JP2008293883A - Conductive goods, anode material, their manufacturing method, plating liquid, and lithium secondary battery - Google Patents

Conductive goods, anode material, their manufacturing method, plating liquid, and lithium secondary battery Download PDF

Info

Publication number
JP2008293883A
JP2008293883A JP2007140335A JP2007140335A JP2008293883A JP 2008293883 A JP2008293883 A JP 2008293883A JP 2007140335 A JP2007140335 A JP 2007140335A JP 2007140335 A JP2007140335 A JP 2007140335A JP 2008293883 A JP2008293883 A JP 2008293883A
Authority
JP
Japan
Prior art keywords
organic polymer
negative electrode
electrode material
metal
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007140335A
Other languages
Japanese (ja)
Inventor
Masaru Kanemoto
兼元  大
Yoshinori Negishi
芳典 根岸
Haruo Akaboshi
晴夫 赤星
Hajime Sasaki
元 佐々木
Muneo Kodaira
宗男 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007140335A priority Critical patent/JP2008293883A/en
Publication of JP2008293883A publication Critical patent/JP2008293883A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide novel conductive goods, a lithium secondary battery with high capacity, a high output, and excellent in cycle characteristics, and its anode material, and further, provide plating liquid for forming the anode material. <P>SOLUTION: Conductive goods having organic polymer fiber dispersed in a metal-plated film formed on a base body, a collector, and an active material layer are provided, and in addition, the metal-plated film made as the active material layer is alloyed with lithium, an anode material structured of the organic polymer material, and plating liquid are provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、導電性物品、負極材及びそれらの製造方法、めっき液並びにリチウム二次電池用負極材料、前記材料を製造するためのめっき液、リチウム二次電池、並びに本電池を利用した製品に関する。   TECHNICAL FIELD The present invention relates to a conductive article, a negative electrode material and a production method thereof, a plating solution, a negative electrode material for a lithium secondary battery, a plating solution for producing the material, a lithium secondary battery, and a product using the battery. .

近年、ノートパソコン、携帯電話などの電子機器の普及、また、地球温暖化防止を背景としたハイブリッド自動車の急速な普及に伴い、電源として使用される二次電池の小型化および高エネルギー密度化が要求されている。二次電池としては、従来、ニッケル−カドミウム電池、ニッケル−水素電池等が主流であったが、より小型化および高エネルギー密度化の点で有望なリチウム二次電池の性能向上に対する期待は大きい。   In recent years, with the spread of electronic devices such as notebook computers and mobile phones, and the rapid spread of hybrid vehicles against the background of global warming, secondary batteries used as power sources have become smaller and have higher energy density. It is requested. Conventionally, nickel-cadmium batteries, nickel-hydrogen batteries, and the like have been mainstream as secondary batteries, but there are great expectations for the performance improvement of lithium secondary batteries that are promising in terms of further miniaturization and higher energy density.

負極材料としてリチウム金属を用いた場合、リチウム理論容量が3860mAh/gと極めて高いが、充電時にデンドライトが析出し、充放電に伴う電池の内部抵抗の上昇および充放電効率を低下させる欠点があった。また、このデンドライトは、最終的にセパレータを突き破って正極側に達し、内部短絡を起こすおそれがあった。以上の理由から、負極材料としてリチウム金属を用いたリチウム二次電池は、信頼性およびサイクル寿命に問題があった。   When lithium metal is used as the negative electrode material, the lithium theoretical capacity is very high at 3860 mAh / g, but there is a drawback that dendrites are deposited during charging, which increases the internal resistance of the battery accompanying charging / discharging and decreases charging / discharging efficiency. . In addition, this dendrite may eventually break through the separator and reach the positive electrode side, causing an internal short circuit. For these reasons, lithium secondary batteries using lithium metal as the negative electrode material have problems in reliability and cycle life.

現在、リチウム金属に替わる負極材料として、リチウムイオンを吸蔵・放出できる炭素材料を使用し、実用化に至っている。通常、炭素材料負極においてはリチウムのデンドライト析出により内部短絡する可能性は低い。しかし、炭素材料の一つである黒鉛の理論容量は372mAh/gであり、リチウム金属単体の理論容量の10分の1程度と少ない。また、製造工程が複雑で歩留まりが低いため、製造コストが増大するという欠点がある。   Currently, carbon materials that can occlude and release lithium ions are used as a negative electrode material to replace lithium metal, and have been put into practical use. Usually, in a carbon material negative electrode, the possibility of internal short-circuiting due to lithium dendrite precipitation is low. However, the theoretical capacity of graphite, which is one of the carbon materials, is 372 mAh / g, which is as small as about one-tenth of the theoretical capacity of a single lithium metal. Further, since the manufacturing process is complicated and the yield is low, there is a disadvantage that the manufacturing cost increases.

他の負極材料として、リチウムと合金化する金属材料が知られている。例えば、ケイ素(Si)、スズ(Sn)、亜鉛(Zn)のリチウムを最も多く含む化合物の組成式は、それぞれLi22Si、Li22Sn、LiZnであり、この範囲では金属リチウムは通常析出しないため、デンドライトによる内部短絡の問題は無い。それぞれの理論容量は、それぞれ4199mAh/g、993mAh/g、410mAh/gであり、いずれも黒鉛の理論容量よりも大きい。しかし、例えばSn単体材料の場合、リチウムの挿入に伴って3.59倍と大きな体積変化を起こすため、サイクル寿命が短いという欠点がある。 As another negative electrode material, a metal material alloyed with lithium is known. For example, the composition formulas of the compounds containing the most lithium such as silicon (Si), tin (Sn), and zinc (Zn) are Li 22 Si 5 , Li 22 Sn 5 , and LiZn, respectively. Since it does not precipitate, there is no problem of internal short circuit due to dendrite. The respective theoretical capacities are 4199 mAh / g, 993 mAh / g, and 410 mAh / g, respectively, which are all larger than the theoretical capacity of graphite. However, in the case of Sn simple material, for example, the volume change is 3.59 times as large as lithium is inserted, so that there is a disadvantage that the cycle life is short.

このような背景の中、上記欠点を解決するため、Si、Sn、Znなどの金属とリチウムを吸蔵しない金属との合金化、活物質層の薄膜化、有機高分子などの非反応物質との複合化、活物質の製造方法や集電体の処理方法の改良が試みられている。   In such a background, in order to solve the above-described drawbacks, alloying of metals such as Si, Sn, Zn and metals that do not occlude lithium, thinning of the active material layer, and non-reactive substances such as organic polymers Attempts have been made to improve the composite, active material manufacturing method and current collector processing method.

下記特許文献1〜4では、集電体表面にSnまたはSn合金薄膜を形成し、これを負極として用いることが提案されている。例えば、負極材料とするスズ合金としては、アンチモン、ビスマス、鉛、銅、亜鉛等とスズとの合金、スズビスマス合金皮膜、銅、亜鉛、コバルト及び鉄からなる群より選択される1種または2種以上を含むスズ合金などが報告されており、スズまたはスズ合金薄膜を形成する手段として電気めっき法等が開示されている。   In the following Patent Documents 1 to 4, it is proposed to form a Sn or Sn alloy thin film on the current collector surface and use this as a negative electrode. For example, as the tin alloy used as the negative electrode material, one or two selected from the group consisting of an alloy of antimony, bismuth, lead, copper, zinc and the like and tin, a tin bismuth alloy film, copper, zinc, cobalt and iron Tin alloys including the above have been reported, and electroplating methods and the like have been disclosed as means for forming tin or tin alloy thin films.

また、下記特許文献5には、集電体とスズめっき層またはスズ合金めっき層との界面に、該集電体のリチウム吸蔵能とスズめっき層またはスズ合金めっき層のリチウム吸蔵能との中間のリチウム吸蔵能を有する層を形成した二次電池用電極が提案されている。更に、下記特許文献6には、特定組成の電気めっき液から析出させた、微細なめっき粒子が実質的に連続した構造のスズまたはスズ合金皮膜を集電体の片面又は両面に形成した材料からなる二次電池用電極材料が提案されている。   Further, in Patent Document 5 below, an intermediate between the lithium occlusion capacity of the current collector and the lithium occlusion capacity of the tin plating layer or the tin alloy plating layer is provided at the interface between the current collector and the tin plating layer or the tin alloy plating layer. An electrode for a secondary battery in which a layer having lithium storage capacity is formed has been proposed. Further, in Patent Document 6 below, from a material in which a tin or tin alloy film having a structure in which fine plating particles are substantially continuous deposited from an electroplating solution having a specific composition is formed on one side or both sides of a current collector. An electrode material for a secondary battery is proposed.

このように、集電体の表面に電気めっき法などの表面処理法によってスズ又はスズ合金薄膜を形成し、これをリチウム二次電池負極材料とすることが種々試みられている。   As described above, various attempts have been made to form a tin or tin alloy thin film on the surface of the current collector by a surface treatment method such as electroplating, and use this as a negative electrode material for a lithium secondary battery.

また、下記特許文献7には、微細構造を有するシート状の非導電性材料からなる基体と前記基体の表面および微細構造内部表面に形成されたスズまたはスズ合金からなる活物質層を有する負極材料が提案されている。特許文献5は非水電解質二次電池を開示し、その負極用導電剤として炭素繊維、金属繊維などが開示されているが、非導電性の有機高分子繊維を用いることは記載がない。   Patent Document 7 below discloses a negative electrode material having a base made of a sheet-like non-conductive material having a fine structure, and an active material layer made of tin or a tin alloy formed on the surface of the base and the internal surface of the fine structure. Has been proposed. Patent Document 5 discloses a non-aqueous electrolyte secondary battery, and carbon fibers, metal fibers, and the like are disclosed as a conductive agent for the negative electrode, but there is no description of using non-conductive organic polymer fibers.

また、特許文献8においては、負極用導電材として、炭素繊維や金属繊維を添加することが記載されているが、負極活物質をめっきで形成することは記載していない。   Moreover, in patent document 8, although adding carbon fiber and a metal fiber is described as a negative electrode electrically conductive material, forming a negative electrode active material by plating is not described.

特開平11―242954号公報Japanese Patent Laid-Open No. 11-242954 特開2001−068094号公報JP 2001-068094 A 特開2001−068095号公報JP 2001-068095 A 特開2002−198091号公報JP 2002-198091 A 特開2003−157833号公報JP 2003-157833 A 特開2003−142088号公報JP 2003-142088 A 特開2005−129254号公報JP 2005-129254 A 特開2000−173593号公報JP 2000-173593 A

しかしながら、上記各種の検討にも関わらず、実用的に利用可能な、十分なサイクル寿命を有する負極材料が得られていないのが現状である。   However, in spite of the various studies described above, a negative electrode material having a sufficient cycle life that can be practically used has not been obtained.

特許文献1〜4に記載される方法で集電体上にスズまたはスズ合金薄膜を形成した場合であっても、スズは充放電反応による負極材料の体積変化が大きく、その変化を繰り返すことにより、材料に亀裂を生じ、粒子が微細化するものと考えられる。微細化した材料は、粒子間に空間が生じ、電子伝導性が悪化し、電気化学的な反応に関与できない部分が増加する結果、充放電容量が低下するものと考えられる。   Even when tin or a tin alloy thin film is formed on a current collector by the methods described in Patent Documents 1 to 4, tin has a large volume change in the negative electrode material due to the charge / discharge reaction, and the change is repeated. It is thought that the material cracks and the particles become finer. The refined material is considered to have a space between the particles, the electron conductivity deteriorates, and the portion that cannot participate in the electrochemical reaction increases, resulting in a decrease in charge / discharge capacity.

一方、上述の金属のみで構成される負極材料と異なり、特許文献7に記載されるように、微細構造を有するシート状の非導電性材料からなる基体と前記基体の表面および微細構造内部表面に形成されたスズまたはスズ合金からなる活物質層を有する負極材料の場合、非伝導材料からなる基体が充放電時の負極材料の体積変化を緩和し、実施例の50サイクル目の容量維持率は比較例に比べて改善している。しかし、非導電性材料の表面にしか活物質金属が存在しないため、活物質正味の量は少なく、体積当たりの容量の大幅な向上は困難である。また、活物質層量を増大させようとしても、シート内部よりシート外部へのめっき液の物質供給が大きいため、シート内部へ効率良く活物質金属を析出させることが難しい。更に、薄膜であるが故、集電体までの抵抗値が大きく、電池として内部抵抗を増大させる原因となる。   On the other hand, unlike the negative electrode material composed only of the above-described metal, as described in Patent Document 7, the substrate made of a sheet-like non-conductive material having a microstructure, the surface of the substrate, and the microstructure internal surface In the case of a negative electrode material having an active material layer made of tin or tin alloy formed, the base made of a non-conductive material relaxes the volume change of the negative electrode material during charge and discharge, and the capacity retention rate at the 50th cycle of the example is Compared to the comparative example. However, since the active material metal exists only on the surface of the non-conductive material, the net amount of the active material is small, and it is difficult to significantly improve the capacity per volume. Even if the amount of the active material layer is increased, it is difficult to deposit the active material metal efficiently inside the sheet because the material supply of the plating solution from the inside of the sheet to the outside of the sheet is large. Furthermore, since it is a thin film, the resistance value to the current collector is large, which causes the internal resistance of the battery to increase.

本発明は、導電材料などに用い得る新規な導電性物品及び新規な負極材料および高容量で充放電サイクル特性に優れたリチウム二次電池を提供すること、また、それらを利用した電子機器や自動車、システム、更に導電性物品及び負極材料を形成するためのめっき液を提供することを目的とする。   The present invention provides a novel conductive article that can be used for a conductive material and the like, a novel negative electrode material, and a lithium secondary battery having a high capacity and excellent charge / discharge cycle characteristics, and an electronic device and an automobile using the same. An object of the present invention is to provide a plating solution for forming a system, and further a conductive article and a negative electrode material.

本発明の導電性物品は、基体上に形成された金属めっき膜中に有機高分子繊維が分散していることを特徴とする導電性物品であり、また、負極材料は、集電体と活物質層からなるリチウム二次電池の負極材料において、前記めっき膜中に分散しているものである。   The conductive article of the present invention is a conductive article characterized in that organic polymer fibers are dispersed in a metal plating film formed on a substrate, and the negative electrode material comprises a current collector and an active material. In the negative electrode material of a lithium secondary battery comprising a material layer, it is dispersed in the plating film.

本発明によれば、柔軟性があり、膨張・収縮の応力を吸収しうる新規な導電性物品が提供され、また、利用効率を高めた高容量、充放電に伴う体積膨張収縮および微粉化を抑制することができるサイクル特性に優れたリチウム二次電池用負極材料およびリチウム二次電池を提供できる。   According to the present invention, there is provided a novel conductive article that is flexible and can absorb the stress of expansion / contraction, and has a high capacity with enhanced utilization efficiency, and volume expansion / contraction and pulverization associated with charge / discharge. A negative electrode material for a lithium secondary battery and a lithium secondary battery excellent in cycle characteristics that can be suppressed can be provided.

リチウム二次電池用負極活物質をリチウムと合金化する金属めっき膜中に有機高分子繊維を分散し、特に、ミクロフィブリルあるいはミクロフィブリル束を取り込んだ構成とすることにより、本発明のリチウム二次電池を用いた、小型で高エネルギーで実用性の高い電子機器およびハイブリッド車、電気自動車などの移動体を提供できる。   The lithium secondary battery of the present invention is formed by dispersing organic polymer fibers in a metal plating film for alloying a negative electrode active material for lithium secondary batteries with lithium, in particular, by incorporating microfibrils or microfibril bundles. It is possible to provide a mobile device such as a hybrid vehicle or an electric vehicle that uses a battery and is small, high energy, and highly practical.

更に、本発明により、そのリチウム二次電池と風力発電などの自然エネルギーを利用した負荷平準化が要求される発電機などと組み合わせたシステムを提供できる。   Furthermore, according to the present invention, it is possible to provide a system in combination with the lithium secondary battery and a generator that requires load leveling using natural energy such as wind power generation.

また、本発明により、本発明の導電性物品及び負極材料を形成するためのめっき液を提供できる。   Moreover, according to the present invention, a plating solution for forming the conductive article and the negative electrode material of the present invention can be provided.

また、本発明の導電性物品及び負極材においては、前記有機高分子繊維がリチウムと合金化する金属めっき膜の結晶粒子中に存在する。特に、負極材の場合、前記活物質層は、錫または錫合金が好ましい。   In the conductive article and the negative electrode material of the present invention, the organic polymer fiber is present in crystal particles of a metal plating film that is alloyed with lithium. In particular, in the case of a negative electrode material, the active material layer is preferably tin or a tin alloy.

前記有機高分子繊維は、より好ましくは、親水性または一部水溶性であり、これにより繊維がめっき液中でよく分散することができる。またこの有機高分子繊維は弾性率が100GPa以上かつ強度2GPa以上であるものが好ましく、セルロース、アラミド、ナイロンまたはそれらの誘導体の少なくとも1種を含有する。これにより柔軟性と応力緩和性に富む導電性物品及び負極材が得られる。   The organic polymer fiber is more preferably hydrophilic or partially water-soluble so that the fiber can be well dispersed in the plating solution. The organic polymer fiber preferably has an elastic modulus of 100 GPa or more and a strength of 2 GPa or more, and contains at least one of cellulose, aramid, nylon or derivatives thereof. Thereby, the electroconductive article and negative electrode material which are rich in a softness | flexibility and stress relaxation property are obtained.

また、本発明による負極材はその活物質層に含有される前記有機高分子繊維の含有率が膜厚方向対して異なる分布を有することができる。また、有機高分子繊維の一部が活物質層表面に露出していてもよい。   In addition, the negative electrode material according to the present invention may have a distribution in which the content of the organic polymer fiber contained in the active material layer differs in the film thickness direction. Further, a part of the organic polymer fiber may be exposed on the surface of the active material layer.

また、集電体上にリチウムと合金化する金属および前記有機高分子繊維からなる活物質層を形成した後、熱処理した負極材料とすることもできる。これにより特性の安定した負極材とすることができる。集電体はその表面に凹凸形状を有していてもよい。本発明のリチウム電池は、前記の負極材料、正極材料、電解液、セパレータ、封止材からなる。本発明のシステムは、リチウム電池を搭載した輸送体および少なくとも1つの電子機器、並びに、発電機と組み合わせて構成することができる。   Moreover, after forming the active material layer which consists of the metal alloyed with lithium and the said organic polymer fiber on a collector, it can also be set as the negative electrode material heat-processed. Thereby, a negative electrode material having stable characteristics can be obtained. The current collector may have an uneven shape on its surface. The lithium battery of this invention consists of said negative electrode material, positive electrode material, electrolyte solution, a separator, and a sealing material. The system of the present invention can be configured in combination with a transporter on which a lithium battery is mounted, at least one electronic device, and a generator.

本発明の電気めっき液は、Sn塩、支持電解質、有機高分子繊維および少なくとも一種以上の添加剤を含有し、前記有機高分子繊維は液中で分散している。特に、有機高分子繊維がミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束を主成分として含有し、めっき液中に分散しているめっき液である。なお、繊維の長さは10〜500μm程度のものが好ましい。   The electroplating solution of the present invention contains Sn salt, supporting electrolyte, organic polymer fiber and at least one additive, and the organic polymer fiber is dispersed in the solution. In particular, a plating solution in which organic polymer fibers contain microfibrils or microfibril bundles having a fiber diameter of 1 μm or less as a main component and are dispersed in the plating solution. The fiber length is preferably about 10 to 500 μm.

また、第1の金属例えばSn塩、該第1の金属と合金化する第2の金属の塩、支持電解質、有機高分子繊維および少なくとも一種以上の添加剤例えば、還元剤、錯化剤、界面活性剤などを液体に溶解又は分散しためっき液である。特に、有機高分子繊維がミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束を主成分として含有し、めっき液中に分散しているめっき液が好ましい。   Also, a first metal such as a Sn salt, a salt of a second metal alloyed with the first metal, a supporting electrolyte, an organic polymer fiber and at least one or more additives such as a reducing agent, a complexing agent, an interface A plating solution in which an activator or the like is dissolved or dispersed in a liquid. In particular, a plating solution in which the organic polymer fiber contains microfibrils or a microfibril bundle having a fiber diameter of 1 μm or less as a main component and is dispersed in the plating solution is preferable.

更に、本発明の無電解めっき液は、Sn塩、還元剤、錯化剤、有機高分子繊維および少なくとも一種以上の添加剤を含有する。また、第1の金属例えば、Sn塩、その第1の金属と合金化する第2の金属の塩、還元剤、錯化剤、有機高分子繊維及び必要な添加剤を液体に溶解又は分散しためっき液である。有機高分子繊維はミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束を主成分として含有し、めっき液中に分散しているめっき液である。有機高分子繊維は織布や不織布などのように繊維が互いに拘束されてめっき液中で自由に分散できない形状では不適当である。   Furthermore, the electroless plating solution of the present invention contains a Sn salt, a reducing agent, a complexing agent, organic polymer fibers, and at least one or more additives. In addition, a first metal, for example, an Sn salt, a salt of a second metal alloyed with the first metal, a reducing agent, a complexing agent, an organic polymer fiber, and necessary additives are dissolved or dispersed in a liquid. It is a plating solution. The organic polymer fiber is a plating solution containing a microfibril or a microfibril bundle having a fiber diameter of 1 μm or less as a main component and dispersed in the plating solution. Organic polymer fibers are unsuitable for shapes such as woven and non-woven fabrics where the fibers are constrained to each other and cannot be freely dispersed in the plating solution.

本発明の負極材料とすることで、炭素材料に比べて高い容量密度を得ることができる。また、負極活物質層中に微細な有機高分子繊維を含有させることで、それ自身の弾性及び電解液を吸収する際に膨潤する駆動力がリチウムの吸蔵・放出に伴なう金属の体積変化を抑制することができ、結果的に優れたサイクル特性を発現する。特に、本発明のめっき液を用いて形成した負極材料は、めっき液中に存在する微細な繊維を取り込みながら活物質金属が形成されるため、粒成長が抑制され、微細な活物質粒子となる。   By setting it as the negative electrode material of this invention, a high capacity density can be obtained compared with a carbon material. In addition, by including fine organic polymer fibers in the negative electrode active material layer, the elasticity of itself and the driving force that swells when absorbing the electrolyte solution change the volume of the metal accompanying the insertion and extraction of lithium. As a result, excellent cycle characteristics are exhibited. In particular, in the negative electrode material formed using the plating solution of the present invention, the active material metal is formed while taking in the fine fibers present in the plating solution, so that grain growth is suppressed and fine active material particles are obtained. .

また、本発明の負極材料は、結晶粒中にも微細な有機高分子繊維が存在していることが好ましい。その結果、活物質層の割れ、微粉化に伴う、充放電サイクルによる容量低下を著しく抑制することができる。また、活物質金属と有機高分子繊維の接触面積が大きいため、効率良く体積変化を緩和することができ、加えて、電解液バルクから活物質表面への電解液の浸透をスムーズに行うことができ、活物質の利用効率の向上および出力密度を向上できる。   In the negative electrode material of the present invention, it is preferable that fine organic polymer fibers exist in the crystal grains. As a result, it is possible to remarkably suppress capacity reduction due to charge / discharge cycles accompanying cracking and pulverization of the active material layer. In addition, since the contact area between the active material metal and the organic polymer fiber is large, volume change can be efficiently reduced, and in addition, the electrolyte solution can smoothly penetrate from the electrolyte bulk to the active material surface. It is possible to improve the utilization efficiency of the active material and the output density.

以下、本発明の実施例を詳細に説明する。本発明の負極材は、リチウムイオンを電気化学的かつ可逆的に挿入・放出できる負極材料である。図1(a)は、本発明の実施の形態である負極材料を示す。負極材料1は、集電体2、活物質金属または合金3、ミクロフィブリルあるいはミクロフィブリル束を主成分とする有機高分子繊維4で構成される。ミクロフィブリルあるいはミクロフィブリル束を主成分とする有機高分子繊維が、Sn金属めっき膜またはSn合金などのリチウムと合金化する金属めっき膜中に取り込まれた構造となっている。有機高分子繊維が充放電で起きる膨張・収縮を抑える役割を担うことで優れた充放電サイクル特性を示す。本発明の負極材料では、SnやZnなどリチウムと合金化する金属を構成元素として含むことからリチウム二次電池の高容量化に寄与できる。   Hereinafter, embodiments of the present invention will be described in detail. The negative electrode material of the present invention is a negative electrode material capable of electrochemically and reversibly inserting and releasing lithium ions. Fig.1 (a) shows the negative electrode material which is embodiment of this invention. The negative electrode material 1 is composed of a current collector 2, an active material metal or alloy 3, and organic polymer fibers 4 mainly composed of microfibrils or microfibril bundles. Organic polymer fibers mainly composed of microfibrils or microfibril bundles are incorporated into a metal plating film that is alloyed with lithium, such as a Sn metal plating film or a Sn alloy. Excellent charge / discharge cycle characteristics due to the role of organic polymer fibers in suppressing expansion / contraction caused by charge / discharge. Since the negative electrode material of the present invention contains a metal that forms an alloy with lithium, such as Sn or Zn, as a constituent element, it can contribute to an increase in capacity of the lithium secondary battery.

活物質金属および有機高分子繊維を含む活物質層の膜厚は、特に限定されないが、1μm〜100μmが好ましい。1μm未満の場合、十分な充放電容量を確保できず、また、100μmを超える場合、活物質内部まで効率よく利用できなくなり、内部抵抗が大きくなってしまう。また、負極材を捲回する際、取扱が難しくなる。   Although the film thickness of the active material layer containing an active material metal and organic polymer fiber is not specifically limited, 1 micrometer-100 micrometers are preferable. When the thickness is less than 1 μm, a sufficient charge / discharge capacity cannot be secured, and when the thickness exceeds 100 μm, the inside of the active material cannot be used efficiently and the internal resistance increases. Moreover, when winding a negative electrode material, handling becomes difficult.

本発明の負極材料では、有機高分子繊維の一部が活物質金属めっき膜表面に露出している形態がより好ましい。すなわち、有機高分子繊維が表面に露出することで、電解液バルクから活物質表面への電解液の浸透をスムーズに行うことができ、活物質の利用効率を向上できる。この有機高分子繊維は潤滑性を有するものが特に好ましい。   In the negative electrode material of the present invention, a form in which a part of the organic polymer fiber is exposed on the surface of the active material metal plating film is more preferable. That is, when the organic polymer fiber is exposed on the surface, the electrolyte solution can smoothly penetrate from the electrolyte solution bulk to the active material surface, and the utilization efficiency of the active material can be improved. This organic polymer fiber is particularly preferably one having lubricity.

本発明の負極材料の他の例では、図1(b)に示すように、活物質層中に含まれる有機高分子繊維の含有率を膜厚方向に対して異なる分布もしくは濃度勾配を有していてもよい。すなわち、集電体から活物質表面方向に対して、有機高分子繊維の含有量が増大する構造、または、有機高分子繊維含有量が多い層と少ない層を交互に積層する構造としても良く、特に限定されない。上記構造とすることにより、微細な有機高分子繊維自身の体積緩和の効果に加えて、より大きな領域での体積緩和を可能にする。   In another example of the negative electrode material of the present invention, as shown in FIG. 1 (b), the organic polymer fiber content contained in the active material layer has a distribution or concentration gradient that differs in the film thickness direction. It may be. That is, a structure in which the content of organic polymer fibers increases from the current collector to the active material surface direction, or a structure in which layers with a high content of organic polymer fibers and layers with a low content are alternately laminated, There is no particular limitation. By adopting the above structure, in addition to the effect of volume relaxation of the fine organic polymer fiber itself, volume relaxation in a larger region is enabled.

本発明で用いられる負極材料は、活物質金属として、リチウムと合金化する金属またはその合金で、めっき成膜できる金属を用いることができる。具体的例としては、Sn、Znなどを用いることができる。リチウムと合金化する合金としては、Sn、Zn等の金属と、周期律表の第3〜第6周期の13〜15族、第4〜第6周期の第8〜12族の元素から選ばれる少なくとも1種の金属との合金を用いることができる。具体例としては、Al,Si,P,Fe,Co,Ni,Cu,Zn,Ga,Ge,As,Ag,Cd,In,Sb,Au,Hg,Tl,Pb,Bi等を挙げることができる。特に、亜鉛、銅、アンチモン、ビスマス、コバルト及び鉄からなる群から選ばれる少なくとも1種の金属とSnとの合金が好ましい。   In the negative electrode material used in the present invention, as an active material metal, a metal that can be alloyed with lithium or an alloy thereof, which can be plated and formed, can be used. As a specific example, Sn, Zn, or the like can be used. The alloy alloyed with lithium is selected from metals such as Sn and Zn, and elements of groups 13 to 15 of the third to sixth periods and groups 8 to 12 of the fourth to sixth periods of the periodic table. An alloy with at least one metal can be used. Specific examples include Al, Si, P, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Ag, Cd, In, Sb, Au, Hg, Tl, Pb, and Bi. . In particular, an alloy of Sn and at least one metal selected from the group consisting of zinc, copper, antimony, bismuth, cobalt, and iron is preferable.

合金におけるSnの含有量は、30重量%程度以上であることが好ましく、50重量%程度以上であることがより好ましい。尚、活物質層は、集電体の片面、または両面に形成してもよい。   The Sn content in the alloy is preferably about 30% by weight or more, and more preferably about 50% by weight or more. The active material layer may be formed on one side or both sides of the current collector.

本発明の負極材料は活物質層内に有機高分子繊維を含有する。本明細書に示す有機高分子繊維は、ミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束を主成分とするものが好ましい。具体的には、活物質皮膜内に取り込まれる有機高分子繊維の内70%以上がミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束で構成される。   The negative electrode material of the present invention contains organic polymer fibers in the active material layer. The organic polymer fiber shown in this specification is preferably composed mainly of a microfibril or a microfibril bundle having a fiber diameter of 1 μm or less. Specifically, 70% or more of the organic polymer fibers taken into the active material film are constituted by microfibrils or microfibril bundles having a fiber diameter of 1 μm or less.

また、繊維長を繊維径で除した値をアスペクトと定義すると、アスペクト比が1.5以上である繊維が好ましい。尚、繊維径は走査型電子顕微鏡(SEM)により確認した。すなわち、本発明の負極材料活物質表面および断面に関して任意に10箇所を1万倍の倍率で観察し、SEM像中存在する繊維の幅の計測値と定義する。但し、SEM像において、ミクロフィブリル束がさらに数本絡み合って、1μm以上の繊維幅となっていることが明確に確認できる場合には、それはミクロフィブリル束とは見なさないものとする。また、繊維中のミクロフィブリルあるいはミクロフィブリル束の成分比は、繊維長測定と同様に、本発明の負極材料活物質表面および断面に関して任意に10箇所を3万倍の倍率で観察し、SEM像中存在する繊維の内1μm以下の繊維の割合と定義する。   Further, when the value obtained by dividing the fiber length by the fiber diameter is defined as an aspect, a fiber having an aspect ratio of 1.5 or more is preferable. The fiber diameter was confirmed by a scanning electron microscope (SEM). That is, 10 points are arbitrarily observed at a magnification of 10,000 on the surface and cross section of the negative electrode material active material of the present invention, and defined as a measured value of the width of the fiber present in the SEM image. However, in the SEM image, when it can be clearly confirmed that several microfibril bundles are intertwined and have a fiber width of 1 μm or more, it is not regarded as a microfibril bundle. In addition, the component ratio of microfibrils or microfibril bundles in the fiber was determined by observing 10 points on the surface and cross section of the negative electrode active material of the present invention at a magnification of 30,000 times in the same manner as the fiber length measurement. It is defined as the proportion of fibers of 1 μm or less among the fibers present inside.

ミクロフィブリルやミクロフィブリル束の製造方法は、高圧ホモジナイザー、ディスクリファイナー等が使用されるが、高圧ホモジナイザーは特に有効な手段である。高圧ホモジナイザーとしては公知のものを用いることができ、例えば、高圧ポンプ、高圧ポンプから被処理液を高圧で吐出する弁装置、吐出液が衝突する弁座装置および処理液の高圧ポンプ吸入側への循環流路を備えている装置を用いて、繊維に強い剪断力を与える操作を繰り返し行うことにより、ミクロフィブリルやミクロフィブリル束を主成分とする繊維を得ることができる。   A high-pressure homogenizer, a disc refiner, or the like is used as a method for producing microfibrils or microfibril bundles, and the high-pressure homogenizer is a particularly effective means. A known high-pressure homogenizer can be used. For example, a high-pressure pump, a valve device that discharges the liquid to be processed from the high-pressure pump at a high pressure, a valve seat device that collides with the discharged liquid, and a high-pressure pump suction side of the processing liquid. By repeatedly performing an operation of applying a strong shearing force to the fiber using a device having a circulation channel, a fiber mainly composed of a microfibril or a microfibril bundle can be obtained.

本発明に用いられる活物質層の製造方法の一つとして、電気めっき又は無電解めっきなどのめっき法が挙げられる。活物質金属としてSnを用いる場合、Sn塩、支持電解質、添加剤を含有し、更に、有機高分子繊維を分散させた液を用いて集電体に直接めっきすることにより形成できる。また、Sn塩だけでなく、Snと合金化させる金属塩をめっき液中に添加し、合金化することができる。公知のSnめっき液、Sn合金めっき液に有機高分子繊維を分散させためっき液も用いることができる。   One method for producing the active material layer used in the present invention is a plating method such as electroplating or electroless plating. When Sn is used as the active material metal, it can be formed by directly plating the current collector using a liquid containing an Sn salt, a supporting electrolyte, and an additive and further dispersed with organic polymer fibers. Further, not only the Sn salt but also a metal salt to be alloyed with Sn can be added to the plating solution and alloyed. A plating solution in which organic polymer fibers are dispersed in a known Sn plating solution or Sn alloy plating solution can also be used.

活物質層中の有機高分子繊維の含有率は、電気めっき法の場合、印加電流、攪拌速度などにより容易に調整できる。めっき中に処理条件を変化することで、膜厚方向に対する有機高分子繊維の含有率を変化させて活物質層を形成することができる。   In the case of electroplating, the content of the organic polymer fiber in the active material layer can be easily adjusted by the applied current, the stirring speed, and the like. By changing the processing conditions during plating, the active material layer can be formed by changing the content of the organic polymer fiber in the film thickness direction.

リチウム電池においては、水分の存在が望ましくないため、本発明においては、活物質層形成後、めっき液等の処理液の残存を避けるため、電池組立の前処理として、リチウム電池用電解液で負極材を充分洗浄・置換して用いる。   In the present invention, since the presence of moisture is not desirable in the lithium battery, in the present invention, in order to avoid the remaining of the processing solution such as the plating solution after the formation of the active material layer, as a pretreatment of the battery assembly, the negative electrode with the electrolyte for the lithium battery Thoroughly clean and replace the material.

得られた活物質を更に熱処理することで、めっきで得られた合金組成と異なる組成状態に変化させ、特性を安定化することもできる。   By further heat-treating the obtained active material, it is possible to change the composition state to be different from the alloy composition obtained by plating and to stabilize the characteristics.

本発明に用いられる有機高分子繊維としては、天然繊維、合成繊維のいずれであってもよく、また、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。ミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束を主成分として含む有機高分子繊維が特に好ましい。   The organic polymer fiber used in the present invention may be either natural fiber or synthetic fiber, and may be either a thermoplastic resin or a thermosetting resin. An organic polymer fiber containing a microfibril or a microfibril bundle having a fiber diameter of 1 μm or less as a main component is particularly preferable.

本発明において好ましい有機高分子繊維は、例えば、セルロース、メタまたはパラ型芳香族ポリアミド、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、前記材料の誘導体を挙げることができる。   Preferred organic polymer fibers in the present invention include, for example, cellulose, meta- or para-type aromatic polyamide, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexa. Fluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride- Chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoro Lopylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether -A tetrafluoroethylene copolymer and the derivative | guide_body of the said material can be mentioned.

これらの材料を単独または混合物として用いることができる。またこれらの材料の中で、めっき液中で分散性が良好で、弾性率100GPa以上、強度2GPa以上のものがより好ましい。更に、前記有機高分子繊維は電極の構成要素として、そのまま電池に組み込まれるため、難燃性であることが望ましい。難燃性の繊維としては、それ自体難燃性を有するものでもよく、あるいは、難燃化処理を施した繊維であってもよい。また、活物質金属との親和性を調整するために、有機高分子繊維の表面に金属との親和性のある官能基を導入してもよい。   These materials can be used alone or as a mixture. Among these materials, those having good dispersibility in the plating solution and having an elastic modulus of 100 GPa or more and a strength of 2 GPa or more are more preferable. Furthermore, since the organic polymer fiber is incorporated in the battery as it is as a component of the electrode, it is preferably flame retardant. The flame retardant fiber may itself be flame retardant, or may be a fiber subjected to flame retardant treatment. In order to adjust the affinity with the active material metal, a functional group having an affinity for the metal may be introduced on the surface of the organic polymer fiber.

有機高分子繊維の重量含有率は、負極活物質(めっき、添加物及び有機高分子繊維)重量の20%〜90%が好ましい。20%未満の場合、活物質量を増大できるが、活物質層内部へ十分な電解液量が浸透せず、利用効率が低下してしまう。また、リチウム吸蔵時の体積膨張に耐えられず、活物質金属の割れや微粉化が著しく進行し、充放電サイクル特性が悪化することが懸念される。一方、有機高分子繊維の含有率が90%を超えると、電解液の浸透性がよく負極材料の利用効率は向上するが、活物質の絶対量が低下し、従来の炭素材料よりも高容量な電池を得ることができないと考えられる。   The weight content of the organic polymer fiber is preferably 20% to 90% of the weight of the negative electrode active material (plating, additive and organic polymer fiber). If it is less than 20%, the amount of the active material can be increased, but a sufficient amount of the electrolyte does not penetrate into the active material layer, resulting in a decrease in utilization efficiency. Moreover, there is concern that volume expansion during occlusion of lithium cannot be withstood, cracking or pulverization of the active material metal proceeds significantly, and charge / discharge cycle characteristics deteriorate. On the other hand, when the content of the organic polymer fiber exceeds 90%, the permeability of the electrolytic solution is good and the utilization efficiency of the negative electrode material is improved. It is thought that a simple battery cannot be obtained.

本発明に用いられる負極用集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよい。例えば、ステンレス鋼、ニッケル、銅、チタン、炭素、導電性樹脂などの他に、銅やステンレス鋼の表面にカーボン、ニッケルあるいはチタンを被覆したものなどが用いられる。特に、銅あるいは銅合金が好ましい。   The negative electrode current collector used in the present invention may be anything as long as it is an electronic conductor that does not cause a chemical change in the constructed battery. For example, in addition to stainless steel, nickel, copper, titanium, carbon, conductive resin, etc., the surface of copper or stainless steel coated with carbon, nickel, or titanium is used. In particular, copper or a copper alloy is preferable.

形状は、箔の他、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが用いられる。厚みは、特に限定されないが、1〜500μmのものが用いられる。また、図1(c)に示すように、集電体2の表面に凹凸を有する粗化層5などを付けることが望ましい。電解銅箔をそのまま用いることもできるが、凹凸を付ける手段として、プリント配線板製造工程で用いられている銅箔と樹脂界面の密着性向上のための粗化方法を用いることができる。具体的には、電解粗化めっきや電解エッチング、さらに黒化処理、すなわち、亜塩素酸ナトリウム、水酸化ナトリウムを主成分とする水溶液に浸漬することにより化学的に粗化する方法などが挙げられる。粗化処理後は、例えば、ジメチルアミンボランと水酸化ナトリウムを含む水溶液に浸漬することにより、黒化処理により生成した酸化銅を銅に還元したものを集電体として用いることが好ましい。   As the shape, a foil, a net, a punched body, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used. Moreover, as shown in FIG.1 (c), it is desirable to attach the roughening layer 5 etc. which have an unevenness | corrugation on the surface of the electrical power collector 2. FIG. Although the electrolytic copper foil can be used as it is, a roughening method for improving the adhesion between the copper foil and the resin interface used in the printed wiring board manufacturing process can be used as a means for providing the unevenness. Specifically, electrolytic roughening plating, electrolytic etching, and further blackening treatment, that is, a method of chemically roughening by immersing in an aqueous solution mainly composed of sodium chlorite and sodium hydroxide, etc. . After the roughening treatment, for example, it is preferable to use, as a current collector, a material obtained by reducing copper oxide generated by blackening treatment to copper by immersing in an aqueous solution containing dimethylamine borane and sodium hydroxide.

本発明に用いられる正極材料としては、特に限定されないが、公知のリチウム含有遷移金属酸化物を用いることができる。例えば、LiCoO、LiNiO、LiMnO、Li(CoNi1−y、LiCo1−y、LiNi1−y、LiMn、LiMn2−y(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも一種)、(ここでx=0〜1.2、y=0〜0.9、z=2.0〜2.3)が挙げられる。ここで、上記のxの値は、充放電開始前の値であり、充放電により増減する。複数の異なった正極材料を混合して用いることも可能である。正極活物質粒子の平均粒径は、特に限定はされないが、1〜30μmであることが好ましい。 Although it does not specifically limit as a positive electrode material used for this invention, A well-known lithium containing transition metal oxide can be used. For example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x (Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1-y M y O z , Li x Mn 2 O 4, Li x Mn 2-y M y O 4 (M = Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, B (Wherein x = 0 to 1.2, y = 0 to 0.9, z = 2.0 to 2.3), where the value of x is It is a value before the start of discharge, and is increased or decreased by charging / discharging.It is also possible to mix and use a plurality of different positive electrode materials.The average particle diameter of the positive electrode active material particles is not particularly limited, but is 1 to 30 μm. It is preferable that

本発明で使用される正極用導電剤および結着剤は、用いる正極材料の充放電電位において、化学変化を起こさない電子伝導性材料であれば特に限定されず、公知の材料を用いることができる。   The positive electrode conductive agent and binder used in the present invention are not particularly limited as long as they are electron conductive materials that do not cause a chemical change in the charge / discharge potential of the positive electrode material used, and known materials can be used. .

本発明に用いられる正極用集電体としては、用いる正極材料の充放電電位において化学変化を起こさない電子伝導体であれば特に限定されず、公知の材料を用いることができる。例えば、材料としてステンレス鋼、アルミニウム、チタン、炭素、導電性樹脂などの他に、アルミニウムやステンレス鋼の表面にカーボンあるいはチタンを被覆したものが用いられる。特に、アルミニウムあるいはアルミニウム合金が好ましい。これらの材料の表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが望ましい。形状は、箔の他、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが用いられる。厚みは、特に限定されないが、1〜500μmのものが用いられる。   The positive electrode current collector used in the present invention is not particularly limited as long as it is an electron conductor that does not cause a chemical change at the charge / discharge potential of the positive electrode material used, and a known material can be used. For example, as the material, in addition to stainless steel, aluminum, titanium, carbon, conductive resin, etc., the surface of aluminum or stainless steel coated with carbon or titanium is used. In particular, aluminum or an aluminum alloy is preferable. The surface of these materials can be oxidized and used. Further, it is desirable to make the current collector surface uneven by surface treatment. As the shape, a foil, a net, a punched body, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.

本発明に用いられる非水電解質は、溶媒と溶質であるリチウム塩とから構成されている。非水溶媒としては、特に限定されず、公知の材料を用いることができる。例えば、エチレンカーボネ−ト(EC)、プロピレンカ−ボネ−ト(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、ジメチルスルホキシド、N−メチルピロリドンなどの非プロトン性有機溶媒を挙げることができ、これらを一種または二種以上を混合して使用することができる。   The nonaqueous electrolyte used in the present invention is composed of a solvent and a solute lithium salt. It does not specifically limit as a non-aqueous solvent, A well-known material can be used. For example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, and γ-lactones such as γ-butyrolactone , Chain ethers such as 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide 1,3- Dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone And aprotic organic solvents such as 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, dimethyl sulfoxide, N-methylpyrrolidone, etc. Can be used alone or in admixture of two or more.

リチウム塩としては、特に限定されないが、公知の材料を用いることができる。例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCl、LiCFSO、LiCFCO、Li(CFSO、LiAsF、LiN(CFSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウム、イミド類等を挙げることができ、これらを使用する電解液等に一種または二種以上を混合して使用することができる。 Although it does not specifically limit as a lithium salt, A well-known material can be used. For example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, LiI, chloroborane lithium, lithium tetraphenylborate, imides and the like, and one or two kinds of electrolytes using these The above can be mixed and used.

また、電解液の他にゲル電解質などの固体電解質も用いることができる。さらに、放電や充放電特性を改良する目的で、他の化合物を電解質に添加しても良い。例えば、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ピリジン、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、クラウンエーテル類、第四級アンモニウム塩、エチレングリコールジアルキルエーテル等を挙げることができる。   In addition to the electrolytic solution, a solid electrolyte such as a gel electrolyte can also be used. Furthermore, other compounds may be added to the electrolyte for the purpose of improving discharge and charge / discharge characteristics. For example, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, pyridine, hexaphosphoric acid triamide, nitrobenzene derivatives, crown ethers, quaternary ammonium salts, ethylene glycol dialkyl ether and the like can be mentioned.

本発明に用いられるセパレータには、特に限定されないが、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の微多孔性薄膜を用いることができる。耐有機溶剤性と疎水性からポリプロピレン、ポリエチレンなどの単独または組み合わせたオレフィン系ポリマーあるいはガラス繊維などからつくられたシートや不織布または織布が用いられる。セパレータの孔径は、電極シートより脱離した正負極材料、結着剤、導電剤が透過しない範囲であることが望ましく、例えば、0.01〜1μmであるものが望ましい。セパレータの厚みは、一般的には、10〜300μmが用いられる。また、空孔率は、電子やイオンの透過性と素材や膜厚に応じて決定されるが、一般的には30〜80%であることが望ましい。   The separator used in the present invention is not particularly limited, but an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength can be used. Sheets, nonwoven fabrics or woven fabrics made of olefinic polymers such as polypropylene and polyethylene, or glass fibers or the like are used because of their resistance to organic solvents and hydrophobicity. The pore diameter of the separator is desirably in a range in which the positive and negative electrode materials, the binder, and the conductive agent detached from the electrode sheet do not permeate, for example, 0.01 to 1 μm is desirable. The thickness of the separator is generally 10 to 300 μm. The porosity is determined according to the permeability of electrons and ions, the material, and the film thickness, but is generally preferably 30 to 80%.

電池の形状はコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車等に用いる大型のものなどいずれにも適用できる。   The shape of the battery can be applied to any of a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square type, a large type used for an electric vehicle, and the like.

また、本発明の非水電解質二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等に用いることができるが、特にこれらに限定されるわけではない。   Further, the nonaqueous electrolyte secondary battery of the present invention can be used for a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle, an electric vehicle, a hybrid electric vehicle, etc., but is not particularly limited thereto. I don't mean.

上記材料および製造方法によりリチウム二次電池を作製した例を以下実施例に基づいて説明する。但し、本発明はこれらの実施例に限定されるものではない。   The example which produced the lithium secondary battery with the said material and manufacturing method is demonstrated based on an Example below. However, the present invention is not limited to these examples.

(実施例1)
集電体として圧延銅箔(100×100mm、膜厚12μm)を用いた。めっき前処理として、室温下で電流密度1A/dmでアルカリ水溶液中1分間電解脱脂を行い、その後水洗した。次に、10%硫酸水溶液中で酸洗した後、水洗した。処理した銅箔を用いて、その表面にSnの電気めっきを実施した。
Example 1
A rolled copper foil (100 × 100 mm, film thickness 12 μm) was used as a current collector. As a pretreatment for plating, electrolytic degreasing was performed in an aqueous alkaline solution at room temperature at a current density of 1 A / dm 2 for 1 minute, and then washed with water. Next, after pickling in 10% sulfuric acid aqueous solution, it was washed with water. Using the treated copper foil, Sn electroplating was performed on the surface.

めっき条件は、50℃のめっき液中で電流密度5mA/cmで40分間行い、液攪拌はバブリングにより適宜調整して行った。めっき液は、0.2M塩化スズ二水和物、0.5Mピロリン酸カリウム、0.075Mグリシン、5mL/Lアンモニア水溶液の混合液に、有機高分子繊維としてミクロフィブリル処理したセルロースを濃度0.5wt%となるよう添加したものを用いた。尚、ミクロフィブリル処理セルロースは、市販の水溶性セルロースを1wt%となるように純水に混合した液を調製し、それを高圧ホモジナイザーにより100回微細化処理を繰り返すことにより得た。めっきした銅箔を水洗、乾燥することにより、負極材を作製した。 Plating conditions were performed in a plating solution at 50 ° C. for 40 minutes at a current density of 5 mA / cm 2 , and liquid agitation was appropriately adjusted by bubbling. The plating solution was a mixture of 0.2 M tin chloride dihydrate, 0.5 M potassium pyrophosphate, 0.075 M glycine, and 5 mL / L aqueous ammonia solution, and the concentration of cellulose treated with microfibrils as organic polymer fibers was 0. What was added so that it might become 5 wt% was used. Microfibril-treated cellulose was obtained by preparing a solution in which commercially available water-soluble cellulose was mixed with pure water so as to be 1 wt%, and repeating the micronization treatment 100 times with a high-pressure homogenizer. The plated copper foil was washed with water and dried to prepare a negative electrode material.

(実施例2)
本実施例は、集電体として用いた銅箔表面を電解脱脂後の硫酸酸洗の代わりに粗化処理した点を除いては、実施例1に準拠して負極を作製した。尚、粗化処理は、以下の手順で行った。電解脱脂し、水洗した銅箔を15g/L水酸化ナトリウム、90g/L亜塩素酸ナトリウム、30g/Lリン酸ナトリウム12水和物の混合液中で70℃の条件下2分間浸漬し、水洗した後、6g/Lジメチルアミンボラン、5g/L水酸化ナトリウムの混合液中で45℃の条件下2分間浸漬し、水洗、乾燥させた。
(Example 2)
In this example, a negative electrode was produced according to Example 1 except that the surface of the copper foil used as a current collector was roughened instead of the sulfuric acid pickling after electrolytic degreasing. In addition, the roughening process was performed in the following procedures. The electrolytically degreased and washed copper foil was immersed in a mixed solution of 15 g / L sodium hydroxide, 90 g / L sodium chlorite, and 30 g / L sodium phosphate 12 hydrate for 2 minutes at 70 ° C. and washed with water. Then, it was immersed in a mixed solution of 6 g / L dimethylamine borane and 5 g / L sodium hydroxide at 45 ° C. for 2 minutes, washed with water and dried.

(実施例3、4)
実施例3、4は、それぞれ実施例1、2に準拠して作製した負極を、再度繊維を含まないSnめっき液により膜厚0.5μmとなるようにSnめっきを行い、図1(d)の負極断面模式図に示すような、めっき膜表面に有機高分子繊維が露出していない負極を作製した。
(Examples 3 and 4)
In Examples 3 and 4, the negative electrodes produced in accordance with Examples 1 and 2 were Sn-plated again with an Sn plating solution containing no fiber to a thickness of 0.5 μm, and FIG. As shown in the schematic cross-sectional view of the negative electrode, a negative electrode in which the organic polymer fiber was not exposed on the plating film surface was produced.

(実施例5〜8)
実施例5〜8は、めっき時電流密度を0.5mA/cmから10mA/cmと変化させながら実施した点を除いては、それぞれ実施例1〜4に準拠して負極を作製した。
(Examples 5 to 8)
In Examples 5 to 8, negative electrodes were prepared in accordance with Examples 1 to 4, respectively, except that the current density during plating was changed from 0.5 mA / cm 2 to 10 mA / cm 2 .

(実施例9〜16)
実施例9〜16は、それぞれ実施例1〜8に準拠して作製した負極に対して熱処理を施すことにより負極を作製した。熱処理条件は、真空中250℃で3時間処理した。
(Examples 9 to 16)
In Examples 9 to 16, negative electrodes were produced by performing heat treatment on the negative electrodes produced in accordance with Examples 1 to 8, respectively. The heat treatment was performed in vacuum at 250 ° C. for 3 hours.

(実施例17〜32)
実施例17〜32は、有機高分子繊維としてミクロフィブリル処理したアラミド繊維を用いた例であり、それぞれ実施例1〜16に準拠して負極を作製した。
(比較例1)
比較例として、有機高分子繊維を含まないSnめっき液を用いて、実施例1と同様にSnめっきを行い、負極を作製した。
(Examples 17 to 32)
Examples 17 to 32 are examples in which a microfibril-treated aramid fiber was used as the organic polymer fiber, and negative electrodes were produced in accordance with Examples 1 to 16, respectively.
(Comparative Example 1)
As a comparative example, Sn plating was performed in the same manner as in Example 1 using an Sn plating solution that did not contain organic polymer fibers, to produce a negative electrode.

以上、得られた各負極材を用いて、リチウム箔を対極とし、1mol/LのLiPFを溶解させたエチレンカーボネートとジメチルカーボネートの1:1混合液を電解液としてセルを作製し、1mA/cmの電流密度で0〜1Vの電圧範囲でサイクル特性を評価した。評価結果を表1に示す。尚、100サイクルでの容量維持率は、1サイクル目の容量に対する100サイクル目の容量の比率として示す。 As described above, using each of the obtained negative electrode materials, a lithium foil is used as a counter electrode, and a 1: 1 mixed solution of ethylene carbonate and dimethyl carbonate in which 1 mol / L LiPF 6 is dissolved is used as an electrolytic solution to prepare a cell. They were evaluated for cycle characteristics in the voltage range of 0~1V at a current density of cm 2. The evaluation results are shown in Table 1. The capacity maintenance rate at 100 cycles is shown as the ratio of the capacity at the 100th cycle to the capacity at the first cycle.

実施例1〜32で得た負極を用いた場合には、比較例1に比べて、100サイクル後における容量維持率が高く、サイクル特性が良好であった。特に、集電体表面を粗化処理し、めっき時電流密度を変化させながらめっきを行い、活物質金属で表面被覆処理せず、熱処理を施した実施例14および30の負極を用いた場合に、よりサイクル特性が向上することがわかった。これは、集電体表面を粗化し、熱処理工程においてSnめっき膜と集電体の銅が化合物層を形成することにより密着性が向上したためと考えられる。また、負極活物質層中に微細な有機高分子繊維を含有させることで、それ自身の弾性及び電解液を吸収して膨張する駆動力がリチウムの吸蔵・放出に伴なう金属の体積変化を抑制することができ、結果的に優れたサイクル特性を示したと考えられる。さらに、めっき時に電流値を変化させることにより、めっき膜の膜厚方向に対して有機高分子繊維の含有量が異なり、微細な領域での体積緩和だけでなく、より大きな領域での体積緩和を可能にしていると考えられる。   When the negative electrodes obtained in Examples 1 to 32 were used, the capacity retention rate after 100 cycles was higher than that of Comparative Example 1, and the cycle characteristics were good. In particular, when using the negative electrodes of Examples 14 and 30 in which the current collector surface was roughened, plated while changing the current density during plating, and the surface coating was not performed with the active material metal, and the heat treatment was performed. It was found that the cycle characteristics were further improved. This is presumably because the surface of the current collector was roughened, and the Sn plating film and the copper of the current collector formed a compound layer in the heat treatment step, thereby improving the adhesion. In addition, by including fine organic polymer fibers in the negative electrode active material layer, the elastic force of the anode and the driving force that expands by absorbing the electrolyte solution change the volume of the metal accompanying the insertion and extraction of lithium. It can be suppressed, and as a result, it is considered that excellent cycle characteristics were exhibited. Furthermore, by changing the current value during plating, the content of the organic polymer fiber differs with respect to the film thickness direction of the plating film, and not only the volume relaxation in the fine area but also the volume relaxation in the larger area. It seems to be possible.

ここで、実施例1で作製した負極表面の光学顕微鏡像および断面のSEM像を図2及び図3に示す。活物質金属表面に有機高分子繊維が存在していた。活物質金属表面に有機高分子繊維が露出していることで、電解液バルクから活物質表面への電解液の浸透をスムーズに行うことができ、活物質の利用効率が向上したと考えられる。また、断面像に示すように、結晶粒界だけでなく、結晶粒中にも繊維が存在していた。本発明のめっき液を用いて形成した負極材料は、めっき液中に存在する微細な繊維を取り込みながら活物質金属が形成されるため、粒成長が抑制され、微細な活物質粒子となっている。有機高分子繊維が結晶粒界だけでなく、結晶流中にも存在することにより、活物質層の割れ、微粉化に伴う、充放電サイクルによる容量低下を著しく抑制できる効果を発現したと考えられる。   Here, the optical microscope image of the negative electrode surface produced in Example 1, and the SEM image of a cross section are shown in FIG.2 and FIG.3. Organic polymer fibers were present on the active material metal surface. It is considered that the organic polymer fibers are exposed on the active material metal surface, so that the electrolyte solution can smoothly penetrate from the electrolyte solution bulk to the active material surface, and the utilization efficiency of the active material is improved. Further, as shown in the cross-sectional image, fibers were present not only in the crystal grain boundaries but also in the crystal grains. In the negative electrode material formed using the plating solution of the present invention, the active material metal is formed while taking in the fine fibers present in the plating solution, so that the grain growth is suppressed and fine active material particles are formed. . The presence of organic polymer fibers not only in the crystal grain boundaries but also in the crystal flow is considered to have exhibited the effect of remarkably suppressing the capacity drop due to charge / discharge cycles accompanying cracking and pulverization of the active material layer. .

Figure 2008293883
Figure 2008293883

(実施例33〜64)
実施例33〜64は、めっき液としてSnおよびCuの合金めっき液とした点以外、それぞれ実施例1〜32に準拠して作製した。尚、めっき液は、60g/L硫酸スズ、60g/L硫酸銅5水和物、硫酸100g/L、10g/Lクレゾールスルホン酸、1g/Lヒドロキノン、50g/Lエチレングリコール、2g/Lポリオキシエチレンラウリルエーテルの混合液に、有機高分子繊維としてミクロフィブリル処理したセルロースあるいはアラミドを濃度0.5wt%となるよう添加したものを用いた。浴温25℃、電流密度5mA/cmとした。尚、めっき時電流を変化させながら実施する場合は、3〜7mA/cmの間で変化させながら実施した。
(比較例2)
比較例2として、有機高分子繊維を含まないSnCu合金めっき液を用いて、実施例33と同様にSn銅合金めっきを行い、負極材を作製した。
(Examples 33 to 64)
Examples 33 to 64 were prepared according to Examples 1 to 32, respectively, except that Sn and Cu alloy plating solutions were used as plating solutions. The plating solution was 60 g / L tin sulfate, 60 g / L copper sulfate pentahydrate, 100 g / L sulfuric acid, 10 g / L cresolsulfonic acid, 1 g / L hydroquinone, 50 g / L ethylene glycol, 2 g / L polyoxy A solution obtained by adding cellulose or aramid treated with microfibril as an organic polymer fiber to a mixed solution of ethylene lauryl ether to a concentration of 0.5 wt% was used. The bath temperature was 25 ° C. and the current density was 5 mA / cm 2 . In addition, when implementing, changing the electric current at the time of plating, it implemented, changing between 3-7 mA / cm < 2 >.
(Comparative Example 2)
As Comparative Example 2, Sn copper alloy plating was performed in the same manner as in Example 33 using a SnCu alloy plating solution that does not contain organic polymer fibers, to prepare a negative electrode material.

以上、得られた各負極材を用いて、リチウム箔を対極とし、1mol/LのLiPFを溶解させたエチレンカーボネートとジメチルカーボネートの1:1混合液を電解液としてセルを作製し、1mA/cmの電流密度で0−1Vの電圧範囲でサイクル特性を評価した。評価結果を表2に示す。 As described above, using each of the obtained negative electrode materials, a lithium foil is used as a counter electrode, and a 1: 1 mixed solution of ethylene carbonate and dimethyl carbonate in which 1 mol / L LiPF 6 is dissolved is used as an electrolytic solution to prepare a cell. The cycle characteristics were evaluated in a voltage range of 0-1 V with a current density of cm 2 . The evaluation results are shown in Table 2.

実施例33〜64で得た負極材を用いた場合には、比較例2に比べて、100サイクル後における容量維持率が高く、サイクル特性が良好であった。さらに、実施例1〜32に比べてもサイクル特性がより向上していることがわかった。特に、集電体表面を粗化処理し、めっき時電流密度を変化させながらめっきを行った後、活物質金属で表面被覆処理せず、熱処理を施した実施例46および62の負極を用いた場合に、よりサイクル特性が向上することがわかった。これは、実施例1〜32と同様、集電体表面粗化、熱処理工程においてSn銅めっき膜と集電体の密着性が向上したためと考えられる。また、合金めっき膜とするだけでも単独Snめっき膜に比べてサイクル特性が向上するが、合金めっき膜中に微細な有機高分子繊維を含有させることで、より効果的に体積緩和を可能にし、優れたサイクル特性を発現したと考えられる。   When the negative electrode materials obtained in Examples 33 to 64 were used, the capacity retention rate after 100 cycles was higher than that of Comparative Example 2, and the cycle characteristics were good. Furthermore, it turned out that cycling characteristics are improving more compared with Examples 1-32. In particular, the negative electrodes of Examples 46 and 62 were used in which the current collector surface was roughened, plated while changing the current density during plating, and then subjected to heat treatment without surface coating with an active material metal. In some cases, it was found that the cycle characteristics were further improved. This is considered to be because the adhesion between the Sn copper plating film and the current collector was improved in the current collector surface roughening and heat treatment steps, as in Examples 1-32. In addition, the cycle characteristics are improved as compared with the single Sn plating film only by using the alloy plating film, but by containing fine organic polymer fibers in the alloy plating film, the volume can be relaxed more effectively. It is thought that excellent cycle characteristics were developed.

Figure 2008293883
Figure 2008293883

尚、負極材料を構成する活物質金属として上記SnCu合金の他、Sn塩とAl,Si,P,Fe,Co,Ni,Cu,Zn,Ga,Ge,As,Ag,Cd,In,Sb,Au,Hg,Tl,Pb,Biの塩、さらに有機高分子繊維を分散しためっき液により負極を作製したが、SnCu合金と同様に、微細な有機高分子繊維がめっき膜に含有されていないものに比べてサイクル特性が向上する効果が認められた。   In addition to the above SnCu alloy as an active material metal constituting the negative electrode material, Sn salt and Al, Si, P, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Ag, Cd, In, Sb, A negative electrode was prepared using a plating solution in which a salt of Au, Hg, Tl, Pb, Bi and organic polymer fibers were dispersed, but, as in the case of SnCu alloy, fine organic polymer fibers were not contained in the plating film. As compared with the above, the effect of improving the cycle characteristics was recognized.

また、負極材料を構成する活物質金属としてZnおよびZn合金選び、Snめっきと同様に有機高分子繊維を分散しためっき液により負極を作製したが、同様にサイクル特性が向上する効果が認められた。   In addition, Zn and a Zn alloy were selected as the active material metal constituting the negative electrode material, and a negative electrode was prepared using a plating solution in which organic polymer fibers were dispersed in the same manner as Sn plating, but the effect of improving cycle characteristics was also recognized. .

本発明の導電性物品は導電材や各種電池の電極材料として用いられる。特に、リチウム二次電池の負極材料として有用である。   The conductive article of the present invention is used as a conductive material or an electrode material for various batteries. In particular, it is useful as a negative electrode material for lithium secondary batteries.

本発明の実施例の形態による負極材料の断面模式図。The cross-sectional schematic diagram of the negative electrode material by the form of the Example of this invention. 本発明の実施の形態による負極材料表面の顕微鏡写真。The microscope picture of the negative electrode material surface by embodiment of this invention. 本発明の実施の形態による負極材料断面のSEM像。The SEM image of the negative electrode material cross section by embodiment of this invention.

符号の説明Explanation of symbols

1…負極材料、2…集電体、3…活物質金属、4…有機高分子繊維、5…粗化層、6…活物質金属緻密層。   DESCRIPTION OF SYMBOLS 1 ... Negative electrode material, 2 ... Current collector, 3 ... Active material metal, 4 ... Organic polymer fiber, 5 ... Roughening layer, 6 ... Active material metal dense layer.

Claims (31)

基体上に形成された金属めっき膜中に有機高分子繊維が分散していることを特徴とする導電性物品。   A conductive article characterized in that organic polymer fibers are dispersed in a metal plating film formed on a substrate. 前記有機高分子繊維は前記金属めっき膜中で前記金属めっき膜の厚さ方向に不均一に分散していることを特徴とする請求項1記載の導電性物品。   2. The conductive article according to claim 1, wherein the organic polymer fiber is non-uniformly dispersed in the metal plating film in a thickness direction of the metal plating film. 前記有機高分子繊維は前記金属めっき膜中でめっき膜の厚さ方向に濃度勾配を持って分散していることを特徴とする請求項2記載の導電性物品。   3. The conductive article according to claim 2, wherein the organic polymer fiber is dispersed in the metal plating film with a concentration gradient in the thickness direction of the plating film. 前記有機高分子繊維がミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束を主成分として含有することを特徴とする請求項1〜3のいずれかに記載の導電性物品。   The conductive article according to any one of claims 1 to 3, wherein the organic polymer fiber contains a microfibril or a microfibril bundle having a fiber diameter of 1 µm or less as a main component. 前記繊維の一部が前記めっき膜から露出していることを特徴とする請求項1〜4のいずれかに記載の導電性物品。   The conductive article according to claim 1, wherein a part of the fiber is exposed from the plating film. 前記金属めっきは単一金属又は合金の電気めっき又は無電解めっきにより形成されたものである請求項1記載の導電性物品。   2. The conductive article according to claim 1, wherein the metal plating is formed by electroplating or electroless plating of a single metal or alloy. 前記有機高分子繊維が前記金属めっき膜の結晶粒子中に存在することを特徴とする請求項1〜4のいずれかに記載の導電性物品。   The conductive article according to claim 1, wherein the organic polymer fiber is present in crystal particles of the metal plating film. 集電体と活物質層を含む二次電池の負極材料において、前記活物質層がリチウムイオンと化合しうる金属又は合金めっき膜および該めっき膜に分散した有機高分子繊維を含むことを特徴とする負極材料。   A negative electrode material for a secondary battery including a current collector and an active material layer, wherein the active material layer includes a metal or alloy plating film capable of combining with lithium ions and organic polymer fibers dispersed in the plating film. Negative electrode material. 前記有機高分子繊維がミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束を主成分として含有することを特徴とする請求項8記載の負極材料。   9. The negative electrode material according to claim 8, wherein the organic polymer fiber contains microfibril or a microfibril bundle having a fiber diameter of 1 μm or less as a main component. 前記活物質層がリチウムと合金化する金属めっき膜であり、前記有機高分子繊維が前記金属めっき膜の結晶粒子中に存在することを特徴とする請求項8記載の負極材料。   9. The negative electrode material according to claim 8, wherein the active material layer is a metal plating film that is alloyed with lithium, and the organic polymer fiber is present in crystal particles of the metal plating film. 前記活物質層に含有される前記有機高分子繊維の含有率が膜厚方向に対して異なる分布を有することを特徴とする請求項8または10に記載の負極材料。   11. The negative electrode material according to claim 8, wherein the content of the organic polymer fiber contained in the active material layer has a distribution different in the film thickness direction. 前記有機高分子繊維の一部が前記活物質層表面に露出していることを特徴とする請求項8〜11のいずれかに記載の負極材料。   The negative electrode material according to claim 8, wherein a part of the organic polymer fiber is exposed on the surface of the active material layer. 前記負極材料が熱処理して形成されたものであることを特徴とする請求項8〜12のいずれかに記載の負極材料。   The negative electrode material according to claim 8, wherein the negative electrode material is formed by heat treatment. 請求項8〜13のいずれかに記載の集電体がリチウムと合金化しない金属からなることを特徴とする負極材料。   A negative electrode material, wherein the current collector according to claim 8 is made of a metal that does not alloy with lithium. 前記集電体の表面に凹凸形状を有することを特徴とする請求項8〜14のいずれかに記載の負極材料。   The negative electrode material according to claim 8, wherein the surface of the current collector has an uneven shape. 前記活物質層がSnまたはSn含有合金であることを特徴とする請求項8記載の負極材料。   The negative electrode material according to claim 8, wherein the active material layer is Sn or an Sn-containing alloy. 前記有機高分子繊維が、親水性であることを特徴とする請求項8〜12のいずれかに記載の負極材料。   The negative electrode material according to claim 8, wherein the organic polymer fiber is hydrophilic. 前記有機高分子繊維の弾性率が100GPa以上かつ強度2GPa以上であることを特徴とする請求項8〜12のいずれかに記載の負極材料。   The negative electrode material according to any one of claims 8 to 12, wherein the organic polymer fiber has an elastic modulus of 100 GPa or more and a strength of 2 GPa or more. 前記有機高分子繊維が、セルロース、アラミド、ナイロン及びそれらの誘導体の少なくとも1種を含有してなることを特徴とする請求項8〜15のいずれかに記載の負極材料。   16. The negative electrode material according to claim 8, wherein the organic polymer fiber contains at least one of cellulose, aramid, nylon, and derivatives thereof. 導電性基体又はめっき可能な基体の少なくとも一部を、金属塩および有機高分子繊維を含むめっき液に浸漬して、該めっき液を前記有機高分子繊維とともに攪拌しながら前記有機高分子繊維がめっき膜に取り込まれるようにめっきを行うことを特徴とする導電性物品の製造方法。   At least a part of the conductive substrate or the substrate that can be plated is immersed in a plating solution containing a metal salt and an organic polymer fiber, and the organic polymer fiber is plated while stirring the plating solution together with the organic polymer fiber. A method for producing a conductive article, wherein plating is performed so as to be taken into a film. 前記めっきが電気めっき又は無電解めっきであることを特徴とする請求項20記載の導電性物品の製造方法。   The method for manufacturing a conductive article according to claim 20, wherein the plating is electroplating or electroless plating. めっき液を組成する液体に溶解された金属塩及び前記液体に分散された有機高分子繊維を含有してなることを特徴とする導電性物品を製造するためのめっき液。   A plating solution for producing a conductive article comprising a metal salt dissolved in a liquid constituting the plating solution and an organic polymer fiber dispersed in the liquid. 有機高分子繊維がミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束であることを特徴とする請求項22記載の導電性物品を製造するためのめっき液。   The plating solution for producing a conductive article according to claim 22, wherein the organic polymer fiber is a microfibril or a microfibril bundle having a fiber diameter of 1 µm or less. 第1金属塩、該金属と合金化する第2金属の塩、支持電解質及び有機高分子繊維を含有してなることを特徴とする導電性物品を製造するためのめっき液。   A plating solution for producing a conductive article comprising a first metal salt, a salt of a second metal alloyed with the metal, a supporting electrolyte, and organic polymer fibers. 前記第1金属塩はSn塩であり、前記第2金属の塩はSnと合金化する金属の塩であることを特徴とする請求項24記載の導電性物品を製造するためのめっき液。   25. The plating solution for manufacturing a conductive article according to claim 24, wherein the first metal salt is a Sn salt, and the salt of the second metal is a metal salt alloyed with Sn. Sn塩、Snと合金化する金属の塩、還元剤、錯化剤及び有機高分子繊維を含有してなることを特徴とする負極材料を製造するためのめっき液。   A plating solution for producing a negative electrode material comprising an Sn salt, a metal salt alloyed with Sn, a reducing agent, a complexing agent, and organic polymer fibers. 前記有機高分子繊維がミクロフィブリルあるいは繊維径1μm以下のミクロフィブリル束を主成分として含有し、めっき液中に分散してなることを特徴とする請求項25に記載の負極材料を製造するためのめっき液。   26. The negative electrode material according to claim 25, wherein the organic polymer fiber contains a microfibril or a microfibril bundle having a fiber diameter of 1 μm or less as a main component and is dispersed in a plating solution. Plating solution. 請求項8〜19のいずれかに記載の負極材料と、正極材料と、電解液と、セパレータ及び封止材を備えたことを特徴とするリチウム二次電池。   A lithium secondary battery comprising the negative electrode material according to any one of claims 8 to 19, a positive electrode material, an electrolytic solution, a separator, and a sealing material. 請求項28に記載のリチウム二次電池を搭載した移動体。   A mobile body on which the lithium secondary battery according to claim 28 is mounted. 請求項28に記載のリチウム二次電池を搭載した電子機器。   An electronic device on which the lithium secondary battery according to claim 28 is mounted. 請求項28に記載のリチウム二次電池と発電機を組み合わせたシステム。   A system comprising a combination of the lithium secondary battery according to claim 28 and a generator.
JP2007140335A 2007-05-28 2007-05-28 Conductive goods, anode material, their manufacturing method, plating liquid, and lithium secondary battery Pending JP2008293883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140335A JP2008293883A (en) 2007-05-28 2007-05-28 Conductive goods, anode material, their manufacturing method, plating liquid, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140335A JP2008293883A (en) 2007-05-28 2007-05-28 Conductive goods, anode material, their manufacturing method, plating liquid, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2008293883A true JP2008293883A (en) 2008-12-04

Family

ID=40168394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140335A Pending JP2008293883A (en) 2007-05-28 2007-05-28 Conductive goods, anode material, their manufacturing method, plating liquid, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2008293883A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015932A (en) * 2008-07-07 2010-01-21 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery with additive concentration gradient
JP2011108362A (en) * 2009-11-12 2011-06-02 Kobe Steel Ltd Negative electrode for lithium ion secondary battery, method for manufacturing the same, and the lithium ion secondary battery
JP2012104463A (en) * 2010-10-12 2012-05-31 Hitachi Cable Ltd Copper foil for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and method of manufacturing copper foil for lithium ion secondary battery
WO2014138242A1 (en) * 2013-03-05 2014-09-12 Sion Power Corporation Electrochemical cells comprising fibril materials, such as fibril cellulose materials
JP2014531733A (en) * 2011-10-05 2014-11-27 ワンディー マテリアル エルエルシー Silicon nanostructured active material for lithium ion battery and related process, composition, component and device
KR20150122122A (en) * 2013-02-27 2015-10-30 제온 코포레이션 Composite particles for electrochemical element electrode, manufacturing method for composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
KR20160006688A (en) * 2013-05-13 2016-01-19 제온 코포레이션 Composite particles for electrochemical element electrode, method for manufacturing composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
WO2020017389A1 (en) * 2018-07-19 2020-01-23 古河電気工業株式会社 Coating material and method for manufacturing same, composite material, and electric contact terminal
JPWO2018181480A1 (en) * 2017-03-29 2020-02-06 古河電気工業株式会社 Integrated body, composite material having the integrated body, terminal for electrical contact, and printed wiring board
JP2020057519A (en) * 2018-10-02 2020-04-09 Jsr株式会社 Manufacturing method of electrode, and manufacturing method of power storage device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015932A (en) * 2008-07-07 2010-01-21 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery with additive concentration gradient
JP2011108362A (en) * 2009-11-12 2011-06-02 Kobe Steel Ltd Negative electrode for lithium ion secondary battery, method for manufacturing the same, and the lithium ion secondary battery
JP2012104463A (en) * 2010-10-12 2012-05-31 Hitachi Cable Ltd Copper foil for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and method of manufacturing copper foil for lithium ion secondary battery
US10804525B2 (en) 2011-10-05 2020-10-13 Oned Material Inc. Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components, and devices related thereto
US10355266B2 (en) 2011-10-05 2019-07-16 Oned Material Llc Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components and devices related thereto
JP2021002532A (en) * 2011-10-05 2021-01-07 ワンディー マテリアル、 インコーポレイテッドOneD Material, Inc. Silicon nanostructure active material for lithium ion battery and process, composition, component and device related thereto
JP2014531733A (en) * 2011-10-05 2014-11-27 ワンディー マテリアル エルエルシー Silicon nanostructured active material for lithium ion battery and related process, composition, component and device
US9812699B2 (en) 2011-10-05 2017-11-07 Oned Material Llc Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components and devices related thereto
KR20150122122A (en) * 2013-02-27 2015-10-30 제온 코포레이션 Composite particles for electrochemical element electrode, manufacturing method for composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
KR102292957B1 (en) * 2013-02-27 2021-08-23 제온 코포레이션 Composite particles for electrochemical element electrode, manufacturing method for composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
US9490478B2 (en) 2013-03-05 2016-11-08 Sion Power Corporation Electrochemical cells comprising fibril materials
US10461333B2 (en) 2013-03-05 2019-10-29 Sion Power Corporation Electrochemical cells comprising fibril materials
WO2014138242A1 (en) * 2013-03-05 2014-09-12 Sion Power Corporation Electrochemical cells comprising fibril materials, such as fibril cellulose materials
CN105190953A (en) * 2013-03-05 2015-12-23 赛昂能源有限公司 Electrochemical cells comprising fibril materials, such as fibril cellulose materials
KR20160006688A (en) * 2013-05-13 2016-01-19 제온 코포레이션 Composite particles for electrochemical element electrode, method for manufacturing composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
KR102232543B1 (en) * 2013-05-13 2021-03-25 제온 코포레이션 Composite particles for electrochemical element electrode, method for manufacturing composite particles for electrochemical element electrode, electrochemical element electrode, and electrochemical element
JPWO2018181480A1 (en) * 2017-03-29 2020-02-06 古河電気工業株式会社 Integrated body, composite material having the integrated body, terminal for electrical contact, and printed wiring board
US11361876B2 (en) 2017-03-29 2022-06-14 Furukawa Electric Co., Ltd. Integrally formed product, and composite material, terminal for electrical contact and printed wiring board including the integrally formed product
JP7129402B2 (en) 2017-03-29 2022-09-01 古河電気工業株式会社 Integrally-formed body and composite material, electrical contact terminal and printed wiring board having said integrally-formed body
WO2020017389A1 (en) * 2018-07-19 2020-01-23 古河電気工業株式会社 Coating material and method for manufacturing same, composite material, and electric contact terminal
JP2020057519A (en) * 2018-10-02 2020-04-09 Jsr株式会社 Manufacturing method of electrode, and manufacturing method of power storage device
JP7074010B2 (en) 2018-10-02 2022-05-24 Jsr株式会社 Electrode manufacturing method and power storage device manufacturing method

Similar Documents

Publication Publication Date Title
JP2008293883A (en) Conductive goods, anode material, their manufacturing method, plating liquid, and lithium secondary battery
CN106953069B (en) Composite negative electrode active material, method for preparing same, negative electrode, and lithium secondary battery
US9735418B2 (en) Anode active material for lithium secondary battery and preparation thereof
CN110495021A (en) Lithium secondary battery
US7507502B2 (en) Negative electrode having intermetallic compound that occludes/desorbs lithium as an active material layer on collector for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2011028883A (en) Nonaqueous electrolyte secondary battery
WO2004102700A1 (en) Nonaqueous electrolyte battery
US8852804B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
CN113169319B (en) Negative active material, method of preparing the same, and lithium secondary battery including the same
KR101243913B1 (en) Anode active material, anode and lithium battery containing the same, and preparation method thereof
JP2009301945A (en) Anode and lithium-ion secondary battery
CN114402464A (en) Negative electrode for lithium secondary battery comprising primer-coated current collector and method for manufacturing same
JP2005011802A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
WO2008001539A1 (en) Negative electrode for non-aqueous electrolyte secondary battery
KR101097269B1 (en) Negative electrode for lithium secondary battery and manufacturing method thereof
US10644310B2 (en) Negative electrode material including composite particles, and method for producing the same
JP2005108523A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using that thin film electrode
JP2008016195A (en) Anode for nonaqueous electrolyte secondary battery
JP2008016198A (en) Anode for nonaqueous electrolyte secondary battery
JP3877170B2 (en) Non-aqueous secondary battery negative electrode, method for producing the same, and non-aqueous secondary battery using the negative electrode
JP5422360B2 (en) Method for producing porous metal body for lithium secondary battery active material
JP2005108521A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode
JP2014132527A (en) Nonaqueous secondary battery positive electrode material, nonaqueous secondary battery positive electrode, and nonaqueous secondary battery
JP4344874B2 (en) Method for producing foil strip for negative electrode of lithium ion secondary battery by non-aqueous solvent plating method
JP4919451B2 (en) Non-aqueous secondary battery and manufacturing method thereof