JPS61265493A - Cooling device employing latent heat accumulating material - Google Patents

Cooling device employing latent heat accumulating material

Info

Publication number
JPS61265493A
JPS61265493A JP60107690A JP10769085A JPS61265493A JP S61265493 A JPS61265493 A JP S61265493A JP 60107690 A JP60107690 A JP 60107690A JP 10769085 A JP10769085 A JP 10769085A JP S61265493 A JPS61265493 A JP S61265493A
Authority
JP
Japan
Prior art keywords
cooling
fluid
cooled
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60107690A
Other languages
Japanese (ja)
Inventor
Masahiko Ito
雅彦 伊藤
Tsuneaki Motai
恒明 馬渡
Masataka Mochizuki
正孝 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP60107690A priority Critical patent/JPS61265493A/en
Publication of JPS61265493A publication Critical patent/JPS61265493A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/026Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat with different heat storage materials not coming into direct contact
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To permit to cope with the temperature change of fluid to be cooled easily by a method wherein a plurality of cooling cells, accumulating cooling heat as latent heat, is arranged in series and respective cooling cells are constituted so as to be capable of taking out the fluid to be cooled from the outlet port side of respective cooling cells. CONSTITUTION:The cooling cells C1-Cn, which effect heat exchange between the fluid to be cooled and a heat-accumulating chamber accommodating the heat accumulating material therein through a heat pipe, are connected in series between an inflow pipeline 10 and an outflow pipeline 11 through three-way switching valves R1-Rn-1 while branch pipes P1-Pn-1, interposing non-return valves V1-Vn-1, are taken out of respective three-way switching valves R1-Rn-1 to connect them to the outflow pipeline 11 through a bypass pipe 12. When the melting points of heat-accumulating material of respective cooling cells C1-Cn are set so as to be reduced by a given temperature sequentially, the fluid is passed through all of the cooling cells C1-Cn in case the temperature of fluid to be cooled necessary for the outflow pipeline 11 is low while the three-way switching valve at the rear side of cooling cell, having corresponding melting point, is switched to introduce the fluid out of the outflow pipeline 11 through the bypass pipe 12 in case the necessitated temperature is high.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は冷媒とされる液体や気体などの各種の流体を
冷却するための装置に関し、特に相変化に伴う潜熱とし
て蓄えた冷却熱によって流体を冷却するタイプの冷却装
置に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a device for cooling various fluids such as liquids and gases used as refrigerants, and in particular, a device for cooling fluids using cooling heat stored as latent heat due to phase change. This relates to a type of cooling device.

従来の技術 例えば発熱体の冷却のために、その発熱体との間に循環
させる冷却用媒体を冷却する設備として、水を低温源と
したものが、従来知られている。水は安価であり1、ま
た取扱いが容易であるなどの利点を有している半面、室
温程度の範囲で使用する場合には、顕然として熱を吸収
するため、単位量当りの冷却能力が小さく、その結果所
要の冷却能力を得るものとするには多量の水を必要とす
る場合が多く、設備が全体として大型化し、設置スペー
スに要するコストをも勘案すれば、設備費が高騰する問
題があった。
2. Description of the Related Art For example, equipment that uses water as a low temperature source is known as a facility for cooling a cooling medium that is circulated between the heating element and the heating element in order to cool the heating element. Water has advantages such as being cheap and easy to handle, but when used at room temperature, it clearly absorbs heat and its cooling capacity per unit amount is low. As a result, a large amount of water is often required to obtain the required cooling capacity, which increases the overall size of the equipment and increases equipment costs when taking into account the cost of installation space. was there.

このような問題を解決するために、凝縮・融解などの相
変化に伴う潜熱を利用した冷却設備が考えられる。そし
てそのような潜熱タイプの冷却設備を用いる場合には、
運搬などの取扱いの容易性やスペースに見合った配置を
可能とするなどのために、相変化を生じさせる蓄熱材を
所定の大きさごとに細分化することが好ましい。
In order to solve these problems, cooling equipment that utilizes the latent heat associated with phase changes such as condensation and melting may be considered. When using such latent heat type cooling equipment,
In order to facilitate handling such as transportation and to enable arrangement commensurate with space, it is preferable to subdivide the heat storage material that causes a phase change into predetermined sizes.

発明が解決しようとする問題点 小容量の蓄熱材を充填しかつ熱交換可能な構造とした多
数の冷却セルを配置することによって必要とする冷団熱
量を確保するとした場合、冷却用媒体をこれらの冷却セ
ルに順次流通させれば、各冷却セルにおいて熱交換が行
なわれて冷W用媒体が所定の温度まで冷却される。しか
るに冷却用媒体の流速を一定に保持した状態において冷
却セル群に対する冷却用媒体の入口温度に変動が生じた
場合、出口での冷却用媒体の温度に変動を来たしてしま
う。これを是正するために冷却用媒体の流速を変えて各
冷却セルでの熱伝達時間すなわち熱交換量を調整するこ
とが考えられるが、冷却用媒体の流速の変化に伴う流動
状態等の変動要因が多く、流速と熱交換量とが直線的な
比例関係にないために、流速を制御することにより出口
温度を調整するとすれば、極めて複雑な制御を余儀無く
され、実施のためには高価な装置を必要とする問題があ
る。
Problems to be Solved by the Invention When it is assumed that the required cooling mass heat quantity is secured by arranging a large number of cooling cells filled with a small capacity heat storage material and having a structure capable of heat exchange, the cooling medium is When the medium is sequentially passed through the cooling cells, heat exchange is performed in each cooling cell, and the cold W medium is cooled to a predetermined temperature. However, if the temperature at the inlet of the cooling medium to the cooling cell group fluctuates while the flow rate of the cooling medium is held constant, the temperature of the cooling medium at the outlet will fluctuate. In order to correct this, it is possible to change the flow rate of the cooling medium and adjust the heat transfer time, that is, the amount of heat exchange in each cooling cell, but this may be due to fluctuation factors such as the flow state due to changes in the flow rate of the cooling medium. Since the flow rate and the heat exchange amount are not in a linear proportional relationship, adjusting the outlet temperature by controlling the flow rate would require extremely complicated control and would be expensive to implement. There are problems that require equipment.

また冷却用媒体を所定の発熱体と冷却セル群との間で循
環させるシステムとして構成し、光熱体の状態変化に伴
って冷却用媒体に要求される温度が変った場合、その流
速制御によって冷却用媒体の出口温度を調整するとすれ
ば、前述した場合と同様な問題が生じる。
In addition, the system is configured to circulate the cooling medium between a predetermined heating element and a group of cooling cells, and when the temperature required for the cooling medium changes due to changes in the state of the photothermal element, the cooling medium is cooled by controlling the flow rate. If the outlet temperature of the medium is adjusted, problems similar to those described above will arise.

この発明は上記の事情に鑑み、多数の冷却セルからなる
構成に多様性を付与し、被冷却流体の出口温度を適宜に
設定でき、しかも構成が簡単な潜熱蓄熱材を用いた冷却
装置を虎供することを目的とするものである。
In view of the above-mentioned circumstances, this invention provides a cooling device using a latent heat storage material that provides diversity in the configuration consisting of a large number of cooling cells, allows the outlet temperature of the fluid to be cooled to be appropriately set, and has a simple configuration. The purpose is to provide

問題点を解決するための手段 この発明は、上記の目的を達成するために、被冷却流体
の流入温度より低い融点の潜熱蓄熱材を収容しかつ被冷
却流体と潜熱蓄熱材との間で熱交換可能な冷却セルを、
被冷却流体を順次流通させるよう複数個直列に連通・配
列゛し、これらの冷却セルのうち最上流側の冷却セルに
流入配管を接続するとともに、最下流側の冷却セルに流
出配管を接続し、さらに最下流側の冷却セルを除く各冷
却セルの流出口を、三方切換弁およびこれに連通する分
岐管を介して接続したバイパス管によって前記流出配管
に連通させたことを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention accommodates a latent heat storage material having a melting point lower than the inflow temperature of the fluid to be cooled, and heat is transferred between the fluid to be cooled and the latent heat storage material. replaceable cooling cells,
A plurality of cooling cells are connected and arranged in series so that the fluid to be cooled flows through them in sequence, and the inflow piping is connected to the cooling cell on the most upstream side among these cooling cells, and the outflow piping is connected to the cooling cell on the most downstream side. Further, the outlet of each cooling cell except for the cooling cell on the most downstream side is communicated with the outflow pipe by a bypass pipe connected via a three-way switching valve and a branch pipe communicating with the three-way switching valve. be.

作   用 したがってこの発明の装置では、流入配管を介して送り
込まれた被冷却流体が各冷却セルを通過する間に冷却さ
れ、次第にその温度が下がる。その温度の下降度合は、
流速が一定で、かつ各冷却セルの構造が同一であれば、
冷却セル内の潜熱蓄熱材と被冷却流体との温度差によっ
て一義的に定まり、したがって潜熱蓄熱材が相変化を終
了するまでは同一の温度降下傾向を示す。すなわち各冷
却セルの出口での温度が、入口での温度との関係で定ま
る予知可能な所定の温度になるので、適宜の三方切換弁
を切換えてその前段の冷Wセルを流出配管に接続すれば
、任意の温度の被冷却流体を得ることができる。これは
流入配管を介して送り込まれた被冷却流体の温度が一定
の場合、あるいは変動を生じた場合のいずれであっても
同様である。
Function: Therefore, in the device of the present invention, the fluid to be cooled sent through the inflow pipe is cooled while passing through each cooling cell, and its temperature gradually decreases. The degree of decrease in temperature is
If the flow rate is constant and the structure of each cooling cell is the same,
It is uniquely determined by the temperature difference between the latent heat storage material and the fluid to be cooled in the cooling cell, and therefore shows the same temperature drop tendency until the latent heat storage material completes the phase change. In other words, the temperature at the outlet of each cooling cell becomes a predetermined, predictable temperature determined by the relationship with the temperature at the inlet, so it is necessary to switch the appropriate three-way switching valve and connect the preceding cold W cell to the outflow pipe. For example, a fluid to be cooled at any temperature can be obtained. This is true whether the temperature of the fluid to be cooled sent through the inflow pipe is constant or fluctuates.

実  施  例 つぎにこの発明の実施例を添付の図面を参照して説明す
る。
Embodiments Next, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図はこの発明の一実施例を示す系統図であって、複
数の冷却セルCI 、C2、C3・・・Onが直列に配
列されるとともに、水ヤブライン等の被冷加流体を順次
流通させるよう連通されている。
FIG. 1 is a system diagram showing an embodiment of the present invention, in which a plurality of cooling cells CI, C2, C3...On are arranged in series, and a fluid to be cooled such as a water web line is sequentially distributed. It has been communicated that the

各冷却セルC1〜Cnは同一構造であって1.相変化に
伴う潜熱によって冷凹熱を蓄える蓄熱材1と液冷m流体
との間で熱交換する構成であり、具体的には、第2図に
示すように、断熱容器2の内部を蓄熱室3とダクト部4
とに区画し、蓄熱室3に前記蓄熱材1を充填する一方、
その蓄熱材1に一端部側を挿入したヒートバイブ5の他
方の端部をダクト部4に突出させ、さらに被冷却流体を
ダクト部4内に流通させるべく流入口6と流出ロアとを
設けた構成とされている。あるいは第3図に示すように
、各冷却セルC1〜Cnは、断熱容器2の中央部に蓄熱
材1を充填した蓄熱v3を形成するとともにその両側に
ヘッダ一部8a 、8bを−形成し、これらのヘッダ一
部8a、8bを連通させる多数本の通気管9を蓄熱材1
に貫通させ、さらに一方のヘッダ一部8a 、8bに液
冷!il]流体を導入する流入口6を形成し、かつ他方
のヘッダ一部8bに流出ロアを形成した構成とされ、被
冷却流体が通気管9内を流れる間に蓄熱材1との間で熱
交換するようになっている。
Each of the cooling cells C1 to Cn has the same structure, and 1. It has a configuration in which heat is exchanged between a heat storage material 1 that stores cold concave heat due to latent heat due to a phase change, and a liquid-cooled m-fluid. Specifically, as shown in FIG. Chamber 3 and duct section 4
and filling the heat storage chamber 3 with the heat storage material 1,
One end of the heat vibrator 5 is inserted into the heat storage material 1, and the other end thereof protrudes into the duct 4, and an inlet 6 and an outflow lower are provided to allow the fluid to be cooled to flow into the duct 4. It is said to be composed of Alternatively, as shown in FIG. 3, each of the cooling cells C1 to Cn forms a heat storage v3 filled with heat storage material 1 in the center of the heat insulating container 2, and also forms header portions 8a and 8b on both sides thereof, A large number of ventilation pipes 9 connecting these header parts 8a and 8b are connected to the heat storage material 1.
It passes through the header, and liquid cooling is applied to one header part 8a and 8b! il] An inlet 6 for introducing fluid is formed, and an outflow lower is formed in the other header part 8b, and while the fluid to be cooled flows through the ventilation pipe 9, heat is generated between it and the heat storage material 1. It is supposed to be replaced.

なお、蓄熱材1は液冷」流体の温度より低い融点を有す
るものであって、安定性、安全性、入手の容易性等の要
件を考慮すると、ポリエチレングリコールを用いること
が好ましい。その場合、ポリエチレングリコールの分子
量を総ての冷却セルC1〜Cnで同一としてもよく、あ
るいはポリエチレングリコールの分子量を各冷却セル0
1〜Cnごとに異ならせて各冷却セルC1〜Cnでの融
点が被冷却流体の流れ方向に沿って次第に低くなるよう
に構成してもよい。
Note that the heat storage material 1 has a melting point lower than the temperature of the liquid cooling fluid, and in consideration of requirements such as stability, safety, and availability, it is preferable to use polyethylene glycol. In that case, the molecular weight of polyethylene glycol may be the same in all cooling cells C1 to Cn, or the molecular weight of polyethylene glycol may be the same in each cooling cell.
It may be configured such that the melting points in each of the cooling cells C1 to Cn gradually decrease along the flow direction of the fluid to be cooled.

前記冷却セル01〜Cnのうち最上ffE側の冷却セル
C1の流入口6に流入配!!10が接続される一方、最
下流側の冷却セルcnの流出ロアに逆止弁■nを介装し
た流出管11が接続されている。
The inflow is arranged at the inlet port 6 of the cooling cell C1 on the uppermost ffE side among the cooling cells 01 to Cn! ! 10 is connected, while an outflow pipe 11 having a check valve ■n interposed therein is connected to the outflow lower of the cooling cell cn on the most downstream side.

さらに最下流側の冷却セルCnを除いた各冷却セルC1
〜On−+の流出口側に三方切換弁R1、R2、R3・
・・Rn−+ が取付けられるとともに、各三方切換弁
R1〜Rn−1が、逆止弁V1 、 V2 、 Vn−
1をそれぞれ介装した分岐%fP1 、R2、R3・・
・P n−1によってバイパス管12に接続され、その
バイパス管12が前記流出配管11に接続されている。
Furthermore, each cooling cell C1 except the cooling cell Cn on the most downstream side
~ Three-way switching valves R1, R2, R3 on the On-+ outlet side.
... Rn-+ is installed, and each three-way switching valve R1 to Rn-1 is connected to the check valves V1, V2, Vn-
Branches with 1 interposed respectively %fP1, R2, R3...
- Connected to a bypass pipe 12 by P n-1, and the bypass pipe 12 is connected to the outflow pipe 11.

すなわち最下流側の冷却セルCnを除いた冷却セルC1
〜Cn−+は三方切換弁R1〜Rn−1を介して下流側
の冷却セルに接続される一方、下流側の総ての冷却セル
をバイパスして流出配管11に接続されている。
That is, the cooling cells C1 excluding the cooling cell Cn on the most downstream side
~Cn-+ are connected to the cooling cells on the downstream side via the three-way switching valves R1 to Rn-1, while being connected to the outflow pipe 11 by bypassing all the cooling cells on the downstream side.

つぎに上記のように構成した装置の作用について説明す
る。
Next, the operation of the apparatus configured as described above will be explained.

各冷却セル01〜Cnにおける蓄熱材1の融点M1 、
M2 、M3・・・Mnが一定温度ずつ低くなるよう設
定するとともに、それぞれの蓄熱材1を冷却凝固させた
状態で、これらの融点M1〜Mnより高い流入温度TO
の被冷却流体を前記流入配管10から送り込むと、被冷
却流体は際上流側の冷却セルC1から最下流側の冷却セ
ルCnに向けて流れ、その間に各冷却セル01〜Cnに
おいて蓄熱材1に熱を奪われて冷却される。したがって
被冷却流体の温度は第4図に示すように段階的に下降す
る。総ての冷却セルC1〜Qnを通過させた場合、流出
配管11での被冷却流体の温度がT1(<To )に下
降するが、必要とする被冷却流体温度がそれより高い温
度T2  (TO>7.2 >TI )である場合には
、例えば第4図に実線で示す例では、第4番目の三方切
換弁R4を切換えて、第4番目の冷却セルC4を分岐管
P4およびバイパス管12を介して流出配管11に直接
流通させることにより、必要温度T2の被冷却流体を得
ることができる。また被冷却流体の流入温度が何らかの
原因でTOより高い温度T3になった場合(第4図の一
点鎖線の場合)、その温度が冷却セルCI 。
Melting point M1 of heat storage material 1 in each cooling cell 01 to Cn,
M2, M3...Mn are set to decrease by a constant temperature, and with each heat storage material 1 cooled and solidified, the inflow temperature TO is higher than their melting points M1 to Mn.
When the fluid to be cooled is sent from the inflow pipe 10, the fluid flows from the cooling cell C1 on the upstream side to the cooling cell Cn on the most downstream side. Heat is removed and the body is cooled. Therefore, the temperature of the fluid to be cooled decreases in stages as shown in FIG. When all the cooling cells C1 to Qn are passed through, the temperature of the cooled fluid in the outflow pipe 11 falls to T1 (<To), but the required cooled fluid temperature is higher than that, T2 (TO >7.2 >TI ), for example, in the example shown by the solid line in FIG. 4, the fourth three-way switching valve R4 is switched to connect the fourth cooling cell C4 to the branch pipe P4 and the bypass pipe. 12, the fluid to be cooled can be obtained at the required temperature T2. Further, if the inflow temperature of the fluid to be cooled becomes a temperature T3 higher than TO for some reason (in the case of the dashed line in FIG. 4), that temperature is the cooling cell CI.

C2・・・の通過に伴って段階的に下降するものの、必
要温度T2に到達するには時間がかかり、したがってT
2の温度の被冷却流体を得るには、第7番目の冷却セル
C7まで被冷却流体を通過させ、その出口側の三方切換
弁R1によって目標温度の被冷却流体をバイパス管12
を介して流出管11に取出せばよい。すなわち、被冷却
流体の流入温度が上昇した場合には、より下流側の冷却
セルをバックアップとして使用することができる。また
逆に、被冷却流体の流入温度が何らかの原因でT4 (
To >T4 >T2 )になプた場合(第4図の二点
鎖線の場合)、蓄熱材1との温度差が小さくなるために
温度の下降傾向が幾分緩くなるものの、第3番目の冷却
セルC3を通過することにより目標温度T2に達し、し
たがって第3番目の三方切換弁R3を切換えてバイパス
1!12に連通させることにより目標温度T2の被冷却
流体を流出管11を介して得ることができる。
Although it gradually decreases as C2... passes, it takes time to reach the required temperature T2, so T
In order to obtain the cooled fluid at the temperature of 2, the cooled fluid is passed to the seventh cooling cell C7, and the cooled fluid at the target temperature is passed through the bypass pipe 12 by the three-way switching valve R1 on the outlet side.
It may be taken out to the outflow pipe 11 through the. That is, when the inflow temperature of the fluid to be cooled increases, a cooling cell further downstream can be used as a backup. Conversely, if the inflow temperature of the fluid to be cooled is T4 (
To The target temperature T2 is reached by passing through the cooling cell C3, and therefore the third three-way switching valve R3 is switched to communicate with the bypass 1!12, thereby obtaining the cooled fluid at the target temperature T2 via the outflow pipe 11. be able to.

また、上述の説明および第4図から明らかなように、被
冷却流体の温度は冷却セルを通過するごとに下降し、し
かも流入温度が一定していれば、各冷却セルC1〜Cn
を通過後の温度を知ることができるので、三方切換弁R
1〜Rn−+を適宜に操作することにより、任意の温度
の液冷l流体を取出すことができる。
Furthermore, as is clear from the above description and FIG.
Since the temperature after passing through can be known, the three-way switching valve R
By appropriately operating 1 to Rn-+, liquid-cooled fluid at any temperature can be taken out.

なお、上記の例では、各冷却セルC1〜Cnにおける蓄
熱材1の融点M1〜Mnが段階的に低くなるよう設定し
たが、各蓄熱材1の融点M1〜Mnは総て同一であって
もよく、その場合には、下流側での蓄熱材1と被冷却流
体との温度差が小さくなるから、温度の下降傾向が緩く
なる。また、各三方切換弁R1〜Rn−+の操作を自動
化してもよく、その場合は、各三方切換弁R1〜Rn−
tの直前に温度検出器を配置するとともに、各温度検出
器をコントローラに電気的に接続し、予め入力した設定
値と各温度検出器から入力される値とを比較して、設定
値と同一か、もしくは最も近い温度値を出力する温度検
出器とベアーになっている三方切換弁をコントローラか
らの出力信号によって切換えるよう構成すればよい。
In addition, in the above example, the melting points M1 to Mn of the heat storage material 1 in each cooling cell C1 to Cn are set to be lowered stepwise, but even if the melting points M1 to Mn of each heat storage material 1 are all the same, In that case, the temperature difference between the heat storage material 1 and the fluid to be cooled on the downstream side becomes smaller, so that the tendency of the temperature to decrease becomes slower. Further, the operation of each three-way switching valve R1 to Rn-+ may be automated, and in that case, each three-way switching valve R1 to Rn-
A temperature sensor is placed immediately before t, and each temperature sensor is electrically connected to the controller, and the pre-input set value and the value input from each temperature sensor are compared to determine whether the set value is the same as the set value. Alternatively, a three-way switching valve that is connected to the temperature sensor that outputs the closest temperature value may be configured to be switched by the output signal from the controller.

発明の効果 以上の説明から朗らかなようにこの発明の冷却装置によ
れば、冷却熱を潜熱として蓄えることのできる複数の冷
却セルを配列するとともに、各冷却セルの出口側から液
冷」流体を取出し得るよう構成したから、被冷却流体の
流入温度が上昇した場合には、より下流側の冷mセルか
ら被冷却流体を取出すことにより、冷却時間を長くして
目標温度まで温度降下した被冷却流体を得ることができ
、また逆に被冷却流体の流入温度が下がった場合には、
より上流側の冷部セルから被冷却流体を取出すことによ
り、冷却時間を短くして目標温度の被冷却流体を得るこ
とができる。したがってこの発明では、取出し位置の選
択、より具体的には切換えるべき三方切換弁の選択によ
って、負荷変動などに起因する被冷却流体の温度変化に
容易に対応することができ、しかも自動化も容易である
。さらにこの発明によれば、各冷却セルの出口側での温
度が段階的に低くなるから、必要に応じた任意の温度の
被冷却流体を得ることができる等の実用上極めて有利な
効果を得ることができる。
Effects of the Invention As can be clearly seen from the above explanation, the cooling device of the present invention arranges a plurality of cooling cells that can store cooling heat as latent heat, and injects liquid cooling fluid from the outlet side of each cooling cell. If the inflow temperature of the cooled fluid rises, the cooled fluid can be taken out from the cold cell further downstream, increasing the cooling time and cooling the cooled fluid whose temperature has dropped to the target temperature. If the inflow temperature of the fluid to be cooled decreases,
By taking out the fluid to be cooled from the cold cell on the more upstream side, the cooling time can be shortened and the fluid to be cooled at the target temperature can be obtained. Therefore, in this invention, by selecting the extraction position, more specifically by selecting the three-way switching valve to be switched, it is possible to easily respond to temperature changes in the cooled fluid caused by load fluctuations, etc., and it is also easy to automate. be. Furthermore, according to the present invention, since the temperature at the outlet side of each cooling cell is lowered in stages, extremely advantageous effects can be obtained in practice, such as being able to obtain a fluid to be cooled at any temperature as required. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す概略的な系統図、第
2図は冷mセルの一例を略解断面図、第3図は冷却セル
の他の例を示す略解断面図、第4図は被冷却流体の温度
の変化を示すm図である。 1・・・蓄熱材、 5・・・ヒートバイブ、 9・・・
通気管、10・・・流入配管、 11・・・流出配管、
 12・・・バイパス管、 C1〜Qn・・・冷却セル
、 M1〜Mn −・・融点、 Pl 〜Pn−+ −
・・分岐管、 R1−Rn−t・・・三方切換弁、 T
O,TI 、T3.T4 、、。 流入濃度。
FIG. 1 is a schematic system diagram showing one embodiment of the present invention, FIG. 2 is a schematic cross-sectional view of an example of a cold m cell, FIG. 3 is a schematic cross-sectional view showing another example of a cooling cell, and FIG. The figure is an m diagram showing changes in the temperature of the fluid to be cooled. 1... Heat storage material, 5... Heat vibe, 9...
Ventilation pipe, 10... Inflow pipe, 11... Outflow pipe,
12...Bypass pipe, C1-Qn...Cooling cell, M1-Mn--Melting point, Pl-Pn-+-
...Branch pipe, R1-Rn-t...Three-way switching valve, T
O, TI, T3. T4... Influent concentration.

Claims (1)

【特許請求の範囲】[Claims] 被冷却流体の流入温度より低い融点の潜熱蓄熱材を収容
しかつ被冷却流体と潜熱蓄熱材との間で熱交換可能な冷
却セルが、被冷却流体を順次流通させるよう複数個直列
に連通・配列され、これらの冷却セルのうち最上流側の
冷却セルに流入配管が接続されるとともに、最下流側の
冷却セルに流出配管が接続され、さらに最下流側の冷却
セルを除く各冷却セルの流出口が、三方切換弁およびこ
れに連通する分岐管を介して接続したバイパス管によつ
て前記流出配管に連通されていることを特徴とする潜熱
蓄熱材を用いた冷却装置。
A plurality of cooling cells that contain a latent heat storage material having a melting point lower than the inflow temperature of the fluid to be cooled and are capable of exchanging heat between the fluid to be cooled and the latent heat storage material are connected in series to allow the fluid to be cooled to flow sequentially. The inflow piping is connected to the most upstream cooling cell among these cooling cells, the outflow piping is connected to the most downstream cooling cell, and each cooling cell except the most downstream cooling cell is 1. A cooling device using a latent heat storage material, characterized in that an outlet is communicated with the outlet pipe by a bypass pipe connected via a three-way switching valve and a branch pipe communicating therewith.
JP60107690A 1985-05-20 1985-05-20 Cooling device employing latent heat accumulating material Pending JPS61265493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60107690A JPS61265493A (en) 1985-05-20 1985-05-20 Cooling device employing latent heat accumulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60107690A JPS61265493A (en) 1985-05-20 1985-05-20 Cooling device employing latent heat accumulating material

Publications (1)

Publication Number Publication Date
JPS61265493A true JPS61265493A (en) 1986-11-25

Family

ID=14465491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60107690A Pending JPS61265493A (en) 1985-05-20 1985-05-20 Cooling device employing latent heat accumulating material

Country Status (1)

Country Link
JP (1) JPS61265493A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791755A (en) * 1993-06-07 1995-04-04 Samsung Electronics Co Ltd Plurality of heat accumulator of heat accumulation/cold accumulation system
WO2020065649A1 (en) * 2018-09-25 2020-04-02 Nostromo Ltd. Fluid flow in thermal storage containers
US11384994B2 (en) 2017-09-25 2022-07-12 Nostromo Ltd. Thermal energy storage array

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945916A (en) * 1982-09-02 1984-03-15 Denki Kagaku Kogyo Kk Continuous preparation of high-purity silicon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945916A (en) * 1982-09-02 1984-03-15 Denki Kagaku Kogyo Kk Continuous preparation of high-purity silicon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791755A (en) * 1993-06-07 1995-04-04 Samsung Electronics Co Ltd Plurality of heat accumulator of heat accumulation/cold accumulation system
US11384994B2 (en) 2017-09-25 2022-07-12 Nostromo Ltd. Thermal energy storage array
WO2020065649A1 (en) * 2018-09-25 2020-04-02 Nostromo Ltd. Fluid flow in thermal storage containers
CN113167547A (en) * 2018-09-25 2021-07-23 诺斯特罗莫有限公司 Fluid flow in thermal storage vessels

Similar Documents

Publication Publication Date Title
US4127161A (en) Energy storage unit and system
US3213929A (en) Temperature control system
CN1942979B (en) Circulation cooling system for cryogenic cable
FI57016C (en) AGGREGAT FOER VAERMNING AV ETT FLUIDUM FOERETRAEDESVIS VATTEN I EN CONVENTIONAL CENTRALVAERMEANLAEGGNING UNDER UTNYTTJANDE AV AVGAOENDE VAERME FRAON ETT FLERTAL KILLMASKINER
US4251997A (en) Control of absorption systems energized from plural storage tanks maintained at different temperatures
US3125863A (en) Dense gas helium refrigerator
EP3358274B1 (en) Adsorption refrigerator and a method for controlling adsorption refrigerator
JPS61265492A (en) Latent heat accumulating device for cooling
JPS61265493A (en) Cooling device employing latent heat accumulating material
CN110823616B (en) Desktop type self-supply water heat exchanger performance testing device
JPH07253227A (en) Air conditioner
CN110806329B (en) Desktop type self-supply water heat exchanger performance testing device
RU2148540C1 (en) Temperature control system of spacecraft and orbital station
JPS63161333A (en) Cooling and heating thermal accumulation air conditioner system
RU2404092C1 (en) System of space object thermal control
JPH02219940A (en) Cooling or heating device
JPS5895155A (en) Solar heat collecting device
RU2729149C1 (en) Spacecraft temperature control system
JPH04139363A (en) Hydrogen occlusion heat pump
SE515139C2 (en) Climatic test chamber system for testing batteries, has chamber unit with regulator unit that controls supply of secondary refrigerant from tank unit to isolated test chambers
JP3831924B2 (en) Capsule type latent heat storage system
Pobell et al. The 3 He-4 He Dilution Refrigerator
JPH11201559A (en) Hot water supply apparatus utilizing solar heat
JPH02309141A (en) Controlling method for ice thermal accumulation type air conditioning system
RU1795253C (en) Facility for thermal and hydraulic tests of liquid-to-liquid heat exchangers