JPWO2020065649A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020065649A5
JPWO2020065649A5 JP2021541336A JP2021541336A JPWO2020065649A5 JP WO2020065649 A5 JPWO2020065649 A5 JP WO2020065649A5 JP 2021541336 A JP2021541336 A JP 2021541336A JP 2021541336 A JP2021541336 A JP 2021541336A JP WO2020065649 A5 JPWO2020065649 A5 JP WO2020065649A5
Authority
JP
Japan
Prior art keywords
fluid
storage vessel
flow
thermal storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021541336A
Other languages
Japanese (ja)
Other versions
JP2022502625A (en
JP7477180B2 (en
Publication date
Priority claimed from PCT/IB2018/001091 external-priority patent/WO2019058170A1/en
Application filed filed Critical
Priority claimed from PCT/IL2019/051059 external-priority patent/WO2020065649A1/en
Publication of JP2022502625A publication Critical patent/JP2022502625A/en
Publication of JPWO2020065649A5 publication Critical patent/JPWO2020065649A5/ja
Application granted granted Critical
Publication of JP7477180B2 publication Critical patent/JP7477180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (17)

熱システムにおいて使用される蓄熱容器であって、前記蓄熱容器の内側に配置されている相変化物質を通る流体の流れによって熱を交換することを目的とし、前記蓄熱容器が、
蓄熱容器ハウジングと、
流体注入口および流体吐出口と、
前記相変化物質を含み、前記流体の流れを前記ハウジング内側の異なる部分に導くように構成されている複数の通路を画成する、1つまたは複数のカプセルと、
を備えており、
1つまたは複数のカプセルは、前記蓄熱容器内に、他の1つまたは複数のカプセルと異なる向きに配置される、
蓄熱容器。
A thermal storage vessel for use in a thermal system for exchanging heat by fluid flow through a phase change material disposed inside said thermal storage vessel, said thermal storage vessel comprising:
a heat storage container housing;
a fluid inlet and a fluid outlet;
one or more capsules containing the phase change material and defining a plurality of passages configured to direct the flow of the fluid to different portions of the interior of the housing;
and
one or more capsules are positioned in the thermal storage vessel in a different orientation than the other one or more capsules;
heat storage container.
前記1つまたは複数のカプセルは、他の1つまたは複数のカプセルに対して横に向けられる、請求項1に記載の蓄熱容器。2. The thermal storage container of claim 1, wherein the one or more capsules are oriented laterally with respect to the other one or more capsules. 長手方向軸が前記蓄熱容器を通って定義されており、1つまたは複数のカプセルが、長手方向軸を中心として少なくとも30゜の角度の向きを有する、請求項1または請求項2に記載の蓄熱容器。 3. The claim 1 or claim 2 , wherein a longitudinal axis is defined through the heat storage vessel and one or more capsules are oriented at an angle of at least 30[deg.] about the longitudinal axis. heat storage container. 前記蓄熱容器内に配置されている前記カプセルが、前記カプセルの輪郭の間に隙間を画成する、凹状の外形および凸状の外形の組合せを有する、請求項1から請求項のいずれか一項に記載の蓄熱容器。 4. Any one of claims 1 to 3 , wherein the capsule positioned within the heat storage vessel has a combination of concave and convex contours defining a gap between the contours of the capsule. The heat storage container according to the paragraph. 1つまたは複数のカプセルが水平方向であり、1つまたは複数のカプセルが垂直方向である、請求項1から請求項のいずれか一項に記載の蓄熱容器。 5. A thermal storage container according to any one of the preceding claims, wherein the one or more capsules are horizontally oriented and the one or more capsules are vertically oriented. 前記カプセルを通じた前記流体注入口から前記流体吐出口までの実際の流体の流れの長さが、一般的な流れの方向において前記流体注入口と前記流体吐出口の間で測定される長さよりも長い、請求項1から請求項のいずれか一項に記載の蓄熱容器。 the actual length of fluid flow through the capsule from the fluid inlet to the fluid outlet is greater than the length measured between the fluid inlet and the fluid outlet in the general direction of flow; 6. A heat storage vessel according to any one of claims 1 to 5 , which is long. 前記複数の通路が、前記ハウジングの内側で前記流体の蛇行流を引き起こすように構成されている、請求項1から請求項のいずれか一項に記載の蓄熱容器。 7. The thermal storage vessel of any one of claims 1-6 , wherein the plurality of passages are configured to induce a tortuous flow of the fluid inside the housing. 前記蓄熱容器が、1つまたは複数の乱流発生器を備えている、請求項1から請求項のいずれか一項に記載の蓄熱容器。 8. A thermal storage vessel according to any preceding claim, wherein the thermal storage vessel comprises one or more turbulence generators. 蓄熱容器の中を流れる流体によって熱を交換する方法であって、
前記流体を、流体注入口を介して前記蓄熱容器の中に挿入するステップと、
前記蓄熱容器のセクションの内側で、前記流体と、凍結した相変化物質との間で熱を交換するステップと、
前記流体の流れ方向を、前記蓄熱容器の長手方向に対して少なくとも30゜だけ修正するステップと、
前記蓄熱容器の別の部分において、前記交換するステップおよび前記修正するステップを少なくとももう1回繰り返すステップと、
前記流体を、前記蓄熱容器から流体吐出口を介して出力するステップと、
を含む、方法。
A method of exchanging heat with a fluid flowing through a heat storage vessel, comprising:
inserting the fluid into the thermal storage vessel through a fluid inlet;
exchanging heat between the fluid and a frozen phase change material inside a section of the heat storage vessel;
modifying the flow direction of the fluid by at least 30° with respect to the longitudinal direction of the heat storage vessel;
repeating the replacing and modifying steps at least one more time in another portion of the thermal storage vessel;
outputting the fluid from the heat storage vessel through a fluid outlet;
A method, including
前記修正するステップが、前記蓄熱容器の内側で前記流体の蛇行流を引き起こすことによる、請求項に記載の方法。 10. The method of claim 9 , wherein said modifying step is by causing a tortuous flow of said fluid inside said thermal storage vessel. 前記セクションを通じた前記流体注入口から前記流体吐出口までの実際の流体の流れの長さが、前記流体が中を流れる前記セクションすべてを通じて前記流体注入口と前記流体吐出口の間で測定される直接的な長さよりも長い、請求項または請求項10に記載の方法。 The actual length of fluid flow from the fluid inlet through the section to the fluid outlet is measured between the fluid inlet and the fluid outlet through all of the sections through which the fluid flows. 11. A method according to claim 9 or claim 10 , longer than the direct length. 前記修正するステップが、カプセルを他のカプセに対して横に向けることによる、請求項から請求項11のいずれか一項に記載の方法。 12. A method according to any one of claims 9 to 11 , wherein said modifying step is by orienting a capsule sideways with respect to another capsule . カプセルの熱交換面の上に乱流を発生させるステップ、をさらに含む、請求項から請求項12のいずれか一項に記載の方法。 13. A method according to any one of claims 9 to 12 , further comprising generating turbulence over the heat exchange surface of the capsule. カプセルの熱交換面の上に蛇行流を発生させるステップ、をさらに含む、請求項から請求項13のいずれか一項に記載の方法。 14. A method according to any one of claims 9 to 13 , further comprising generating a serpentine flow over the heat exchange surface of the capsule. 前記修正するステップが、前記蓄熱容器内で乱流と蛇行流との間で流れを交互に変えることによる、請求項から請求項14のいずれか一項に記載の方法。 15. A method according to any one of claims 9 to 14 , wherein said modifying step is by alternating flow between turbulent and tortuous flow within said thermal storage vessel. 流体の流れが、前記蓄熱容器内の前記流体の流路の少なくとも35%において強い乱流である、請求項から請求項15のいずれか一項に記載の方法。 16. A method according to any one of claims 9 to 15 , wherein the fluid flow is highly turbulent in at least 35% of the fluid flow paths within the thermal storage vessel. 流体の流れが、前記蓄熱容器内の前記流体の流路の少なくとも35%において100W/(m*K)を超える熱伝達率を生成する、請求項から請求項16のいずれか一項に記載の方法。 17. Any one of claims 9 to 16 , wherein the fluid flow produces a heat transfer coefficient greater than 100 W/( m2 *K) in at least 35% of the fluid flow paths within the heat storage vessel. described method.
JP2021541336A 2018-09-25 2019-09-25 Fluid flow in the thermal storage vessel Active JP7477180B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
PCT/IB2018/001091 WO2019058170A1 (en) 2017-09-25 2018-09-25 Thermal energy storage array
IBPCT/IB2018/001091 2018-09-25
US201962824914P 2019-03-27 2019-03-27
US201962824575P 2019-03-27 2019-03-27
US201962824541P 2019-03-27 2019-03-27
US62/824,575 2019-03-27
US62/824,914 2019-03-27
US62/824,541 2019-03-27
PCT/IL2019/051059 WO2020065649A1 (en) 2018-09-25 2019-09-25 Fluid flow in thermal storage containers

Publications (3)

Publication Number Publication Date
JP2022502625A JP2022502625A (en) 2022-01-11
JPWO2020065649A5 true JPWO2020065649A5 (en) 2022-10-03
JP7477180B2 JP7477180B2 (en) 2024-05-01

Family

ID=69953001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021541336A Active JP7477180B2 (en) 2018-09-25 2019-09-25 Fluid flow in the thermal storage vessel

Country Status (8)

Country Link
US (2) US20220187028A1 (en)
EP (3) EP3857154A4 (en)
JP (1) JP7477180B2 (en)
CN (2) CN113167547A (en)
AU (1) AU2019349969A1 (en)
BR (1) BR112021005516A2 (en)
IL (2) IL281797A (en)
WO (3) WO2020065649A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3688377B1 (en) 2017-09-25 2024-05-08 Nostromo Ltd. Thermal energy storage array
CN114526626B (en) * 2020-11-23 2023-07-21 广东美的白色家电技术创新中心有限公司 Energy storage heat exchange device and electrical equipment
NL2031792B1 (en) * 2022-05-06 2023-11-14 Heatwacht Holding B V DEVICE FOR STORING ENERGY AND METHOD
GR1010488B (en) * 2022-05-30 2023-06-16 Αριστοτελειο Πανεπιστημιο Θεσσαλονικης - Ειδικος Λογαριασμος Κονδυλιων Ερευνας, Packaging capsule device for a thermal energy storage system with macro-encapsulation
US11970652B1 (en) 2023-02-16 2024-04-30 Microera Power Inc. Thermal energy storage with actively tunable phase change materials
US11909023B1 (en) 2023-03-27 2024-02-20 Phasestor Llc Modular, stackable PCM-based thermal battery apparatus

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259401A (en) * 1976-08-10 1981-03-31 The Southwall Corporation Methods, apparatus, and compositions for storing heat for the heating and cooling of buildings
US4347892A (en) * 1977-03-02 1982-09-07 Energy Recycling Company Of Michigan Energy storage unit and system
US4205656A (en) * 1978-06-06 1980-06-03 Scarlata Robert W Thermal storage reservoirs
US4442826A (en) * 1980-11-04 1984-04-17 Pleasants Frank M Prefabricated panel for building construction and method of manufacturing
JPS61265493A (en) * 1985-05-20 1986-11-25 Fujikura Ltd Cooling device employing latent heat accumulating material
US5090207A (en) * 1987-02-06 1992-02-25 Reaction Thermal Systems, Inc. Ice building, chilled water system and method
JPS63273787A (en) * 1987-04-30 1988-11-10 Kubota Ltd Capsule for heat accumulating material
FR2658596B1 (en) * 1990-02-21 1992-05-29 Monteil Jean Francois KIT FOR TRANSFORMING A COOLER INTO A PORTABLE AIR CONDITIONER.
JP2000018864A (en) 1998-06-30 2000-01-18 Kubota Corp Thermal storage capsule
DE19907975A1 (en) * 1999-02-25 2000-09-07 Roebke Hartmut Fluid storage and dispenser device comprizes fixed body with interior storage cavity as part of building structure in body system of pipe-linked modules of appropriate material.
WO2003064931A1 (en) * 2002-02-01 2003-08-07 Eidgenössische Materialprüfungs- und Forschungsanstalt Empa Thermoactive wall and ceiling element
US8234876B2 (en) * 2003-10-15 2012-08-07 Ice Energy, Inc. Utility managed virtual power plant utilizing aggregated thermal energy storage
WO2009105643A2 (en) * 2008-02-22 2009-08-27 Dow Global Technologies Inc. Heat storage devices
CN101586853A (en) * 2008-05-21 2009-11-25 上海阿尔西空调系统服务有限公司 The ice storage centralized air-conditioning system that has recuperation of heat
GB2489011A (en) * 2011-03-16 2012-09-19 Green Structures Ltd Thermal energy store
GB201104867D0 (en) * 2011-03-23 2011-05-04 Isentropic Ltd Improved thermal storage system
EP2715478A4 (en) * 2011-05-26 2014-10-29 Ice Energy Inc System and method for improving grid efficiency utilizing statistical distribution control
US20150027662A1 (en) * 2011-08-16 2015-01-29 Antonius Henricus Hubertus Schmitz Climate system
JP2013181692A (en) 2012-03-01 2013-09-12 Dainippon Printing Co Ltd Heat accumulation apparatus, and air conditioning system
JP6028590B2 (en) * 2012-03-27 2016-11-16 Jfeエンジニアリング株式会社 Flow suppressing member and heat exchange efficiency increasing method
IN2015DN00418A (en) * 2012-06-29 2015-06-19 Saint Gobain Ceramics
EP2711163A1 (en) * 2012-09-21 2014-03-26 Hirschberg Engineering Three-dimensional body
ITMI20130796A1 (en) * 2013-05-15 2014-11-16 Prs Passive Refrigeration Solutions S A APPARATUS FOR THE PRESERVATION AND TRANSPORT OF FRESH OR FROZEN PRODUCTS, PARTICULARLY FOR THERMICALLY INSULATED OR SIMILAR CONTAINERS.
RU2592883C2 (en) * 2013-08-30 2016-07-27 Общество С Ограниченной Ответственностью "Яндекс" Cooling system, method of operating such system and backup cooling device
JP6180281B2 (en) * 2013-11-01 2017-08-16 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger with heat storage function and manufacturing method thereof
WO2015164628A1 (en) * 2014-04-23 2015-10-29 Pcm Packaging Llc D/B/A Glacier Tek Pcm container approximating a container
NO340371B1 (en) * 2014-12-19 2017-04-10 Energynest As HIGH TEMPERATURE THERMAL ENERGY STORAGE, PROCEDURE FOR BUILDING AND PROCEDURE FOR OPERATION OF THIS STOCK
NL2016194B1 (en) * 2015-10-05 2017-05-02 Global-E-Systems Europa B V Modular heat exchanger.
WO2017151606A1 (en) * 2016-02-29 2017-09-08 The Regents Of The University Of California Modular thermal energy storage system
CN107547237A (en) 2016-06-29 2018-01-05 中兴通讯股份有限公司 Virtual network function VNF update methods, device and VNF bags
KR101936840B1 (en) * 2017-03-06 2019-01-11 한국과학기술연구원 Apparatus for latent heat storage
EP3688377B1 (en) * 2017-09-25 2024-05-08 Nostromo Ltd. Thermal energy storage array
CN207703058U (en) * 2017-10-20 2018-08-07 华北电力大学(保定) A kind of thermal storage unit
WO2021076741A1 (en) * 2019-10-15 2021-04-22 Phase Change Energy Solutions, Inc. Thermal energy management kits

Similar Documents

Publication Publication Date Title
Ligrani Heat transfer augmentation technologies for internal cooling of turbine components of gas turbine engines
Srinivas et al. Heat transfer intensification in a shell and helical coil heat exchanger using water-based nanofluids
JP4477032B2 (en) Closed loop steam cooled turbine shroud
Liao et al. Augmentation of convective heat transfer inside tubes with three-dimensional internal extended surfaces and twisted-tape inserts
ES2256622T3 (en) MIXER / HEAT EXCHANGER.
TWI575203B (en) Fluid heating-cooling cylinder device
US20120070306A1 (en) Turbine component cooling channel mesh with intersection chambers
JPS60502166A (en) Heat exchanger
ES2748856T5 (en) Heat exchanger
JPH04227483A (en) Heat exchanger used for hf alkylation
JPWO2020065649A5 (en)
Singh et al. Experimental studies on parallel wavy channel heat exchangers with varying channel inclination angles
JP5934569B2 (en) Heat exchanger with protective member
CN114270126A (en) Moving bed particle heat exchanger
ITMI951001A1 (en) HEAT EXCHANGER
Kareemullah et al. Heat transfer analysis of shell and tube heat exchanger cooled using nanofluids
JP3122464B2 (en) Spiral heat exchanger
Conté et al. Numerical and experimental investigations of heat transfer performance of rectangular coil heat exchangers
Kumar Performance Analysis of Double Pipe Heat Exchanger using Convergent–Divergent-Divergent Spring Turbulators
Johar et al. Experimental studies on heat transfer augmenatation Using modified reduced width twisted tapes (RWTT) as Inserts for tube side flow of liquids
CN112414173B (en) Parallel type partition self-adaptive flow regulation cooling system
CN112414166B (en) Self-adaptive flow regulation cooling device with upper partition and lower partition
Albert et al. Enhancement of heat transfer in crystallization fouling due to surface roughness
Yakar Thermal Performance and Exergy Analysis for Conical Fins with Rift
AU2021103740A4 (en) Design method of shell and tube heat exchanger for improving rate of heat transfer and effectiveness