JPWO2020072597A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020072597A5
JPWO2020072597A5 JP2021518107A JP2021518107A JPWO2020072597A5 JP WO2020072597 A5 JPWO2020072597 A5 JP WO2020072597A5 JP 2021518107 A JP2021518107 A JP 2021518107A JP 2021518107 A JP2021518107 A JP 2021518107A JP WO2020072597 A5 JPWO2020072597 A5 JP WO2020072597A5
Authority
JP
Japan
Prior art keywords
cooling system
oxide
evaporative cooling
roughened layer
ceramic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021518107A
Other languages
Japanese (ja)
Other versions
JP2022524472A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/054230 external-priority patent/WO2020072597A1/en
Publication of JP2022524472A publication Critical patent/JP2022524472A/en
Publication of JPWO2020072597A5 publication Critical patent/JPWO2020072597A5/ja
Pending legal-status Critical Current

Links

Claims (26)

乾燥チャネルへの水蒸気の移動を抑制するように構成され、1000nm未満の形状サイズを有する粗面化層および該粗面化層上に配置された疎水性化学変性物を含む、複数の乾燥チャネル;および
水蒸気の移動を可能にするように構成された複数の湿潤チャネル
を含む多孔質セラミック体を含んで成る、蒸発冷却システム。
a plurality of drying channels comprising a roughened layer configured to inhibit the movement of water vapor to the drying channels and having a feature size of less than 1000 nm and a hydrophobic chemical modification disposed on the roughened layer; and an evaporative cooling system comprising a porous ceramic body including a plurality of wetting channels configured to allow movement of water vapor.
前記複数の乾燥チャネルおよび前記複数の湿潤チャネルが、平行流、逆流、および交差流からなる群から選択される構成を有する、請求項1に記載の蒸発冷却システム。 2. The evaporative cooling system of claim 1, wherein said plurality of dry channels and said plurality of wet channels have a configuration selected from the group consisting of parallel flow, counter flow, and cross flow. 前記蒸発冷却システムが間接蒸発冷却システムである、請求項1に記載の蒸発冷却システム。 2. The evaporative cooling system of claim 1, wherein said evaporative cooling system is an indirect evaporative cooling system. 前記多孔質セラミック体が、酸化物、複合材料、粘土体、石器、土器、磁器、ボーンチャイナ、およびそれらの組み合わせから成る群から選択される、請求項1に記載の蒸発冷却システム。 2. The evaporative cooling system of claim 1, wherein said porous ceramic body is selected from the group consisting of oxides, composites, clay bodies, stoneware, earthenware, porcelain, bone china, and combinations thereof. 多孔質セラミック体は、10nm~1000nmの孔径を有する、請求項1に記載の蒸発冷却システム。 The evaporative cooling system of claim 1, wherein the porous ceramic body has pore sizes between 10 nm and 1000 nm. 前記多孔質セラミック体が1~80%の孔容積を有する、請求項1に記載の蒸発冷却システム。 The evaporative cooling system of claim 1, wherein said porous ceramic body has a pore volume of 1-80%. 前記粗面化層の粗さが0.1nm~1000nmである、請求項1に記載の蒸発冷却システム。 The evaporative cooling system of claim 1, wherein the roughened layer has a roughness of 0.1 nm to 1000 nm. 前記粗面化層が、アルミナ、シリカ、チタニア、ベリリア、セリア、ジルコニア、酸化第二銅、酸化第一銅、酸化バリウム、酸化ゲルマニウム、イットリア、酸化ストロンチウム、酸化ハフニウム、酸化マグネシウム、酸化ニオブ、酸化スズ、酸化タンタル、酸化タングステン、オキシ水酸化アルミニウム、およびそれらの組み合わせからなる群から選択される、請求項1の蒸発冷却システム。 The roughened layer is alumina, silica, titania, beryllia, ceria, zirconia, cupric oxide, cuprous oxide, barium oxide, germanium oxide, yttria, strontium oxide, hafnium oxide, magnesium oxide, niobium oxide, oxide 2. The evaporative cooling system of claim 1, selected from the group consisting of tin, tantalum oxide, tungsten oxide, aluminum oxyhydroxide, and combinations thereof. 前記粗面化層がゾル‐ゲルコーティングまたは金属酸化物粒子の分散体を含む、請求項1に記載の蒸発冷却システム。 2. The evaporative cooling system of claim 1, wherein the roughened layer comprises a sol-gel coating or a dispersion of metal oxide particles. 前記金属酸化物粒子は、2nm~20μmの直径を有する、請求項9に記載の蒸発冷却システム。 10. The evaporative cooling system of claim 9, wherein said metal oxide particles have a diameter between 2 nm and 20 μm. 前記粗面化層が、100nm~5mmの厚さを有する、請求項1に記載の蒸発冷却システム。 The evaporative cooling system of claim 1, wherein said roughened layer has a thickness of 100 nm to 5 mm. 前記疎水性化学変性物が、メチル基、アリール基、分岐状アルキル鎖、直鎖状アルキル鎖、パーフルオロ鎖、または疎水性ポリマーのいずれかで終端した有機シランまたはチオール分子;シロキサン、アルキルリン酸塩、アルキルリン酸エステル、アルカン‐ホスホン酸、アルカン‐ホスホン酸エステル、アルカン‐ヒドロキサム酸、アルカン‐カルボン酸、脂肪酸、天然ワックス、合成ワックス、およびそれらの組み合わせからなる群から選択される、請求項1に記載の蒸発冷却システム。 Said hydrophobic chemical modification is an organosilane or thiol molecule terminated with either a methyl group, an aryl group, a branched alkyl chain, a linear alkyl chain, a perfluoro chain, or a hydrophobic polymer; siloxanes, alkyl phosphates salt, alkyl phosphate, alkane-phosphonic acid, alkane-phosphonate ester, alkane-hydroxamic acid, alkane-carboxylic acid, fatty acid, natural wax, synthetic wax, and combinations thereof. The evaporative cooling system of claim 1. 前記疎水性化学変性物が、前記粗面化層に共有結合されているか、または前記粗面化層に吸着されている、請求項1に記載の蒸発冷却システム。 2. The evaporative cooling system of claim 1, wherein the hydrophobic chemical modifier is covalently bound to or adsorbed on the roughened layer. 前記蒸発冷却システムが、建物の外壁、建物の屋根および建物の内部のうちの少なくとも1つに組み込まれている、請求項1に記載の蒸発冷却システム。 2. The evaporative cooling system of claim 1, wherein the evaporative cooling system is incorporated into at least one of a building exterior wall, a building roof, and a building interior. 多孔質セラミック体を提供する工程、
前記多孔質セラミック体の第1の領域内に、1000nm未満の形状サイズを有する粗面化層を形成する工程、および
前記第1の領域内の粗面化層を化学的に変性する工程、
を含む、蒸発冷却システムの製造方法。
providing a porous ceramic body;
forming a roughened layer having a feature size of less than 1000 nm within a first region of the porous ceramic body; and chemically modifying the roughened layer within the first region;
A method of manufacturing an evaporative cooling system, comprising:
前記多孔質セラミック体の第2領域内に粗面化層を形成する工程を更に含む、請求項15に記載の方法。 16. The method of claim 15, further comprising forming a roughened layer in a second region of said porous ceramic body. 前記多孔質セラミック体を提供する工程が、押出成形、共押出成形、プレス成形、注型、発泡成形、アディティブ・マニュファクチャリング、およびマルチ・マテリアル・アディティブ・マニュファクチャリングからなる群から選択される方法に従ってセラミックを形成する工程を含む、請求項15に記載の方法。 The step of providing the porous ceramic body is selected from the group consisting of extrusion, co-extrusion, press molding, casting, foam molding, additive manufacturing, and multi-material additive manufacturing. 16. The method of claim 15, comprising forming a ceramic according to the method. 粗面化層が、アルミナ、シリカ、チタニア、ベリリア、セリア、ジルコニア、酸化第二銅、酸化第一銅、酸化バリウム、酸化ゲルマニウム、イットリア、酸化ストロンチウム、酸化ハフニウム、酸化マグネシウム、酸化ニオブ、酸化スズ、酸化タンタル、酸化タングステン、オキシ水酸化アルミニウム、およびそれらの組み合わせからなる群から選択される、請求項15に記載の方法。 Alumina, silica, titania, beryllia, ceria, zirconia, cupric oxide, cuprous oxide, barium oxide, germanium oxide, yttria, strontium oxide, hafnium oxide, magnesium oxide, niobium oxide, tin oxide , tantalum oxide, tungsten oxide, aluminum oxyhydroxide, and combinations thereof. 前記粗面化層を形成する工程が、
ゾル‐ゲル前駆体を有機溶媒に溶解させる工程、
加水分解反応を開始してネットワークゲルを形成する工程、
該ネットワークゲルを多孔質セラミック体に適用する工程、および
多孔質セラミック体を加熱する工程
を含む、請求項15に記載の方法。
The step of forming the roughened layer includes
dissolving the sol-gel precursor in an organic solvent;
initiating a hydrolysis reaction to form a network gel;
16. The method of claim 15, comprising: applying the network gel to a porous ceramic body; and heating the porous ceramic body.
前記粗面化層を形成する工程が、金属酸化物粒子を提供する工程を更に含む、請求項19に記載の方法。 20. The method of claim 19, wherein forming the roughened layer further comprises providing metal oxide particles. 前記ゾル‐ゲル前駆体を有機溶媒に溶解する工程の前に、ゾル‐ゲル前駆体中に金属酸化物粒子を提供する工程を更に含む、請求項20に記載の方法。 21. The method of claim 20, further comprising providing metal oxide particles in the sol-gel precursor prior to dissolving the sol-gel precursor in an organic solvent. 前記ゾル‐ゲル前駆体を有機溶媒に溶解する工程の後に、ゾル‐ゲル前駆体中に金属酸化物粒子を提供する工程を更に含む、請求項20に記載の方法。 21. The method of claim 20, further comprising providing metal oxide particles in the sol-gel precursor after dissolving the sol-gel precursor in the organic solvent. 加水分解反応の間に金属酸化物粒子を提供する工程を更に含む、請求項20に記載の方法。 21. The method of claim 20, further comprising providing metal oxide particles during the hydrolysis reaction. 水熱反応によってネットワークゲルを緻密化および再結晶化する工程を更に含む、請求項20に記載の方法。 21. The method of claim 20, further comprising densifying and recrystallizing the network gel by hydrothermal reaction. 前記粗面化層を形成する工程が、
前記多孔質セラミック体に金属酸化物粒子の分散体を適用する工程
を含む、請求項19に記載の方法。
The step of forming the roughened layer includes
20. The method of claim 19, comprising applying a dispersion of metal oxide particles to the porous ceramic body.
前記粗面化層を化学的に変性する工程が、前記粗面化層に分子を共有結合させる工程、または前記粗面化層に分子を吸着させる工程を含む、請求項15に記載の方法。 16. The method of claim 15, wherein chemically modifying the roughened layer comprises covalently bonding molecules to the roughened layer or adsorbing molecules to the roughened layer.
JP2021518107A 2018-10-02 2019-10-02 Hydrophobic barrier layer of ceramic indirect evaporative cooling system Pending JP2022524472A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862740221P 2018-10-02 2018-10-02
US62/740,221 2018-10-02
PCT/US2019/054230 WO2020072597A1 (en) 2018-10-02 2019-10-02 Hydrophobic barrier layer for ceramic indirect evaporative cooling systems

Publications (2)

Publication Number Publication Date
JP2022524472A JP2022524472A (en) 2022-05-06
JPWO2020072597A5 true JPWO2020072597A5 (en) 2022-09-30

Family

ID=70055857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021518107A Pending JP2022524472A (en) 2018-10-02 2019-10-02 Hydrophobic barrier layer of ceramic indirect evaporative cooling system

Country Status (8)

Country Link
US (2) US11305235B2 (en)
EP (1) EP3860754A4 (en)
JP (1) JP2022524472A (en)
CN (1) CN112996593B (en)
AU (1) AU2019352620B9 (en)
MX (1) MX2021003780A (en)
SG (1) SG11202103225TA (en)
WO (1) WO2020072597A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020072597A1 (en) * 2018-10-02 2020-04-09 President And Fellows Of Harvard College Hydrophobic barrier layer for ceramic indirect evaporative cooling systems

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1444781A (en) * 1964-05-07 1966-07-08 Scott Paper Co New polymerized structures, formed at least in part by a polyolefin material
DE8810151U1 (en) 1988-08-10 1989-12-21 General Electric Plastics B.V., Bergen Op Zoom, Nl
CN1044527A (en) * 1989-01-24 1990-08-08 十月革命50周年基辅工业大学 Apparatus for cooling by indirect evaporation of gas
US5187946A (en) 1991-09-24 1993-02-23 Yefim Rotenberg Apparatus & Method for indirect evaporative cooling of a fluid
RU2037745C1 (en) * 1992-03-18 1995-06-19 Виктор Александрович Морозов Method of indirect evaporative cooling of air in rooms and device for its realization
US5435382A (en) 1993-06-16 1995-07-25 Baltimore Aircoil Company, Inc. Combination direct and indirect closed circuit evaporative heat exchanger
IL113078A0 (en) 1995-03-22 1995-06-29 Coolsys Maarachot Keroor Mitka Air cooler
US5724828A (en) 1995-04-21 1998-03-10 Baltimore Aircoil Company, Inc. Combination direct and indirect closed circuit evaporative heat exchanger with blow-through fan
US5860284A (en) 1996-07-19 1999-01-19 Novel Aire Technologies, L.L.C. Thermally regenerated desiccant air conditioner with indirect evaporative cooler
US6497107B2 (en) 2000-07-27 2002-12-24 Idalex Technologies, Inc. Method and apparatus of indirect-evaporation cooling
US6705096B2 (en) 2000-09-27 2004-03-16 Idalex Technologies, Inc. Method and plate apparatus for dew point evaporative cooler using a trough wetting system
KR100409265B1 (en) 2001-01-17 2003-12-18 한국과학기술연구원 Regenerative evaporative cooler
DE10119538C2 (en) * 2001-04-21 2003-06-26 Itn Nanovation Gmbh Process for coating substrates and their uses
AU2002331628A1 (en) * 2001-08-20 2003-03-03 Idalex Technologies, Inc. Method of evaporative cooling of a fluid and apparatus therefor
JP3873825B2 (en) * 2002-06-26 2007-01-31 株式会社デンソー Fuel cell and manufacturing method thereof
US11180781B2 (en) * 2016-08-21 2021-11-23 Insectergy, Llc Biosynthetic cannabinoid production methods
US20050218535A1 (en) 2002-08-05 2005-10-06 Valeriy Maisotsenko Indirect evaporative cooling mechanism
US20050210907A1 (en) 2004-03-17 2005-09-29 Gillan Leland E Indirect evaporative cooling of a gas using common product and working gas in a partial counterflow configuration
FR2870161B1 (en) * 2004-05-12 2006-06-30 Air Liquide PROCESS FOR THE PREPARATION OF CERAMIC CATALYTIC MEMBRANE REACTORS BY CO-EXTRUSION
US7458189B2 (en) * 2004-12-09 2008-12-02 Pollack Robert W Device and method to provide air circulation space proximate to insulation material
JP2009500169A (en) * 2005-07-14 2009-01-08 シーメンス・ウォーター・テクノロジーズ・コーポレーション Monopersulfate treatment of membranes
US7510174B2 (en) 2006-04-14 2009-03-31 Kammerzell Larry L Dew point cooling tower, adhesive bonded heat exchanger, and other heat transfer apparatus
GB0622355D0 (en) * 2006-11-09 2006-12-20 Oxycell Holding Bv High efficiency heat exchanger and dehumidifier
AU2008250926B2 (en) 2007-05-09 2013-03-14 Mcnnnac Energy Services Inc. Cooling system
US20080289685A1 (en) * 2007-05-22 2008-11-27 Chii-Chang Chen Thin Film Solar Cell with Rough Surface Layer Formed by Nano/Micro Particle Conductor Balls
DE102007027319A1 (en) * 2007-06-14 2008-12-18 Beru Ag Spark plug and method of making a spark plug
CN100504249C (en) * 2007-10-16 2009-06-24 何淦明 Superposition type multilevel evaporation core body
CN101266091B (en) * 2008-04-14 2010-10-27 西安工程大学 Porous functional ceramic dew point plate fin type indirect evaporative cooler
US20110312080A1 (en) * 2008-08-26 2011-12-22 President And Fellows Of Harvard College Porous films by a templating co-assembly process
US8783054B2 (en) * 2008-11-13 2014-07-22 F.F. Seeley Nominees Pty. Ltd. Indirect evaporative cooler construction
BRPI1014231A2 (en) 2009-04-16 2016-04-12 Star Refrigeration evaporative chiller, circuit liquid cooler, and refrigeration apparatus
CN101629743B (en) 2009-08-24 2011-06-22 西安工程大学 Ceiling evaporating-cooling fresh air handling unit using porous ceramic evaporative cooler
US20120047937A1 (en) * 2010-08-24 2012-03-01 James David Cass Indirect Evaporative Cooling System
US20120067546A1 (en) 2010-09-17 2012-03-22 Evapco, Inc. Hybrid heat exchanger apparatus and method of operating the same
US8685142B2 (en) * 2010-11-12 2014-04-01 The Texas A&M University System System and method for efficient air dehumidification and liquid recovery with evaporative cooling
CA2825008C (en) * 2011-01-19 2020-10-13 President And Fellows Of Harvard College Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
CN103703085B (en) * 2011-01-19 2016-09-28 哈佛学院院长等 Smooth fluid injection porous surface and its biological applications
GB201113681D0 (en) 2011-08-09 2011-09-21 Williams Duncan R High efficiency air cooling apparatus
AU2013200025A1 (en) 2012-01-04 2013-07-18 Seeley International Pty. Ltd. Improved Efficiency Indirect Evaporative Cooler
JP6388541B2 (en) 2012-01-10 2018-09-12 プレジデント アンド フェローズ オブ ハーバード カレッジ Surface modification for fluid and solid resilience
DE102012001544A1 (en) * 2012-01-16 2013-07-18 Ewald Dörken Ag Process for the preparation of a microfiltration membrane and microfiltration membrane
US20130244001A1 (en) * 2012-03-02 2013-09-19 Massachusetts Institute Of Technology Superhydrophobic Nanostructures
US9891001B2 (en) 2012-03-16 2018-02-13 Evapco, Inc. Hybrid cooler with bifurcated evaporative section
CN102692056A (en) * 2012-05-28 2012-09-26 西安工程大学 Modularized evaporative cooling air conditioner adopting dew point indirect and direct evaporative coolers
US9207018B2 (en) 2012-06-15 2015-12-08 Nexajoule, Inc. Sub-wet bulb evaporative chiller system with multiple integrated subunits or chillers
US20150209846A1 (en) * 2012-07-13 2015-07-30 President And Fellows Of Harvard College Structured Flexible Supports and Films for Liquid-Infused Omniphobic Surfaces
EP2872574A1 (en) * 2012-07-13 2015-05-20 President and Fellows of Harvard College Slips surface based on metal-containing compound
EP2880122A2 (en) * 2012-08-01 2015-06-10 Oxane Materials, Inc. Synthetic proppants and monodispersed proppants and methods of making the same
US9555376B2 (en) * 2013-01-26 2017-01-31 Adma Products, Inc. Multilayer, micro- and nanoporous membranes with controlled pore sizes for water separation and method of manufacturing thereof
US9140471B2 (en) * 2013-03-13 2015-09-22 Alliance For Sustainable Energy, Llc Indirect evaporative coolers with enhanced heat transfer
EP2980050B1 (en) 2013-03-29 2019-10-23 NGK Insulators, Ltd. Aluminophosphate-metal oxide bonded body and production method for same
WO2014193476A1 (en) 2013-05-28 2014-12-04 Peterbrod Corp. Advanced solar thermally driven power system and method
KR20150046635A (en) 2013-10-22 2015-04-30 이혁구 Method and Apparatus of serial regenerative indirect evaporative cooling
EP3071727B1 (en) * 2013-11-18 2019-05-01 United Technologies Corporation Airfoil having a variable coating
EP3114411A4 (en) * 2014-02-16 2017-12-20 BE Power Tech, Inc. Heat and mass transfer device and systems including the same
US20160377302A1 (en) * 2014-02-28 2016-12-29 3M Innovative Properties Company Flexible liquid desiccant heat and mass transfer panels with a hydrophilic layer
US20150253046A1 (en) 2014-03-07 2015-09-10 University Of Central Florida Research Foundation, Inc. Evaporatively cooled mini-split air conditioning system
JP6387514B2 (en) 2014-03-19 2018-09-12 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
AU2015316185B2 (en) * 2014-09-08 2021-02-04 Ff Seeley Nominees Pty Ltd Compact indirect evaporative cooler
US9945569B2 (en) 2014-09-10 2018-04-17 Munters Corporation Water minimizing method and apparatus for use with evaporative cooling devices
US20220304264A9 (en) * 2014-09-23 2022-09-29 HGXE Holdings, LLC Active polymer materials for growing more vigorous, larger and healthier cannabis plants
US10694685B2 (en) * 2014-09-23 2020-06-30 HGXE Holdings, LLC Active polymer material for agricultural use
CN104534603B (en) 2015-01-23 2017-07-11 天津大学 The board-like dew point indirect evaporative cooler of adverse current and channel partition of built-in flow dividing structure
CN104534604B (en) * 2015-01-23 2017-05-31 天津大学 The board-like dew point indirect evaporative cooler of adverse current and channel partition of external flow dividing structure
US20180125066A1 (en) * 2015-04-26 2018-05-10 The Trustees Of Princeton University Surfaces comprising attached quorum sensing modulators
GB2567762B (en) 2015-07-03 2019-12-11 Ecocooling Ltd Evaporative cooler apparatus
CN105061804B (en) * 2015-08-13 2019-07-16 东莞市泰和塑胶制品有限公司 Anti-sticking superslide low-density polyethylene film and preparation method thereof
US10907867B2 (en) * 2015-10-07 2021-02-02 Dais Analytic Corporation Evaporative chilling systems and methods using a selective transfer membrane
KR20230156175A (en) 2016-05-09 2023-11-13 문터스 코포레이션 Direct evaporative cooling system with precise temperature control
CN107543438A (en) * 2016-06-28 2018-01-05 陈祖卫 Diaphragm type dew point indirect evaporative cooling heat exchanger
US20200229411A1 (en) * 2016-08-21 2020-07-23 Insectergy, Llc Insect production systems and methods
US20210137137A1 (en) * 2016-08-21 2021-05-13 Insectergy, Llc Insect production systems and methods
US11248129B2 (en) * 2016-10-28 2022-02-15 Ohio State Innovation Foundation Liquid impregnated surfaces for liquid repellancy
CN106595355B (en) * 2016-12-08 2018-09-28 澳蓝(福建)实业有限公司 A kind of indirect evaporation cooler
AU2016273838B2 (en) 2016-12-12 2023-06-01 Commonwealth Scientific And Industrial Research Organisation Compact cooling device
CN206546114U (en) * 2017-03-02 2017-10-10 袁一军 A kind of heat and mass system using liquid as media
US11021842B2 (en) * 2017-03-29 2021-06-01 Brock Usa, Llc Infill for artificial turf system
ES2941466T3 (en) * 2017-03-29 2023-05-23 Brock Usa Llc Infill for artificial grass system and manufacturing process
WO2018211483A1 (en) 2017-05-19 2018-11-22 Vishal Singhal Cooling of air and other gases
US20190246591A1 (en) * 2017-05-31 2019-08-15 Insectergy, Llc Insect and cannabis production systems and methods
CN107869928A (en) * 2017-12-12 2018-04-03 陈祖卫 Air heat exchanger and its refrigerating plant
WO2019145024A1 (en) 2018-01-24 2019-08-01 Luwa Air Engineering Ag Air conditioning system and method based on evaporative heat transfer with air supersaturation
WO2020058778A1 (en) 2018-09-20 2020-03-26 King Abdullah University Of Science And Technology Combined direct and indirect evaporative cooling system and method
WO2020072597A1 (en) 2018-10-02 2020-04-09 President And Fellows Of Harvard College Hydrophobic barrier layer for ceramic indirect evaporative cooling systems
DE202019106703U1 (en) 2019-12-02 2020-01-20 Ludwig Michelbach drycoolers
CN112923754A (en) 2021-01-28 2021-06-08 西安交通大学 Air cooling tower based on dew point indirect evaporation precooling and working method thereof
WO2022220739A1 (en) 2021-04-12 2022-10-20 National University Of Singapore Dew-point cooler
CN115247850B (en) 2022-07-26 2023-04-18 成都雅思欧科技有限公司 Dew point evaporation indirect cooling type air conditioner

Similar Documents

Publication Publication Date Title
JP5676448B2 (en) Preparation method of inorganic membrane
JP5525258B2 (en) Method for manufacturing ceramic honeycomb structure and ceramic honeycomb structure
CN1684923A (en) Alumina-bound high strength ceramic honeycombs
US8808613B1 (en) Method for manufacturing aluminum-titanate-based ceramic honeycomb structure
JP2007528342A (en) Ceramic composition comprising a silsesquioxane polymer
US10987635B2 (en) Ceramic membrane for water treatment using oxidation-treated SiC and method for manufacturing the same
EP2776144B1 (en) Cordierite-based composite membrane coated on cordierite monolith
US20150157962A1 (en) Porous inorganic membranes and method of manufacture
JPWO2020072597A5 (en)
JP2017177688A (en) Method for producing sealed honeycomb structure
KR100854713B1 (en) Manufacture method for ceramic filter body of diatomaceous earth
US20220055949A1 (en) Green ceramic batch mixtures comprising an inverse emulsion and methods for forming a ceramic body
US11890579B2 (en) Hydrophobic barrier layer for ceramic indirect evaporative cooling systems
US20120021895A1 (en) Honeycomb catalyst substrate and method for producing same
CN1287546A (en) Low CTE cordierite bodies with narrow pore size distribution and method of making same
JPWO2020146901A5 (en)
WO2019032645A1 (en) Green ceramic batch mixtures comprising an inverse emulsion and methods for forming a ceramic body
JP2009241054A (en) Method for manufacturing of ceramic filter
JP2008260655A (en) Porous ceramic, and filter for sensor using the same
JP4831779B2 (en) Inorganic substance powder molded body manufacturing method, inorganic substance powder sintered body and manufacturing method thereof
WO2023096744A1 (en) Catalyst-loaded honeycomb article having in-wall and on-wall catalyst deposition and method of manufacture
JP2001259323A (en) Method for producing porous ceramic filter
JP2008120656A (en) Method of manufacturing plugged honeycomb formed body
JPH04110042A (en) Composite alumina catalyst carrier and its production
Hotta Silica honeycomb-crystal structure prepared by fabrication of silica-coated particles