JP2009241054A - Method for manufacturing of ceramic filter - Google Patents

Method for manufacturing of ceramic filter Download PDF

Info

Publication number
JP2009241054A
JP2009241054A JP2008271801A JP2008271801A JP2009241054A JP 2009241054 A JP2009241054 A JP 2009241054A JP 2008271801 A JP2008271801 A JP 2008271801A JP 2008271801 A JP2008271801 A JP 2008271801A JP 2009241054 A JP2009241054 A JP 2009241054A
Authority
JP
Japan
Prior art keywords
ceramic
sol
membrane
porous
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008271801A
Other languages
Japanese (ja)
Inventor
Kota Asai
宏太 浅井
Tatsuya Hishiki
達也 菱木
Shinji Nakamura
真二 中村
Naoko Takahashi
直子 高橋
Ryotaro Yoshimura
遼太郎 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008271801A priority Critical patent/JP2009241054A/en
Publication of JP2009241054A publication Critical patent/JP2009241054A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing of a ceramic filter of high separation ability in which the membrane thickness of a ceramic porous membrane which is formed on the surface of a porous base material is thin, uniform and has little peeling of membrane. <P>SOLUTION: On the porous base material 4 in which a UF membrane which has a small average fine pore diameter on an MF membrane is provided, a ceramic sol 21 in which a ceramic ingredient concentration, water concentration and solid ingredient are properly managed is used, and the number of times of calcination is reduced. Thereby, a ceramic filter of a high separation ability whose frequency of the peeling of membrane of the ceramic porous membrane is low is manufactured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はセラミック多孔質膜が成膜されたセラミックフィルタの製造方法に関し、更に詳しくは、欠陥が少なく、膜厚が薄く、均一なセラミック多孔質膜の成膜を行うセラミックフィルタの製造方法に関する。   The present invention relates to a method for manufacturing a ceramic filter having a ceramic porous film formed thereon, and more particularly, to a method for manufacturing a ceramic filter that forms a uniform ceramic porous film with few defects and a thin film thickness.

従来から、多孔質基材上にセラミック多孔質膜を成膜する方法は種々の方法が知られている。例えば、ホットコート法が知られている(非特許文献1を参照)。この方法は、加熱したチューブ基材の外表面に、セラミックゾルを含む布を用いチューブ基材に擦りつけて塗布することにより多孔質膜を成膜する方法である。   Conventionally, various methods are known for forming a ceramic porous film on a porous substrate. For example, a hot coat method is known (see Non-Patent Document 1). This method is a method for forming a porous film on the outer surface of a heated tube base material by rubbing and applying the cloth containing the ceramic sol to the tube base material.

チューブ形状や、円筒レンコン状のモノリス形状の多孔質基材の内表面にろ過成膜法により多孔質膜を形成する方法も公知である(特許文献1〜2を参照)。この方法は、多孔質基材のゾル液が接触する内表面側より外表面側を低圧に保持することにより、多孔質基材の内表面に多孔質膜を成膜する方法である。   A method of forming a porous film on the inner surface of a tube-shaped or cylindrical lotus-shaped monolithic porous substrate by a filtration film-forming method is also known (see Patent Documents 1 and 2). This method is a method of forming a porous film on the inner surface of the porous substrate by keeping the outer surface side lower than the inner surface side with which the sol solution of the porous substrate contacts.

特開平3−267129号公報JP-A-3-267129 特開昭61−238315号公報JP-A 61-238315 Journal of Membrane Science,149(1988),127−135Journal of Membrane Science, 149 (1988), 127-135.

しかしながら、ホットコート法は、チューブ基材の表面全体を均一に成膜できないという問題がある他、チューブ基材の外表面しか成膜できない。またモノリス型基材には、適用できない。一方、ろ過成膜法では、成膜後の乾燥時に多孔質基材の細孔内に存在する溶媒が膜側に流れ出て膜剥がれが発生することがあり、その結果、焼成後の多孔質基材の内表面に形成される多孔質膜に欠陥が生じるという問題がある。また、ディップコート法は、モノリス型基材への適用ができるが、成膜回数が多い。   However, the hot coating method has a problem that the entire surface of the tube base material cannot be uniformly formed, and only the outer surface of the tube base material can be formed. Further, it cannot be applied to a monolith type substrate. On the other hand, in the filtration film formation method, the solvent present in the pores of the porous base material may flow out to the film side during drying after film formation, resulting in film peeling. There is a problem that defects occur in the porous film formed on the inner surface of the material. The dip coating method can be applied to a monolithic substrate, but the number of film formation is large.

本発明の課題は、セラミックゾルの多孔質基材への少ない付着回数で成膜され、欠陥が少なく、膜厚が薄く、均一なセラミック多孔質膜を有するセラミックフィルタの製造方法を提供することにある。特に、平均細孔径が1nm以下のセラミック多孔質膜が成膜されたセラミックフィルタの製造方法を提供する。   An object of the present invention is to provide a method for producing a ceramic filter having a uniform ceramic porous film that is formed with a small number of times of adhesion of a ceramic sol to a porous substrate, has few defects, is thin, and has a uniform thickness. is there. In particular, the present invention provides a method for producing a ceramic filter in which a ceramic porous membrane having an average pore diameter of 1 nm or less is formed.

上記課題を解決するため、本発明によれば、多孔質基材上に、セラミック成分濃度・水分濃度・固形成分を適正化したセラミックゾルを付着させ、そのセラミックゾルを送風にて乾燥し、その後焼成してセラミック多孔質膜を成膜することにより、上記課題を解決することができることを見出した。すなわち、本発明によれば、以下のセラミック多孔質膜が成膜されたセラミックフィルタの製造方法が提供される。   In order to solve the above-described problems, according to the present invention, a ceramic sol with an optimized ceramic component concentration, moisture concentration, and solid component is attached on a porous substrate, and the ceramic sol is dried by blowing, and then It discovered that the said subject could be solved by baking and forming a ceramic porous membrane. That is, according to this invention, the manufacturing method of the ceramic filter in which the following ceramic porous membranes were formed is provided.

[1]セラミック成分濃度が0.05〜0.7質量%のセラミックゾルを、多孔質基材の表面上にかけ、一部の前記セラミックゾルが自重により落下して前記多孔質基材の前記表面上から除去され、除去されない残部の前記セラミックゾルを前記多孔質基材の前記表面上に付着させた後、前記多孔質基材に付着した前記セラミックゾルを送風乾燥し、次いで焼成を行ってセラミック多孔質膜を成膜するセラミックフィルタの製造方法。   [1] A ceramic sol having a ceramic component concentration of 0.05 to 0.7% by mass is applied onto the surface of the porous substrate, and a portion of the ceramic sol falls due to its own weight and the surface of the porous substrate The remaining ceramic sol that is removed from above and not removed is attached onto the surface of the porous base material, and then the ceramic sol attached to the porous base material is blown and dried, followed by firing to perform ceramics A method for producing a ceramic filter for forming a porous membrane.

[2]前記セラミックゾルの溶媒がエタノールである前記[1]に記載のセラミックフィルタの製造方法。   [2] The method for producing a ceramic filter according to [1], wherein the solvent of the ceramic sol is ethanol.

[3]前記セラミックゾルの水分濃度が0.03〜3質量%である前記[1]または[2]に記載のセラミックフィルタの製造方法。   [3] The method for producing a ceramic filter according to [1] or [2], wherein the moisture concentration of the ceramic sol is 0.03 to 3% by mass.

[4]目開き10μmの篩を通過できる前記セラミックゾルを用いた前記[1]〜[3]のいずれかに記載のセラミックフィルタの製造方法。   [4] The method for producing a ceramic filter according to any one of [1] to [3], wherein the ceramic sol that can pass through a sieve having an opening of 10 μm is used.

[5]前記セラミックゾルの前記多孔質基材の前記表面上への付着および送風乾燥を行う工程を複数回行った後、焼成を行う前記[1]〜[4]のいずれかに記載のセラミックフィルタの製造方法。   [5] The ceramic according to any one of [1] to [4], wherein the ceramic sol is fired after a plurality of steps of attaching the ceramic sol to the surface of the porous substrate and performing air drying. A method for manufacturing a filter.

[6]前記セラミック成分が、シリカ、チタニア、またはジルコニアである前記[1]〜[5]のいずれかに記載のセラミックフィルタの製造方法。   [6] The method for producing a ceramic filter according to any one of [1] to [5], wherein the ceramic component is silica, titania, or zirconia.

本発明のセラミックフィルタの製造方法は、セラミック成分濃度が0.05〜0.7質量%のセラミックゾルを多孔質基材の表面上に付着させ、そのセラミックゾルを送風によって乾燥させ、その後焼成する。前記セラミックフィルタの製造方法では、セラミック多孔質膜が密になり、平均細孔径が小さく成膜できる。これにより、膜剥離が少ないセラミック多孔質膜が成膜され、高分離能のセラミックフィルタを製造できる。また、セラミックゾルの多孔質基材への付着の方法では、多孔質基材が長くなった場合であっても、多孔質基材の上下でセラミックゾルの付着量の差がつきにくく、長さ方向で均質な膜を得ることができる。さらに、前記セラミックゾルの多孔質基材表面への付着及び送風乾燥を行う工程を複数回行った後、焼成を行うことで、焼成回数が削減され、セラミック多孔質膜の熱履歴が減少する。これにより、親水性が高く、透過量の高いセラミックフィルタを製造できる。   In the method for producing a ceramic filter of the present invention, a ceramic sol having a ceramic component concentration of 0.05 to 0.7% by mass is deposited on the surface of a porous substrate, the ceramic sol is dried by blowing, and then fired. . In the method for producing the ceramic filter, the porous ceramic membrane becomes dense and the average pore diameter can be reduced. Thereby, a ceramic porous membrane with little membrane peeling is formed, and a high-separability ceramic filter can be manufactured. In addition, in the method of attaching the ceramic sol to the porous base material, even if the porous base material becomes long, the difference in the amount of ceramic sol attached to the top and bottom of the porous base material is unlikely to occur. A film that is homogeneous in direction can be obtained. Furthermore, after performing the process of attaching the ceramic sol to the surface of the porous substrate and performing blow drying for a plurality of times, firing is performed, whereby the number of firings is reduced and the thermal history of the ceramic porous film is reduced. Thereby, a ceramic filter having high hydrophilicity and high permeation amount can be manufactured.

以下、本発明の実施の形態について説明するが、本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

セラミック多孔質膜について詳細に説明する。セラミック多孔質膜は、例えば、セラミック多孔質基材の表面に薄膜を成膜したセラミックフィルタの形で用いられ、フィルターのろ過機能の中枢をなす部分である。図1に本発明のセラミックフィルタの製造方法によって成膜されるセラミック多孔質膜1及び多孔質基材4の一実施形態を示す。ここでは本発明のセラミックフィルタの製造方法の一実施形態として、精密濾過膜(MF膜)3上に平均細孔径が0.5〜20nmの限外濾過膜であるUF膜2が形成された多孔質基材4を用いて説明する。UF膜2としては、例えば、チタニアを採用することができる。なお、本件においてセラミック多孔質膜1の成膜とは、図1において1aないし1dが重層した符号1の層全体の形成をいう。付着とは、1aないし1dの各層を形成するためにセラミックゾルを多孔質基材4もしくは以前の工程で形成されたセラミック多孔質膜の表面上に接触させて、必要量を定着させることをいう。   The ceramic porous membrane will be described in detail. The ceramic porous membrane is used, for example, in the form of a ceramic filter in which a thin film is formed on the surface of a ceramic porous substrate, and is a portion that forms the center of the filtering function of the filter. FIG. 1 shows an embodiment of a ceramic porous membrane 1 and a porous substrate 4 formed by the method for producing a ceramic filter of the present invention. Here, as one embodiment of the method for producing a ceramic filter of the present invention, a porous UF membrane 2 that is an ultrafiltration membrane having an average pore diameter of 0.5 to 20 nm is formed on a microfiltration membrane (MF membrane) 3. A description will be given using the base material 4. As the UF film 2, for example, titania can be adopted. In the present case, the formation of the ceramic porous membrane 1 refers to the formation of the entire layer 1 denoted by reference numerals 1a to 1d in FIG. Adhesion refers to fixing the required amount by bringing the ceramic sol into contact with the porous substrate 4 or the surface of the ceramic porous film formed in the previous step in order to form the layers 1a to 1d. .

次に図2を用いて、本発明のセラミックフィルタの製造方法によってセラミック多孔質膜が成膜されたセラミックフィルタ11の一実施形態を説明する。本発明のセラミックフィルタの製造方法によってセラミック多孔質膜が成膜されたセラミックフィルタ11は、隔壁12により画成され軸方向の流体通路を形成する複数のセル13を有するモノリス形状を成している。本実施形態では、セル13は円形断面を有し、その内壁面に、図1に示したようなセラミック多孔質膜1が成膜されている。セル13は、六角形断面や四角形断面を有するように形成してもよい。このような構造によれば、例えば、混合体(例えば、水と酢酸)を入口側端面14からセル13に導入すると、その混合体を構成する一方が、セル13の内壁面に形成されたセラミック多孔質膜において分離され、多孔質の隔壁12を透過してセラミックフィルタ11の最外壁から排出されるため、混合体を分離することができる。つまり、セラミックフィルタ11に成膜されたセラミック多孔質膜は、分離膜として利用することができ、例えば、水とアルコールあるいは水と酢酸に対して高い分離特性を有する。   Next, an embodiment of the ceramic filter 11 in which a ceramic porous film is formed by the method for producing a ceramic filter of the present invention will be described with reference to FIG. A ceramic filter 11 having a ceramic porous film formed by the method for manufacturing a ceramic filter of the present invention has a monolith shape having a plurality of cells 13 defined by partition walls 12 and forming axial fluid passages. . In the present embodiment, the cell 13 has a circular cross section, and the ceramic porous membrane 1 as shown in FIG. 1 is formed on the inner wall surface thereof. The cell 13 may be formed to have a hexagonal cross section or a square cross section. According to such a structure, for example, when a mixture (for example, water and acetic acid) is introduced into the cell 13 from the inlet side end face 14, one of the mixture is formed on the ceramic formed on the inner wall surface of the cell 13. Since it is separated in the porous membrane, passes through the porous partition wall 12 and is discharged from the outermost wall of the ceramic filter 11, the mixture can be separated. That is, the ceramic porous membrane formed on the ceramic filter 11 can be used as a separation membrane, and has, for example, high separation characteristics for water and alcohol or water and acetic acid.

本発明のセラミック多孔質膜1は、多孔質基材4の内周面(内壁面)に対して成膜するため、長さが50cm以上である比較的長尺の筒状の多孔質基材、又はレンコン状の形状の多孔質基材を好適に用いることができる。   Since the ceramic porous membrane 1 of the present invention is formed on the inner peripheral surface (inner wall surface) of the porous substrate 4, it is a relatively long cylindrical porous substrate having a length of 50 cm or more. Alternatively, a lotus root-shaped porous substrate can be suitably used.

多孔質基材4について説明する。多孔質基材4は、押し出し成形等により多孔質材料からなる円柱形状のモノリス型フィルターエレメントとして形成される。多孔質材料としては、耐食性と温度変化によるろ過部の平均細孔径の変化が少ない点や充分な強度が得られる点から、例えば、アルミナを用いることができるが、アルミナ以外にコーディエライト、ムライト、炭化珪素等のセラミックス材料を使用することもできる。多孔質基材4は、セラミック多孔質膜1を成膜する面(最表面層)の平均細孔径が、好ましくは0.5〜20nm、より好ましくは0.5〜10nmの、平均細孔径が小さく多数の細孔を有する多孔質体であっても良い(図1の実施形態においては、UF膜2が上記範囲の最表面層を形成している)。   The porous substrate 4 will be described. The porous substrate 4 is formed as a cylindrical monolith filter element made of a porous material by extrusion molding or the like. As the porous material, for example, alumina can be used from the viewpoint that the change in the average pore diameter of the filtration part due to the corrosion resistance and the temperature change is small and sufficient strength can be obtained, but other than alumina, cordierite, mullite can be used. Ceramic materials such as silicon carbide can also be used. The porous substrate 4 has an average pore diameter of the surface (outermost surface layer) on which the ceramic porous film 1 is formed, preferably 0.5 to 20 nm, more preferably 0.5 to 10 nm. It may be a porous body having a small number of pores (in the embodiment of FIG. 1, the UF membrane 2 forms the outermost surface layer in the above range).

前記多孔質基材4の表面に形成された平均細孔径が0.5〜20nmの限外濾過膜であるUF膜2について説明する。UF膜2は、MF膜3と比較して、その表面の凹凸が少ないという特徴を有する。そのため、UF膜2上にセラミック多孔質膜1を成膜した場合、セラミック多孔質膜1は、膜表面が平滑で、欠陥も少なく、薄く均一な膜とすることができる。即ち、高分離能、高透過速度、低コストのセラミックフィルタが作製可能となる。対して、MF膜3上に直接セラミック多孔質膜1を成膜した場合、図3Aないし図3Eに示すように、凹凸の多いMF膜3の全表面上をセラミック多孔質膜1で被覆するためには、セラミック層を厚く成膜する必要が生じ、セラミック多孔質膜1は低透過速度となる。また、クラックの発生を防止するには、セラッミクゾルの多孔質基材への付着は一度に薄く行う必要ある。そのため、図3Eに示すように、厚いセラミック層の成膜を要するMF膜3を最表面層とした多孔質基材は、セラミックゾルの付着工程の回数が増加して高コストとなる。加えて、図3Eに示すように、MF膜3の表面の凸部分6では、セラミック多孔質膜1が薄く、MF膜3の表面の凹部分5では、セラミック多孔質膜1が厚い様式で成膜される。したがって、MF膜3の表面の凹凸は、セラミック多孔質膜1の不均質及びクラック等の欠陥の原因となる。以上から、UF膜2の表面を多孔質基材の最表面層としてセラミック多孔質膜1が成膜されることが望ましい。   The UF membrane 2 that is an ultrafiltration membrane having an average pore diameter of 0.5 to 20 nm formed on the surface of the porous substrate 4 will be described. The UF film 2 has a feature that the surface has less irregularities than the MF film 3. Therefore, when the ceramic porous membrane 1 is formed on the UF membrane 2, the ceramic porous membrane 1 can be a thin and uniform membrane with a smooth membrane surface and few defects. That is, it is possible to produce a ceramic filter with high resolution, high transmission speed, and low cost. On the other hand, when the ceramic porous film 1 is formed directly on the MF film 3, as shown in FIGS. 3A to 3E, the entire surface of the MF film 3 with many irregularities is covered with the ceramic porous film 1. Therefore, it is necessary to form a thick ceramic layer, and the ceramic porous membrane 1 has a low permeation rate. In order to prevent the occurrence of cracks, it is necessary to thinly adhere the ceramic sol to the porous substrate at a time. Therefore, as shown in FIG. 3E, the porous base material having the MF film 3 that requires the formation of a thick ceramic layer as the outermost surface layer increases the number of ceramic sol adhesion steps, resulting in high cost. In addition, as shown in FIG. 3E, the ceramic porous membrane 1 is thin at the convex portion 6 on the surface of the MF membrane 3 and the ceramic porous membrane 1 is thick at the concave portion 5 on the surface of the MF membrane 3. Be filmed. Therefore, the irregularities on the surface of the MF film 3 cause defects such as inhomogeneities and cracks in the ceramic porous film 1. From the above, it is desirable that the ceramic porous membrane 1 be formed with the surface of the UF membrane 2 as the outermost surface layer of the porous substrate.

次に、セラミックゾルの調製方法について、以下、セラミックゾルのセラミック成分としてシリカを用いた場合の実施形態を具体的一例として説明する。ただし、シリカの代わりにチタニア、あるいはジルコニアをセラミック成分とするセラミックゾルを用いることもできる。   Next, a method for preparing a ceramic sol will be described below with a specific example of an embodiment in which silica is used as the ceramic component of the ceramic sol. However, ceramic sol containing titania or zirconia as a ceramic component can be used instead of silica.

まず、シリカゾルのシリカ成分濃度について説明する。シリカ多孔質膜を成膜するためのシリカゾルを用意する。シリカゾルは、金属アルコキシドと共に硝酸の存在下で、5〜100℃にて1〜12時間加水分解してゾルとし、そのゾルをエタノールで希釈する。エタノール希釈後のシリカゾルのエタノール濃度は96質量%であることが好ましい。エタノールで希釈する代わりに水で希釈することも可能ではあるが、エタノールで希釈する方が、多孔質基材の表面上に薄く付着することができ、高透過速度のシリカ多孔質膜とすることができる。シリカゾル中のシリカ成分濃度は0.05〜0.7質量%となるように調整し、好ましくは0.1〜0.4質量%で調整すると、シリカ多孔質膜及びUF膜の剥離等の欠陥を抑制して成膜することが可能となり、薄く高分離能のシリカ多孔質膜を成膜できる。   First, the silica component concentration of the silica sol will be described. A silica sol for forming a porous silica film is prepared. The silica sol is hydrolyzed at 5 to 100 ° C. for 1 to 12 hours in the presence of nitric acid together with a metal alkoxide to form a sol, and the sol is diluted with ethanol. The ethanol concentration of the silica sol after ethanol dilution is preferably 96% by mass. Although it is possible to dilute with water instead of diluting with ethanol, diluting with ethanol can adhere to the surface of the porous substrate more thinly, and make a porous membrane with a high permeation rate. Can do. When the silica component concentration in the silica sol is adjusted to 0.05 to 0.7% by mass, preferably 0.1 to 0.4% by mass, defects such as separation of the porous silica membrane and UF membrane Therefore, it is possible to form a thin porous silica film having a high resolution.

続いて、シリカゾル中の固形成分について説明する。シリカゾルは、目開き10μm以下の篩を通過させた後、多孔質基材に付着させると、シリカ多孔質膜及びUF膜の剥離等の欠陥が少なく、高分離能のシリカ多孔質膜が成膜できる。なお、前記篩処理を経ない従来法で成膜したシリカ多孔質膜は、粒径50μm程度のシリカ凝集塊がシリカ多孔質膜の表面上及び膜内部に埋没する様式で多数存在する。前記シリカ凝集塊が頻繁に観察されるシリカ多孔質膜は、膜剥離が高頻度で発生する傾向がある。   Subsequently, the solid component in the silica sol will be described. When the silica sol is passed through a sieve having an aperture of 10 μm or less and then attached to the porous substrate, the silica sol has few defects such as separation of the porous silica membrane and UF membrane, and a highly porous silica porous membrane is formed. it can. In addition, many porous silica films formed by the conventional method without passing through the sieving process exist in such a manner that silica agglomerates having a particle size of about 50 μm are buried on the surface of the porous silica film and inside the film. In the porous silica membrane in which the silica agglomerates are frequently observed, membrane peeling tends to occur frequently.

次に、シリカゾルの水分濃度について説明する。シリカゾルは、水分濃度が0.03〜3質量%で使用することが好ましく、さらに好ましくは水分の濃度が0.03〜1.5質量%、特に好ましくは水分濃度が0.03〜1.0質量%であると、シリカ多孔質膜及びUF膜の剥離等の欠陥が少なく、薄く、均一で高分離能のシリカ多孔質膜を成膜できる。なお、水分濃度が1.0質量%より少ないシリカゾルを調製する際、シリカゾルは多孔質基材への付着前に脱水を行うと良い。例えば種々の乾燥剤(モレキュラーシーブス、シリカゲル等)によってシリカゾルを脱水する。好ましくはシリカゾルを吸着してしまう懸念のない、硫酸カルシウム等の水和物形成による乾燥剤を用いる。   Next, the moisture concentration of the silica sol will be described. The silica sol is preferably used at a water concentration of 0.03 to 3% by mass, more preferably a water concentration of 0.03 to 1.5% by mass, particularly preferably a water concentration of 0.03 to 1.0%. When the content is% by mass, there are few defects such as exfoliation of the porous silica membrane and UF membrane, and it is possible to form a thin, uniform, high-separation silica porous membrane. In preparing a silica sol having a moisture concentration of less than 1.0% by mass, the silica sol is preferably dehydrated before adhering to the porous substrate. For example, the silica sol is dehydrated with various desiccants (molecular sieves, silica gel, etc.). Preferably, a desiccant by hydrate formation such as calcium sulfate, which is free from the fear of adsorbing silica sol, is used.

次に、本発明のセラミックフィルタの製造方法におけるセラミックゾルの多孔質基材への付着を説明する。図4Aに示すように、本発明においてセラミックゾルの多孔質基材への付着は、セラミックゾル21を多孔質基材4の表面上にかけ、一部の前記セラミックゾル21が自重により落下して前記多孔質基材4の前記表面上から除去され、除去されない残部の前記セラミックゾル21を前記多孔質基材4の前記表面上に付着させることで行う。セラミックゾル21を多孔質基材4上側からかけることにより接触させて付着させる方法は以下の理由からも好ましい。前記方法によれば、多孔質基材4の成膜面に対し水圧がかからないため、毛細管力によるUF膜内へのセラミックゾル21の染込みに留まり、MF膜へのセラミックゾル21の浸透が抑えられる。また、多孔質基材4が長くなった場合であっても、多孔質基材4の上部と下部との間でセラミックゾル21の付着量の差がつきにくく、長さ方向で均質な膜を得ることができる。なお、出願人は、セラミックゾルの多孔質基材の表面上への付着の方法について、先述のセラミックゾルを多孔質基材上にかけて付着させる方法が、ディップコート法と比較して、より高い分離能のセラミックフィルタの製造を実現することを見出し、既に出願している(特願2006−284400参照)。   Next, adhesion of the ceramic sol to the porous substrate in the method for producing a ceramic filter of the present invention will be described. As shown in FIG. 4A, in the present invention, the ceramic sol adheres to the porous substrate by applying the ceramic sol 21 onto the surface of the porous substrate 4 and a part of the ceramic sol 21 falls due to its own weight. The remaining portion of the ceramic sol 21 that has been removed from the surface of the porous substrate 4 and not removed is adhered to the surface of the porous substrate 4. The method of bringing the ceramic sol 21 into contact by applying it from the upper side of the porous substrate 4 is also preferable for the following reason. According to the above method, since no water pressure is applied to the film formation surface of the porous substrate 4, the penetration of the ceramic sol 21 into the MF film is suppressed by the capillary force, so that the penetration of the ceramic sol 21 into the MF film is suppressed. It is done. In addition, even when the porous substrate 4 becomes longer, a difference in the amount of the ceramic sol 21 attached between the upper and lower portions of the porous substrate 4 is difficult to occur, and a uniform film in the length direction is formed. Obtainable. In addition, regarding the method of attaching the ceramic sol on the surface of the porous substrate, the applicant applied the above-described method of attaching the ceramic sol on the porous substrate, which is higher than the dip coating method. Has already been filed (see Japanese Patent Application No. 2006-284400).

前記のセラミックゾル21を多孔質基材4上側からかけることにより接触させて付着させる方法について詳細に説明する。図4Aに示すように、多孔質基材4の外周面をマスキングテープ22でマスクする。例えば、広口ロート下端に上記多孔質基材4を固定し(図示せず)、多孔質基材4上部から前述のセラミックゾル21を流し込み、セル13内を通過させる。言い換えると、セル13の表面上にセラミックゾル21を付着させる。この後に、多孔質基材4を数回手で振り、余剰のセラミックゾル21を飛ばし、除去するとより好ましい。   A method for attaching the ceramic sol 21 by applying the ceramic sol 21 from above the porous substrate 4 will be described in detail. As shown in FIG. 4A, the outer peripheral surface of the porous substrate 4 is masked with a masking tape 22. For example, the porous substrate 4 is fixed to the lower end of the wide-mouth funnel (not shown), and the ceramic sol 21 is poured from the upper portion of the porous substrate 4 to pass through the cell 13. In other words, the ceramic sol 21 is deposited on the surface of the cell 13. After this, it is more preferable that the porous substrate 4 is shaken by hand several times to remove excess ceramic sol 21 and removed.

多孔質基材4上に付着したセラミックゾル21の乾燥の方法について説明する。多孔質基材4上に付着したセラミックゾル21の乾燥は、図4Bに示すように、ドライヤ等によりセル13内に風を送って乾燥させる。風の温度は好ましくは10〜80℃である。10℃よりも低い温度の風を通過させると、セル13表面に付着したセラミックゾル21の乾燥が進展しないため、密な膜が得られず、平均細孔径が大きい膜となってしまう。また、80℃よりも高い温度で温風を通過させると、膜面にクラックが発生しやすく、好ましくない。乾燥のための風がセル13内を通過する速度は、0.1〜100m/秒で行うとよい。風がセル13内を通過する速度が0.1m/秒以下だと、乾燥に要する時間が長くなりすぎ、また、風がセル13内を通過する速度が100m/秒以上だと、膜面にクラックが発生しやすく、好ましくない。このように、送風により乾燥を行うことにより、UF膜へセラミック多孔質膜が密に膜化する構造とすることができる。膜表面から溶媒が乾燥することが重要と考えられるため、外周面をマスクすることにより、セラミックゾル21に含まれる溶媒の多孔質基材4側からの蒸発を防止してもよい。   A method for drying the ceramic sol 21 attached on the porous substrate 4 will be described. As shown in FIG. 4B, the ceramic sol 21 adhered on the porous substrate 4 is dried by sending air into the cell 13 with a dryer or the like. The temperature of the wind is preferably 10 to 80 ° C. When air having a temperature lower than 10 ° C. is passed, the drying of the ceramic sol 21 adhering to the surface of the cell 13 does not progress, so that a dense film cannot be obtained and the film has a large average pore diameter. Moreover, if warm air is passed at a temperature higher than 80 ° C., cracks are likely to occur on the film surface, which is not preferable. The speed at which the wind for drying passes through the cell 13 may be 0.1 to 100 m / sec. If the speed at which the wind passes through the cell 13 is 0.1 m / second or less, the time required for drying becomes too long, and if the speed at which the wind passes through the cell 13 is 100 m / second or more, the film surface Cracks are likely to occur, which is not preferable. Thus, it can be set as the structure where a ceramic porous membrane turns into a film | membrane densely to a UF membrane by drying by ventilation. Since it is considered important that the solvent is dried from the film surface, evaporation of the solvent contained in the ceramic sol 21 from the porous substrate 4 side may be prevented by masking the outer peripheral surface.

セラミック多孔質膜の成膜は、前記多孔質基材4表面上へのセラミックゾル21の付着後、続けて前記乾燥して行う。   The ceramic porous film is formed by continuously drying the ceramic sol 21 after the ceramic sol 21 is deposited on the surface of the porous substrate 4.

セラミック多孔質膜の成膜において、前記の付着の回数は、セラミックゾル21のセラミック成分濃度に依存する。セラミックゾル21のセラミック成分濃度が、0.5〜0.7質量%の時は3〜5回、0.3〜0.5質量%の時は6〜8回、0.05〜0.3質量%の時は9〜13回のセラミックゾルの付着を行う。   In the formation of the ceramic porous film, the number of times of adhesion depends on the ceramic component concentration of the ceramic sol 21. When the ceramic component concentration of the ceramic sol 21 is 0.5 to 0.7 mass%, 3 to 5 times, and when the ceramic sol 21 is 0.3 to 0.5 mass%, 6 to 8 times, 0.05 to 0.3 When mass%, the ceramic sol is attached 9 to 13 times.

その後、100℃/hrにて昇温し、500℃で1時間保持した後、100℃/hrで降温する(以下この操作を焼成ということにする)。   Thereafter, the temperature is raised at 100 ° C./hr, held at 500 ° C. for 1 hour, and then lowered at 100 ° C./hr (hereinafter, this operation is referred to as firing).

従来法のセラミック多孔質膜の成膜は、セラミックゾルの多孔質基材への付着、乾燥、及び焼成の順に連続した工程で行う。前記工程に関しては、セラミックゾルの多孔質基材表面上への付着と乾燥の工程を複数回行った後、焼成を行う方が、焼成の回数を減少できる。前記の付着と乾燥の工程を複数回行った後焼成をする場合、前記従来法の工程の場合と比較して、セラミック多孔質膜及びUF膜の剥離等の欠陥を抑制したセラミック多孔質膜の成膜が実現し、高分離能のセラミックフィルタが製造できる。付着と乾燥の工程を3回行った後焼成する場合の方が、付着と乾燥の工程を2回行った後焼成するよりも、セラミック多孔質膜の多孔質基材表面上からの剥離等の欠陥が減少し、高分離能のセラミックフィルタが製造できるため好ましい。また、焼成回数が削減され、セラミック多孔質膜の熱履歴が減少することで、親水性が高く、透過量の高いセラミックフィルタを製造できる。   The conventional method of forming a ceramic porous membrane is performed in a sequence of steps of adhesion of ceramic sol to the porous substrate, drying, and firing. With regard to the above process, the number of times of firing can be reduced by firing after a plurality of times of attaching the ceramic sol to the surface of the porous substrate and drying the ceramic sol. When firing after performing the adhesion and drying steps a plurality of times, the ceramic porous membrane with suppressed defects such as peeling of the ceramic porous membrane and UF membrane as compared with the case of the conventional method step Film formation is realized, and a ceramic filter with high resolution can be manufactured. In the case of firing after the adhesion and drying steps are performed three times, the ceramic porous film is peeled off from the surface of the porous base material rather than firing after the adhesion and drying steps are performed twice. This is preferable because defects can be reduced and a ceramic filter with high resolution can be manufactured. In addition, since the number of firings is reduced and the thermal history of the ceramic porous membrane is reduced, a ceramic filter having high hydrophilicity and high permeation amount can be produced.

まとめると、(ア)多孔質基材に付着させるセラミックゾルのセラミック成分濃度の適正化を施すことで、薄く、均一で、膜剥離が少ないセラミック多孔質膜が成膜され、高分離能のセラミックフィルタが製造できる。更に、前記(ア)に加えて、(イ)セラミックゾル中の水分濃度の減少、(ウ)セラミックゾル中の凝集粒子の除去、及び(エ)焼成回数の減少、を組み合わせて併用した場合は、薄く、均一で、より膜剥離が少なく、透過量の高いセラミック多孔質膜が成膜され、さらに高分離能のセラミックフィルタが製造できる。前記(ア)ないし(エ)の組み合わせに関しては、前記(ア)ないし(エ)のうち、2つよりも3つ、3つよりも4つ全てを併用した製造方法によるセラミックフィルタの方が、より高分離能を有する。   In summary, (a) by optimizing the ceramic component concentration of the ceramic sol to be adhered to the porous substrate, a thin, uniform and porous ceramic porous membrane with little membrane peeling is formed, and a high-separation ceramic A filter can be manufactured. Furthermore, in addition to the above (a), when (b) reducing the moisture concentration in the ceramic sol, (c) removing aggregated particles in the ceramic sol, and (d) reducing the number of firings, A ceramic porous membrane that is thin, uniform, has less membrane peeling, and has a high permeation amount can be formed, and a ceramic filter with a high resolution can be manufactured. Regarding the combination of (a) to (e), among the (a) to (e), the ceramic filter by the manufacturing method using all three rather than two than three is more preferable. Has higher resolution.

以下、本発明の製造方法を実施例により更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。まず、本実施例で使用した多孔質基材、セラミックゾル及び、成膜の方法等について説明する。   EXAMPLES Hereinafter, although the manufacturing method of this invention is demonstrated in detail by an Example, this invention is not limited by these Examples. First, the porous substrate, the ceramic sol, and the film forming method used in this example will be described.

(実施例1)
(1)多孔質基材
平均細孔径が0.5〜20nmのUF膜2が形成されているモノリス形状(外径30mm,セル内径3mm×37セル,長さ80mm)の多孔質基材を用いた。尚、多孔質基材両端部はガラスにてシールした。
Example 1
(1) Porous substrate A porous substrate having a monolith shape (outer diameter 30 mm, cell inner diameter 3 mm × 37 cells, length 80 mm) on which a UF membrane 2 having an average pore diameter of 0.5 to 20 nm is formed is used. It was. Both ends of the porous substrate were sealed with glass.

本発明では、セラミック多孔質膜の成膜において、多孔質基材表面に付着させるセラミックゾルの条件、ならびにセラミックゾルの付着、乾燥及び焼成の工程を適正化することを課題としている。凹凸が少ないUF膜を多孔質基材の最表面層とした実施形態は、多孔質基材の性状のばらつきがセラミック多孔質膜の成膜に及ぼす影響を可能な限り排除できる点を留意して採用した。   An object of the present invention is to optimize the conditions of the ceramic sol to be attached to the surface of the porous substrate and the steps of attaching, drying and firing the ceramic sol in the formation of the ceramic porous film. It should be noted that the embodiment in which the UF film with few irregularities is the outermost surface layer of the porous substrate can eliminate as much as possible the influence of variations in the properties of the porous substrate on the film formation of the ceramic porous film. Adopted.

(2)セラミックゾル
実施例1においてセラミックゾルはシリカゾルとした。シリカゾルは、金属アルコキシドと共に硝酸の存在下で5〜100℃にて1〜12時間加水分解して得た。得られたシリカゾルをエタノールで希釈し、シリカ成分濃度が0.7質量%となるように調製した。なお、調製直後のシリカゾルの水分濃度は1質量%であった(水分濃度の測定はカールフィッシャー法による。)。なお、チタニアゾル(実施例22、比較例3を参照)、及びジルコニアゾル(実施例23、比較例4を参照)も前記と同様に調製した。
(2) Ceramic sol In Example 1, the ceramic sol was silica sol. The silica sol was obtained by hydrolysis with metal alkoxide in the presence of nitric acid at 5-100 ° C. for 1-12 hours. The obtained silica sol was diluted with ethanol to prepare a silica component concentration of 0.7% by mass. Note that the water concentration of the silica sol immediately after preparation was 1% by mass (the water concentration was measured by the Karl Fischer method). A titania sol (see Example 22 and Comparative Example 3) and a zirconia sol (see Example 23 and Comparative Example 4) were also prepared in the same manner as described above.

(3)多孔質基材へのシリカゾルの付着
図4Aに示すように、試料(多孔質基材4)の外周側面をマスキングテープ22でシールした。広口ロート下端に多孔質基材4を固定し、多孔質基材4上部から60mlのシリカゾル21を流し込みセル13内を通過させた。内側壁の全体にシリカゾル21が付着したことを確認した。
(3) Adhesion of silica sol to porous substrate As shown in FIG. 4A, the outer peripheral side surface of the sample (porous substrate 4) was sealed with a masking tape 22. The porous substrate 4 was fixed to the lower end of the wide-mouth funnel, and 60 ml of silica sol 21 was poured from the top of the porous substrate 4 and allowed to pass through the cell 13. It was confirmed that the silica sol 21 adhered to the entire inner wall.

(4)乾燥
図4Bに示すように、シリカゾルを流し込んだ多孔質基材4のセル13内を室温の風が通過するようにドライヤを用いて1時間乾燥させた。
(4) Drying As shown in FIG. 4B, drying was performed for 1 hour using a dryer so that air at room temperature passed through the cells 13 of the porous substrate 4 into which the silica sol had been poured.

(5)焼成
試料を100℃/hrにて昇温し、500℃で1時間保持した後、100℃/hrで降温した。前記(3)〜(5)を4回行い、実施例1を得た。なお、(3)は、同一のシリカゾル21を繰り返し使用した。4回目の(3)終了後の残存シリカゾル21の水分濃度は5質量%であった。
(5) Firing The sample was heated at 100 ° C./hr, held at 500 ° C. for 1 hour, and then cooled at 100 ° C./hr. Said (3)-(5) was performed 4 times and Example 1 was obtained. In (3), the same silica sol 21 was used repeatedly. The water concentration of the residual silica sol 21 after completion of the fourth (3) was 5% by mass.

(実施例2及び3)
実施例1のセラミックフィルタ製造方法において、実施例2はシリカ成分濃度が0.35質量%のシリカゾル21を用いて(3)〜(5)を8回行った。実施例3は、実施例1のセラミックフィルタ製造方法において、シリカ成分濃度が0.05質量%のシリカゾル21を用いて(3)〜(5)を13回行った。なお、(3)は、同一のシリカゾル21を繰り返し使用した。実施例2及び3ともに8回目の(3)終了後の残存シリカゾル21の水分濃度は5質量%であった。
(Examples 2 and 3)
In the ceramic filter manufacturing method of Example 1, Example 2 performed (3)-(5) 8 times using the silica sol 21 whose silica component density | concentration is 0.35 mass%. In Example 3, in the ceramic filter manufacturing method of Example 1, (3) to (5) were performed 13 times using silica sol 21 having a silica component concentration of 0.05 mass%. In (3), the same silica sol 21 was used repeatedly. In both Examples 2 and 3, the moisture concentration of the residual silica sol 21 after the completion of the eighth (3) was 5% by mass.

(実施例4〜6)
実施例1のセラミックフィルタ製造方法において、毎回(3)前にシリカゾル21は、目開き50μmの篩を通過させ、前記篩を通過したシリカゾル21を(3)に用いて実施例4を得た。実施例5は目開き10μm、実施例6は目開き1μmの篩を前記実施例4のセラミックフィルタ製造方法と同様に用いて得た。前記実施例4〜6は、前記の篩処理以外の工程は実施例1と同様である。実施例4〜6全てにおいて4回目の(3)終了後の残存シリカゾル21の水分濃度は5質量%であった。
(Examples 4 to 6)
In the ceramic filter manufacturing method of Example 1, each time (3) before, the silica sol 21 was passed through a sieve having an opening of 50 μm, and Example 4 was obtained by using the silica sol 21 that passed through the sieve in (3). Example 5 was obtained using a sieve having an aperture of 10 μm and Example 6 using an aperture of 1 μm in the same manner as in the method for producing a ceramic filter of Example 4. Examples 4 to 6 are the same as Example 1 except for the sieving process. In all of Examples 4 to 6, the water concentration of the residual silica sol 21 after the completion of the fourth (3) was 5% by mass.

(実施例7)
実施例1のセラミックフィルタ製造方法において、毎回(3)終了後に残存シリカゾル21の水分濃度を測定した。前記測定で水分濃度が3質量%を越える場合には、シリカゾル21を新規調製して以降の(3)に用いて実施例7を得た。その他の工程は実施例1と同様である。
(Example 7)
In the ceramic filter manufacturing method of Example 1, the moisture concentration of the residual silica sol 21 was measured after the end of (3) each time. In the above measurement, when the water concentration exceeded 3 mass%, silica sol 21 was newly prepared and used in the following (3) to obtain Example 7. Other steps are the same as those in the first embodiment.

(実施例8)
実施例1のセラミックフィルタ製造方法において、新規に調製した水分濃度が1質量%のシリカゾル21を毎回(3)に用いて実施例8を得た。その他の工程は実施例1と同様である。
(Example 8)
In the ceramic filter manufacturing method of Example 1, Example 8 was obtained by using the newly prepared silica sol 21 having a water concentration of 1% by mass for (3) each time. Other steps are the same as those in the first embodiment.

(実施例9)
実施例1のセラミックフィルタ製造方法において、新規に調製し、かつ、硫酸カルシウムで脱水した水分濃度が0.03質量%のシリカゾル21を毎回(3)に用いて実施例9を得た。その他の工程は実施例1と同様である。
Example 9
In the method for producing a ceramic filter of Example 1, Example 9 was obtained by using silica sol 21 newly prepared and dehydrated with calcium sulfate and having a water concentration of 0.03 mass% for each time (3). Other steps are the same as those in the first embodiment.

(実施例10〜13)
実施例8のセラミックフィルタ製造方法において、新規調製した水分濃度が1質量%のシリカゾル21を目開き1μmの篩を通過させた後に(3)に用いて実施例10を得た。その他の工程は実施例8と同様である。前記実施例10によるセラミックフィルタ製造方法において、実施例11はシリカ成分濃度が0.35質量%のシリカゾル21を用いて(3)〜(5)を8回、実施例12はシリカ成分濃度が0.14質量%のシリカゾル21を用いて(3)〜(5)を8回、実施例13はシリカ成分濃度が0.05質量%のシリカゾル21を用いて(3)〜(5)を13回、行って得た。
(Examples 10 to 13)
In the method for producing a ceramic filter of Example 8, Example 10 was obtained by using the newly prepared silica sol 21 having a water concentration of 1% by mass through a sieve having an opening of 1 μm and using (3). Other steps are the same as those in Example 8. In the ceramic filter manufacturing method according to Example 10, Example 11 uses silica sol 21 having a silica component concentration of 0.35 mass%, and (3) to (5) are performed 8 times, and Example 12 has a silica component concentration of 0. (3) to (5) were performed 8 times using 14% by mass of silica sol 21, and Example 13 was performed 13 times to (3) to (5) using silica sol 21 having a silica component concentration of 0.05% by mass. , Got to go.

(実施例14)
実施例10のセラミックフィルタ製造方法において、(3)及び(4)を2回行った後に(5)を行う工程を2回行って実施例14を得た。
(Example 14)
In the method for producing a ceramic filter of Example 10, after performing (3) and (4) twice, the step of performing (5) was performed twice to obtain Example 14.

(実施例15及び16)
実施例14のセラミックフィルタ製造方法において、シリカゾル21のシリカ成分濃度を0.14質量%、ならびに(3)及び(4)を2回行った後に(5)を行う工程を4回として実施例15を得た。実施例14のセラミックフィルタ製造方法において、前記濃度を0.05質量%、ならびに(3)及び(4)を2回行った後に(5)行う工程を5回として実施例16を得た。
(Examples 15 and 16)
In the method for producing a ceramic filter of Example 14, the silica component concentration of the silica sol 21 was 0.14% by mass, and the step of performing (5) after performing (3) and (4) twice was performed four times. Got. In the ceramic filter manufacturing method of Example 14, the concentration was 0.05% by mass, and after performing (3) and (4) twice, the step (5) was performed five times to obtain Example 16.

(実施例17)
実施例11のセラミックフィルタ製造方法において、(3)及び(4)を3回行った後(5)を行う工程を2回行い、その後(3)及び(4)を2回行った後(5)を行うことで実施例17を得た。
(Example 17)
In the ceramic filter manufacturing method of Example 11, after performing (3) and (4) three times, performing the step of performing (5) twice, and then performing (3) and (4) twice (5 Example 17 was obtained.

(実施例18)
実施例15のセラミックフィルタ製造方法において、(3)及び(4)を3回行った後に(5)を行う工程を3回行うことで実施例18を得た。
(Example 18)
In the ceramic filter manufacturing method of Example 15, Example 18 was obtained by performing the process of (5) three times after performing (3) and (4) three times.

(実施例19)
実施例16のセラミックフィルタ製造方法において、(3)及び(4)を3回行った後に(5)を行う工程を4回行い実施例19を得た。
Example 19
In the ceramic filter manufacturing method of Example 16, after performing (3) and (4) three times, the step of performing (5) was performed four times to obtain Example 19.

(実施例20)
実施例18のセラミックフィルタ製造方法において、(3)に用いるシリカゾル21を篩にかける工程を除いた方法により実施例20を得た。
(Example 20)
In the method for producing a ceramic filter of Example 18, Example 20 was obtained by a method excluding the step of sieving the silica sol 21 used in (3).

(実施例21)
実施例18のセラミックフィルタ製造方法において、同一のシリカゾル21を(3)に繰り返し使用して実施例21を得た。
(Example 21)
In the ceramic filter manufacturing method of Example 18, Example 21 was obtained by repeatedly using the same silica sol 21 in (3).

(実施例22及び23)
実施例18のセラミックフィルタ製造方法において、チタニアゾル21を用いて実施例22を、ジルコニアゾル21を用いて実施例23を得た。
(Examples 22 and 23)
In the ceramic filter manufacturing method of Example 18, Example 22 was obtained using the titania sol 21, and Example 23 was obtained using the zirconia sol 21.

(比較例1及び2)
実施例1のセラミックフィルタ製造方法において、シリカ成分濃度が1.0質量%のシリカゾル21を用いて比較例1を、前記濃度を0.8質量%として比較例2を得た。
(Comparative Examples 1 and 2)
In the method for producing a ceramic filter of Example 1, Comparative Example 1 was obtained by using the silica sol 21 having a silica component concentration of 1.0% by mass, and the concentration was 0.8% by mass.

(比較例3及び4)
比較例1のセラミックフィルタ製造方法において、チタニアゾル21を用いて比較例3を、ジルコニアゾル21を用いて比較例4を得た。
(Comparative Examples 3 and 4)
In the ceramic filter manufacturing method of Comparative Example 1, Comparative Example 3 was obtained using titania sol 21, and Comparative Example 4 was obtained using zirconia sol 21.

実施例1〜23ならびに比較例1〜4について、70℃、90質量%のエタノールを、液流速10L/minでモノリスセル内に循環させ、モノリスの外側を2〜10Paの範囲に真空引きすることによる浸透気化分離試験を2時間行った、サンプリングは30分おきに4回実施した。実施例1〜23ならびに比較例1〜4の工程の概要を表1に示し、分離係数値及び透過量(Flux)を表2に示す。なお、透過量は、以下に記載した方法にて算出した。   For Examples 1 to 23 and Comparative Examples 1 to 4, ethanol at 70 ° C. and 90% by mass is circulated in the monolith cell at a liquid flow rate of 10 L / min, and the outside of the monolith is evacuated to a range of 2 to 10 Pa. The pervaporation test was conducted for 2 hours, and sampling was performed 4 times every 30 minutes. Table 1 shows an overview of the steps of Examples 1 to 23 and Comparative Examples 1 to 4, and Table 2 shows separation coefficient values and permeation amounts (Flux). The permeation amount was calculated by the method described below.

[Flux(kg/m・h)]:前記浸透気化分離試験において基材側面からの透過液を液体窒素トラップで捕集し、捕集した透過液量の質量をサンプリング時間と膜面積0.028mで割ることで透過係数を算出した。 [Flux (kg / m 2 · h)]: In the pervaporation separation test, the permeate from the side surface of the substrate was collected by a liquid nitrogen trap, and the mass of the collected permeate was measured for sampling time and membrane area 0. The transmission coefficient was calculated by dividing by 028 m 2 .

Figure 2009241054
Figure 2009241054

Figure 2009241054
Figure 2009241054

表2に示すように、(ア)セラミックゾルのセラミック成分濃度の適正化(1群〜8群)により、従来法の比較例1〜4より分離係数値の向上がみられる。さらに、前記(ア)に加えて、(イ)篩処理による凝集粒子のセラミックゾルからの除去(2群、4群〜6群、7群(実施例21のみ)、8群)、(ウ)セラミックゾルの水分濃度の管理(3群〜6群、7群(実施例20のみ)、8群)、及び(エ)焼成回数の減少(5群〜8群)を併用することで、より高い分離係数値を示すセラミックフィルタを製造できる。また、上記(ア)〜(エ)を2つ、3つ、4つと併用することで、より高い分離係数値を示すセラミックフィルタを製造することができる。   As shown in Table 2, (a) By improving the ceramic component concentration of the ceramic sol (Group 1 to Group 8), the separation coefficient value is improved as compared with Comparative Examples 1 to 4 of the conventional method. Further, in addition to (a) above, (b) removal of aggregated particles from the ceramic sol by sieving (group 2, groups 4 to 6, group 7 (only Example 21), group 8), (c) It is higher by using together the management of the moisture concentration of the ceramic sol (Groups 3 to 6, Group 7 (Example 20 only), Group 8), and (D) Reduction in the number of firings (Groups 5 to 8). A ceramic filter exhibiting a separation factor value can be manufactured. Moreover, the ceramic filter which shows a higher separation factor value can be manufactured by using the said (A)-(D) together with two, three, and four.

実施例1〜3(1群)は、シリカゾルのシリカ成分濃度を0.7質量%以下として検証した。実施例1〜3は、比較例1、2と比較して2〜3倍の分離係数値を示した。シリカ成分濃度が0.05質量%の実施例3は、前記濃度が0.35質量%の実施例2と比較して低い分離係数値を示した。実施例1〜3の各試料のシリカ多孔質膜の表面を電子顕微鏡で観察した結果、実施例1〜3より得た膜表面は、比較例1、2で得た膜表面と比較して平滑で膜剥離の少ないことが判明した。対して、比較例1、2では、幅10〜100μmのUF膜の剥離が確認された。電子プローブX線マイクロアナライザー(EPMA)による膜表面の元素定性分析より、膜表面上のUF膜の剥離部位の周辺でのシリカ偏析を観察した。   In Examples 1 to 3 (Group 1), the silica component concentration of the silica sol was verified as 0.7% by mass or less. Examples 1 to 3 showed a separation factor value 2 to 3 times that of Comparative Examples 1 and 2. Example 3 having a silica component concentration of 0.05% by mass showed a lower separation coefficient value than Example 2 having the concentration of 0.35% by mass. As a result of observing the surface of the porous silica membrane of each sample of Examples 1 to 3 with an electron microscope, the membrane surfaces obtained from Examples 1 to 3 were smoother than the membrane surfaces obtained in Comparative Examples 1 and 2. It was found that there was little film peeling. On the other hand, in Comparative Examples 1 and 2, peeling of the UF film having a width of 10 to 100 μm was confirmed. From elemental qualitative analysis of the film surface with an electron probe X-ray microanalyzer (EPMA), silica segregation around the peeling site of the UF film on the film surface was observed.

実施例4〜6(2群)は、シリカゾルの(ア)シリカ成分濃度の管理に、(イ)シリカゾルの篩処理を加えて検証した。実施例4〜6は、比較例1、2と比較して2.2〜2.8倍、同一シリカ成分濃度の実施例1と比較して1.1〜1.4倍の分離係数値を示した。実施例4〜6の各試料のシリカ多孔質膜の表面を電子顕微鏡で観察した結果、実施例5、6で得られた膜表面は、実施例1で得られた膜表面と比較して膜剥離が少ないことが判明した。実施例1で得られたシリカ多孔質膜1では、粒径50μm程度のシリカ凝集粒子がシリカ多孔質膜の層に埋没し、その周辺部でシリカ偏析と膜剥離が観察された。   Examples 4 to 6 (group 2) were verified by adding (i) sieving treatment of silica sol to (a) controlling the silica component concentration of silica sol. Examples 4 to 6 have separation factor values of 2.2 to 2.8 times that of Comparative Examples 1 and 2, and 1.1 to 1.4 times that of Example 1 having the same silica component concentration. Indicated. As a result of observing the surface of the porous silica membrane of each sample of Examples 4 to 6 with an electron microscope, the membrane surfaces obtained in Examples 5 and 6 were compared with the membrane surface obtained in Example 1. It was found that there was little peeling. In the silica porous membrane 1 obtained in Example 1, silica agglomerated particles having a particle size of about 50 μm were embedded in the layer of the silica porous membrane, and silica segregation and film peeling were observed at the periphery.

実施例7〜9(3群)は、シリカゾルの(ア)シリカ成分濃度の管理に、(ウ)シリカゾルの水分濃度の管理を加えて検証した。実施例7〜9は、比較例1、2と比較して2.4〜2.8倍、同一シリカ成分濃度の実施例1に比較して1.2〜1.4倍の分離係数値を示した。実施例7〜9の各試料のシリカ多孔質膜の表面を電子顕微鏡で観察した結果、実施例7〜9で得られた膜表面は、実施例1で得られた膜表面と比較して、膜剥離が少ないことが判明した。シリカゾルの水分濃度を低下させるほど、シリカ多孔質膜表面上のシリカ偏析の頻度が減少した。   Examples 7 to 9 (Group 3) were verified by adding (c) the water concentration of silica sol to (a) managing the silica component concentration of silica sol. Examples 7 to 9 have separation factor values of 2.4 to 2.8 times that of Comparative Examples 1 and 2, and 1.2 to 1.4 times that of Example 1 having the same silica component concentration. Indicated. As a result of observing the surface of the porous silica membrane of each sample of Examples 7 to 9 with an electron microscope, the membrane surface obtained in Examples 7 to 9 was compared with the membrane surface obtained in Example 1. It was found that there was little film peeling. The frequency of silica segregation on the surface of the porous silica membrane decreased as the water concentration of the silica sol decreased.

実施例10〜13(4群)は、シリカゾルの(ア)シリカ成分濃度及び(ウ)水分濃度の管理、ならびに(イ)篩処理の併用による効果を検証した。実施例10〜13は、比較例1、2と比較して3〜4倍の分離係数値を示した。シリカゾルのシリカ成分濃度0.7質量%及び水分濃度1%ならびに目開き1μmの篩処理をした実施例10と各項目で前記数値が同一となる1〜3群の実施例1、6及び8との分離係数値を比較検証する。実施例10は、(ア)シリカ成分濃度の管理のみを施した実施例1と比較して1.5倍、(ア)シリカ成分濃度の管理と(イ)篩処理を施した実施例6と比較して1.07倍、(ア)シリカ成分濃度と(ウ)水分濃度の管理を施した実施例8と比較して1.15倍の分離係数値を示した。実施例10〜13の各試料のシリカ多孔質膜の表面を電子顕微鏡で観察した結果、実施例10〜13で得られた膜表面は、実施例1〜9で得られた膜表面に比較して、膜剥離が少ないことが判明した。   Examples 10 to 13 (group 4) verified the effects of the combined use of (a) silica component concentration and (c) moisture concentration of silica sol, and (b) sieving treatment. Examples 10 to 13 showed a separation factor value 3 to 4 times that of Comparative Examples 1 and 2. Example 10 in which the numerical values are the same in Example 10 and Example 10 in which the silica component concentration of silica sol was 0.7% by mass and the moisture concentration was 1% and the sieve treatment was performed with an opening of 1 μm. The separation coefficient values of are compared and verified. Example 10 is (a) 1.5 times that of Example 1 in which only the control of the silica component concentration was performed, and (a) Example 6 in which the control of the silica component concentration and (b) the sieving treatment were performed. The separation coefficient value was 1.07 times higher than that of Example 8 in which (a) the silica component concentration and (c) the moisture concentration were controlled. As a result of observing the surface of the porous silica membrane of each sample of Examples 10 to 13 with an electron microscope, the membrane surfaces obtained in Examples 10 to 13 were compared with the membrane surfaces obtained in Examples 1 to 9. It was found that there was little film peeling.

実施例14〜19(5群、6群)は、シリカゾルの(ア)シリカ成分濃度、(イ)篩処理及び(ウ)水分濃度の管理の併用に、(エ)焼成回数の減少を加えて検証した。実施例14〜16(5群)は、付着と乾燥の工程を2回行った後に焼成し、実施例17〜19は、付着と乾燥の工程を3回行った後に焼成した。よって、6群の実施例は、5群の実施例よりも、焼成回数をさらに減じている。実施例14〜16は、比較例1、2と比較して3.0〜3.6倍の分離係数値を示した。実施例17〜19は、比較例1、2と比較して4.0〜7.0倍の分離係数値を示した。特に実施例18では、今回の実施例の中で最も高い離係数値を示した。実施例14〜19の各試料のシリカ多孔質膜の表面を電子顕微鏡で観察した結果、実施例14〜19で得られた膜表面は、実施例10〜13で得られた膜表面に比較して、膜剥離が少ないことが判明した。シリカゾルの付着毎に焼成を行った実施例10〜13(4群)と、付着と乾燥工程を2回行った後に焼成を行った実施例14〜16(5群)及び付着と乾燥工程を3回行った後に焼成を行った実施例17〜19(6群)との透過量値を比較検証する。実施例14〜16は実施例10〜13と比較して、1.4〜2.2倍の透過量を示した。また、実施例17〜19は実施例10〜13と比較して、1.8〜2.2倍の透過量を示した。   In Examples 14 to 19 (groups 5 and 6), (a) silica component concentration, (b) sieving treatment, and (c) moisture concentration management of silica sol are combined with (e) a decrease in the number of firings. Verified. Examples 14 to 16 (5 groups) were fired after the adhesion and drying steps were performed twice, and Examples 17 to 19 were fired after the adhesion and drying steps were performed three times. Therefore, the number of firings is further reduced in the sixth group of examples than in the fifth group of examples. Examples 14-16 showed the separation factor value of 3.0-3.6 times compared with the comparative examples 1 and 2. FIG. Examples 17 to 19 showed separation factor values 4.0 to 7.0 times that of Comparative Examples 1 and 2. In particular, Example 18 showed the highest separation coefficient value in this example. As a result of observing the surface of the porous silica membrane of each sample of Examples 14 to 19 with an electron microscope, the membrane surfaces obtained in Examples 14 to 19 were compared with the membrane surfaces obtained in Examples 10 to 13. It was found that there was little film peeling. Examples 10 to 13 (4 groups) that were fired for each silica sol deposition, Examples 14 to 16 (5 groups) that were fired after the adhesion and drying steps were performed twice, and adhesion and drying steps 3 The permeation amount values of Examples 17 to 19 (sixth group) that were fired after repeated firing were compared and verified. Examples 14-16 showed the transmission amount of 1.4 to 2.2 times compared with Examples 10-13. Moreover, Examples 17-19 showed the transmission amount of 1.8 to 2.2 times compared with Examples 10-13.

実施例20、21(7群)は、実施例18の条件から、実施例20は(イ)篩処理を除いて、実施例21は(ウ)シリカゾルの水分濃度の適正化を除いて検証した。実施例20、21は、実施例18と比較して、低い分離係数値を示した。各試料のシリカ多孔質膜の表面を電子顕微鏡で観察した結果、実施例20、21で得られた膜表面は、実施例18で得られた膜表面と比較して、膜剥離が多く観察された。このことから、セラミックフィルタ製造において、(イ)篩処理及び(ウ)シリカゾルの水分濃度の管理は、分離係数値の改善に共に必要される。   Examples 20 and 21 (7 groups) were verified from the conditions of Example 18 except that (i) sieving was performed in Example 20, and (21) excluding optimization of the water concentration of silica sol. . Examples 20 and 21 showed lower separation coefficient values than Example 18. As a result of observing the surface of the porous silica film of each sample with an electron microscope, the film surfaces obtained in Examples 20 and 21 were observed to have more film peeling than the film surface obtained in Example 18. It was. For this reason, in the production of ceramic filters, (i) sieving treatment and (c) managing the water concentration of silica sol are both required to improve the separation coefficient value.

実施例22、23(8群)は、それぞれチタニアゾル、ジルコニアゾルについて、(ア)セラミックゾル成分濃度、(イ)篩処理及び(ウ)水分濃度の管理の併用に、(エ)焼成回数の減少を加えて検証した。実施例22、23は、比較例3、4と比較して約6倍の分離係数値を示した。実施例22、23の各試料のセラミック多孔質膜1の表面を電子顕微鏡で観察した結果、実施例22、23で得られた膜表面は、比較例3、4で得られた膜表面に比較して、膜剥離が少ないことが判明した。また、実施例22、23は、比較例3、4と比較して約1.75倍の透過量を示した。   In Examples 22 and 23 (group 8), for titania sol and zirconia sol, respectively, (a) ceramic sol component concentration, (b) sieving treatment, and (c) moisture concentration management, And verified. Examples 22 and 23 showed a separation factor value of about 6 times that of Comparative Examples 3 and 4. As a result of observing the surface of the ceramic porous membrane 1 of each sample of Examples 22 and 23 with an electron microscope, the membrane surfaces obtained in Examples 22 and 23 were compared with the membrane surfaces obtained in Comparative Examples 3 and 4. Thus, it was found that there was little film peeling. In addition, Examples 22 and 23 showed a permeation amount approximately 1.75 times that of Comparative Examples 3 and 4.

以上の実施例をまとめると、セラミック多孔質膜が成膜されたセラミックフィルタの製造方法において、(ア)セラミックゾルのセラミック成分濃度の適正化は、セラミック多孔質膜の剥離発生が抑制され、高分離能のセラミックフィルタの製造に適している。さらに、前記(ア)に加えて、(イ)篩処理による凝集粒子のセラミックゾルからの除去、(ウ)セラミックゾルの水分濃度の管理、及び(エ)焼成回数の減少、を併用した場合は、前記(ア)単独の場合と比較してセラミック多孔質膜の剥離発生を抑制する効果が向上し、より高分離能かつ高透過性のセラミックフィルタが製造できる。特に、(ア)〜(エ)の全てを併用したセラミックフィルタの製造方法が、最適な条件であり、セラミック多孔質膜の剥離が優位に抑制された、高分離能かつ高透過性のセラミックフィルタの製造が実現された。   Summarizing the above examples, in the method for producing a ceramic filter in which a ceramic porous film is formed, (a) the optimization of the ceramic component concentration of the ceramic sol suppresses the occurrence of peeling of the ceramic porous film, Suitable for the production of separable ceramic filters. Furthermore, in addition to the above (a), when (b) removing aggregated particles from the ceramic sol by sieving, (c) managing the water concentration of the ceramic sol, and (d) reducing the number of firings, The effect of suppressing the occurrence of exfoliation of the ceramic porous membrane is improved as compared with the case of (a) alone, and a ceramic filter with higher separation and high permeability can be produced. In particular, the method for producing a ceramic filter using all of (A) to (D) is the optimum condition, and the high-separation and high-permeability ceramic filter in which peeling of the porous ceramic membrane is suppressed preferentially The production of was realized.

本発明によれば、セラミック多孔質膜の成膜において、多孔質基材に付着させるセラミックゾルのセラミック成分濃度の適正化、前記セラミックゾル中の粒径の大きい固形成分の除去、前記セラミックゾルの水分濃度の管理、焼成回数の減少、をすることで、セラミック多孔質膜の膜表面上が平滑で高分離能かつ高透過性のセラミックフィルタを安定的に製造することが可能となる。   According to the present invention, in the formation of the ceramic porous film, the ceramic component concentration of the ceramic sol attached to the porous substrate is optimized, the solid component having a large particle size in the ceramic sol is removed, the ceramic sol By controlling the moisture concentration and reducing the number of firings, it becomes possible to stably produce a ceramic filter having a smooth, high-separation and high-permeability ceramic filter surface.

セラミックフィルタの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a ceramic filter. セラミックフィルタの一実施形態を示す斜視図である。It is a perspective view showing one embodiment of a ceramic filter. UF膜を説明する図である。It is a figure explaining a UF membrane. UF膜の表面上にセラミックゾルを1回付着させた場合の説明図である。It is explanatory drawing at the time of making ceramic sol adhere once on the surface of a UF membrane. UF膜の表面上にセラミックゾルを2回付着させた場合の説明図である。It is explanatory drawing at the time of making ceramic sol adhere twice on the surface of a UF membrane. UF膜の表面上にセラミックゾルを3回付着させた場合の説明図である。It is explanatory drawing at the time of making ceramic sol adhere on the surface of a UF membrane 3 times. UF膜の表面上にセラミックゾルを4回付着させた場合の説明図である。It is explanatory drawing at the time of making ceramic sol adhere on the surface of a UF membrane 4 times. 多孔質基材にセラミックゾルを付着させる方法の一例を概略的に示す概略図である。It is the schematic which shows roughly an example of the method of attaching ceramic sol to a porous base material. 多孔質基材に付着したセラミックゾルを乾燥する方法の一例を概略的に示す概略図である。It is the schematic which shows roughly an example of the method of drying the ceramic sol adhering to the porous base material.

符号の説明Explanation of symbols

1:セラミック多孔質膜、1a:1回目の付着層、1b:2回目の付着層、1c:3回目の付着層、1d:4回目の付着層、2:UF膜、3:MF膜、4:多孔質基材(UF膜+MF膜)、5:MF膜の表面の凹部分、6:MF膜の表面の凸部分、11:セラミックフィルタ、12:隔壁、13:セル、14:入口側端面、21:セラミックゾル(シリカゾル)、22:マスキングテープ。 1: Ceramic porous membrane, 1a: First adhesion layer, 1b: Second adhesion layer, 1c: Third adhesion layer, 1d: Fourth adhesion layer, 2: UF membrane, 3: MF membrane, 4 : Porous substrate (UF membrane + MF membrane), 5: concave portion on the surface of MF membrane, 6: convex portion on the surface of MF membrane, 11: ceramic filter, 12: partition wall, 13: cell, 14: end surface on the inlet side 21: Ceramic sol (silica sol), 22: Masking tape.

Claims (6)

セラミック成分濃度が0.05〜0.7質量%のセラミックゾルを、多孔質基材の表面上にかけ、
一部の前記セラミックゾルが自重により落下して前記多孔質基材の前記表面上から除去され、除去されない残部の前記セラミックゾルを前記多孔質基材の前記表面上に付着させた後、
前記多孔質基材に付着した前記セラミックゾルを送風乾燥し、次いで焼成を行ってセラミック多孔質膜を成膜するセラミックフィルタの製造方法。
A ceramic sol having a ceramic component concentration of 0.05 to 0.7% by mass is applied on the surface of the porous substrate,
After a part of the ceramic sol falls by its own weight and is removed from the surface of the porous substrate, and the remaining ceramic sol that is not removed is deposited on the surface of the porous substrate,
A method for producing a ceramic filter, wherein the ceramic sol attached to the porous substrate is blown and dried, and then fired to form a ceramic porous film.
前記セラミックゾルの溶媒がエタノールである請求項1に記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to claim 1, wherein a solvent of the ceramic sol is ethanol. 前記セラミックゾルの水分濃度が0.03〜3質量%である請求項1または2に記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to claim 1 or 2, wherein the ceramic sol has a water concentration of 0.03 to 3 mass%. 目開き10μmの篩を通過できる前記セラミックゾルを用いた請求項1〜3のいずれか1項に記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to any one of claims 1 to 3, wherein the ceramic sol capable of passing through a sieve having an opening of 10 µm is used. 前記セラミックゾルの前記多孔質基材の前記表面上への付着および送風乾燥を行う工程を複数回行った後、焼成を行う請求項1〜4のいずれか1項に記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to any one of claims 1 to 4, wherein the ceramic sol is fired after a plurality of steps of attaching the ceramic sol to the surface of the porous substrate and performing air drying. . 前記セラミック成分が、シリカ、チタニア、またはジルコニアである請求項1〜5のいずれか1項に記載のセラミックフィルタの製造方法。   The method for producing a ceramic filter according to claim 1, wherein the ceramic component is silica, titania, or zirconia.
JP2008271801A 2008-03-12 2008-10-22 Method for manufacturing of ceramic filter Withdrawn JP2009241054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271801A JP2009241054A (en) 2008-03-12 2008-10-22 Method for manufacturing of ceramic filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008062960 2008-03-12
JP2008271801A JP2009241054A (en) 2008-03-12 2008-10-22 Method for manufacturing of ceramic filter

Publications (1)

Publication Number Publication Date
JP2009241054A true JP2009241054A (en) 2009-10-22

Family

ID=41303591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271801A Withdrawn JP2009241054A (en) 2008-03-12 2008-10-22 Method for manufacturing of ceramic filter

Country Status (1)

Country Link
JP (1) JP2009241054A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2409756A1 (en) 2010-07-22 2012-01-25 NGK Insulators, Ltd. Silica membrane and method for manufacturing the same
JP2012176367A (en) * 2011-02-28 2012-09-13 Ngk Insulators Ltd Ceramic porous membrane
JP2013034994A (en) * 2010-02-25 2013-02-21 Ngk Insulators Ltd Method for detecting defect of separation membrane
JP5897334B2 (en) * 2010-03-24 2016-03-30 日本碍子株式会社 Method for producing silica film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034994A (en) * 2010-02-25 2013-02-21 Ngk Insulators Ltd Method for detecting defect of separation membrane
JP5897334B2 (en) * 2010-03-24 2016-03-30 日本碍子株式会社 Method for producing silica film
US9403130B2 (en) 2010-03-24 2016-08-02 Ngk Insulators, Ltd. Method of manufacturing silica membrane
EP2409756A1 (en) 2010-07-22 2012-01-25 NGK Insulators, Ltd. Silica membrane and method for manufacturing the same
JP2012040549A (en) * 2010-07-22 2012-03-01 Ngk Insulators Ltd Silica membrane and method for manufacturing the same
US9108166B2 (en) 2010-07-22 2015-08-18 Ngk Insulators, Ltd. Silica membrane and method for manufacturing the same
JP2012176367A (en) * 2011-02-28 2012-09-13 Ngk Insulators Ltd Ceramic porous membrane

Similar Documents

Publication Publication Date Title
JP5426367B2 (en) Ceramic porous membrane and ceramic filter
JP5486300B2 (en) Method for producing ceramic porous membrane and method for producing ceramic filter
JP5048371B2 (en) Method for producing ceramic porous membrane and method for producing ceramic filter
WO2009119292A1 (en) Ceramic filter
JP5469453B2 (en) Ceramic filter and method for regenerating the same
JP5394234B2 (en) Ceramic porous membrane and ceramic filter
WO2013042262A1 (en) Method for producing carbon film
JP6436974B2 (en) Monolith type separation membrane structure and method for producing monolith type separation membrane structure
JP2009241054A (en) Method for manufacturing of ceramic filter
JP5033670B2 (en) Manufacturing method of ceramic filter
JP5897334B2 (en) Method for producing silica film
JP5467909B2 (en) Carbon film manufacturing method
JP2009226306A (en) Ceramic filter and manufacturing method of nanofiltration membrane

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110