JPWO2019235603A1 - 関係性分析装置、関係性分析方法およびプログラム - Google Patents
関係性分析装置、関係性分析方法およびプログラム Download PDFInfo
- Publication number
- JPWO2019235603A1 JPWO2019235603A1 JP2020523195A JP2020523195A JPWO2019235603A1 JP WO2019235603 A1 JPWO2019235603 A1 JP WO2019235603A1 JP 2020523195 A JP2020523195 A JP 2020523195A JP 2020523195 A JP2020523195 A JP 2020523195A JP WO2019235603 A1 JPWO2019235603 A1 JP WO2019235603A1
- Authority
- JP
- Japan
- Prior art keywords
- data
- parameter
- sample data
- type
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Probability & Statistics with Applications (AREA)
- Operations Research (AREA)
- Computational Linguistics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Complex Calculations (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
例えば、特許文献1には、気象予測モデルを用いて定期的に気象予測を行う気象予測システムが記載されている。この気象予測システムは、気象予測モデルに観測データを同化して気象予測を行い、気象予測の演算に用いる演算パラメータを予測時刻に応じて変更する。
しかし、モデルが不明である場合(例えば、モデルとして用いられている関数を参照できない場合)には、回帰分析手法を適用することはできない。
図1は、第1実施形態に係る関係性分析システムの機能構成の例を示す概略ブロック図である。図1に示す構成で、関係性分析システム1は、関係性分析装置100と、シミュレータサーバ900とを備える。関係性分析装置100は、入出力部110と、記憶部170と、制御部180とを備える。制御部180は、パラメータサンプルデータ算出部181と、第2種類サンプルデータ取得部182と、パラメータ値決定部183とを備える。
関係性分析装置100は、例えばパソコン(Personal Computer;PC)またはワークステーション(Workstation)等のコンピュータを用いて構成される。
例えば、観測データXnの要素は、観測対象を構成している構成要素の状態を表すものであってもよい。観測データYnの要素は、センサ等を用いて観測対象に関して観測された状態を表すものであってもよい。例えばユーザが、製造工場の生産性を分析したい場合、観測データXnは、当該製造工場における各設備の稼働状況を表すものであってもよい。観測データYnは、複数の設備によって構成されるラインにて製造される製品の個数を表すものであってもよい。
観測対象、および、観測データは、上述した例に限定されず、たとえば、加工工場における設備であってもよいし、ある施設を建設する場合における建設システムであってもよい。
分布π(θ)は、例えば関係性分析装置100のユーザが、シミュレーション対象に関して有する知識に応じた精度で設定する。
あるいは、関係性分析装置100が、関係性分析装置100自らの内部にシミュレータr(x,θ)を備えていてもよい。この場合、シミュレータr(x,θ)がブラックボックス化されているなど、関係性分析装置100にとってシミュレータの回帰関数が未知であってもよい。
線L11は、真のモデルを示す。ここでは、真のモデルの関数をy=R(x)とする。
上述したように、真のモデル(線L11)は、必ずしも、数学的な関数(たとえば、一次関数、二次関数、指数関数、ガウス関数)を用いて表されているとは限らず、xと、yとの関係性を便宜的に示したものである。さらには、真のモデルが実際に表現される必要はない。以降、説明の便宜上、関数という言葉を用いるが、関数という言葉を、関係性を表すものという意味で用いる。
また、点P11のように丸で示されるデータが、真のモデルに基づいて生成されている。図2の例では、データにノイズが含まれており、各データが線L12の近傍にプロットされている。
関係性分析装置100は、観測データに基づいて、観測データに対応するパラメータ値を算出し、算出したパラメータ値をシミュレータに設定する。これにより、シミュレータは、データXの値の入力に対してデータYの値を出力する。すなわち、パラメータ値の設定により、シミュレータがシミュレーションを実行可能になる。
記憶部170は、各種データを記憶する。記憶部170は、関係性分析装置100が備える記憶デバイスを用いて構成される。
パラメータサンプルデータ算出部181は、パラメータθに関して仮設定された分布π(θ)に基づいて、パラメータθのサンプルデータを複数算出する。分布π(θ)は、ガウス分布に従う分布であってもよいし、ある数値区間における一様乱数を用いて設定されてもよい。但し、分布π(θ)は、これらの例に限定されない。上記のように、パラメータθは、シミュレータr(x,θ)のパラメータである。シミュレータr(x,θ)は、第1種類のデータ(データX)の値の入力を受けて第2種類のデータ(データY)の値を出力する。
パラメータ値決定部183は、第2種類の観測データ(観測データYn)と、第2種類サンプルデータ取得部182が取得した第2種類のサンプルデータ(データYのサンプルデータ)との差異に基づいてパラメータθのサンプルデータの各々に対する重みを算出し、得られた重みを用いてパラメータθの値を算出する。パラメータ値決定部183が算出するパラメータθの値は、関係性分析装置100がパラメータθの適切な値(データXとデータYとの関係を模擬するための値)として決定する値である。
(ステップS11)
パラメータサンプルデータ算出部181は、パラメータθの事前分布(分布π(θ))に基づいてパラメータθのサンプルデータθ<1> jを生成する。<1>は、事前分布に基づくデータであることを示す。
生成するデータの数をm(mは正の整数)とし、jを1≦j≦mの整数として、θ<1> jは式(1)のように示される。
式(1)に示されるように、θ<1> jは、dθ次元の実数として示され、分布π(θ)に従う。この時点では最適なパラメータ値は不明であり、例えばユーザが、得られている情報に基づいてパラメータθの分布を推定し、事前分布π(θ)として登録しておく。
ステップS11の後、処理がステップS12へ進む。
第2種類サンプルデータ取得部182は、ステップS11で得られたサンプルデータθ<1> j毎に、観測データXnに対応するサンプルデータY<1>n jを取得する。第2種類サンプルデータ取得部182は、θ<1> jとXnとをシミュレータr(x,θ)に入力してY<1>n jを取得する。第2種類サンプルデータ取得部182は、サンプルデータθ<1> j毎に、n個(観測データXnの要素数と同数)の要素を有するサンプルデータY<1>n jを取得する。観測データXnの要素と、サンプルデータY<1>n jの要素とが一対一に対応付けられ、X−Y平面にプロット可能である。
Y<1>n jは、式(2)のように示される。
ステップS12の後、処理がステップS13へ進む。
パラメータ値決定部183は、ステップS12で得られたY<1>n jと、観測データYnとに基づいて、θ<1> j毎に重みを算出し、重み付け平均する。
重み付け平均で得られるパラメータ値θ<2>は、式(3)のように示される。<2>は、Y<1>n jとYnとの比較に基づく重みを反映済みのデータであることを示す。
ステップS13の後、関係性分析装置100は、図3の処理を終了する。
関係性分析装置100が、パラメータ値決定部183が決定した重みを用いて、シミュレータにおけるパラメータを更新するようにしてもよい。このような処理を行うことによって、第2種類のサンプルデータに対して予測精度が高いシミュレーションを行うことができる。
このように、関係性分析装置100では、シミュレータのパラメータθのサンプルデータθ<1> jを生成し、生成したサンプルデータθ<1> jをシミュレータに入力して評価することで、モデルの関数を微分する必要なしにパラメータθの値を決定することができる。関係性分析装置100によればこの点で、関係性分析について、モデルの関数を微分できない場合や、モデルが不明な場合であっても対応可能である。
第1実施形態では、パラメータθの推定値がdθ次元の実数値で求まる。これに対し、第2実施形態では、パラメータθの推定値を分布で求める例について説明する。
図4は、第2実施形態に係る関係性分析装置の機能構成の例を示す概略ブロック図である。図4に示す構成は、パラメータ値決定部183が、カーネル平均算出部191と、カーネル平均対応パラメータ算出部192と、パラメータ予測分布算出部193と、第2種類予測分布データ算出部194とを備える点で、図1の場合と異なる。それ以外は、図1の場合と同様である。
カーネル平均対応パラメータ算出部192は、カーネル平均算出部191が算出したカーネル平均に基づくパラメータθのサンプルデータを算出する。
パラメータ予測分布算出部193は、カーネル平均算出部191が算出したカーネル平均に基づくパラメータθのサンプルデータを用いてパラメータθの予測分布のカーネル表現を算出する。
第2種類予測分布データ算出部194は、パラメータ予測分布算出部193が算出したパラメータの予測分布のカーネル表現を用いて、第2種類のデータ(データY)の予測分布に従うサンプルデータを算出する。
図5のステップS21〜S22は、図3のステップS11〜S12と同様である。ステップS22の後、処理がステップS23へ進む。
カーネル平均算出部191は、カーネル平均を求める。
上述した式(3)は、カーネル平均を求める式と捉えて式(6)のように表すことができる。カーネル平均算出部191は、式(6)に基づいてカーネル平均μ^θ|XYを求める。
kyは、式(8)のように示される。
ステップS23の後、処理がステップS24へ進む。
カーネル平均対応パラメータ算出部192は、パラメータθについて、カーネル平均μ^θ|XYに基づくサンプルデータ{θ<3> 1,・・・,θ<3> m}(mはサンプル数を示す正の整数)を求める。<3>は、カーネル平均に基づくデータであることを示す。
カーネル平均に基づくサンプルデータは、カーネルハーディング(Kernel Herding)の手法を用いて帰納的に求めることができる。この場合、jを0≦j≦m(mはサンプル数を示す正の整数)として、カーネル平均対応パラメータ算出部192は、式(11)に基づいて、サンプルデータθ<3> j+1を算出する。
hjは、式(12)により再帰的に示される。
Hは再生核ヒルベルト空間を示す。
ステップS24で得られるサンプルデータ{θ<3> 1,・・・,θ<3> m}には、事前分布に基づくサンプルデータY<1>n jと観測データYnとの近さ(ノルム)に応じた重み付けが反映されている。
ステップS24の後、処理がステップS25へ進む。
パラメータ予測分布算出部193は、シミュレータr(x,θ)に観測データXnおよびサンプルデータθ<3> jを入力して、分布p(y|Xn,θ<3> j)に従う{θ<3> j,Y<3>n j}をシミュレーションにより算出する。
ステップS25の後、処理がステップS26へ進む。
パラメータ予測分布算出部193は、ステップS25で得られたサンプルデータ{θ<3> j,Y<3>n j}を用いて、データYの予測分布(Predictive Distribution)のカーネル表現ν^y|YXを算出する。
予測分布のカーネル表現ν^y|YXは、カーネルサムルール(Kernel Sum Rule)を用いて算出することができる。この場合、予測分布p(y|Xn,Yn)は、式(13)のように示される。
Iは単位行列を示す。
ステップS26の後、処理がステップS27へ進む。
第2種類予測分布データ算出部194は、ステップS26で得られた予測分布のカーネル表現ν^y|YXを用いて、予測分布に基づくサンプルデータY<4>n jを求める。
<4>は、予測分布のカーネル表現に基づくデータであることを示す。
ステップS27でも、ステップS24の場合と同様、カーネルハーディングの手法を用いて帰納的にサンプルデータを求めることができる。ステップS27では、式(18)に基づいてサンプルデータを算出する。
h’jは、式(19)により再帰的に示される。
ステップS27の後、処理がステップS28へ進む。
第2種類予測分布データ算出部194は、ステップS24で得られたサンプルデータ{θ<3> 1,・・・,θ<3> m}から、パラメータθの分布を求める。例えば、第2種類予測分布データ算出部194は、パラメータθの分布がガウス分布など特定の分布に従うと仮定し、サンプルデータから平均値および分散など分布の特徴量を算出する。
あるいは、関係性分析装置100が、ステップS24で得られたパラメータのサンプルデータをそのままユーザに提示する(例えば、グラフで表示する)ようにしてもよい。ユーザは、パラメータのサンプルデータそのものを参照することで、信頼区間、および、カーネル平均対応パラメータ算出部192が算出したパラメータそのものの信頼性を、より高精度に判断することができる。また、例えばパラメータの分布が多峰的である場合、または、パラメータの分布が非対称な場合など、特定の分布でパラメータのサンプルデータを捉えられない場合、関係性分析装置100が、パラメータのサンプルデータをそのままユーザに提示することで、ユーザは、パラメータの分布を把握し得る。
また、第2種類予測分布データ算出部194が、パラメータのサンプルデータに加えて、あるいは代えて、ステップS27で得られたデータYのサンプルデータY<4>n jの分布を求めるようにしてもよい。
ステップS28の後、関係性分析装置100は、図5の処理を終了する。
第3実施形態では、関係性分析装置が、共変量シフト(Covariate Shift)に対応する場合について説明する。共変量シフトとは、訓練時とテスト時とで入力の分布が異なるが入出力関数は変わらないことである。ここでは、観測データのデータXの分布と、関係性分析対象(分析したい範囲)のデータXの分布とが異なるが真のモデルは変わらない場合を共変量シフトとして扱う。観測データのデータXの分布をq0(x)と表記し、関係性分析対象のデータXの分布をq1(x)と表記する。
線L21は、真のモデルを示す。ここでは、真のモデルの関数をy=R(x)とする。
また、点P22のように丸で示されるデータ、点P23のように十字で示されるデータのいずれも真のモデルに基づいて生成されている。丸で示されるデータを丸データと称し、十字で示されるデータを十字データと称する。
一方、丸データと十字データとでは、x軸方向の分布が異なる。丸データが図6の左右に広く分布しているのに対し、十字データは、図6の左側に偏って分布している。この分布の違いから、丸データの場合と十字データの場合とで回帰関数が異なる。例えば直線回帰を行う場合、丸データの回帰直線は線L22となり、十字データの回帰直線は線L23となる。
そこで、関係性分析装置100は、観測データの場合のデータXの分布と関係性分析を行いたい範囲のデータXの分布との比較に基づいて観測データに重みづけを行い、関係性分析を行いたい範囲のデータXの分布に対応するパラメータθの値を求める。
第1実施形態では、パラメータ値決定部183は、観測データYnと、サンプルデータY<1>n jとの近さで示される、パラメータのサンプルデータθ<1> jの尤度に基づく重みを算出している。これに対し、第3実施形態では、パラメータ値決定部183は、サンプルデータθ<1> jの尤度に加えて、観測データの分布d1(x)への一致度合いに基づいてサンプルデータθ<1> jの各々を重み付けする。
図7のステップS31〜S32は、図3のステップS11〜S12と同様である。ステップS32の後、処理がステップS33へ進む。
パラメータ値決定部183は、パラメータのサンプルデータθ<1> j毎に重みを算出し、重み付け平均する。図3のステップS12では、パラメータ値決定部183は、サンプルデータY<1>n jと、観測データYnとに基づいて、θ<1> j毎に重みを算出する。これに対し、ステップS33では、パラメータ値決定部183は、サンプルデータY<1>n jおよび観測データYnに加えて、さらに、観測データXnの分布q0(x)および回帰を求めたい領域を示す分布q1(x)に基づいて重みを算出する。
重み付け平均で得られるパラメータ値θ<5>は、式(20)のように示される。<5>は、Y<1>n j、Yn、q0(x)およびq1(x)に基づく重みを反映済みのデータを示す。
ステップS13の後、関係性分析装置100は、図7の処理を終了する。
これにより、関係性分析装置100は、共変量シフトに対応して、より高精度に関係性分析を行うことができる。
このように、関係性分析装置100によれば、複数種類のデータ間の関係性分析で一部の領域における関係性を分析する際に、モデルが不明な場合であっても対応可能である。
第3実施形態では、パラメータθの推定値がdθ次元の実数値で求まる。これに対し、第4実施形態では、パラメータθの推定値を分布で求める例について説明する。
第4実施形態に係る関係性分析システムの構成および関係性分析装置100の構成は、第2実施形態の場合(図4)と同様である。第4実施形態では、パラメータ値決定部183が行う処理が、第1実施形態の場合と異なる。第3実施形態では、パラメータ値決定部183は、第2種類の観測データYnと、第2種類のサンプルデータY<1>n jとの差異、および、第1種類の観測データXnが従う第1分布と、第1種類のデータの分布であって関係を求めたい領域を示す第2分布とに基づいて、パラメータのサンプルデータの各々に対する重みを算出し、得られた重みを用いてパラメータの値を算出する。
ステップS41〜S42は、図2のステップS11〜S12と同様である。
ステップS42の後、処理がステップS43へ進む。
カーネル平均算出部191は、カーネル平均を求める。
上述した式(20)は、カーネル平均を求める式と捉えて式(24)のように表すことができる。カーネル平均算出部191は、式(24)に基づいてカーネル平均μ^θ<6>|XYを求める。<6>は、分布q1(x)への適合度合いに基づく重み付け済みのデータであることを示す。
カーネル平均μ^θ<6>|XYは、XおよびYの下でのθの事後分布に、分布q1(x)への一致度合いに基づく重みづけをしたものを、カーネル平均埋め込みにより再生核ヒルベルト空間上で表現したものに該当する。
ステップS43の後、処理がステップS44へ進む。
カーネル平均対応パラメータ算出部192は、パラメータθ<6>について、カーネル平均μ^θ<6>|XYに基づくサンプルデータ{θ<6> 1,・・・,θ<6> m}(mはサンプル数を示す正の整数)を求める。
カーネル平均に基づくサンプルデータは、カーネルハーディングの手法を用いて帰納的に求めることができる。この場合、カーネル平均対応パラメータ算出部192は、jを0≦j≦m(mはサンプル数を示す正の整数)として、式(29)に基づいて、サンプルデータθ<6> j+1を算出する。
hjは、式(30)により再帰的に示される。
Hは再生核ヒルベルト空間を示す。
ステップS24で得られるサンプルデータ{θ<6> 1,・・・,θ<6> m}には、事前分布に基づくサンプルデータY<1>n jと観測データYnとの近さに応じた重み付け、および、分布q1(x)への一致度合いに基づく重み付けが反映されている。
ステップS44の後、処理がステップS45へ進む。
パラメータ予測分布算出部193は、学習モデルp(y|x,θ)に観測データXnおよびサンプルデータθ<6> jを入力した分布p(y|Xn,θ_mcv j)に従う{θ<6> j,Y<6>n j}を、シミュレーションにより算出する。
ステップS45の後、処理がステップS26へ進む。
パラメータ予測分布算出部193は、ステップS45で得られたサンプルデータ{θ<6> j,Y<6>n j}を用いて、分布q1(x)に対応するデータYの予測分布のカーネル表現ν^y|YXを算出する。
予測分布のカーネル表現ν^y|YXは、カーネルサムルールを用いて算出することができる。この場合、予測分布p(y|X<6> n,Y<6> n)は、式(31)のように示される。
Iは単位行列を示す。
ステップS46の後、処理がステップS47へ進む。
第2種類予測分布データ算出部194は、ステップS46で得られた予測分布のカーネル表現ν^y|YXを用いて、予測分布Y<6>n jのサンプルデータを求める。
ステップS47でも、ステップS44の場合と同様、カーネルハーディングの手法を用いて帰納的にサンプルデータを求めることができる。ステップS47では、式(36)に基づいてサンプルデータを算出する。
h’jは、式(37)により再帰的に示される。
ステップS47の後、処理がステップS48へ進む。
第2種類予測分布データ算出部194は、ステップS44で得られたサンプルデータ{θ<6> 1,・・・,θ<6> m}から、パラメータθの分布を求める。例えば、第2種類予測分布データ算出部194は、パラメータθの分布がガウス分布など特定の分布に従うと仮定し、サンプルデータから平均値および分散など分布の特徴量を算出する。
あるいは、関係性分析装置100が、ステップS44で得られたサンプルデータをそのままユーザに提示する(例えば、グラフで表示する)ようにしてもよい。ユーザは、サンプルデータそのものを参照することで、信頼区間およびデータそのものの信頼性を、より高精度に判断することができる。また、例えばデータの山が複数ある場合または非対称な分布の場合など、特定の分布でサンプルデータを捉えられない場合、関係性分析装置100が、サンプルデータをそのままユーザに提示することで、ユーザは、データの分布を把握し得る。
また、第2種類予測分布データ算出部194が、パラメータのサンプルデータに加えて、あるいは代えて、ステップS47で得られたデータYのサンプルデータY<6>n jの分布を求めるようにしてもよい。
ステップS48の後、関係性分析装置100は、図8の処理を終了する。
図9は、実験におけるシミュレーション対象の組立工程の例を示す図である。図9に示す組立工程では、組立装置が、上側部品、下側部品、および2つのねじの4つの部品を組み立てて製品を生成する。組立装置が組み立てた製品は検査装置に搬入される。検査装置は、製品が4つ搬入されると検査を行う。
図10は、得られたXとYの関係を示す図である。図10のグラフの横軸はデータXを示し、縦軸はデータYを示す。また、点P31のような丸で観測データが示されている。
線L31は、関係性分析の結果得られたXとYの関係を示す線である。
図11は、実験で得られたパラメータの値を示す図である。図11のグラフの横軸はパラメータθ1を示し、縦軸はパラメータθ2を示す。
点P31は、パラメータの真の値を示す。点P32は、実験で得られたパラメータの値を示す。点P32は点P31に近く、パラメータ値を適切に算出できている。
上述した組立工程のシミュレーションの実験で、Xの値が110を超えると、θ1、θ2共に値が大きくなる(組立および検査に時間を要する)ように、真のパラメータ値を設定する。
観測データの分布が、q0(X)=N(X|100,10)と、X=100を中心に分布しているのに対し、予測したい領域は、q1(X)=N(X|120,10)と、X=120の場合について予測したいとする。
共変量シフトを行わない場合の線L41が、X=100付近のデータを精度よく近似しているのに対し、共変量シフトを行った場合の線L42は、X=120付近のデータを精度よく近似している。このように、共変量シフトに対応した結果を得られた。
また、図10の場合と同様、階段状の線を得られており、この点でもXとYとの関係を高精度に求められている。
点P51は、パラメータの真の値を示す。点P52は、共変量シフトによるパラメータの真の値を示す。点P53は、共変量シフトで得られたパラメータの値を示す。また、点P54等により、カーネルハーディングで得られたパラメータ値の分布が示されている。
また、カーネルハーディングで得られたパラメータ値の分布は、縦方向の分布が大きい。これにより、パラメータθ1の値の影響よりもパラメータθ2の値の影響の方が大きいことが示されている。また、カーネルハーディングで得られたパラメータ値の分布は、左肩上がりとなっている。これにより、パラメータθ1の値を改善すれば、多少の効率の改善は見込まれることが示されている。
このように、関係性分析装置100が求めるパラメータ値の分布を参照して、ボトルネック解析等の感度解析を行うことができる。
図15は、本発明の実施形態に係る関係性分析装置の構成の例を示す図である。図15に示す関係性分析装置10は、パラメータサンプルデータ算出部11と、第2種類サンプルデータ取得部12と、パラメータ値決定部13とを備える。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
110 入出力部
170 記憶部
180 制御部
181 パラメータサンプルデータ算出部
182 第2種類サンプルデータ取得部
183 パラメータ値決定部
191 カーネル平均算出部
192 カーネル平均対応パラメータ算出部
193 パラメータ予測分布算出部
194 第2種類予測分布データ算出部
Claims (4)
- 第1種類のデータの入力を受けて第2種類のデータを出力するシミュレータのパラメータに関して仮設定された分布に基づいて、前記パラメータの複数のサンプルデータを算出するパラメータサンプルデータ算出部と、
前記第1種類の観測データと前記パラメータの複数のサンプルデータの各々とを前記シミュレータに入力して、前記パラメータの複数のサンプルデータの各々毎に前記第2種類のサンプルデータを取得する第2種類サンプルデータ取得部と、
前記第2種類の観測データと、算出された前記第2種類のサンプルデータとの差異に基づいて前記パラメータの複数のサンプルデータの各々に対する重みを算出し、算出された前記重みを用いて前記パラメータの値を算出するパラメータ値決定部と、
を備える関係性分析装置。 - 前記パラメータ値決定部は、
前記第1種類の観測データと、算出された前記第2種類のサンプルデータとの下での前記パラメータの事後分布を示すカーネル平均を算出するカーネル平均算出部と、
前記カーネル平均に基づく前記パラメータのサンプルデータを算出するカーネル平均対応パラメータ算出部と、
前記カーネル平均に基づく前記パラメータのサンプルデータを用いて前記パラメータの予測分布のカーネル表現を算出するパラメータ予測分布算出部と、
前記パラメータの予測分布のカーネル表現を用いて、前記第2種類のデータの予測分布に従うサンプルデータを算出する第2種類予測分布データ算出部と、
を備える請求項1に記載の関係性分析装置。 - 第1種類のデータの入力を受けて第2種類のデータを出力するシミュレータのパラメータに関して仮設定された分布に基づいて、前記パラメータの複数のサンプルデータを算出し、
前記第1種類の観測データと前記パラメータの複数のサンプルデータの各々とを前記シミュレータに入力して、前記パラメータの複数のサンプルデータの各々毎に前記第2種類のサンプルデータを算出し、
前記第2種類の観測データと、算出された前記第2種類のサンプルデータとの差異に基づいて前記複数のパラメータのサンプルデータの各々に対する重みを算出し、
算出された前記重みを用いて前記パラメータの値を算出する、
ことを含む関係性分析方法。 - コンピュータに、
第1種類のデータの入力を受けて第2種類のデータを出力するシミュレータのパラメータに関して仮設定された分布に基づいて、前記パラメータの複数のサンプルデータを算出し、
前記第1種類の観測データと前記パラメータの複数のサンプルデータの各々とを前記シミュレータに入力して、前記パラメータの複数のサンプルデータの各々毎に前記第2種類のサンプルデータを算出し、
前記第2種類の観測データと、算出された前記第2種類のサンプルデータとの差異に基づいて前記パラメータの複数のサンプルデータの各々に対する重みを算出し、
算出された前記重みを用いて前記パラメータの値を算出する、
ことを実行させるためのプログラムを記憶した記録媒体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018109878 | 2018-06-07 | ||
JP2018109878 | 2018-06-07 | ||
PCT/JP2019/022670 WO2019235603A1 (ja) | 2018-06-07 | 2019-06-07 | 関係性分析装置、関係性分析方法および記録媒体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019235603A1 true JPWO2019235603A1 (ja) | 2021-07-08 |
JP7017711B2 JP7017711B2 (ja) | 2022-02-09 |
Family
ID=68770280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020523195A Active JP7017711B2 (ja) | 2018-06-07 | 2019-06-07 | 関係性分析装置、関係性分析方法およびプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210224664A1 (ja) |
JP (1) | JP7017711B2 (ja) |
WO (1) | WO2019235603A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12086697B2 (en) * | 2018-06-07 | 2024-09-10 | Nec Corporation | Relationship analysis device, relationship analysis method, and recording medium for analyzing relationship between a plurality of types of data using kernel mean learning |
JP7140191B2 (ja) * | 2018-07-31 | 2022-09-21 | 日本電気株式会社 | 情報処理装置、制御方法、及びプログラム |
EP3839781B1 (en) * | 2018-10-02 | 2024-09-11 | Nippon Telegraph And Telephone Corporation | Calculation device, calculation method, and calculation program |
US20210357699A1 (en) * | 2020-05-14 | 2021-11-18 | International Business Machines Corporation | Data quality assessment for data analytics |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11296561A (ja) * | 1998-04-07 | 1999-10-29 | Toshiba Corp | ワーストケース・モデルパラメータ生成方法及び装置 |
JP2012149920A (ja) * | 2011-01-17 | 2012-08-09 | Toshiba Denpa Syst Eng Kk | 降水強度推定システム及び降水強度推定方法 |
WO2016194051A1 (ja) * | 2015-05-29 | 2016-12-08 | 株式会社日立製作所 | 確率的システムの注目指標の統計量を最小化するパラメータセットを探索するシステム |
-
2019
- 2019-06-07 US US15/734,668 patent/US20210224664A1/en active Pending
- 2019-06-07 WO PCT/JP2019/022670 patent/WO2019235603A1/ja active Application Filing
- 2019-06-07 JP JP2020523195A patent/JP7017711B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11296561A (ja) * | 1998-04-07 | 1999-10-29 | Toshiba Corp | ワーストケース・モデルパラメータ生成方法及び装置 |
JP2012149920A (ja) * | 2011-01-17 | 2012-08-09 | Toshiba Denpa Syst Eng Kk | 降水強度推定システム及び降水強度推定方法 |
WO2016194051A1 (ja) * | 2015-05-29 | 2016-12-08 | 株式会社日立製作所 | 確率的システムの注目指標の統計量を最小化するパラメータセットを探索するシステム |
Also Published As
Publication number | Publication date |
---|---|
JP7017711B2 (ja) | 2022-02-09 |
US20210224664A1 (en) | 2021-07-22 |
WO2019235603A1 (ja) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7017712B2 (ja) | 関係性分析装置、関係性分析方法およびプログラム | |
JP7017711B2 (ja) | 関係性分析装置、関係性分析方法およびプログラム | |
Giagopoulos et al. | Structural health monitoring and fatigue damage estimation using vibration measurements and finite element model updating | |
EP2342603A2 (en) | Method and apparatus for creating state estimation models in machine condition monitoring | |
JP7063389B2 (ja) | 処理装置、処理方法、およびプログラム | |
JP7058386B2 (ja) | 分析装置、分析方法およびプログラム | |
JP7164799B2 (ja) | 分析装置、分析方法およびプログラム | |
Sengupta et al. | An improved Bayesian model updating framework by enhanced iterative model reduction technique in time domain | |
Tsompanakis et al. | Soft computing techniques in parameter identification and probabilistic seismic analysis of structures | |
Liu et al. | Software reliability forecasting: singular spectrum analysis and ARIMA hybrid model | |
Souza et al. | Impact of damping models in damage identification | |
Haj Mohamad et al. | Detection of cracks in a rotating shaft using density characterization of orbit plots | |
Warner et al. | Probabilistic damage characterization using the computationally-efficient Bayesian approach | |
Warner et al. | A computationally-efficient inverse approach to probabilistic strain-based damage diagnosis | |
US11367020B2 (en) | Signal selection device, learning device, and signal selection method and program | |
Bui et al. | Modal analysis of slow varying non-stationary vibration by model updating with Schur complement | |
Coble et al. | A data-driven framework for predicting machining stability: employing simulated data, operational modal analysis, and enhanced transfer learning | |
Stepashko et al. | Technology of Quantitative Integral Assessment and Forecast of a Complex Economic System Performance | |
Fan et al. | Damage State Estimation via Multi-fidelity Gaussian Process Regression Models for Active-Sensing Structure Health Monitoring | |
CN110187340B (zh) | 一种基于熵的探测目标的信息表征方法及系统 | |
Singh et al. | Inception Time Model for Structural Damage Detection Using Vibration Measurements | |
JP2005267474A (ja) | マハラノビス距離を利用した異常原因診断方法及びプログラム | |
van Oijen et al. | Introduction to Bayesian Science | |
Hernández et al. | Nonlinear Models in Optimal Instrumentation. A Fast Technique for Precision Evaluation | |
Castello et al. | Bayesian model selection for structural damage identification: comparative analysis of marginal likelihood estimators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201204 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20201204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7017711 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |