをエリア化することで、通信需要の無いエリアに広がるエネルギーを、比較的通信需要の高い道路沿いに集約することで、長い距離に亘って通信可能とするものである。
これまでに考案されているミリ波ネットワーク700では、図3に示すようなエリアをカバーするために複数の基地局が設置されることになり、セル間干渉も多く発生することになるが、本実施形態に係るシステム10によれば、図4に示すようなエリアを一基地局100でカバーすることになり、干渉は発生しない。
図5は、粗面による電波の散乱を用いて屋内を通信可能なエリアとする方法の一例を概略的に示す。基地局100から発射されたミリ波のビーム102は、例えば地面のアスファルトの凹凸によって散乱し、散乱電波104が、道路沿いの建物30の窓32から、建物30の屋内に到達する。
これまで通信に用いられてきた6GHz以下の周波数では、仮に道路の延伸方向にビームを照射した場合道路や、粗壁面等の粗面によって散乱するエネルギーはわずかで、反射による成分が主であり、電波の入射角と反射角が同じになる方向以外へは電波は反射されないため、屋内へはほとんど電波が到達しなかった。しかし、ミリ波では、粗面によって散乱するエネルギーが大きく、道路および粗壁面等の全体で散乱したエネルギーが全て積分された状態で屋内に到達することになる。なお、反射の成分を否定するものではなく、散乱によるエネルギーと加算されて受信される事になる。
基地局100は、道路方向にアラインしたビーム102の見通し伝搬と、路面および建物壁面等による正反射および粗面散乱とを主な経路として伝搬した電波によって屋外のエリアを構築してよい。また、基地局100は、道路方向にアラインしたビーム102の見通し伝搬と、路面および建物壁面等による正反射および粗面散乱による伝搬した電波が建物内部方向に反射または散乱した電波によって屋内のエリアを構築してよい。
基地局100がミリ波のビーム102を発射する対象となる道路は、任意の道路であってよい。当該道路は、アスファルト舗装されていてよい。アスファルト舗装を構成するアスファルト混合物に含まれる粗骨材の大きさは、例えば、上層部は13mmであったり、中下層部は20mmであったりする。当該道路は、アスファルト合材として、ポーラスアスファルト混合材を採用した道路であってよい。当該道路は、フィラーまたは細骨材が劣化によって剥がれ落ちたものであり得る。道路のトップのフィラーは5mm前後であり、それ以下の波長の電波は路面でよく粗面散乱すると考えられる。
基地局100は、出力増幅器に使用するCMOS(Complementary Metal Oxide Semiconductor)の使用限界を超えない周波数の範囲で、28GHz帯よりも高い周波数の帯域幅の電波を、意図して路面あるいは粗壁面に当て粗面散乱させてUEやCPEへのドナーを構成しエリア構築する。
図6は、高層建築物の屋内を通信可能とするための方法の一例を概略的に示す。ここでは、川沿いに立っているマンション40内を通信可能とするために、川の反対側の岸に基地局100を設置した場合を例示している。基地局100は、マンション40に向けてミリ波のビーム102を発射する。ビーム102は、マンション40の窓からマンション40の内部に浸透し得る。これにより、屋内に直接通信サービスを提供することができる。なお、川の反対側の岸ではなく、川の手前側の岸に基地局100を設置してもよい。
図7は、基地局100により建物50の屋内に通信エリアを形成する方法の一例を概略的に示す。基地局100は、建物50の遠方に設置される。基地局100は、建物50から予め定められた距離以上離れた位置に設置されてよい。基地局100は、建物50から予め定められた距離以上離れた任意の場所に設置される。任意の場所に設置された基地局100によって発射されたビーム102は、建物50の窓52を介して、建物50の内部に到達する。建物の内部に到達したビーム102は、天井や壁等で反射、散乱して、UE500によって受信される。
このように、基地局100は、ミリ波を使用した5Gサービスを高層建築物の中層階および高層階内部に提供するために、高層建築物から予め定められた距離以上離れた位置から高層建築物に対してミリ波の電波を直接照射することによって、建物内部に電波を浸透させてよい。
図8は、基地局100によって建物50に向けて発射されたビーム102の例を示す。基地局100は、建物50に対してどのような位置に配置された場合であっても、ビーム102が建物50から外れないように、ビーム102を制御してよい。
図9は、基地局100が高層建築物に電波を照射する方法の一例を概略的に示す。基地局100は、例えば近接する周波数を使用する衛星宇宙局または地球局への干渉を避けるため、ビームを形成する際、電波を照射する建物50の形に合わせて使用するビーム、使用しないビームを決定してよい。図9に示す例では、基地局100は、衛星宇宙局90の方向へのビーム108を、使用しないビームとして決定してよい。
図10は、基地局100から発射されるビームパターン106の一例を概略的に示す。基地局100は特に難しい制御は行わず、まずは予め決められたビームグリッドに従って、ビームをスイープする。これによって、基地局100の前面に位置する建物や高層建築物、および道路に対し電波を照射することが可能となる。
図11は、路面にて電波が散乱し、建物低層階に到達し、サービスを提供する方法の一例を概略的に示す。基地局100から発射されたビーム102は、例えば道路のアスファルトにて散乱し、建物の低層階に到達することによって、道路沿いに隣接する喫茶店等の内部に高速通信サービスを提供する。
図12は、路面にて電波が散乱し、建物中層階に到達し、サービスを提供する方法の一例を概略的に示す。基地局100から発射されたビーム102は、例えば道路のアスファルトにて散乱し、広い範囲で散乱した電波が積分し、建物中層階の窓から屋内に浸透することによって屋内に高速通信サービスを提供する。このとき、建物の窓際に設置した通信端末および中継装置等は、散乱した電波を最も効率よく受信できるように、路面方向にアンテナの指向方向を向けてよい。
図13は、中継装置200の一例を概略的に示す。本実施形態に係る中継装置200は、基地局100と、屋内のUE500との通信を中継する。中継装置200は、UEリレーであってよい。また、中継装置200は、CPEであってよい。
中継装置200は、基地局100側と接続するためのアンテナであるドナーアンテナ222と、屋内側カバーのためのアンテナであるサービスアンテナ224とを備える。また、中継装置200は、ドナーアンテナ222が受信した電波によって伝搬された信号をサービスアンテナ224に伝搬させる中継処理部226を備える。
中継装置200は、ドナーアンテナ222、サービスアンテナ224、および中継処理部226を内部に有する筐体210を備える。ドナーアンテナ222とサービスアンテナ224とは、電波伝搬の障害となる電波障害物が挿脱可能な空洞212を隔てて配置される。図13では、電波障害物として、ベネチアンブラインド64を例示している。筐体210は、図13に示すように、コの字形状を有する。筐体210は、断面形状がコの字形状を有してよい。空洞212は、筐体210のコの字形状の凹部に位置する。
図13に示す例において、中継装置200は、ガラス戸62の内側の屋内に配置される。中継装置200は、ドナーアンテナ222が、ガラス戸62とベネチアンブラインド64との間に位置し、サービスアンテナ224が、ベネチアンブラインド64よりも屋内側に位置するように、配置されてよい。
ガラス戸62に到達するビーム102は、例えば、基地局100が、建物に向けて発射したビーム102である。また、ガラス戸62に到達するビーム102は、例えば、基地局100が、建物に面する道路に向けて発射して、道路の路面で粗面散乱したビーム102である。また、ガラス戸62に到達するビーム102は、例えば、基地局100が発射して、路面および建物壁面等で正反射したビーム102である。ガラス戸62には、基地局100によって発射されたビーム102が、見通し伝搬、道路および建物壁面等による正反射、並びに粗面散乱等によって、到達する。
ミリ波のビーム102はガラス戸62を通過するので、ベネチアンブラインド64が設置されていなければ屋内に浸透する。しかし、ベネチアンブラインド64が設置されている場合、ベネチアンブラインド64によってビーム102が損失する。特に、ベネチアンブラインド64がスチール製であり、かつ、完全に閉じている状態の場合、非常に多くの損失が発生し、屋内のUE500は、基地局100との安定的な無線リンクを張れなくなってしまう。
それに対して、本実施形態に係る中継装置200によれば、ガラス戸62とベネチアンブラインド64との間に配置されたドナーアンテナ222によってビーム102を受信し、ビーム102によって伝搬された信号を、サービスアンテナ224の電波230によって屋内に発射するので、このようなベネチアンブラインド64による損失を無くすことができる。
ドナーアンテナ222は、ビームステアリングアンテナであってよい。ドナーアンテナ222は、ビーム102の到来方向に、アンテナの指向方向を向けてよい。
サービスアンテナ224は、ミリ波とは異なる周波数帯の電波を出力してよい。サービスアンテナ224は、WiFiアクセスポイントのアンテナであってよい。また、サービスアンテナ224は、5G基地局のアンテナであってよい。またサービスアンテナ224は、LTE基地局のアンテナであってよい。サービスアンテナ224は、屋外では衛星通信との干渉の問題のため広範囲で使用することが難しいとされている3.6GHz帯〜4.2GHz帯の電波を出力するLTE基地局のアンテナまたは5G基地局のアンテナであってよい。
ドナーアンテナ222と、サービスアンテナ224とは、同じ周波数を使用してもよい。この場合、中継装置200は、ドナー側とサービス側の電波干渉を避けるべく、HetNet(Heterogenious Network)機能を動作させてよい。
図14は、マンション向けの中継装置300の一例を概略的に示す。マンションは、本棚66の上等、基地局100が見える位置に中継装置300を置いて対応する。
図15は、高ゲインビームステアリングアンテナを有する中継装置200が、基地局100によって発射された電波を受信する受信環境の一例を概略的に示す。図15に示す例において、建物50に設置された中継装置200は、道路74の側に基地局100が設置されていない場合、道路72の側の基地局100によって発射されたビーム102が、路面76において粗面散乱した電波を受信することによって、基地局100によって送信された信号を、建物50の屋内の建物50に中継してよい。
図16は、粗面散乱のリンクバジェットの一例を概略的に示す。ここでは、基地局100が出力した102を、喫茶店80内のスマートホン(スマホ)が受信する場合のリンクバジェットの一例を示す。
基地局100が出力した電波は、照射される道路がビーム102に占める割合、散乱したビーム102が喫茶店80に飛び込む率、窓の開口率、ガラスの透過損失、天井の散乱効率、および散乱したビームがスマホに飛び込む率等の要因により、減衰してスマホに受信されることになる。しかし、図16で示すように、理論的に、実用に耐えうる受信電力を実現することができる。
図17は、LOSのリンクバジェットの一例を概略的に示す。ここでは、基地局100が出力した102を、オフィス82内のスマホが受信する場合のリンクバジェットの一例を示す。ここでは、オフィスの窓が6m×2mの寸法を有し、熱線ガラスが使用されている場合を例に挙げて説明する。
基地局100が出力した電波は、ビーム102のうちオフィス82の窓に入り込む面積、熱線ガラスの透過損失、天井の散乱効率、および散乱したビームがスマホに飛び込む率等の要因により、減衰してスマホに受信されることになる。しかし、図17で示すように、理論的に、実用に耐えうる受信電力を実現することができる。
図18は、基地局100の機能構成の一例を概略的に示す。基地局100は、アンテナ110およびアンテナ制御部120を備える。
アンテナ110は、指定された方向にミリ波の電波のビーム102を発射する。アンテナ110は、ミリ波の任意の周波数帯のビーム102を発射してよい。アンテナ110は、例えば、28GHz帯のビーム102を発射する。また、アンテナ110は、例えば、60GHz〜80GHz帯のビーム102を発射する。アンテナ110は、60GHz帯のビーム102を発射してよい。アンテナ110は、76GHz帯のビーム102を発射してよい。アンテナ110は80GHz帯のビーム102を発射してよい。アンテナ110は、EBB(Eigenvalue Based Beamforming)方式ではなく、GoB(Grid of Beam)方式でビーム102を形成してよい。
アンテナ制御部120は、アンテナ110を制御する。アンテナ制御部120は、例えば、アンテナ110によるビーム102のピークが道路の路面に位置するようにアンテナ110を制御する。アンテナ制御部120は、アンテナ110によるビーム102のピークがアスファルト舗装された道路の路面に位置するようにアンテナ110を制御してよい。
アンテナ制御部120は、道路沿いの建物内に通信エリアを形成すべく、アンテナ110によるビーム102のピークが当該道路の路面に位置するようにアンテナ110を制御してよい。アンテナ制御部120は、当該道路の路面によって粗面散乱した電波によって、通信エリアを形成可能であってよい。
本実施形態に係るシステム10は、複数の基地局100と、基地局100によるビームのピークが位置する道路の路面に指向性を有するアンテナを含む複数の中継装置とを備えてよい。本実施形態に係るシステム10が備える中継装置は、中継装置200であってもよい。また、本実施形態に係るシステム10が備える中継装置は、中継装置300であってもよい。
本実施形態に係るシステム10において、道路延伸方向に向けて電波を発射する場合、ダウンチルトをかけずに、基地局100の足元ばかりをエリア化する設計にせず、建物中層階および高層階に直接入射するビームも含める置局設計を採用してよい。
アンテナ制御部120は、アンテナ110に、建物に向けてビーム102を発射させてよい。アンテナ制御部120は、アンテナ110に、建物に向けて直接ビーム102を発射させてよい。アンテナ制御部120は、ビーム102が建物から外れないようにアンテナ110を制御してよい。
基地局100は、基地局100を起点として、衛星宇宙局または地球局の方向を取得する不図示の方向取得部をさらに備えてもよい。方向取得部は、衛星宇宙局の位置情報と、地球局の位置情報を予め格納していてよく、これらの位置情報と、基地局100の位置情報とから、方向を取得してよい。アンテナ制御部120は、アンテナ110によるビーム102を、方向取得部が取得した方向に向けさせないようにアンテナ110を制御してよい。アンテナ制御部120は、例えば、複数のビーム102のうち、方向取得部が取得した方向に合致するビーム102を使用しないビーム102として選択し、方向取得部が取得した方向と合致しないビーム102を使用するビーム102として選択する。
基地局100は、CMOSを含む出力増幅器を有してよく、当該CMOSの使用限界を超えない出力の範囲で、28GHz帯よりも高い周波数の帯域幅の電波を出力してよい。
基地局100は、LOS(Line of Sight)を確保すべく、なるべく高い位置に設置されてよい。例えば、基地局100は、予め定められた高さよりも高い位置に設置される。そして、基地局100は、予め定められた高さよりも高い位置から、GoB方式でビーム102を道路延伸方向に向けて発射することにより、LOSまたはsemiLOSで通信エリアを構築してよい。
基地局100は、建物に設置されてよい。十字路に位置する建物に設置される場合、基地局100は、道路延伸方向に2セクタまたは4セクタのセクタ構成を有してよい。三叉路に位置する建物に設置される場合、基地局100は、3セクタのセクタ構成を有してよい。基地局100は、通常の繰り返し3セクター置局とは全く異なるスキームで、エリアを構築する。
基地局100からは、複数のビームを発射せずに、単一のビームにエネルギーを集中させてよい。これにより、リンクバジェットを確保することが可能になり、建物の内部まで通信サービスを届けることを可能とすることができる。
基地局100のフロントエンド回路構成として、複数ビームを発射するためのデジタルプレコーディング回路をアナログフロントエンドの手前に持たず、EBB方式によるビームフォーミングではなく、GoB方式のビームフォーミングを採用して、デジタルプレコーディング回路を排除してよい。これにより、ローコスト化できる。
基地局100の無線機として、MIMOに対応するが、Massive MIMOに対応せず、そのことによりデジタルプレコーディング回路を省略し、モデムから直接PA(Power Amplifier)、LNA(Low Noise Amplifier)、フェーズシフターに接続した無線機を使用してよい。
基地局100を、CPRIを採用せずにIP基地局として動作させてよく、さらにマルチビームではなくシングルビームを送信することで通信速度を抑え、それにより、10GBASEのSFP(Small Form Factor Plugable)1つで動作可能とし得る。
基地局100として、既存の無線基地局が有する構成から、デジタルプレコーディング回路を取り除くことによりCPRIインターフェースおよび複数のアンテナストリームを処理するBBU(Base Band Unit)を必要とせず、IP基地局として10GのIPインターフェースのみで運用する基地局を用いてよい。
複数の基地局100は、建物に直接電波を照射する際、一の基地局100あたり1ビームを発射してよい。基地局100は、垂直偏波および水平偏波の組み合わせ、または、+45度と−45度の偏波の組み合わせによる1ビームを発射してよい。
本実施形態に係るシステム10を提供するにあたり、エリア化の対象となる建物と道路との間に街路樹が植えられている場合、ミリ波が街路樹によって大きく損失してしまうことから、建物の2階から4階をエリア化の対象外とし、その他のフロアにのみ路面で路面散乱した電波、または見通し伝搬した電波が入射することで、建物内に設置されたコの字型UEリレーないしCPEまたはと基地局100との通信を確保するようにしてよい。
本実施形態に係るシステム10は、基地局100の共通チャネルビームパターンを形成する場合において、基地局100を設置する際に撮影した基地局100からの見晴らし写真に基づいて、ビームが宙を打たない限り、ビル壁面、路面、ビル屋上面に関わらず、空以外のすべての見通し箇所に対してビームを設定するビーム設計方式により、高利得ビームステアリングアンテナを備えたコの字型UEリレーないしCPE、もしくは受信専用のさらに高利得なビームステアリングアンテナを備えたコの字型UEリレーないしCPEに対して、路面あるいは粗壁面における粗面散乱波および正反射波が加わって、最大の場所率を確保する置局設計方式を利用するエリア構築方法を実行してよい。
本実施形態に係るシステム10は、3GPPのRelease17等で将来規定されると予測される、DL(Down Link)オンリーリンクを用いて、さらに高利得(30dBi等)の受信専用ビームステアリングアンテナを持ったコの字型UEリレーないしCPEを用いて、遠方の路面あるいは粗壁面の粗面散乱や反射波等(遠いがためにワイドなエリアをピンポイントで狙うことができる)を利用して、安定的なリンクバジェットを確保するエリア構築方法を実行してよい。
本実施形態に係るシステム10において、住居用または小規模オフィス用のマンションでUEリレーを置く場合、基地局100から発射された電波がマンションの窓から入射し、部屋の天井において1回ランバート反射することを利用して、UEリレーの受信電波強度が最も強くなる場所に、UE500の利用者に自ら設置してもらうような形態をとってよい。
本実施形態に係るシステム10における基地局100は、基本として2セクタで構成されるが、建物の中層階、高層階を対象としてビームを発射する場合は上記2セクタに、中層階または高層階を目標とする1セクタを追加した3セクタ構成とし、建物に対して周囲2、3方向から照射することで建物内をエリア化するが、建物が立っていない方向にはビームを向けず、連続的なエリアを構築しないエリア構築方法を採用してよい。建物が稠密なエリアは、大通りで2または4セクタ構成を取ってよく、細い道は諦めてエリアとしなくてもよい。
本実施形態に係るシステム10において、28GHz帯はサブアーバンや細い裏路地などの見通し外をエリアの対象としないことを特徴とするため、従来の6GHz以下の周波数帯における場所率の考え方を改める必要があり、対象エリアのみを考慮して場所率を計算してよい。
本実施形態に係るシステム10を提供する通信事業者等の提供主体は、本実施形態に係るシステム10で使用するコの字型UEリレーないしCPEについて、中層階あるいは高層階へのその設置に際して事前に衛星写真地図などのツールで基地局100からの見通しがあるかどうかを確認してから営業に行くようにしてよい。または、営業に行った先で、ビルの4面それぞれに上記CPEまたはUEリレーを設置して品質が良かったところに設置するようにしてもよい。
本実施形態に係るシステム10において、基地局100から発射された電波が、ビルの粗壁面で1回または2回反射して見通し外のエリアに到達し、地平線より上方向にビームを向けたUEリレーにて受信するようにしてよく、これにより、地上を走行する自動車や歩行者の影響を軽減し、通信の品質を向上させることができる。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 システム、20 建物、30 建物、32 窓、40 マンション、50 建物、52 窓、62 ガラス戸、64 ベネチアンブラインド、66 本棚、72 道路、74 道路、76 路面、80 喫茶店、82 オフィス、90 衛星宇宙局、100 基地局、102 ビーム、104 散乱電波、106 ビームパターン、108 ビーム、110 アンテナ、120 アンテナ制御部、200 中継装置、210 筐体、212 空洞、222 ドナーアンテナ、224 サービスアンテナ、226 中継処理部、230 電波、300 中継装置、500 UE、700 ミリ波ネットワーク、710 電波

Claims (23)

  1. ミリ波を使用した5G移動無線通信ネットワークサービス(以下5Gサービス)を提供するエリア構築方法であって、ビームフォーミング技術を用いて基地局から発射された電波の、損失が大きい回折現象を利用せずに、前記電波の見通し伝搬と、前記電波の路面および粗壁面での粗面散乱とを利用して、無線通信エリアを構築するエリア構築方法。
  2. 道路方向にアラインしたビームの見通し伝搬と、路面および壁面による正反射と、および路面および粗壁面による粗面散乱とを経路として伝搬した電波によって屋外のエリアを構築し、前記見通し伝搬、前記正反射および前記粗面散乱により伝搬した電波が建物内部方向に反射または散乱した電波によって屋内のエリアを構築する、請求項1に記載のエリア構築方法。
  3. 前記エリア構築方法は、前記基地局からGoB(Grid of Beam)方式でビーム状の電波を道路延伸方向に発射し、前記電波の見通し伝搬、建物壁面および路面による前記電波の正反射、および前記電波の路面および粗壁面での粗面散乱を介して、道路沿いの建物の内部方向に反射または散乱した電波を、建物の窓際に設置された、ビームステアリングアンテナを搭載したコの字型UE(User Equipment)リレーないしCPE(Customer Premises Equipment)にて受信し、当該UEリレーまたは当該CPEがWiFiアクセスポイント、5G基地局、またはLTE(Long Term Evolution)基地局として動作することによって、前記屋内のエリアを構築し、
    前記コの字型UEリレーないしCPEは、窓側にミリ波5G、ならびにSub6GHzのUEを備え、反対側の内側に、WiFiアンテナ、或いは4Gまたは5Gのフェムト部分を備え、コの字型形状は、金属製のベネチアンブラインドの影響を避けるためのもので、ベネチアンブラインドがそこに降りられるように開けた空間である、請求項2に記載のエリア構築方法。
  4. ミリ波を使用した5Gサービスを高層建築物の中層階および高層階内部に提供するために、前記高層建築物に対してミリ波の電波の直接波を照射することによって、コの字型UEリレーないしCPEを使用して建物内部に電波を浸透させることを特徴とする、請求項1から3のいずれか一項に記載のエリア構築方法。
  5. ミリ波が路面および粗壁面にて粗面散乱する性質を利用して、通り沿いの店舗の開口している窓から建物内に電波を入射させることで、直接、またはコの字型UEリレーないしCPEを用いて屋内カバレッジを実現すべく、5G仕様による基地局のビームフォーミング機能を用いて、ミリ波の電波のビームを路面に向けて照射する、請求項1から4のいずれか一項に記載のエリア構築方法。
  6. 前記路面はアスファルト舗装されており、
    前記基地局の出力増幅器に使用するCMOSの使用限界を超えない周波数の範囲で、粗面散乱の効率の良い28GHz帯よりも高い周波数の帯域幅の電波を、意図して路面に当てて粗面散乱させてコの字型UEリレーないしCPEへのドナーを構成するだけでなく、携帯端末に直接リンクを確立しうる、請求項1から5のいずれか一項に記載のエリア構築方法。
  7. 前記基地局が、66GHz帯、76GHz帯、80GHz帯、あるいは90GHz帯の少なくともいずれかの帯域幅の電波を出力する、請求項6に記載のエリア構築方法。
  8. ストリート伝搬を使用せず、LOS(Line of Sight)を確保すべく、ビルトップに設置された基地局からGoB方式でビームを道路延伸方向に向けて発射することにより、LOSまたはsemiLOSでエリアを構築する、請求項1から7のいずれか一項に記載のエリア構築方法。
  9. 前記基地局は建物に設置され、
    十字路に位置する建物に設置された前記基地局は、道路延伸方向に2セクタまたは4セクタのセクタ構成を有し、三叉路に位置する建物に設置された前記基地局は、3セクタのセクタ構成を有する、通常の繰り返し3セクター置局とは全く異なるスキームの請求項1から8のいずれか一項に記載のエリア構築方法。
  10. エリア化の対象となるエリアとして、高い建物が多い都心部と、その周辺、または木が植えられていないようなスーパールーラルエリアを対象とし、サブアーバンはエリア化の対象としないことを特徴とする、請求項1から9のいずれか一項に記載のエリア構築方法。
  11. 前記基地局から高層建築物に向けて電波を発射する場合に、衛星宇宙局および地球局に対する干渉を発生させないように、前記高層建築物の形状に合わせて、前記基地局から発射されるビームの範囲を選択する、請求項1から10のいずれか一項に記載のエリア構築方法。
  12. 基地局の共通チャネルビームパターンを形成する場合において、基地局を設置する際に撮影した基地局からの見晴らし写真に基づいて、ビームが宙を打たない限り、ビル壁面、路面、ビル屋上面に関わらず、空以外のすべての見通し箇所に対してビームを設定するビーム設計方式により、高利得ビームステアリングアンテナを備えたコの字型UEリレーないしCPE、もしくは受信専用のさらに高利得なビームステアリングアンテナを備えたコの字型UEリレーないしCPEに対して、路面の粗面散乱と路面や壁面等の正反射波が加わって、最大の場所率を確保する置局設計方式を利用する、請求項1から11のいずれか一項に記載のエリア構築方法。
  13. 3GPPのRelease17等で将来規定されると予測される、DL(Down Link)オンリーリンクを用いて、さらに高利得(30dBi等)の受信専用ビームステアリングアンテナを持ったコの字型UEリレーないしCPEを用いて、遠方の路面や粗壁面による粗面散乱や反射波等(遠いがためにワイドなエリアをピンポイントで狙うことができる)を利用して、安定的なリンクバジェットを確保する、請求項1から12のいずれか一項に記載のエリア構築方法。
  14. 前記UEリレーの屋内サービス側に出力する電波の周波数に、屋外では衛星通信との干渉の問題のため広範囲で使用することが難しいと言われている3.6GHz〜4.2GHzのLTEまたは5Gのシステムを用いることで、衛星通信との共存を可能とする、請求項3に記載のエリア構築方法。
  15. エリア化の対象となる建物と道路との間に街路樹が植えられている場合は、前記建物の2階から4階はエリア化の対象外とし、その他のフロアにのみ路面または粗壁面での粗面散乱波、または見通し伝搬した電波が入射することで、前記建物に設置されたコの字型UEリレーないしCPEと基地局との通信を確保する、請求項1から14のいずれか一項に記載のエリア構築方法。
  16. 前記UEリレーは、ドナー側とサービス側で同じ周波数を使用する場合、ドナー側とサービス側の電波干渉を避けるべく、HetNet(Heterogenious Network)機能を動作させる、請求項3に記載のエリア構築方法。
  17. 都心部では、人通りの多いメイン通りを縦縦横横、格子状にカバーし、エリア化の対象となる通りに面した建物以外は原則エリア外とする、断捨離を実行した請求項1から16のいずれか一項に記載のエリア構築方法。
  18. 前記UEリレーは、住居用または小規模オフィス用のマンションでベランダなどの屋外スペースがある場合、手すりに引っ掛ける形状のフラワーポット型UEリレーの、コの字型になっているハンガーの外側にビームステアリングアンテナを持つ、請求項3に記載のエリア構築方法。
  19. 住居用または小規模オフィス用のマンションでコの字型UEリレーないしCPEを置く場合は、基地局から発射された電波がマンションの窓から入射し、直接あるいは部屋の天井において1回ランバート反射することを利用して、上記UEリレーないしCPEの受信電波強度が最も強くなる場所にお客様が自ら設置してもらうことを特徴とする、請求項3に記載のエリア構築方法。
  20. 道路延伸方向に向けて電波を発射する場合もダウンチルトをかけずに、基地局足元ばかりをエリア化する設計にせず、建物中層階、および高層階に直接入射するビームも含めて置局設計する、請求項1から19のいずれか一項に記載のエリア構築方法。
  21. 前記基地局は、基本として2セクタで構成されるが、建物の中層階、高層階を対象としてビームを発射する場合は上記2セクタに、中層階または高層階を目標とする1セクタを追加した3セクタ構成とし、建物に対して周囲2、3方向から照射することで建物内をエリア化するが、建物が立っていない方向にはビームを向けず、連続的なエリアを構築しないことを特徴とする、請求項1から20のいずれか一項に記載のエリア構築方法。
  22. 28GHz帯はサブアーバンや細い裏路地などの見通し外をエリアの対象としないことを特徴とするため、従来の6GHz以下の周波数帯における場所率の考え方を改める必要があり、対象エリアのみを考慮して場所率を計算することを特徴とする、請求項1から21のいずれか一項に記載のエリア構築方法。
  23. 基地局から発射された電波が、ビルの壁面で1回または2回反射して見通し外のエリアに到達し、地平線より上方向にビームを向けたコの字型UEリレーないしCPEにて受信することで、地上を走行する自動車や歩行者の影響を軽減し、通信の品質を向上させることを特徴とする、請求項1から22のいずれか一項に記載のエリア構築方法。
JP2020556699A 2018-11-05 2019-10-07 エリア構築方法 Active JP7500431B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018208065 2018-11-05
JP2018208065 2018-11-05
PCT/JP2019/039512 WO2020095597A1 (ja) 2018-11-05 2019-10-07 エリア構築方法

Publications (2)

Publication Number Publication Date
JPWO2020095597A1 true JPWO2020095597A1 (ja) 2021-10-07
JP7500431B2 JP7500431B2 (ja) 2024-06-17

Family

ID=70610956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556699A Active JP7500431B2 (ja) 2018-11-05 2019-10-07 エリア構築方法

Country Status (4)

Country Link
US (1) US11997506B2 (ja)
JP (1) JP7500431B2 (ja)
GB (1) GB2593312B (ja)
WO (1) WO2020095597A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11272861B1 (en) * 2012-09-25 2022-03-15 Micro Mobio Corporation Personal cloud with a plurality of modular capabilities
US11877842B1 (en) 2012-09-25 2024-01-23 Micro Mobio Corporation Personal cloud with a plurality of modular capabilities
EP3769429B1 (en) 2018-03-19 2024-11-06 Pivotal Commware, Inc. Communication of wireless signals through physical barriers
US11910201B2 (en) * 2018-07-11 2024-02-20 Sail Internet, Inc. Method and apparatus for qualifying customers and designing a fixed wireless network using mapping data
CA3122688A1 (en) * 2018-12-10 2020-06-18 Sail Internet, Inc. Method and apparatus for design of a wireless network
US10522897B1 (en) 2019-02-05 2019-12-31 Pivotal Commware, Inc. Thermal compensation for a holographic beam forming antenna
US10468767B1 (en) 2019-02-20 2019-11-05 Pivotal Commware, Inc. Switchable patch antenna
US10734736B1 (en) 2020-01-03 2020-08-04 Pivotal Commware, Inc. Dual polarization patch antenna system
US11069975B1 (en) 2020-04-13 2021-07-20 Pivotal Commware, Inc. Aimable beam antenna system
US11832328B2 (en) * 2020-04-22 2023-11-28 Qualcomm Incorporated Control link for low-power and simplified transceiver
WO2021242996A1 (en) 2020-05-27 2021-12-02 Pivotal Commware, Inc. Rf signal repeater device management for 5g wireless networks
US11026055B1 (en) 2020-08-03 2021-06-01 Pivotal Commware, Inc. Wireless communication network management for user devices based on real time mapping
WO2022056024A1 (en) 2020-09-08 2022-03-17 Pivotal Commware, Inc. Installation and activation of rf communication devices for wireless networks
EP4278645A1 (en) 2021-01-15 2023-11-22 Pivotal Commware, Inc. Installation of repeaters for a millimeter wave communications network
JP2024505881A (ja) 2021-01-26 2024-02-08 ピヴォタル コムウェア インコーポレイテッド スマートリピータシステム
AU2022307056A1 (en) 2021-07-07 2024-02-15 Pivotal Commware, Inc. Multipath repeater systems
TR2021019907A2 (tr) * 2021-12-14 2022-02-21 Istanbul Medipol Ueniversitesi Mi̇li̇metre dalga ve terahertz frekanslarinda pürüzlü ve düzgün yüzeyler kullanilarak bi̇rleşi̇k algilama ve i̇leti̇şi̇me yöneli̇k yeni̇ bi̇r yöntem
US11683090B1 (en) 2022-01-18 2023-06-20 T-Mobile Usa, Inc. Laser-based enhancement of signal propagation path for mobile communications
US11937199B2 (en) 2022-04-18 2024-03-19 Pivotal Commware, Inc. Time-division-duplex repeaters with global navigation satellite system timing recovery
WO2024171832A1 (ja) * 2023-02-14 2024-08-22 Agc株式会社 無線通信装置
CN117278935B (zh) * 2023-11-04 2024-06-18 天宇正清科技有限公司 基站选址的方法、装置、电子设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158836A (ja) * 1987-12-15 1989-06-21 Mitsubishi Electric Corp 無線中継装置
JPH11163773A (ja) * 1997-11-25 1999-06-18 Hitachi Electron Service Co Ltd 建屋内無電源電波中継器
JP2010157944A (ja) * 2008-12-31 2010-07-15 Tohoku Univ 指向性を制御可能なアンテナを用いた無線通信システムおよびその受信装置
JP2010268254A (ja) * 2009-05-15 2010-11-25 Hitachi Ltd 無線局配置探索装置
WO2018168110A1 (ja) * 2017-03-13 2018-09-20 パナソニックIpマネジメント株式会社 無線通信装置及び無線通信方法、並びに無線通信装置を備える建物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548880B2 (ja) 1997-08-26 2004-07-28 カシオ計算機株式会社 印字装置
US6640089B1 (en) * 2000-11-13 2003-10-28 Verizon Laboratories Inc. System and method for adaptively predicting radio wave propagation
EP2025045B1 (en) * 2006-05-23 2011-05-11 Intel Corporation Chip-lens array antenna system
KR20140042978A (ko) * 2012-09-28 2014-04-08 한국전자통신연구원 전파 시스템에서 전자파 프로파게이션 분석 장치 및 방법
US10014948B2 (en) * 2014-04-04 2018-07-03 Nxgen Partners Ip, Llc Re-generation and re-transmission of millimeter waves for building penetration
US10958332B2 (en) * 2014-09-08 2021-03-23 Mimosa Networks, Inc. Wi-Fi hotspot repeater
CN105992329B (zh) * 2015-02-27 2019-09-06 展讯通信(上海)有限公司 信号放大装置及其控制方法、识别信号放大装置的方法
JP2018033121A (ja) 2016-04-19 2018-03-01 株式会社村田製作所 通信ユニット
US10425159B2 (en) * 2016-06-07 2019-09-24 Siklu Communication ltd. Systems and methods for communicating through a glass window barrier
KR20190133194A (ko) * 2017-03-22 2019-12-02 넥스젠 파트너스 아이피 엘엘씨 건물 침투를 위한 밀리미터파의 재생성 및 재전송
US10736074B2 (en) * 2017-07-31 2020-08-04 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
WO2020075094A1 (en) * 2018-10-10 2020-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid fd-mimo: combining codebook-based and reciprocity-based beamforming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158836A (ja) * 1987-12-15 1989-06-21 Mitsubishi Electric Corp 無線中継装置
JPH11163773A (ja) * 1997-11-25 1999-06-18 Hitachi Electron Service Co Ltd 建屋内無電源電波中継器
JP2010157944A (ja) * 2008-12-31 2010-07-15 Tohoku Univ 指向性を制御可能なアンテナを用いた無線通信システムおよびその受信装置
JP2010268254A (ja) * 2009-05-15 2010-11-25 Hitachi Ltd 無線局配置探索装置
WO2018168110A1 (ja) * 2017-03-13 2018-09-20 パナソニックIpマネジメント株式会社 無線通信装置及び無線通信方法、並びに無線通信装置を備える建物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
岸山祥久ほか: "2020年のサービス実現に向けた5G技術特集", NTT DOCOMOテクニカル・ジャーナル VOL.23 NO.4, JPN6023021768, January 2016 (2016-01-01), pages 6 - 48, ISSN: 0005216544 *
梅木 建人 KENTO UMEKI: "ミリ波帯屋外オープンエリア環境における周囲の壁面反射波を考慮した伝搬路モデル Mm-Wave Channel Model", 電子情報通信学会技術研究報告 VOL.116 NO.481 IEICE TECHNICAL REPORT, vol. 第116巻, JPN6023021763, March 2017 (2017-03-01), JP, ISSN: 0005216543 *

Also Published As

Publication number Publication date
US20210250778A1 (en) 2021-08-12
GB2593312B (en) 2023-03-15
JP7500431B2 (ja) 2024-06-17
GB2593312A (en) 2021-09-22
WO2020095597A1 (ja) 2020-05-14
US11997506B2 (en) 2024-05-28
GB202106231D0 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP7500431B2 (ja) エリア構築方法
Khan et al. mmWave mobile broadband (MMB): Unleashing the 3–300GHz spectrum
Coldrey et al. Non-line-of-sight small cell backhauling using microwave technology
CA2393552C (en) A three-dimensional space coverage cellular network
EP2868133B1 (en) Terrestrial communications network suitable for providing air-to-ground connectivity
US20050250503A1 (en) Wireless networks frequency reuse distance reduction
Larsson et al. An outdoor-to-indoor propagation scenario at 28 GHz
US8686909B2 (en) Vault antenna for WLAN or cellular application
Du et al. 5G E-band backhaul system measurements in urban street-level scenarios
CN109587694B (zh) 一种提高城中村信号覆盖的方法及电子设备
Salous Future channel modelling needs in ITU recommendations
Park et al. Window-type and AR glass-type transparent antenna systems for B5G/6G
Sheikh et al. Performance analysis of vertical and higher order sectorization in urban environment at 28 GHz
CN115767564A (zh) 一种5g移动网络覆盖系统及方法
Wang et al. Millimeter-wave techniques for 5G mobile communications systems: Challenges, framework and way forward
KR20120099555A (ko) 각도 다이버시티 안테나 기능을 갖는 승강기의 이동통신 중계장치 및 구성방법
Goto et al. Experimental Trials with Combination of Multiple Transmissive Metasurfaces and Beamforming for mmW Coverage Enhancement
Letourneux et al. 3D propagation and environment modeling for NLOS wireless small-cell backhaul
Coldrey et al. Non-line-of-sight microwave backhaul in heterogeneous networks
Larsson et al. Angular Resolved Pathloss Measurements in a US Suburban Scenario at 28 GHz
Bauer et al. Three-dimensional interference investigations for LMDS networks using an urban database
Chia Providing ubiquitous cellular coverage for a dense urban environment
US20230107864A1 (en) System and method for providing broad band local area network services at a dwelling
Gurung et al. Antenna system in cellular mobile Communication
Rasekh et al. Interference Analysis in an Urban Mesh Network Operating in the 60‐GHz Band

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240605

R150 Certificate of patent or registration of utility model

Ref document number: 7500431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150