JPWO2020017389A1 - Coating materials and their manufacturing methods, composite materials, and terminals for electrical contacts - Google Patents

Coating materials and their manufacturing methods, composite materials, and terminals for electrical contacts Download PDF

Info

Publication number
JPWO2020017389A1
JPWO2020017389A1 JP2020531254A JP2020531254A JPWO2020017389A1 JP WO2020017389 A1 JPWO2020017389 A1 JP WO2020017389A1 JP 2020531254 A JP2020531254 A JP 2020531254A JP 2020531254 A JP2020531254 A JP 2020531254A JP WO2020017389 A1 JPWO2020017389 A1 JP WO2020017389A1
Authority
JP
Japan
Prior art keywords
coating material
metal
less
average
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020531254A
Other languages
Japanese (ja)
Other versions
JP7252234B2 (en
Inventor
正靖 笠原
正靖 笠原
昭頼 橘
昭頼 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2020017389A1 publication Critical patent/JPWO2020017389A1/en
Application granted granted Critical
Publication of JP7252234B2 publication Critical patent/JP7252234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/027Composite material containing carbon particles or fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/04Co-operating contacts of different material

Abstract

本発明に係る皮膜材(3)は、電気めっき可能な金属(5)と、金属(5)中に分散状態で配置された、炭素と酸素とを有する有機物の繊維(2)と、を有し、皮膜材(3)の任意の表面において、100000μm2の範囲で区画した観察視野内に占める有機物の繊維(2)の平均面積割合が、2.5%以上35%以下の範囲である。The coating material (3) according to the present invention includes a metal (5) that can be electroplated and an organic fiber (2) having carbon and oxygen arranged in a dispersed state in the metal (5). However, on any surface of the coating material (3), the average area ratio of the organic fiber (2) in the observation field defined in the range of 100,000 μm 2 is in the range of 2.5% or more and 35% or less.

Description

本発明は、金属自体が本来有する導電性の低下をできる限り抑制しつつ、摺動特性の向上を図ることができる皮膜材及びその製造方法、並びに該皮膜材を有する複合材及び電気接点用端子に関する。 The present invention relates to a coating material capable of improving sliding characteristics while suppressing a decrease in conductivity inherent in the metal itself as much as possible, a method for producing the same, and a composite material having the coating material and terminals for electrical contacts. Regarding.

一般に、金属材料は、導電性等の材料特性が優れていることから、様々な用途で幅広く使用されている。例えば、銅板に、銀(Ag)をはじめとする貴金属類、錫(Sn)などからなるめっき層を設けた金属材料は、基材の優れた導電性及び強度と、めっき金属の良好な電気接触特性とを兼ね備えた高性能導体として各種の接点、スイッチ、端子などの電気接点材に広く用いられている。 In general, metal materials are widely used in various applications because they have excellent material properties such as conductivity. For example, a metal material in which a plating layer made of precious metals such as silver (Ag) and tin (Sn) is provided on a copper plate has excellent conductivity and strength of the base material and good electrical contact of the plating metal. As a high-performance conductor that combines characteristics, it is widely used in various electrical contact materials such as contacts, switches, and terminals.

一方、繰返しの挿抜、摺動を伴う電気接点材料は、摺動特性(耐摩耗性)に優れることが望ましい。このような電気接点材料の摺動特性を大きく向上させるため、金属組織中にカーボンナノチューブ(CNT)などの高い強度を有する異種材料を取り込んだ複合材が知られている(特許文献1)。しかしながら、CNTを含む複合材の表面には、アスペクト比の大きいCNTが突起物として露出してしまう。そのため、このような複合材を電気接点材料として用いる場合、接触面積が小さいことに起因する電流集中による局所的な温度上昇を引き起こす可能性がある。 On the other hand, it is desirable that the electrical contact material that undergoes repeated insertion / removal and sliding has excellent sliding characteristics (wear resistance). In order to greatly improve the sliding characteristics of such an electrical contact material, a composite material in which a dissimilar material having high strength such as carbon nanotube (CNT) is incorporated into a metal structure is known (Patent Document 1). However, CNTs having a large aspect ratio are exposed as protrusions on the surface of the composite material containing CNTs. Therefore, when such a composite material is used as an electrical contact material, it may cause a local temperature rise due to current concentration due to a small contact area.

さらに、CNTは疎水性であるため、複合材を作製するに当たり、表面改質処理を行わなければ、複合材を構成する他の物質、溶媒等と均一に混合分散させるのが難しい場合が多い。加えて、このようなCNTを含む複合材を高温に加熱すると発癌性のある有毒物質を排出するとの報告もあり、環境上の問題もある。 Further, since CNTs are hydrophobic, it is often difficult to uniformly mix and disperse them with other substances and solvents constituting the composite material unless surface modification treatment is performed when the composite material is produced. In addition, it has been reported that heating a composite material containing such CNTs to a high temperature emits toxic substances having carcinogenicity, which poses an environmental problem.

特許文献2には、めっきで形成された金属材料中に有機高分子繊維が分散されている導電性物品について開示されている。しかしながら、特許文献2には、この導電性物品の用途としてリチウム二次電池の負極材料は開示されているものの、電気接点材料としての用途は挙げられておらず、また、摺動特性に関しても言及されていない。さらに、導電性物品中に含まれる有機高分子の質量割合は20〜90質量%と非常に高く、電気接点材料として重要な導電率が小さくなるため、このような複合材は接点材料として適さないと考えられる。 Patent Document 2 discloses a conductive article in which organic polymer fibers are dispersed in a metal material formed by plating. However, although Patent Document 2 discloses a negative electrode material for a lithium secondary battery as an application of this conductive article, it does not mention its application as an electrical contact material, and also mentions sliding characteristics. It has not been. Further, the mass ratio of the organic polymer contained in the conductive article is as high as 20 to 90% by mass, and the conductivity, which is important as an electric contact material, becomes small, so such a composite material is not suitable as a contact material. it is conceivable that.

特許文献3には、セルロースと複合化した金属材料のサイズを制御する方法が開示されている。しかしながら、この方法では電気接点材料として必要な形状に加工するのに耐え得る強度を兼ね備えた複合材を得ることはできない。 Patent Document 3 discloses a method of controlling the size of a metal material composited with cellulose. However, with this method, it is not possible to obtain a composite material having strength that can withstand processing into a shape required as an electrical contact material.

特開2007−009333号公報Japanese Unexamined Patent Publication No. 2007-09333 特開2008−293883号公報Japanese Unexamined Patent Publication No. 2008-293883 国際公開第2015/170613号International Publication No. 2015/170613

上記事情に鑑み、本発明は、金属自体が本来有する導電性の低下をできる限り抑制しつつ、摺動特性が向上した皮膜材及びその製造方法、並びにこれを有する複合材及び電気接点用端子を提供することを目的とする。 In view of the above circumstances, the present invention provides a coating material having improved sliding characteristics, a method for producing the same, and a composite material having the same and terminals for electrical contacts while suppressing a decrease in conductivity inherent in the metal itself as much as possible. The purpose is to provide.

本発明者らは、炭素と酸素を有する有機物の繊維、特に、セルロース繊維を分散させためっき液中で電気めっき(分散めっき)を行うと、有機物の繊維を、熱分解等の特性変化を生じることなくマトリックス金属中に分散配置させることができるとの知見を得た。そして、一定量の有機物の繊維をマトリックス金属中に分散させ、材料表面に露出する有機物の繊維の割合を制御することにより、材料表面の動摩擦係数を低減させて摺動特性を向上させると共に、導電率の低下をできる限り抑制できることを見出した。 When electroplating (dispersion plating) is performed in a plating solution in which carbon and oxygen-containing organic fibers, particularly cellulose fibers, are dispersed, the present inventors cause changes in characteristics such as thermal decomposition of the organic fibers. It was found that it can be dispersed in the matrix metal without any problem. Then, by dispersing a certain amount of organic fibers in the matrix metal and controlling the ratio of the organic fibers exposed on the material surface, the coefficient of dynamic friction on the material surface is reduced, the sliding characteristics are improved, and the conductivity is improved. We found that the decrease in the rate could be suppressed as much as possible.

本発明の態様は、電気めっき可能な金属と、前記金属中に分散状態で配置された、炭素と酸素とを有する有機物の繊維と、を有する皮膜材であって、前記皮膜材の任意の表面において、100000μmの範囲で区画した観察視野内に占める前記有機物の繊維の平均面積割合が、2.5%以上35%以下の範囲である、皮膜材である。An aspect of the present invention is a coating material having an electroplatable metal and organic fibers having carbon and oxygen arranged in a dispersed state in the metal, and any surface of the coating material. In the film material, the average area ratio of the organic fibers to the observation field defined in the range of 100,000 μm 2 is in the range of 2.5% or more and 35% or less.

本発明の態様は、前記皮膜材の任意の表面において、前記有機物の繊維が、10000μm以下の範囲内に少なくとも1つ存在する、皮膜材である。An aspect of the present invention is a coating material in which at least one of the organic fibers is present in a range of 10,000 μm 2 or less on an arbitrary surface of the coating material.

本発明の態様は、前記平均面積割合が2.5%以上25%以下である、皮膜材である。 An aspect of the present invention is a film material having an average area ratio of 2.5% or more and 25% or less.

本発明の態様は、前記皮膜材中に含まれる前記有機物の繊維の平均質量割合が、0.02質量%以上10質量%以下である、皮膜材である。 An aspect of the present invention is a coating material in which the average mass ratio of the fibers of the organic substance contained in the coating material is 0.02% by mass or more and 10% by mass or less.

本発明の態様は、前記皮膜材の平均厚さが500μm以下である、皮膜材である。 An aspect of the present invention is a film material having an average thickness of the film material of 500 μm or less.

本発明の態様は、前記金属が、Cu、Ag、Au、Sn、Ni又はPdである、皮膜材である。 An aspect of the present invention is a coating material in which the metal is Cu, Ag, Au, Sn, Ni or Pd.

本発明の態様は、前有機物がセルロース繊維である、皮膜材である。 An aspect of the present invention is a coating material in which the pre-organic substance is a cellulose fiber.

本発明の態様は、前記金属がCu、Ag又はSnであり、前記平均面積割合が2.5%以上25%以下であり、前記有機物の繊維がセルロース繊維であり、かつ、前記皮膜材の任意の表面において、1000μm以下の範囲内に少なくとも1つ存在する、皮膜材である。In aspects of the present invention, the metal is Cu, Ag or Sn, the average area ratio is 2.5% or more and 25% or less, the organic fiber is a cellulose fiber, and the coating material is optional. It is a coating material present at least one in the range of 1000 μm 2 or less on the surface of the above.

本発明の態様は、前記皮膜材の表面に100gfの荷重で鋼球を摺動子として使用する往復摺動試験において、摺動回数20〜50回の範囲内の条件下での動摩擦係数の最大値が金属そのものを基準として0.8以下である、皮膜材である。 In an embodiment of the present invention, in a reciprocating sliding test in which a steel ball is used as a slider on the surface of the coating material with a load of 100 gf, the maximum dynamic friction coefficient under the condition that the number of sliding times is within the range of 20 to 50 times. It is a coating material whose value is 0.8 or less based on the metal itself.

本発明の態様は、基材と、該基材の表面に形成された前記皮膜材と、を有する、複合材である。 An aspect of the present invention is a composite material having a base material and the coating material formed on the surface of the base material.

本発明の態様は、前記基材が導電性基材である、複合材である。 An aspect of the present invention is a composite material in which the base material is a conductive base material.

本発明の態様は、前記基材が絶縁性基材である、複合材である。 An aspect of the present invention is a composite material in which the base material is an insulating base material.

本発明の態様は、前記皮膜材を備える電気接点用端子である。 An aspect of the present invention is an electrical contact terminal provided with the coating material.

本発明の態様は、電気めっき法によって形成する前記皮膜材の製造方法である。 An aspect of the present invention is a method for producing the coating material formed by an electroplating method.

本発明によれば、電気めっき可能な金属と、該金属中に分散状態で配置された炭素と酸素とを有する有機物の繊維と、を有する皮膜材の任意の表面において、所定の観察領域内を占める有機物の繊維の平均面積割合を特定の範囲に制御することによって、金属自体が本来有する導電性の低下をできる限り抑制しつつ、摺動特性(耐摩耗性)が向上した皮膜材及びこれを有する複合材を提供することが可能である。また、このような特性を示す皮膜材は、電気めっき法により作製することができるため、容易かつ廉価に製造することができる。さらに、このような皮膜材を電気接点用端子に用いることにより、金属材料の高い電気伝導性を保ちながら、摺動特性を向上させた電気接点を形成することができ、その結果、接点の摺動により生じる故障を抑制し、製品寿命を向上させることができる。 According to the present invention, on an arbitrary surface of a coating material having an electroplatable metal and organic fibers having carbon and oxygen arranged in a dispersed state in the metal, a predetermined observation region is formed. By controlling the average area ratio of organic fibers to a specific range, a coating material with improved sliding characteristics (wear resistance) while suppressing the decrease in conductivity inherent in the metal itself as much as possible, and a coating material thereof. It is possible to provide a composite material having. Further, since the coating material exhibiting such characteristics can be produced by an electroplating method, it can be easily and inexpensively produced. Furthermore, by using such a coating material for the terminals for electrical contacts, it is possible to form electrical contacts with improved sliding characteristics while maintaining the high electrical conductivity of the metal material, and as a result, the sliding of the contacts It is possible to suppress failures caused by motion and improve product life.

図1は、本発明に従う皮膜材が、複合材の表面処理膜として形成された場合における、金属膜中に含まれる有機物の繊維の分布を示す概略断面斜視図である。FIG. 1 is a schematic cross-sectional perspective view showing the distribution of organic fibers contained in a metal film when the film material according to the present invention is formed as a surface-treated film of a composite material. 図2は、実施例4で得られた皮膜材に対して元素マッピングを行った際に得られたデータの一例であり、図2(a)は、取得した炭素、酸素の元素分布を表し、図2(b)は、さらに判別分析法により二値化して得られた炭素、酸素の画像データを表す。FIG. 2 is an example of data obtained when element mapping was performed on the film material obtained in Example 4, and FIG. 2 (a) shows the element distribution of the acquired carbon and oxygen. FIG. 2B shows image data of carbon and oxygen obtained by further binarizing by a discriminant analysis method.

以下、図面を参照しながら、本発明に従う皮膜材及び複合材の実施形態について詳細に説明する。 Hereinafter, embodiments of the coating material and the composite material according to the present invention will be described in detail with reference to the drawings.

図1に、本発明の皮膜材及び複合材の実施形態の一例を示す。図1に示されるように、本実施形態の皮膜材3は、金属(マトリックス金属)5と、金属5中に分散状態で配置された有機物の繊維2とを有し、所定量の有機物の繊維2が皮膜材3の表面に露出して存在している。また、本実施形態の複合材1は、基材4と、基材4の表面に形成された皮膜材3とを有している。尚、図1において、有機物の繊維2は、便宜上、円状、楕円状の形状で示している。 FIG. 1 shows an example of an embodiment of the coating material and the composite material of the present invention. As shown in FIG. 1, the coating material 3 of the present embodiment has a metal (matrix metal) 5 and organic fibers 2 arranged in a dispersed state in the metal 5, and has a predetermined amount of organic fibers. 2 is exposed on the surface of the film material 3. Further, the composite material 1 of the present embodiment has a base material 4 and a coating material 3 formed on the surface of the base material 4. In FIG. 1, the organic fiber 2 is shown in a circular or elliptical shape for convenience.

<有機物の繊維>
有機物の繊維は、炭素と酸素を有する有機物の繊維であり、生体由来の繊維であることが好ましい。ここで、有機物とは、炭素と酸素を含む化合物のうち、単位構造の複数回の繰り返しによって得られる高分子材料を意味し、好ましくは生体由来の高分子材料である。生体由来の繊維としては、セルロース繊維、キチン繊維又はキトサン繊維を使用することが好ましい。このような繊維の中でも、環境負荷が少なくかつ材料コストが安価であることから、工業的には、セルロース繊維を使用することが好ましく、セルロースミクロフィブリル又はその誘導体を使用することがより好ましい。セルロースミクロフィブリルは、セルロース分子鎖が数十本束となってできた微細な繊維であり、セルロース繊維は、このセルロースミクロフィブリルがさらに束となって構成されている。セルロース繊維の直径は、数十μmであるのに対し、セルロースミクロフィブリルの直径は、数nm〜0.1μmである。セルロースミクロフィブリル又はその誘導体は、分散性(親水性)、他物質との親和性、微粒子の捕捉・吸着などに優れる特性を有している。また、キチン繊維又はキトサン繊維は、吸着能に優れるだけでなく、誘導体の形成により親水化処理を容易に行うことができる。
<Organic fiber>
The organic fiber is an organic fiber having carbon and oxygen, and is preferably a fiber derived from a living body. Here, the organic substance means a polymer material obtained by repeating a unit structure a plurality of times among compounds containing carbon and oxygen, and is preferably a polymer material derived from a living body. As the bio-derived fiber, it is preferable to use cellulose fiber, chitin fiber or chitosan fiber. Among such fibers, since the environmental load is small and the material cost is low, it is industrially preferable to use cellulose fibers, and it is more preferable to use cellulose microfibrils or derivatives thereof. Cellulose microfibrils are fine fibers formed by bundling dozens of cellulose molecular chains, and cellulose fibers are composed of these cellulose microfibrils further bundled. The diameter of the cellulose fiber is several tens of μm, while the diameter of the cellulose microfibril is several nm to 0.1 μm. Cellulose microfibrils or derivatives thereof have excellent properties such as dispersibility (hydrophilicity), affinity with other substances, and capture / adsorption of fine particles. Further, the chitin fiber or the chitosan fiber is not only excellent in adsorptive ability, but also can be easily hydrophilized by forming a derivative.

有機物の繊維は短繊維であることが好ましく、マトリックス金属中に短繊維が分散状態、特に均一な分散状態で配置されていることがより好ましい。これにより、皮膜材は、安定した高い強度を得ることができる。また、短繊維のサイズとしては、直径が4〜10nm、長さが5〜10μmであることが好ましい。 The organic fibers are preferably short fibers, and it is more preferable that the short fibers are arranged in the matrix metal in a dispersed state, particularly in a uniformly dispersed state. As a result, the coating material can obtain stable and high strength. The size of the short fibers is preferably 4 to 10 nm in diameter and 5 to 10 μm in length.

さらに、特定方向の強度(特に引張強度)を有効に高める場合には、有機物の繊維、特に短繊維は、マトリックス金属中に一方向に揃った状態で分散されていることが好ましい。一方、強度(特に引張強度)を異方性なく均一に高める場合には、有機物の繊維、特に短繊維は、マトリックス金属中にランダム方向に配列した状態で分散されていることが好ましい。 Further, in order to effectively increase the strength in a specific direction (particularly the tensile strength), it is preferable that the organic fibers, particularly the short fibers, are dispersed in the matrix metal in a unidirectionally aligned state. On the other hand, when the strength (particularly the tensile strength) is uniformly increased without anisotropy, it is preferable that the organic fibers, particularly the short fibers, are dispersed in the matrix metal in a randomly arranged state.

有機物の繊維、特にセルロース繊維は、軟化温度(220〜230℃)が金属の融点よりも低い。そのため、従来の公知の加圧鋳造法または焼結法によって、金属が溶融する温度まで有機物の繊維、特に、セルロース繊維を加熱する場合、セルロース繊維が熱分解してしまい、マトリックス金属中に、セルロース繊維が取り込まれた皮膜材を製造することができない。一方、セルロース繊維は、親水性であるため、水溶液(特に酸性水溶液)からなる各種金属のめっき液にセルロース繊維を添加すると、セルロース繊維は、めっき液中において凝集することなく分散させることが可能である。次いで、セルロース繊維が分散されているめっき液中で電気めっき(分散めっき)を行うことにより、セルロース繊維が、特に熱分解等の特性変化を生じることなく、マトリックス金属中に分散状態で配置させることができる。このため、皮膜材は電気めっき法によって形成することができる。 Organic fibers, especially cellulose fibers, have a softening temperature (220-230 ° C.) lower than the melting point of the metal. Therefore, when organic fibers, particularly cellulose fibers, are heated to a temperature at which the metal melts by a conventionally known pressure casting method or sintering method, the cellulose fibers are thermally decomposed, and cellulose is contained in the matrix metal. It is not possible to produce a film material containing fibers. On the other hand, since cellulose fibers are hydrophilic, when cellulose fibers are added to a plating solution of various metals composed of an aqueous solution (particularly an acidic aqueous solution), the cellulose fibers can be dispersed in the plating solution without agglomeration. be. Next, by performing electroplating (dispersion plating) in a plating solution in which cellulose fibers are dispersed, the cellulose fibers are arranged in a dispersed state in a matrix metal without causing a characteristic change such as thermal decomposition. Can be done. Therefore, the coating material can be formed by an electroplating method.

また、皮膜材の任意の表面において、100000μmの範囲で区画した観察視野内に占める有機物の繊維の平均面積割合が、2.5%以上35%以下の範囲であり、好ましくは2.5%以上25%以下の範囲である。有機物の繊維の平均面積割合が2.5%未満では、皮膜材の表面の動摩擦係数を低減させる作用が小さく、優れた摺動特性を得ることができない。一方、有機物の繊維の平均面積割合が35%を超えると、マトリックス金属中に含まれる有機物の繊維の割合の増大に起因して、導電率の低下率が大きくなり過ぎてしまう。このように、皮膜材の表面に露出する有機物の繊維の割合を特定の範囲に制御することにより、皮膜材の表面の動摩擦係数を低減させ摺動特性を向上させると共に、導電率の低下をできる限り抑制することができる。Further, on an arbitrary surface of the coating material, the average area ratio of the organic fibers in the observation field of view partitioned in the range of 100,000 μm 2 is in the range of 2.5% or more and 35% or less, preferably 2.5%. It is in the range of 25% or less. If the average area ratio of the organic fibers is less than 2.5%, the effect of reducing the coefficient of dynamic friction on the surface of the coating material is small, and excellent sliding characteristics cannot be obtained. On the other hand, if the average area ratio of the organic fibers exceeds 35%, the rate of decrease in conductivity becomes too large due to the increase in the ratio of the organic fibers contained in the matrix metal. By controlling the proportion of organic fibers exposed on the surface of the coating material within a specific range in this way, it is possible to reduce the coefficient of dynamic friction on the surface of the coating material, improve the sliding characteristics, and reduce the conductivity. It can be suppressed as much as possible.

皮膜材の表面に露出する有機物の繊維の割合を測定する方法は、特に限定されるものではないが、例えば、作製した皮膜材の任意の表面において、所定の範囲で区画した観察視野内に対し、オージェ電子分光法により元素マッピングを行い、さらに得られた元素マッピングデータを判別分析法により2値化することにより、観察視野内に占める有機物の繊維の平均面積割合を算出することができる。その際、平均面積割合は、所定の範囲で区画した観察視野の領域を任意に複数選択し、各観察視野で得られた面積割合の平均値から算出できる。観察視野内に有機物の繊維が複数存在する場合、平均面積割合は、観察視野内に占める各有機物の繊維の面積の合計で算出する。また、100000μmの範囲の観察視野内に占める有機物の繊維の平均面積割合は、所定の範囲で区画した観察視野の範囲を100000μmに換算して得た値を用いて算出してもよい。The method for measuring the proportion of organic fibers exposed on the surface of the coating material is not particularly limited, but for example, on an arbitrary surface of the produced coating material, with respect to an observation field segmented within a predetermined range. By performing element mapping by Auger electron spectroscopy and binarizing the obtained element mapping data by a discriminant analysis method, the average area ratio of organic fibers in the observation field can be calculated. At that time, the average area ratio can be calculated from the average value of the area ratios obtained in each observation field of view by arbitrarily selecting a plurality of observation field areas divided in a predetermined range. When a plurality of organic fibers are present in the observation field of view, the average area ratio is calculated by the total area of the fibers of each organic substance in the observation field of view. The average area ratio of the fibers of organic material occupying in the observation visual field range of 100000 2 may be calculated by using a value obtained by converting the range of the observation field of view is defined by a predetermined range 100000 2.

皮膜材の任意の表面において、有機物の繊維が、10000μm以下の範囲内に少なくとも1つ存在することが好ましく、特に、セルロース繊維が、1000μm以下の範囲内に少なくとも1つ存在することがより好ましい。有機物の繊維が、10000μm以下の範囲内に少なくとも1つ存在することにより、摺動特性をより向上させることができる。On any surface of the coating material, it is preferable that at least one organic fiber is present in the range of 10000 μm 2 or less, and in particular, at least one cellulose fiber is present in the range of 1000 μm 2 or less. preferable. The sliding characteristics can be further improved by having at least one organic fiber in the range of 10,000 μm 2 or less.

また、皮膜材中に含まれる有機物の繊維の平均質量割合は、0.02質量%以上10質量%以下の範囲であることが好ましく、平均質量割合の下限値は0.025質量%以上であることがより好ましく、平均質量割合の上限値は9質量%以下であることがより好ましい。平均質量割合が0.02質量%未満だと、有機物の繊維による金属の補強効果が十分ではない。そのため、有機物の繊維を含有させていない皮膜材に比べて、皮膜材の摺動特性が顕著な向上を示さない傾向にある。また、皮膜材を電気めっき法で形成する場合、一定量以上の不純物(ここでは有機物の繊維)がめっき液に含まれると、めっき液の組成が崩れ、金属の析出ができなくなるおそれがある。特に、平均質量割合が10質量%超えである場合、電気めっき法での皮膜材の製造が困難になる傾向にある。また、マトリックス金属中に含まれる有機物の繊維の割合の増大に起因して、導電率の低下率が大きくなり過ぎてしまうことを抑制する観点から、有機物の繊維の平均質量割合は9質量%以下であることが好ましい。 The average mass ratio of the organic fibers contained in the coating material is preferably in the range of 0.02% by mass or more and 10% by mass or less, and the lower limit of the average mass ratio is 0.025% by mass or more. It is more preferable that the upper limit of the average mass ratio is 9% by mass or less. If the average mass ratio is less than 0.02% by mass, the effect of reinforcing the metal by the organic fibers is not sufficient. Therefore, the sliding characteristics of the coating material tend not to be significantly improved as compared with the coating material that does not contain organic fibers. Further, when the film material is formed by an electroplating method, if a certain amount or more of impurities (here, organic fibers) are contained in the plating solution, the composition of the plating solution may be disrupted and metal may not be deposited. In particular, when the average mass ratio exceeds 10% by mass, it tends to be difficult to produce a coating material by the electroplating method. Further, from the viewpoint of suppressing the decrease rate of the conductivity from becoming too large due to the increase in the ratio of the organic fibers contained in the matrix metal, the average mass ratio of the organic fibers is 9% by mass or less. Is preferable.

<金属>
金属は、電気めっき可能な金属であり、例えば、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、銀(Ag)、錫(Sn)、金(Au)、コバルト(Co)、亜鉛(Zn)、鉄(Fe)、ロジウム(Rh)又はこれらの合金等が挙げられ、特に、ニッケル、銅、パラジウム、錫、銀又は金であることが好ましい。この中でも、電気接点用材料として、優れた導電率と接触抵抗・製造コストをバランスよく実現できる、銅、銀又は錫を用いることがさらに好ましい。特に、これらの金属の中でも、高導電率と高強度の双方を備える銅が最適である。参考として、表1〜表6に、ニッケル、銅、パラジウム、銀、錫及び金のめっき浴組成並びにめっき条件の例を示す。
<Metal>
The metal is an electroplatable metal, for example, nickel (Ni), copper (Cu), palladium (Pd), silver (Ag), tin (Sn), gold (Au), cobalt (Co), zinc ( Zn), iron (Fe), rhodium (Rh), alloys thereof and the like can be mentioned, with nickel, copper, palladium, tin, silver or gold being particularly preferable. Among these, it is more preferable to use copper, silver or tin as the material for electrical contacts, which can realize excellent conductivity and contact resistance / manufacturing cost in a well-balanced manner. In particular, among these metals, copper having both high conductivity and high strength is most suitable. For reference, Tables 1 to 6 show examples of nickel, copper, palladium, silver, tin and gold plating bath compositions and plating conditions.

Figure 2020017389
Figure 2020017389

Figure 2020017389
Figure 2020017389

Figure 2020017389
Figure 2020017389

Figure 2020017389
Figure 2020017389

Figure 2020017389
Figure 2020017389

Figure 2020017389
Figure 2020017389

<導電率>
皮膜材は、電気接点におけるジュール熱による材料の温度上昇を低減するため、皮膜材の導電率として、金属そのものの導電率に対する低下率が35%以下であることが好ましく、30%以下であることがより好ましく、25%以下であることがさらに好ましい。
<Conductivity>
In order to reduce the temperature rise of the material due to Joule heat at the electrical contacts of the coating material, the rate of decrease of the conductivity of the coating material with respect to the conductivity of the metal itself is preferably 35% or less, preferably 30% or less. Is more preferable, and 25% or less is further preferable.

<皮膜材の製造方法>
皮膜材は、例えば、電気めっき法によって形成することが好ましい。皮膜材を、電気めっき法によって形成する場合、複合材は、皮膜材と、皮膜材が形成された表面をもつ基材とで構成された表面処理材として機能する。このような表面処理材において、皮膜材は、基材上に積層された表面処理被膜であることが好ましく、例えば、基材上に電気めっきにより形成しためっき被膜であることがより好ましい。
<Manufacturing method of coating material>
The film material is preferably formed by, for example, an electroplating method. When the film material is formed by an electroplating method, the composite material functions as a surface treatment material composed of the film material and a base material having a surface on which the film material is formed. In such a surface treatment material, the coating material is preferably a surface treatment coating laminated on the base material, and more preferably a plating coating formed on the base material by electroplating, for example.

一方、上述の実施形態では、皮膜材を、電気めっき法により製造した場合について説明してきたが、有機物の繊維の材料特性が変化しない温度(例えば200℃以下)で皮膜材を製造できる方法であれば特に限定されるものではない。皮膜材の他の製造方法として、例えば、無電解めっき法、ゾルゲル法、各種塗布法、低融点はんだなどの低融点金属の溶湯との混合などが挙げられる。 On the other hand, in the above-described embodiment, the case where the coating material is produced by the electroplating method has been described, but any method capable of producing the coating material at a temperature (for example, 200 ° C. or lower) at which the material properties of the organic fibers do not change. However, it is not particularly limited. Other methods for producing the coating material include, for example, an electroless plating method, a sol-gel method, various coating methods, and mixing with a molten metal of a low melting point metal such as low melting point solder.

<基材>
基材は、表面処理材の用途に応じて、導電性基材であってもよく、絶縁性基材であってもよい。基材が導電性基材である場合、例えば、銅、銅合金、アルミニウム、アルミニウム合金、鉄、炭素鋼、ステンレス合金などの金属、又はその金属を主成分とする合金の他、炭素、導電性樹脂、或いは導電性セラミックスを含む導電性基材が挙げられる。一方、基材が絶縁性基材である場合、表面に皮膜材が形成可能であればよく、例えば、ガラス、セラミックス、エラストマのような絶縁性基材であってもよい。
<Base material>
The base material may be a conductive base material or an insulating base material, depending on the use of the surface treatment material. When the base material is a conductive base material, for example, a metal such as copper, copper alloy, aluminum, aluminum alloy, iron, carbon steel, stainless alloy, or an alloy containing the metal as a main component, as well as carbon and conductive material. Examples thereof include a conductive base material containing a resin or conductive ceramics. On the other hand, when the base material is an insulating base material, it is sufficient as long as a film material can be formed on the surface, and for example, an insulating base material such as glass, ceramics, or elastomer may be used.

<摺動特性>
複合材を表面処理材として構成する場合、電気接点摺動時の摩耗による表面処理膜の厚さの減少を低減するため、摺動特性をあらわす動摩擦係数が低いことが好ましい。このような複合材の動摩擦係数として、例えば、皮膜材の表面に100gfの荷重で鋼球を摺動子として使用する往復摺動試験において、摺動回数20〜50回の範囲内の条件下での動摩擦係数の最大値が、金属(皮膜材が有する金属)そのものを基準として0.8以下、すなわち、動摩擦係数比が0.8以下であること好ましく、0.3〜0.65の範囲であることがより好ましい。
<Sliding characteristics>
When the composite material is formed as the surface treatment material, it is preferable that the coefficient of dynamic friction representing the sliding characteristics is low in order to reduce the decrease in the thickness of the surface treatment film due to wear during sliding of the electrical contacts. As the coefficient of dynamic friction of such a composite material, for example, in a reciprocating sliding test in which a steel ball is used as a slider on the surface of a coating material with a load of 100 gf, the number of slides is within the range of 20 to 50 times. The maximum value of the dynamic friction coefficient of is 0.8 or less based on the metal (metal of the coating material) itself, that is, the dynamic friction coefficient ratio is preferably 0.8 or less, and is in the range of 0.3 to 0.65. More preferably.

<皮膜材の平均厚さ>
皮膜材の平均厚さについては特に制限はないが、皮膜材の平均厚さが厚すぎると生産コストが大きくなりすぎるため、平均厚さの上限値は500μm以下であることが好ましい。また、複合材を表面処理材として構成する場合には、基材上にわずかに表面処理されていれば摺動特性が向上する。そのため、耐久性の観点から、皮膜材の平均厚さの下限値は、0.1μm以上が好ましい。皮膜材の平均厚さは、皮膜材を樹脂包理させた後、皮膜材の厚さ方向の断面の形成、研磨による断面加工を経て、走査型電子顕微鏡を用いて測定できる。測定は、断面の任意の3ヶ所で行い、その平均値を平均厚さとして算出する。
<Average thickness of coating material>
The average thickness of the coating material is not particularly limited, but if the average thickness of the coating material is too thick, the production cost becomes too high. Therefore, the upper limit of the average thickness is preferably 500 μm or less. Further, when the composite material is formed as a surface treatment material, the sliding characteristics are improved if the surface treatment is slightly performed on the base material. Therefore, from the viewpoint of durability, the lower limit of the average thickness of the coating material is preferably 0.1 μm or more. The average thickness of the coating material can be measured using a scanning electron microscope after the coating material is resin-encapsulated, a cross section is formed in the thickness direction of the coating material, and a cross section is processed by polishing. The measurement is performed at any three points on the cross section, and the average value is calculated as the average thickness.

<皮膜材の形状>
皮膜材の形状については、特に制限はなく、例えば、箔、薄板又は厚板のような板材、線材、棒材、管材、角材等のような種々の形状が挙げられる。
<Shape of film material>
The shape of the coating material is not particularly limited, and examples thereof include various shapes such as a plate material such as a foil, a thin plate or a thick plate, a wire material, a bar material, a pipe material, and a square material.

<金属結晶粒の平均粒子径>
また、皮膜材中の金属結晶粒の平均粒子径は、皮膜材の厚み方向の平均粒子径に対して、皮膜材の表面に平行な方向(長手方向)の平均粒子径の方が小さいことで、より高強度化の効果が得られる。皮膜材の表面に平行な方向の金属結晶粒の平均粒子径は、0.2μm以上5.0μm以下であることが好ましい。
<Average particle size of metal crystal grains>
Further, the average particle size of the metal crystal grains in the coating material is smaller in the direction parallel to the surface of the coating material (longitudinal direction) than the average particle size in the thickness direction of the coating material. , The effect of higher strength can be obtained. The average particle size of the metal crystal grains in the direction parallel to the surface of the coating material is preferably 0.2 μm or more and 5.0 μm or less.

<皮膜材及び複合材の用途>
本実施形態の皮膜材は、用途に応じて適した金属を選択することによって、金属自体が本来有する導電性等の優れた材料特性の低下をできる限り抑制しつつ、摺動特性の向上の実現を図ることができるため、様々な技術分野で種々の製品に適用することができる。
<Use of coating materials and composite materials>
By selecting a metal suitable for the application of the coating material of the present embodiment, improvement of sliding characteristics is realized while suppressing deterioration of excellent material properties such as conductivity inherent in the metal itself as much as possible. Therefore, it can be applied to various products in various technical fields.

例えば銅板(導電性基板)上に、銅と有機物の繊維とで表面処理被膜(皮膜材)を形成した表面処理銅板(複合材)は、コネクタの構成部品である電気接点用端子として使用できる。このような複合材を備える電気接点用端子は、導電性を低下させることなく、電気接点用端子としての摺動特性の向上を図ることができる。さらに、コネクタの小型化に対応した、電気接点用端子の小型化、薄肉化、高強度化を図ることもできる。 For example, a surface-treated copper plate (composite material) in which a surface-treated coating (coating material) is formed of copper and organic fibers on a copper plate (conductive substrate) can be used as a terminal for electrical contacts, which is a component of a connector. An electric contact terminal provided with such a composite material can improve the sliding characteristics as an electric contact terminal without lowering the conductivity. Furthermore, it is possible to reduce the size, thickness, and strength of the electrical contact terminal in response to the miniaturization of the connector.

また、錫と有機物の繊維とで一体形成した皮膜材も、コネクタの構成部品である電気接点用端子として使用できる。このような皮膜材を備える電気接点用端子は、導電率を低下させることなく、摺動特性の向上を図ることができる。また、端子同士の接点の摺動による故障を抑制し、製品寿命の向上を図ることもできる。 Further, a coating material integrally formed of tin and organic fibers can also be used as a terminal for electrical contacts, which is a component of a connector. The electrical contact terminal provided with such a coating material can improve the sliding characteristics without lowering the conductivity. In addition, it is possible to suppress failures due to sliding of contacts between terminals and improve product life.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, but includes all aspects included in the concept and claims of the present invention, and varies within the scope of the present invention. Can be modified.

次に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Next, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.

(実施例1〜7)
厚さ0.3mmの銅板(C1100)上に、表7に示す金属と、有機物の繊維としてセルロース繊維とを表7に示す平均質量割合で一体形成し、皮膜材(表面処理被膜)の形成が可能か否かの確認を行った。なお、セルロース繊維は、直径が約20nm、長さが数μmのスギノマシン社製のセルロース繊維を使用した。表2に示す銅めっき浴に、セルロース繊維を銅めっき浴に対して0.01〜30体積%程度添加し、攪拌して銅めっき浴中に分散させた後、セルロース繊維が分散した状態の銅めっき浴中で、表2に示すめっき条件で電気銅めっきを行い、平均厚さが5μmになるように皮膜材を作製した。
(Examples 1 to 7)
On a copper plate (C1100) having a thickness of 0.3 mm, the metal shown in Table 7 and the cellulose fiber as an organic fiber are integrally formed at the average mass ratio shown in Table 7, and a coating material (surface treatment coating) is formed. We confirmed whether it was possible. As the cellulose fiber, a cellulose fiber manufactured by Sugino Machine Limited having a diameter of about 20 nm and a length of several μm was used. About 0.01 to 30% by volume of cellulose fibers are added to the copper plating bath shown in Table 2 with respect to the copper plating bath, and the copper is dispersed in the copper plating bath with stirring, and then the cellulose fibers are dispersed in the copper. Electrocopper plating was performed in the plating bath under the plating conditions shown in Table 2, and a film material was prepared so that the average thickness was 5 μm.

皮膜材の平均厚さの測定は、皮膜材を樹脂包理させた後、皮膜材の厚さ方向の断面の形成、研磨による断面加工を経て、走査型電子顕微鏡を用いて皮膜材の厚さを測定した。測定は断面の任意の3ヵ所で行い、その平均値を平均厚さとして算出した。 The average thickness of the coating material is measured by encapsulating the coating material with resin, forming a cross section in the thickness direction of the coating material, and processing the cross section by polishing, and then using a scanning electron microscope to measure the thickness of the coating material. Was measured. The measurement was performed at any three points on the cross section, and the average value was calculated as the average thickness.

皮膜材中に含まれるセルロース繊維の平均質量割合については、皮膜材の質量に対する、皮膜材を硝酸にて溶解した後に残る残留物の質量の比率から求めた。皮膜材の質量は、45cm×15cmの区画で皮膜材試料片を3つ採取し、各片の質量を測定することで算出した。残留物の質量は、45cm×15cmの区画で採取された各皮膜材試料片を、20質量%硝酸溶液中に浸漬して金属を十分に溶解し、次いで、残留物を含む硝酸溶液を2500rpmにて10分間遠心分離することで残留物を分離・回収し、さらに回収物を乾燥させ、その質量を測定することで算出した。なお、皮膜材を硝酸にて溶解した後の残留物は、フーリエ変換赤外分光分析によりセルロースであると同定した。測定は、皮膜材の任意の3ヵ所から採取した皮膜材試料片を用いて行い、その平均値を平均質量割合として算出した。 The average mass ratio of the cellulose fibers contained in the coating material was determined from the ratio of the mass of the residue remaining after dissolving the coating material with nitric acid to the mass of the coating material. The mass of the coating material was calculated by collecting three coating material sample pieces in a section of 45 cm × 15 cm and measuring the mass of each piece. For the mass of the residue, each coating material sample piece collected in a section of 45 cm × 15 cm was immersed in a 20 mass% nitric acid solution to sufficiently dissolve the metal, and then the nitric acid solution containing the residue was adjusted to 2500 rpm. The residue was separated and recovered by centrifugation for 10 minutes, the recovered product was dried, and the mass was measured. The residue after dissolving the coating material with nitric acid was identified as cellulose by Fourier transform infrared spectroscopy. The measurement was performed using a film material sample piece collected from any three places of the film material, and the average value was calculated as an average mass ratio.

また、皮膜材(表面処理被膜)の表面におけるセルロース繊維の平均面積割合については、下記1.の平均面積割合に記載した測定方法によって、各表面の100000μmの面積当たりの面積割合を任意の3ヵ所の表面について取得し、その平均値を平均面積割合として算出した。The average area ratio of cellulose fibers on the surface of the coating material (surface treatment coating) is as follows. The area ratio per 100,000 μm 2 area of each surface was obtained for any three surfaces by the measurement method described in the average area ratio of, and the average value was calculated as the average area ratio.

(実施例8)
有機物の繊維として、セルロース繊維の代わりにキトサン繊維を表7に示す平均質量割合で使用した皮膜材を作製したこと以外は、実施例1〜7と同様の方法で作製した。
(Example 8)
It was produced by the same method as in Examples 1 to 7 except that a coating material using chitosan fiber instead of cellulose fiber in the average mass ratio shown in Table 7 was produced as the organic fiber.

(比較例1)
皮膜材(表面処理被膜)の表面における100000μm当たりのセルロース繊維の平均面積割合が1.8%になるように皮膜材を作製したこと以外は、実施例1〜7と同様の方法で作製した。
(Comparative Example 1)
The coating material was prepared in the same manner as in Examples 1 to 7 except that the coating material was prepared so that the average area ratio of the cellulose fibers per 100,000 μm 2 on the surface of the coating material (surface-treated coating) was 1.8%. ..

(比較例2)
皮膜材(表面処理被膜)の表面における100000μm当たりのセルロース繊維の平均面積割合が38.4%になるように皮膜材を作製したこと以外は、実施例1〜7と同様の方法で作製した。
(Comparative Example 2)
The coating material was prepared in the same manner as in Examples 1 to 7 except that the coating material was prepared so that the average area ratio of the cellulose fibers per 100,000 μm 2 on the surface of the coating material (surface-treated coating) was 38.4%. ..

(従来例1)
厚さ0.3mmの銅板(C1100)上に、表2に示す銅めっき浴およびめっき条件で電気銅めっきを行い、厚さ5μmの銅めっき被膜を形成し、銅めっき銅板を作製した。
(Conventional example 1)
Electrocopper plating was performed on a copper plate (C1100) having a thickness of 0.3 mm under the copper plating bath and plating conditions shown in Table 2 to form a copper plating film having a thickness of 5 μm to prepare a copper-plated copper plate.

(実施例9)
厚さ0.3mmの銅板(C1100)上に、表7に示す金属と、セルロース繊維とを表7に示す平均質量割合で一体形成し、皮膜材(表面処理被膜)の形成が可能か否かの確認を行った。なお、セルロース繊維は、直径が約20nm、長さが数μmスギノマシン社製のセルロース繊維を使用した。皮膜材は、表5に示す錫めっき浴に、セルロース繊維を、錫めっき浴に対して、0.01〜30体積%程度添加し、攪拌して錫めっき浴中に分散させた後、セルロース繊維が分散した状態の錫めっき浴中で、表5に示すめっき条件で電気錫めっきを行い、皮膜材の平均厚さが5μmになるように作製した。また、皮膜材の平均厚さ、皮膜材中に含まれるセルロース繊維の平均質量割合、及び皮膜材の表面におけるセルロース繊維の平均面積割合は、実施例1〜7と同様の方法で測定した。
(Example 9)
Whether or not a coating material (surface treatment coating) can be formed by integrally forming the metal shown in Table 7 and the cellulose fiber on a copper plate (C1100) having a thickness of 0.3 mm at the average mass ratio shown in Table 7. Was confirmed. As the cellulose fiber, a cellulose fiber manufactured by Sugino Machine Limited having a diameter of about 20 nm and a length of several μm was used. As the coating material, cellulose fibers were added to the tin plating bath shown in Table 5 in an amount of about 0.01 to 30% by volume with respect to the tin plating bath, stirred and dispersed in the tin plating bath, and then the cellulose fibers. Electrotin plating was performed under the plating conditions shown in Table 5 in a tin-plated bath in which the coating materials were dispersed so that the average thickness of the coating material was 5 μm. The average thickness of the coating material, the average mass ratio of the cellulose fibers contained in the coating material, and the average area ratio of the cellulose fibers on the surface of the coating material were measured by the same methods as in Examples 1 to 7.

(従来例2)
厚さ0.3mmの銅板(C1100)上に、表5に示す錫めっき浴およびめっき条件で電気錫めっきを行い、厚さ5μmの錫めっき被膜を形成し、錫めっき銅板を作製した。
(Conventional example 2)
Electric tin plating was performed on a copper plate (C1100) having a thickness of 0.3 mm under the tin plating bath and plating conditions shown in Table 5 to form a tin plating film having a thickness of 5 μm to prepare a tin-plated copper plate.

(実施例10)
表1に示すニッケルめっき条件、および表7に示す平均質量割合以外は、実施例1〜7と同様の方法で、厚さ0.3mmの銅板(C1100)上に、金属と、セルロース繊維とを一体形成し、皮膜材(表面処理被膜)の形成が可能か否かの確認を行った。また、皮膜材の平均厚さ、皮膜材中に含まれるセルロース繊維の平均質量割合、及び皮膜材の表面におけるセルロース繊維の平均面積割合は、実施例1〜7と同様の方法で測定した。
(Example 10)
Except for the nickel plating conditions shown in Table 1 and the average mass ratio shown in Table 7, the metal and the cellulose fibers were placed on a copper plate (C1100) having a thickness of 0.3 mm in the same manner as in Examples 1 to 7. It was integrally formed and it was confirmed whether or not a coating material (surface treatment coating) could be formed. The average thickness of the coating material, the average mass ratio of the cellulose fibers contained in the coating material, and the average area ratio of the cellulose fibers on the surface of the coating material were measured by the same methods as in Examples 1 to 7.

(従来例3)
厚さ0.3mmの銅板(C1100)上に、表1に示すニッケルめっき浴およびめっき条件で電気ニッケルめっきを行い、厚さ5μmのニッケルめっき被膜を形成し、ニッケルめっき銅板を作製した。
(Conventional Example 3)
Electronickel plating was performed on a copper plate (C1100) having a thickness of 0.3 mm under the nickel plating bath and plating conditions shown in Table 1 to form a nickel plating film having a thickness of 5 μm to prepare a nickel-plated copper plate.

(実施例11)
表3に示すパラジウムめっき条件、および表7に示す平均質量割合以外は、実施例1〜7と同様の方法で、厚さ0.3mmの銅板(C1100)上に、金属と、セルロース繊維とを一体形成し、皮膜材(表面処理被膜)の形成が可能か否かの確認を行った。また、皮膜材の平均厚さ、皮膜材中に含まれるセルロース繊維の平均質量割合、及び皮膜材の表面におけるセルロース繊維の平均面積割合は、実施例1〜7と同様の方法で測定した。
(Example 11)
Except for the palladium plating conditions shown in Table 3 and the average mass ratio shown in Table 7, the metal and the cellulose fibers were placed on a copper plate (C1100) having a thickness of 0.3 mm in the same manner as in Examples 1 to 7. It was integrally formed and it was confirmed whether or not a coating material (surface treatment coating) could be formed. The average thickness of the coating material, the average mass ratio of the cellulose fibers contained in the coating material, and the average area ratio of the cellulose fibers on the surface of the coating material were measured by the same methods as in Examples 1 to 7.

(従来例4)
厚さ0.3mmの銅板(C1100)上に、表3に示すパラジウムめっき浴およびめっき条件で電気パラジウムめっきを行い、厚さ5μmのパラジウムめっき被膜を形成し、パラジウムめっき銅板を作製した。
(Conventional Example 4)
Electropalladium plating was performed on a copper plate (C1100) having a thickness of 0.3 mm under the palladium plating bath and plating conditions shown in Table 3 to form a palladium plating film having a thickness of 5 μm to prepare a palladium-plated copper plate.

(実施例12)
表4に示す銀めっき条件、および表7に示す平均質量割合以外は、実施例1〜7と同様の方法で、厚さ0.3mmの銅板(C1100)上に、金属と、セルロース繊維とを一体形成し、皮膜材(表面処理被膜)の形成が可能か否かの確認を行った。また、皮膜材の平均厚さ、皮膜材中に含まれるセルロース繊維の平均質量割合、及び皮膜材の表面におけるセルロース繊維の平均面積割合は、実施例1〜7と同様の方法で測定した。
(Example 12)
Except for the silver plating conditions shown in Table 4 and the average mass ratio shown in Table 7, the metal and the cellulose fibers were placed on a copper plate (C1100) having a thickness of 0.3 mm in the same manner as in Examples 1 to 7. It was integrally formed and it was confirmed whether or not a coating material (surface treatment coating) could be formed. The average thickness of the coating material, the average mass ratio of the cellulose fibers contained in the coating material, and the average area ratio of the cellulose fibers on the surface of the coating material were measured by the same methods as in Examples 1 to 7.

(従来例5)
厚さ0.3mmの銅板(C1100)上に、表4に示す銀めっき浴およびめっき条件で電気銀めっきを行い、厚さ5μmの銀めっき被膜を形成し、銀めっき銅板を作製した。
(Conventional Example 5)
An electric silver plating was performed on a copper plate (C1100) having a thickness of 0.3 mm under the silver plating bath and plating conditions shown in Table 4, and a silver plating film having a thickness of 5 μm was formed to prepare a silver-plated copper plate.

(実施例13)
表6に示す金めっき条件、および表7に示す平均質量割合以外は、実施例1〜7と同様の方法で、厚さ0.3mmの銅板(C1100)上に、金属と、セルロース繊維とを一体形成し、皮膜材(表面処理被膜)の形成が可能か否かの確認を行った。また、皮膜材の平均厚さ、皮膜材中に含まれるセルロース繊維の平均質量割合、及び皮膜材の表面におけるセルロース繊維の平均面積割合は、実施例1〜7と同様の方法で測定した。
(Example 13)
Except for the gold plating conditions shown in Table 6 and the average mass ratio shown in Table 7, the metal and the cellulose fibers were placed on a copper plate (C1100) having a thickness of 0.3 mm in the same manner as in Examples 1 to 7. It was integrally formed and it was confirmed whether or not a coating material (surface-treated coating) could be formed. The average thickness of the coating material, the average mass ratio of the cellulose fibers contained in the coating material, and the average area ratio of the cellulose fibers on the surface of the coating material were measured by the same methods as in Examples 1 to 7.

(従来例6)
厚さ0.3mmの銅板(C1100)上に、表6に示す金めっき浴およびめっき条件で電気金めっきを行い、厚さ5μmの金めっき被膜を形成し、金めっき銅板を作製した。
(Conventional Example 6)
Electric gold plating was performed on a copper plate (C1100) having a thickness of 0.3 mm under the gold plating bath and plating conditions shown in Table 6 to form a gold plating film having a thickness of 5 μm to prepare a gold-plated copper plate.

各実施例及び比較例で作製した表面処理被膜及び各従来例で作製しためっき被膜について、皮膜材(表面処理被膜)の表面における有機物の繊維の平均面積割合、さらには、特性として、導電率及び動摩擦係数を以下の方法で測定した。 For the surface-treated coatings prepared in each Example and Comparative Example and the plating coatings prepared in each Conventional Example, the average area ratio of organic fibers on the surface of the coating material (surface-treated coating), and as characteristics, conductivity and The dynamic friction coefficient was measured by the following method.

皮膜材(表面処理被膜)の表面における有機物の繊維の平均面積割合
図2を参照しながら、有機物の繊維の平均面積割合の測定方法を説明する。尚、図2は実施例4の皮膜材に対して評価を行った際の一例であり、その他の実施例及び比較例についても同様に測定を行った。まず、皮膜材を評価に供する大きさ(3cm×3cm)に切り出し、アセトン中に浸漬させて超音波洗浄により皮膜材の表層の油分を除去した。その後、10%硫酸中へ30秒間浸漬して表層の酸化被膜を除去した。さらに、イオン交換水にて水洗の後、乾燥させて評価用の試験片を得た。このように準備した評価材を走査型オージェ電子分光装置(「PH1680」、アルバック・ファイ社製)を用いて、倍率:300倍、観察視野:400μm×280μm、走査線数512本にて、水洗処理した試験片の任意の表面の3ヵ所について、炭素、酸素の元素分布を取得(評価)した(図2(a)参照)。なお、前述の水洗処理は、オージェ電子顕微鏡へ評価材を導入する直前の2時間以内に行った。この元素分布画像を、画像寸法計測ソフト(「Pixs2000 Pro」、イノテック社製)を用いて、下限閾値を150、上限閾値を255にそれぞれ設定し、二値化の設定にて、分離点は除く一方で内部は塗りつぶしを行い、画像処理後の画像を作成した。(図2(b)参照)。
Average area ratio of organic fibers on the surface of the coating material (surface treatment coating) A method for measuring the average area ratio of organic fibers will be described with reference to FIG. Note that FIG. 2 is an example when the film material of Example 4 was evaluated, and the same measurement was performed for other Examples and Comparative Examples. First, the film material was cut into a size (3 cm × 3 cm) to be evaluated, immersed in acetone, and ultrasonically cleaned to remove oil on the surface layer of the film material. Then, it was immersed in 10% sulfuric acid for 30 seconds to remove the oxide film on the surface layer. Further, it was washed with ion-exchanged water and then dried to obtain a test piece for evaluation. The evaluation material prepared in this way was washed with water using a scanning Auger electron spectroscope (“PH1680”, manufactured by ULVAC-PHI, Inc.) at a magnification of 300 times, an observation field of view: 400 μm × 280 μm, and 512 scanning lines. The elemental distributions of carbon and oxygen were obtained (evaluated) at three locations on any surface of the treated test piece (see FIG. 2 (a)). The above-mentioned washing treatment with water was performed within 2 hours immediately before the evaluation material was introduced into the Auger electron microscope. This element distribution image is set to 150 for the lower limit threshold and 255 for the upper limit threshold value using image dimension measurement software (“Pixs2000 Pro”, manufactured by Innotek Co., Ltd.), and the separation point is excluded in the binarization setting. On the other hand, the inside was filled to create an image after image processing. (See FIG. 2 (b)).

さらに、得られた画像を解析し、処理後の画像から黒塗り部の面積が占める割合と観察範囲(400μm×280μm:112000μm)から面積割合を算出し、さらに100000μm当たりの面積割合(面積率)に換算した。また、処理後の画像から黒塗り部の各領域の面積を算出し、画像の端部に設定している黒塗り部の数値と1μm以下となっている黒塗り部の数値を除いた後、各領域の面積の平均を求めることで、少なくとも1つの有機物の繊維が存在する範囲(1ヵ所当たりの面積)を算出した。このように同一箇所を炭素と酸素でそれぞれ算出し、画像処理後の画像(図2(b)参照)において、炭素、酸素の検出箇所がほぼ同一であることを確認し有機物が検出されているとみなし、これらの検出箇所のうち、酸化による誤差が出にくい炭素による算出値を有機物の面積値として用いた。このように、各面積割合及び1ヵ所当たりの面積の算出を、任意の表面の3ヵ所から取得した元素分布に対して行い、その平均値を、皮膜材の各平均面積割合及び1ヵ所当たりの平均面積とした。Further, the obtained image is analyzed, the area ratio is calculated from the ratio occupied by the area of the black-painted portion and the observation range (400 μm × 280 μm: 112000 μm 2 ) from the processed image, and the area ratio per 100,000 μm 2 (area) is further calculated. Rate). In addition, after calculating the area of each area of the black-painted part from the processed image and removing the value of the black-painted part set at the edge of the image and the value of the black-painted part which is 1 μm 2 or less. By calculating the average of the areas of each region, the range in which at least one organic fiber exists (area per location) was calculated. In this way, the same location is calculated for carbon and oxygen, respectively, and in the image after image processing (see FIG. 2B), it is confirmed that the detection locations for carbon and oxygen are almost the same, and organic substances are detected. Of these detection points, the value calculated for carbon, which is less likely to cause an error due to oxidation, was used as the area value of the organic matter. In this way, the area ratio and the area per location are calculated for the element distribution obtained from the three locations on the arbitrary surface, and the average value is calculated for each average area ratio of the coating material and the area per location. The average area was used.

尚、本評価法においては、厳密には元素分布像の信号強度とノイズレベルを常に一定にし、画像処理をしなければ普遍的な測定はできない。しかしながら、試料の状態、測定環境等様々な変動要因が存在するため、像の信号強度を常に一定にすることが現実的に不可能である。そこで、例えば上記のような観察手法で各平均面積割合及び1ヵ所当たりの平均面積を算出した場合において、実施例4の皮膜材について算出した値が、本実施例の値(表7に示す値)から±20%の範囲内にあれば、適切な評価が行われているものと判断し、それと同時に取得および解析した他の試料についても、適切な評価が行われたものと判断する。 Strictly speaking, in this evaluation method, universal measurement cannot be performed unless the signal intensity and noise level of the element distribution image are always constant and image processing is performed. However, since there are various variable factors such as the state of the sample and the measurement environment, it is practically impossible to keep the signal intensity of the image constant. Therefore, for example, when the average area ratio and the average area per location are calculated by the above observation method, the values calculated for the coating material of Example 4 are the values of this example (values shown in Table 7). ) To ± 20%, it is judged that the appropriate evaluation has been performed, and at the same time, it is judged that the other samples obtained and analyzed have also been appropriately evaluated.

また、皮膜材の表面(表層部)に、皮膜材全体の平均的な割合よりも多くの有機物の繊維が含まれるような皮膜材を作製する方法として、例えば、実施例1〜8のような例においては、皮膜材を全体厚さの80%まで形成した後、電気めっきの電流密度を小さくして表層部の形成を行う方法が好ましい。この場合、例えば表2に記載のめっき条件で4μmの平均厚さの皮膜材を作成した後、電流密度を2A/dmに変更して残りの1μmを形成することにより、表層部により多くの有機物の繊維を露出させることができる。Further, as a method for producing a coating material in which the surface (surface layer portion) of the coating material contains more organic fibers than the average ratio of the entire coating material, for example, as in Examples 1 to 8. In the example, a method of forming the coating material up to 80% of the total thickness and then reducing the current density of electroplating to form the surface layer portion is preferable. In this case, for example, after preparing a coating material having an average thickness of 4 μm under the plating conditions shown in Table 2, the current density is changed to 2 A / dm 2 to form the remaining 1 μm, whereby more surface layer portions are formed. Organic fibers can be exposed.

導電率の測定
カソード電極(チタン板)上に、厚さ10μmの表面処理被膜(めっき被膜)を形成した後に、チタン板から表面処理被膜(めっき被膜)を剥離し、表面処理被膜(めっき被膜)の供試材をそれぞれ3枚作製した。作製した各3枚の供試材について、20℃(±0.5℃)に保持した恒温漕中で、四端子法により、比抵抗値を測定した。測定した比抵抗値から導電率を算出し、それらの平均値を求めた。なお、端子間距離は200mmとした。
Measurement of conductivity After forming a surface treatment film (plating film) with a thickness of 10 μm on the cathode electrode (titanium plate), the surface treatment film (plating film) is peeled off from the titanium plate, and the surface treatment film (plating film) is peeled off. Three test materials were prepared for each of the above. The specific resistance values of each of the three test materials produced were measured by the four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.). The conductivity was calculated from the measured resistivity values, and their average values were calculated. The distance between the terminals was set to 200 mm.

動摩擦係数の測定
厚さ0.3mmの銅板(C1100)上に、表7に示す皮膜材(表面処理被膜)が形成された複合材(表面処理材)をそれぞれ3枚作製した。作製した各3枚の複合材(供試材)において、摺動試験装置(HEIDON Type:14FW、新東科学社製)を用いて、動摩擦係数測定を行った。測定条件は、R=3.0mm 鋼球プローブ、摺動距離:10mm、摺動速度:100mm/分、摺動回数:往復50回、荷重100gfである。動摩擦係数は、摺動回数20〜50回の範囲における動摩擦係数の最大値を有機物の繊維を含有しない元の金属膜(従来例のめっき被膜)との比(動摩擦係数比)で評価した。
Measurement of Dynamic Friction Coefficient Three composite materials (surface-treated materials) on which the coating materials (surface-treated coatings) shown in Table 7 were formed on a copper plate (C1100) having a thickness of 0.3 mm were prepared. The dynamic friction coefficient was measured on each of the three produced composite materials (test materials) using a sliding test device (HEIDON Type: 14FW, manufactured by Shinto Kagaku Co., Ltd.). The measurement conditions are R = 3.0 mm steel ball probe, sliding distance: 10 mm, sliding speed: 100 mm / min, number of slides: 50 round trips, load 100 gf. The dynamic friction coefficient was evaluated by the ratio (dynamic friction coefficient ratio) of the maximum value of the dynamic friction coefficient in the range of 20 to 50 sliding times to the original metal film (plating film of the conventional example) containing no organic fiber.

Figure 2020017389
Figure 2020017389

表7の結果から、金属が銅めっきの場合(実施例1〜8、従来例1及び比較例1〜2)で比較すると、平均面積割合が2.5%未満である比較例1の動摩擦係数は従来例1と比べて優位性が認められなかった。一方、平均面積割合が2.5%以上35%以下の範囲である実施例1〜6は、いずれも導電率の低下率に比べて動摩擦係数比が顕著に小さい。その中でも、平均面積割合が2.5%以上25%以下の範囲であり、且つ、1ヵ所当たりの平均面積が1000μm以下の範囲である実施例1〜5は、動摩擦係数比が0.65より小さく、導電率の低下率が25%以下で、特に優れていた。From the results in Table 7, when the metal is copper-plated (Examples 1 to 8, Conventional Examples 1 and Comparative Examples 1 and 2), the dynamic friction coefficient of Comparative Example 1 in which the average area ratio is less than 2.5%. Was not found to be superior to Conventional Example 1. On the other hand, in Examples 1 to 6 in which the average area ratio is in the range of 2.5% or more and 35% or less, the dynamic friction coefficient ratio is remarkably smaller than the reduction rate of the conductivity. Among them, Examples 1 to 5 in which the average area ratio is in the range of 2.5% or more and 25% or less and the average area per location is in the range of 1000 μm 2 or less have a dynamic friction coefficient ratio of 0.65. It was smaller, and the rate of decrease in conductivity was 25% or less, which was particularly excellent.

平均面積割合が30.4%である実施例7は、平均面積割合が2.5%以上25%以下の範囲の実施例1〜5に比べると導電率の低下率は若干大きかったものの、動摩擦係数比は極めて小さかった。 Example 7 having an average area ratio of 30.4% had a slightly larger decrease in conductivity than Examples 1 to 5 having an average area ratio of 2.5% or more and 25% or less, but dynamic friction. The coefficient ratio was extremely small.

皮膜材(表面処理被膜)中に含まれる有機物の繊維がキトサン繊維である実施例8は、導電率の低下率に比べて動摩擦係数比が顕著に小さかった。 In Example 8 in which the organic fiber contained in the film material (surface-treated film) was chitosan fiber, the coefficient of dynamic friction ratio was significantly smaller than the rate of decrease in conductivity.

一方、平均面積割合が38.4%であり、且つ1ヵ所当たりの平均面積が10000μmより大きい比較例2は、動摩擦係数比に比べて導電率の低下率が顕著に大きかった。On the other hand, in Comparative Example 2 in which the average area ratio was 38.4% and the average area per location was larger than 10000 μm 2 , the rate of decrease in conductivity was significantly larger than that in the dynamic friction coefficient ratio.

金属が錫めっきである実施例9と従来例2とを比較すると、実施例9は、導電率の低下率に比べて、動摩擦係数比が顕著に小さかった。 Comparing Example 9 in which the metal is tin-plated with Conventional Example 2, the coefficient of dynamic friction ratio was significantly smaller in Example 9 than in the rate of decrease in conductivity.

金属がニッケルめっきである実施例10と従来例3とを比較すると、実施例10は、導電率の低下率に比べて、動摩擦係数比が顕著に小さかった。 Comparing Example 10 in which the metal is nickel-plated with Conventional Example 3, the coefficient of dynamic friction ratio was significantly smaller in Example 10 than in the rate of decrease in conductivity.

金属がパラジウムめっきである実施例11と従来例4とを比較すると、実施例11は、導電率の低下率に比べて、動摩擦係数比が顕著に小さかった。 Comparing Example 11 in which the metal is palladium-plated with Conventional Example 4, the coefficient of dynamic friction ratio was significantly smaller in Example 11 than in the rate of decrease in conductivity.

金属が銀めっきである実施例12と従来例5とを比較すると、実施例12は、導電率の低下率に比べて、動摩擦係数比が顕著に小さかった。 Comparing Example 12 in which the metal is silver-plated with Conventional Example 5, the coefficient of dynamic friction ratio was significantly smaller in Example 12 than in the rate of decrease in conductivity.

金属が金めっきである実施例13と従来例6とを比較すると、実施例15は、導電率の低下率に比べて、動摩擦係数比が顕著に小さかった。 Comparing Example 13 in which the metal is gold-plated with Conventional Example 6, the dynamic friction coefficient ratio was significantly smaller in Example 15 than in the rate of decrease in conductivity.

(実施例14〜16)
表8に示す平均面積割合以外は、実施例1〜7と同様の方法で、厚さ0.3mmの銅板(C1100)上に、銅と、セルロース繊維とを一体形成し、平均厚さの異なる表面処理被膜(皮膜材)を形成した。また、皮膜材の平均厚さ、皮膜材中に含まれるセルロース繊維の平均質量割合、及び皮膜材の表面におけるセルロース繊維の平均面積割合は、実施例1〜7と同様の方法で測定した。
(Examples 14 to 16)
Copper and cellulose fibers are integrally formed on a copper plate (C1100) having a thickness of 0.3 mm in the same manner as in Examples 1 to 7 except for the average area ratio shown in Table 8, and the average thickness is different. A surface treatment film (coating material) was formed. The average thickness of the coating material, the average mass ratio of the cellulose fibers contained in the coating material, and the average area ratio of the cellulose fibers on the surface of the coating material were measured by the same methods as in Examples 1 to 7.

(従来例7)
厚さ0.3mmの銅板(C1100)上に、表2に示す銅めっき浴およびめっき条件で電気銅めっきを行い、厚さ30μmの銅めっき被膜を形成し、銅めっき銅板を作製した。
(Conventional Example 7)
Electrocopper plating was performed on a copper plate (C1100) having a thickness of 0.3 mm under the copper plating bath and plating conditions shown in Table 2 to form a copper plating film having a thickness of 30 μm to prepare a copper-plated copper plate.

実施例14〜16、従来例7は、実施例1〜7と同様の方法で各平均面積割合、一ヵ所当たりの平均面積、導電率、動摩擦係数を測定した。 In Examples 14 to 16 and Conventional Example 7, the average area ratio, the average area per location, the conductivity, and the dynamic friction coefficient were measured in the same manner as in Examples 1 to 7.

Figure 2020017389
Figure 2020017389

表8の結果から、皮膜材の平均厚さが0.1μm以上500μm以下の範囲でも、実施例1〜7と同様に、導電率、動摩擦係数比が優れていた。 From the results in Table 8, even when the average thickness of the coating material was in the range of 0.1 μm or more and 500 μm or less, the conductivity and the dynamic friction coefficient ratio were excellent as in Examples 1 to 7.

本発明によれば、金属自体が本来有する導電性の低下をできる限り抑制しつつ、摺動特性が向上した皮膜材及びその製造方法、並びにこれを有する複合材及び電気接点用端子を提供することが可能になった。 According to the present invention, it is provided a coating material having improved sliding characteristics and a method for producing the same, and a composite material having the same and terminals for electrical contacts, while suppressing a decrease in conductivity inherent in the metal itself as much as possible. Is now possible.

1 複合材
2 有機物の繊維
3 皮膜材
4 基材
5 金属(マトリックス金属)
1 Composite material 2 Organic fiber 3 Coating material 4 Base material 5 Metal (matrix metal)

Claims (14)

電気めっき可能な金属と、
前記金属中に分散状態で配置された、炭素と酸素とを有する有機物の繊維と、
を有する皮膜材であって、
前記皮膜材の任意の表面において、100000μmの範囲で区画した観察視野内に占める前記有機物の繊維の平均面積割合が、2.5%以上35%以下の範囲であることを特徴とする皮膜材。
Electroplatable metal and
Organic fibers having carbon and oxygen arranged in a dispersed state in the metal,
It is a film material with
The coating material is characterized in that, on an arbitrary surface of the coating material, the average area ratio of the fibers of the organic substance in the observation field of view partitioned in the range of 100,000 μm 2 is in the range of 2.5% or more and 35% or less. ..
前記皮膜材の任意の表面において、前記有機物の繊維が、10000μm以下の範囲内に少なくとも1つ存在する、請求項1に記載の皮膜材。The coating material according to claim 1, wherein at least one of the organic fibers is present on an arbitrary surface of the coating material within a range of 10,000 μm 2 or less. 前記平均面積割合が2.5%以上25%以下である、請求項1又は2に記載の皮膜材。 The coating material according to claim 1 or 2, wherein the average area ratio is 2.5% or more and 25% or less. 前記皮膜材中に含まれる前記有機物の繊維の平均質量割合が、0.02質量%以上10質量%以下である、請求項1〜3までのいずれか1項に記載の皮膜材。 The coating material according to any one of claims 1 to 3, wherein the average mass ratio of the organic fibers contained in the coating material is 0.02% by mass or more and 10% by mass or less. 前記皮膜材の平均厚さが500μm以下である、請求項1〜4までのいずれか1項に記載の皮膜材。 The coating material according to any one of claims 1 to 4, wherein the coating material has an average thickness of 500 μm or less. 前記金属が、Cu、Ag、Au、Sn、Ni又はPdである、請求項1〜5までのいずれか1項に記載の皮膜材。 The coating material according to any one of claims 1 to 5, wherein the metal is Cu, Ag, Au, Sn, Ni or Pd. 前有機物がセルロース繊維である、請求項1〜6までのいずれか1項に記載の皮膜材。 The coating material according to any one of claims 1 to 6, wherein the pre-organic substance is a cellulose fiber. 前記金属がCu、Ag又はSnであり、
前記平均面積割合が2.5%以上25%以下であり、
前記有機物の繊維がセルロース繊維であり、かつ、前記皮膜材の任意の表面において、1000μm以下の範囲内に少なくとも1つ存在する、請求項1〜7までのいずれか1項に記載の皮膜材。
The metal is Cu, Ag or Sn.
The average area ratio is 2.5% or more and 25% or less.
The coating material according to any one of claims 1 to 7, wherein the organic fiber is a cellulose fiber and at least one is present within a range of 1000 μm 2 or less on an arbitrary surface of the coating material. ..
前記皮膜材の表面に100gfの荷重で鋼球を摺動子として使用する往復摺動試験において、摺動回数20〜50回の範囲内の条件下での動摩擦係数の最大値が金属そのものを基準として0.8以下である、請求項1〜8までのいずれか1項に記載の皮膜材。 In a reciprocating sliding test in which a steel ball is used as a slider on the surface of the coating material with a load of 100 gf, the maximum value of the dynamic friction coefficient under the condition that the number of slides is within the range of 20 to 50 is based on the metal itself. The coating material according to any one of claims 1 to 8, which is 0.8 or less. 基材と、該基材の表面に形成された請求項1〜9までのいずれか1項に記載の皮膜材と、を有する、複合材。 A composite material comprising a base material and the coating material according to any one of claims 1 to 9 formed on the surface of the base material. 前記基材が導電性基材である、請求項10に記載の複合材。 The composite material according to claim 10, wherein the base material is a conductive base material. 前記基材が絶縁性基材である、請求項10に記載の複合材。 The composite material according to claim 10, wherein the base material is an insulating base material. 請求項1〜9までのいずれか1項に記載の皮膜材を備える電気接点用端子。 An electrical contact terminal provided with the coating material according to any one of claims 1 to 9. 電気めっき法によって形成する請求項1〜9までのいずれか1項に記載の皮膜材の製造方法。 The method for producing a coating material according to any one of claims 1 to 9, which is formed by an electroplating method.
JP2020531254A 2018-07-19 2019-07-09 Coating material and its manufacturing method, composite material, and electrical contact terminal Active JP7252234B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018135599 2018-07-19
JP2018135599 2018-07-19
PCT/JP2019/027064 WO2020017389A1 (en) 2018-07-19 2019-07-09 Coating material and method for manufacturing same, composite material, and electric contact terminal

Publications (2)

Publication Number Publication Date
JPWO2020017389A1 true JPWO2020017389A1 (en) 2021-08-02
JP7252234B2 JP7252234B2 (en) 2023-04-04

Family

ID=69164426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020531254A Active JP7252234B2 (en) 2018-07-19 2019-07-09 Coating material and its manufacturing method, composite material, and electrical contact terminal

Country Status (3)

Country Link
JP (1) JP7252234B2 (en)
TW (1) TWI797358B (en)
WO (1) WO2020017389A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231530A (en) * 2007-03-22 2008-10-02 Furukawa Electric Co Ltd:The Surface coating material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1118167A (en) * 1965-10-23 1968-06-26 Res Holland Nv Improvements in or relating to the production of microporous chromium deposits
JP2008293883A (en) * 2007-05-28 2008-12-04 Hitachi Cable Ltd Conductive goods, anode material, their manufacturing method, plating liquid, and lithium secondary battery
CN103582722B (en) * 2011-06-03 2016-11-23 松下电器产业株式会社 Contact part
CN110462111B (en) * 2017-03-29 2022-01-07 古河电气工业株式会社 Integrated body, composite material having the same, terminal for electrical contact, and printed wiring board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231530A (en) * 2007-03-22 2008-10-02 Furukawa Electric Co Ltd:The Surface coating material

Also Published As

Publication number Publication date
WO2020017389A1 (en) 2020-01-23
JP7252234B2 (en) 2023-04-04
TW202007797A (en) 2020-02-16
TWI797358B (en) 2023-04-01

Similar Documents

Publication Publication Date Title
EP2879145B1 (en) Electrical contact materials and method for preparing the same
US11361876B2 (en) Integrally formed product, and composite material, terminal for electrical contact and printed wiring board including the integrally formed product
JP6838839B2 (en) A method for manufacturing a silver plating solution, a silver plating material, an electric / electronic component, and a silver plating material.
JP4749746B2 (en) Tin plating material and method for producing the same
JP4783954B2 (en) Composite plating material and method for producing the same
JP2008056950A (en) Silver composite material and producing method thereof
CN110828024B (en) Conducting wire prepared from conductive graphene coated copper and preparation method and application thereof
JP2004052044A (en) Silver-coated copper powder and its manufacturing method
JP7252234B2 (en) Coating material and its manufacturing method, composite material, and electrical contact terminal
KR20230028211A (en) Composites, manufacturing methods and terminals for composites
JP7393939B2 (en) Composite plating, plated metal substrates and terminals for electrical contacts
JP2020187971A (en) Connector terminal, terminal-attached wire and terminal pair
JP7470321B2 (en) Sn-graphene composite plating film metal terminal and its manufacturing method
JP5389097B2 (en) Sn plating material
JP2021050369A (en) Plated metal substrate, production method thereof, and electric contact material
JP2015151608A (en) Copper alloy material for connector terminals and method for producing the same
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
WO2019130511A1 (en) PRECIPITATION HARDENING-TYPE Ag-Pd-Cu-In-B-BASED ALLOY
JP5107117B2 (en) Composite plating material and method for producing the same
JP6911164B2 (en) Composite plating material
JP2022076573A (en) Composite plated material, and method of producing the same
JP2022068422A (en) Composite material, method of producing composite material, terminal, and method of producing terminal
WO2018021228A1 (en) Electrical connection component
CN116710588A (en) Cu-Ag alloy wire
WO2021019907A1 (en) Composite plated material and method for producing same

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R151 Written notification of patent or utility model registration

Ref document number: 7252234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151