JPWO2019171882A1 - A method for removing oxygen from crude carbon monoxide gas and a method for purifying carbon monoxide gas - Google Patents

A method for removing oxygen from crude carbon monoxide gas and a method for purifying carbon monoxide gas Download PDF

Info

Publication number
JPWO2019171882A1
JPWO2019171882A1 JP2020504879A JP2020504879A JPWO2019171882A1 JP WO2019171882 A1 JPWO2019171882 A1 JP WO2019171882A1 JP 2020504879 A JP2020504879 A JP 2020504879A JP 2020504879 A JP2020504879 A JP 2020504879A JP WO2019171882 A1 JPWO2019171882 A1 JP WO2019171882A1
Authority
JP
Japan
Prior art keywords
carbon monoxide
monoxide gas
oxygen
crude
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020504879A
Other languages
Japanese (ja)
Other versions
JP7119064B2 (en
Inventor
孝爾 横野
孝爾 横野
晃裕 桑名
晃裕 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Publication of JPWO2019171882A1 publication Critical patent/JPWO2019171882A1/en
Application granted granted Critical
Publication of JP7119064B2 publication Critical patent/JP7119064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • C01B2210/0015Physical processing by adsorption in solids characterised by the adsorbent
    • C01B2210/0017Carbon-based materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0045Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0051Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

金属の混入を可能な限り回避しつつ粗一酸化炭素ガス中の酸素を除去する方法が提供される。当該酸素除去方法は、不純物として酸素を含む粗一酸化炭素ガスを、触媒槽(1)にて、金属を担持させていない活性炭(1a)と接触させることにより、当該ガス中の酸素を除去する。さらに、酸素除去後の生成ガスをアルカリ水溶液(2a)に接触させて、二酸化炭素を吸収除去することにより、精製一酸化炭素ガスを得る。A method for removing oxygen in crude carbon monoxide gas while avoiding metal contamination as much as possible is provided. The oxygen removing method removes oxygen in the gas by bringing a crude carbon monoxide gas containing oxygen as an impurity into contact with activated carbon (1a) on which no metal is supported in the catalyst tank (1). .. Further, the produced gas after oxygen removal is brought into contact with the alkaline aqueous solution (2a) to absorb and remove carbon dioxide to obtain purified carbon monoxide gas.

Description

本発明は、粗一酸化炭素ガスから酸素を除去する方法に関する。本発明は、さらにそのような酸素除去方法を利用した一酸化炭素ガスの精製方法にも関する。 The present invention relates to a method for removing oxygen from crude carbon monoxide gas. The present invention further relates to a method for purifying carbon monoxide gas using such an oxygen removing method.

一酸化炭素は化学合成や金属精錬などの幅広い産業で使用されており、特に最近では、シリコン半導体製造工程のクリーニング・エッチング用のガスとして99.995モル%程度の高純度の一酸化炭素が使用されている。一酸化炭素の一般的な製造方法としては、鉱酸で修飾したゼオライト系触媒を用いて蟻酸の脱水反応(HCOOH→H2O+CO)を進行させ、一酸化炭素を得る方法が知られている(例えば特許文献1,2を参照)。前記反応で得られた粗一酸化炭素ガスは、水、水素、酸素、窒素、メタン、二酸化炭素、および未反応の蟻酸ミスト等を不純物として含んでいる。これらの不純物を除去することで高純度一酸化炭素(以下、「精製一酸化炭素ガス」と記すこともある)を得ている。Carbon monoxide is used in a wide range of industries such as chemical synthesis and metal refining, and recently, carbon monoxide with a high purity of about 99.995 mol% is used as a gas for cleaning and etching in the silicon semiconductor manufacturing process. Has been done. As a general method for producing carbon monoxide, a method is known in which a dehydration reaction of formic acid (HCOOH → H 2 O + CO) is carried out using a zeolite-based catalyst modified with a mineral acid to obtain carbon monoxide (HCOOH → H 2 O + CO). For example, see Patent Documents 1 and 2). The crude carbon monoxide gas obtained by the above reaction contains water, hydrogen, oxygen, nitrogen, methane, carbon dioxide, unreacted formic acid mist and the like as impurities. By removing these impurities, high-purity carbon monoxide (hereinafter, also referred to as "purified carbon monoxide gas") is obtained.

粗一酸化炭素ガスから高純度一酸化炭素を得るための精製方法としては、吸着、蒸留などの手段により不純物を除去する方法が知られている。しかしながら、不純物に酸素が含まれている場合、酸素の分子サイズが一酸化炭素の分子サイズに近く、分子篩吸着剤によって酸素と一酸化炭素とを吸着分離することは困難である。また、酸素と一酸化炭素の沸点は近いため、酸素と一酸化炭素とを蒸留分離することも困難であった。そこで、銅触媒や銅−亜鉛触媒に酸素が含まれている粗一酸化炭素ガスを接触させ、酸素を一酸化炭素と反応させて二酸化炭素に変換してから除去する方法が提案されている(例えば特許文献3を参照)。 As a purification method for obtaining high-purity carbon monoxide from crude carbon monoxide gas, a method of removing impurities by means such as adsorption and distillation is known. However, when oxygen is contained in the impurities, the molecular size of oxygen is close to the molecular size of carbon monoxide, and it is difficult to adsorb and separate oxygen and carbon monoxide with a molecular sieve adsorbent. Moreover, since the boiling points of oxygen and carbon monoxide are close to each other, it is difficult to distill and separate oxygen and carbon monoxide. Therefore, a method has been proposed in which a crude carbon monoxide gas containing oxygen is brought into contact with a copper catalyst or a copper-zinc catalyst, and oxygen is reacted with carbon monoxide to convert it into carbon dioxide before removal ( For example, see Patent Document 3).

しかしながら、前記金属触媒を用い、酸素を一酸化炭素と反応させて二酸化炭素に変換する方法では、金属触媒の一部が製品一酸化炭素ガス中に混入しうる。混入した金属は、製品一酸化炭素ガス中では金属カルボニル構造をとり、前記金属カルボニルは、極微量に存在するだけで半導体製造工程においては甚大な悪影響を及ぼすことが知られている。したがって、製品一酸化炭素ガスの製造において、金属成分の混入回避が強く望まれている。 However, in the method of reacting oxygen with carbon monoxide to convert it into carbon dioxide using the metal catalyst, a part of the metal catalyst can be mixed in the product carbon monoxide gas. It is known that the mixed metal has a metal carbonyl structure in the product carbon monoxide gas, and that the metal carbonyl is present in a very small amount and has a great adverse effect in the semiconductor manufacturing process. Therefore, in the production of product carbon monoxide gas, avoidance of mixing of metal components is strongly desired.

特開平10−007413号公報Japanese Unexamined Patent Publication No. 10-007413 特開平7−33421号公報Japanese Unexamined Patent Publication No. 7-333421 特開昭60−161317号公報Japanese Unexamined Patent Publication No. 60-161317

本発明は、このような事情の下でなされたものであって、酸素を含む粗一酸化炭素ガスから、問題となる金属の混入を可能な限り回避しつつ、粗一酸化炭素ガスから酸素を除去する方法を提供することを主たる課題とする。 The present invention has been made under such circumstances, and oxygen is removed from the crude carbon monoxide gas containing oxygen while avoiding the mixing of problematic metals as much as possible. The main task is to provide a method for removal.

上記課題について本発明者らが鋭意検討した結果、酸素を含む粗一酸化炭素ガスを活性炭と接触させることにより、活性炭が酸素と一酸化炭素との反応の触媒として作用し、二酸化炭素が生成することを見出し、本発明を完成させるに至った。 As a result of diligent studies by the present inventors on the above problems, when crude carbon monoxide gas containing oxygen is brought into contact with activated carbon, the activated carbon acts as a catalyst for the reaction between oxygen and carbon monoxide, and carbon dioxide is generated. This has led to the completion of the present invention.

本発明の第1の側面によれば、酸素を含む粗一酸化炭素ガスを、金属を担持させていない活性炭と接触させることを特徴とする、粗一酸化炭素ガスから酸素を除去する方法が提供される。 According to the first aspect of the present invention, there is provided a method for removing oxygen from crude carbon monoxide gas, which comprises contacting a crude carbon monoxide gas containing oxygen with activated carbon on which no metal is supported. Will be done.

好ましくは、前記粗一酸化炭素ガスと前記活性炭との接触は、前記活性炭を充填した触媒槽に前記粗一酸化炭素ガスを導入することにより行う。 Preferably, the contact between the crude carbon monoxide gas and the activated carbon is performed by introducing the crude carbon monoxide gas into a catalyst tank filled with the activated carbon.

好ましくは、前記粗一酸化炭素ガスにおける酸素濃度が0.1〜1000モルppmである。 Preferably, the oxygen concentration in the crude carbon monoxide gas is 0.1 to 1000 mol ppm.

好ましくは、前記粗一酸化炭素ガスと前記活性炭との接触温度が20〜80℃の範囲である。 Preferably, the contact temperature between the crude carbon monoxide gas and the activated carbon is in the range of 20 to 80 ° C.

好ましくは、前記粗一酸化炭素ガスと前記活性炭との接触温度が30〜50℃の範囲である。 Preferably, the contact temperature between the crude carbon monoxide gas and the activated carbon is in the range of 30 to 50 ° C.

本発明の第2の側面によれば、本発明の第1の側面に係る酸素除去方法により粗一酸化炭素ガスから酸素を除去する工程と、前記酸素除去工程により得られる生成ガスをアルカリ水溶液で洗浄することにより二酸化炭素を除去する工程と、を含む、一酸化炭素の精製方法が提供される。 According to the second aspect of the present invention, the step of removing oxygen from the crude carbon monoxide gas by the oxygen removing method according to the first aspect of the present invention and the produced gas obtained by the oxygen removing step are mixed with an alkaline aqueous solution. A method for purifying carbon monoxide is provided, which comprises a step of removing carbon dioxide by washing.

好ましくは、前記酸素除去工程と前記二酸化炭素除去工程とが、一酸化炭素が目的とする純度になるまで繰り返される。 Preferably, the oxygen removal step and the carbon dioxide removal step are repeated until carbon monoxide has the desired purity.

本発明の一実施形態に従い、酸素除去工程と二酸化炭素除去工程とを含む一酸化炭素精製方法を実施するための装置を示す概略構成図である。It is a schematic block diagram which shows the apparatus for carrying out the carbon monoxide purification method including an oxygen removal step and a carbon dioxide removal step according to one Embodiment of this invention.

以下、添付図面を参照しながら、本発明の一実施形態を具体的に説明するが、当該実施形態は本発明の保護範囲を限定するものではない。 Hereinafter, an embodiment of the present invention will be specifically described with reference to the accompanying drawings, but the embodiment does not limit the scope of protection of the present invention.

本実施形態に係る方法は、例えば図1に示すような一酸化炭素精製装置を用いて実施される。具体的には、一酸化炭素精製装置は、主として、活性炭1aが充填された触媒槽1と、アルカリ水溶液2aを収容したガス洗浄容器2と、を含んでいる。触媒槽1には、原料ガスしての粗一酸化炭素ガスがライン3を介して供給され、ライン3には、粗一酸化炭素ガスを所定の圧力まで加圧するためのコンプレッサ4が設けられている。触媒槽1では、粗一酸化炭素ガスに不純物として含まれる酸素の一部が一酸化炭素との反応により二酸化炭素に変換されて除去される。触媒槽1から排出される生成ガスはライン5を介してガス洗浄容器2に送られ、さらに導入管6を介してアルカリ水溶液2a中に導入される。この結果、酸性ガスである二酸化炭素はアルカリ水溶液2aに吸収されて除去され、精製された一酸化炭素ガスがライン7を介して取り出される。ライン7は、排出ライン7aと循環ライン7bとに接続されており、これらのライン7a,7bにはそれぞれ開閉弁8,9が設けられている。ライン7から排出される精製一酸化炭素ガスが目的とする純度に到達している場合には、開閉弁8が開状態とされ(開閉弁9は閉状態)、排出ライン7aを介して精製一酸化炭素ガスが取り出される。一方、ライン7から排出される精製一酸化炭素ガスが目的とする純度に到達していない場合には、開閉弁9が開状態とされ(開閉弁8は閉状態)、循環ライン7bを介して不十分な精製一酸化炭素ガスとして再び触媒槽1に送られ、追加の酸素除去が行われる。なお、加圧が必要でない場合は、コンプレッサ4をブロワで置換してもよい。 The method according to this embodiment is carried out using, for example, a carbon monoxide purification apparatus as shown in FIG. Specifically, the carbon monoxide purification apparatus mainly includes a catalyst tank 1 filled with activated carbon 1a and a gas cleaning container 2 containing an alkaline aqueous solution 2a. A crude carbon monoxide gas as a raw material gas is supplied to the catalyst tank 1 via a line 3, and a compressor 4 for pressurizing the crude carbon monoxide gas to a predetermined pressure is provided in the line 3. There is. In the catalyst tank 1, a part of oxygen contained as an impurity in the crude carbon monoxide gas is converted into carbon dioxide by a reaction with carbon monoxide and removed. The generated gas discharged from the catalyst tank 1 is sent to the gas cleaning container 2 via the line 5, and further introduced into the alkaline aqueous solution 2a via the introduction pipe 6. As a result, carbon dioxide, which is an acid gas, is absorbed and removed by the alkaline aqueous solution 2a, and the purified carbon monoxide gas is taken out via the line 7. The line 7 is connected to a discharge line 7a and a circulation line 7b, and on-off valves 8 and 9 are provided in these lines 7a and 7b, respectively. When the purified carbon monoxide gas discharged from the line 7 has reached the desired purity, the on-off valve 8 is opened (the on-off valve 9 is closed), and the purified carbon monoxide gas is purified via the discharge line 7a. Carbon oxide gas is taken out. On the other hand, when the purified carbon monoxide gas discharged from the line 7 does not reach the desired purity, the on-off valve 9 is opened (the on-off valve 8 is in the closed state), and the on-off valve 8 is opened via the circulation line 7b. It is sent back to the catalyst tank 1 as insufficiently purified carbon monoxide gas for additional oxygen removal. If pressurization is not required, the compressor 4 may be replaced with a blower.

原料ガスしての粗一酸化炭素ガスは、主成分である一酸化炭素と、不純物としての酸素等とを含む。粗一酸化炭素ガスは、例えば鉱酸で修飾したゼオライト系触媒を用いた蟻酸の脱水反応(HCOOH→H2O+CO)後に、生成したH2Oと未反応のHCOOHを凝縮器で一酸化炭素ガスから分離することによって得られる。粗一酸化炭素ガスにおける主成分たる一酸化炭素の純度は、例えば99.9モル%以上、100モル%未満である。精製一酸化炭素ガスの純度を高くする観点からは、粗一酸化炭素ガスにおける一酸化炭素の純度は、好ましくは99.99モル%以上、100モル%未満である。また、該粗一酸化炭素ガス中の酸素の濃度は、好ましくは0.1〜1000モルppmである。酸素濃度が1000モルppmを超える場合は酸素を除去しきれずに精製一酸化炭素ガス中に残存する恐れがある。酸素の除去効率の観点から、粗一酸化炭素ガス中の酸素濃度は、0.1〜100モルppmであるのが更に好ましい。粗一酸化炭素ガスは、酸素以外の不純物として、例えば水素、窒素、二酸化炭素、メタンを含んでいてもよい。これら不純物の各々の濃度は、例えば0.1〜10モルppm程度である。The crude carbon monoxide gas as a raw material gas contains carbon monoxide as a main component and oxygen as an impurity. The crude carbon monoxide gas is, for example, carbon monoxide gas produced by dehydrating formic acid using a zeolite-based catalyst modified with mineral acid (HCOOH → H 2 O + CO), and then using a condenser to combine the produced H 2 O with unreacted H COOH. Obtained by separating from. The purity of carbon monoxide, which is the main component of the crude carbon monoxide gas, is, for example, 99.9 mol% or more and less than 100 mol%. From the viewpoint of increasing the purity of the purified carbon monoxide gas, the purity of carbon monoxide in the crude carbon monoxide gas is preferably 99.99 mol% or more and less than 100 mol%. The concentration of oxygen in the crude carbon monoxide gas is preferably 0.1 to 1000 molppm. If the oxygen concentration exceeds 1000 mol ppm, the oxygen may not be completely removed and may remain in the purified carbon monoxide gas. From the viewpoint of oxygen removal efficiency, the oxygen concentration in the crude carbon monoxide gas is more preferably 0.1 to 100 mol ppm. The crude carbon monoxide gas may contain, for example, hydrogen, nitrogen, carbon dioxide, and methane as impurities other than oxygen. The concentration of each of these impurities is, for example, about 0.1 to 10 mol ppm.

触媒槽1に充填される活性炭1aは、ヤシ殻、木材等の植物系、石炭、石油等の鉱物系のいずれを用いてもよい。活性炭の形状としては、粉末状、破砕状、円柱状、球状、ハニカム状のいずれを使用してもよい。 As the activated carbon 1a filled in the catalyst tank 1, any of a plant-based material such as coconut shell and wood, and a mineral-based material such as coal and petroleum may be used. As the shape of the activated carbon, any of powder, crushed, columnar, spherical, and honeycomb may be used.

触媒層1に充填される活性炭1aは、金属を担持しておらず、活性炭1a単体として触媒機能を発揮する。触媒槽1では、粗一酸化炭素ガスに含まれる酸素が一酸化炭素と反応し、二酸化炭素に変換される。ここで、触媒槽1での粗一酸化炭素ガスの処理量は、空間速度にして例えば0.01〜70/minであり、酸化反応効率の観点から、好ましくは5〜50/minである。 The activated carbon 1a filled in the catalyst layer 1 does not support a metal and exhibits a catalytic function as the activated carbon 1a alone. In the catalyst tank 1, oxygen contained in the crude carbon monoxide gas reacts with carbon monoxide and is converted into carbon dioxide. Here, the amount of crude carbon monoxide gas treated in the catalyst tank 1 is, for example, 0.01 to 70 / min in terms of space velocity, and is preferably 5 to 50 / min from the viewpoint of oxidation reaction efficiency.

活性炭1aを充填した触媒槽1の温度(即ち、粗一酸化炭素ガスと活性炭との接触温度)は、好ましくは20〜80℃の範囲であり、より好ましくは30〜50℃である。 The temperature of the catalyst tank 1 filled with the activated carbon 1a (that is, the contact temperature between the crude carbon monoxide gas and the activated carbon) is preferably in the range of 20 to 80 ° C, more preferably 30 to 50 ° C.

活性炭1aを充填した触媒槽1に導入する粗一酸化炭素ガスの圧力は、例えば0.1〜10MPaである。反応効率の観点から、好ましくは9〜10MPaである。 The pressure of the crude carbon monoxide gas introduced into the catalyst tank 1 filled with the activated carbon 1a is, for example, 0.1 to 10 MPa. From the viewpoint of reaction efficiency, it is preferably 9 to 10 MPa.

活性炭1aを充填した触媒槽1は、高圧ガスの通気時に槽の気密性を保持できればよく、その形状は円筒型、角型、球形の何れでもよい。 The catalyst tank 1 filled with the activated carbon 1a may have a cylindrical shape, a square shape, or a spherical shape as long as the airtightness of the tank can be maintained when the high pressure gas is aerated.

触媒槽1では上述のように、粗一酸化炭素ガスに含まれる酸素が一酸化炭素と反応し、二酸化炭素に変換される。当該変換により生じた二酸化炭素は、蒸留あるいはPSA装置などによる分離手法や、分子篩やアルカリ水溶液に通すことにより除去される。経済的な観点から、図1に示したように、アルカリ水溶液による洗浄(吸収)が好ましく、アルカリ水溶液2aとしては苛性ソーダ水溶液が好ましい。 In the catalyst tank 1, as described above, oxygen contained in the crude carbon monoxide gas reacts with carbon monoxide and is converted into carbon dioxide. Carbon dioxide generated by the conversion is removed by a separation method such as distillation or a PSA apparatus, or by passing through a molecular sieve or an alkaline aqueous solution. From an economical point of view, as shown in FIG. 1, washing (absorption) with an alkaline aqueous solution is preferable, and the caustic soda aqueous solution is preferable as the alkaline aqueous solution 2a.

アルカリ洗浄後得られる処理ガスを水洗してから水分をモレキュラーシーブで乾燥させることで、高純度一酸化炭素(製品一酸化炭素ガス)が得られる。 High-purity carbon monoxide (product carbon monoxide gas) can be obtained by washing the treatment gas obtained after alkaline washing with water and then drying the water with a molecular sieve.

本実施形態に係る方法は、触媒として単体の活性炭1aを用いることで金属の混入を避けつつ、不純物として含まれる酸素の除去が可能であるから、半導体製造工程などの工業的用途に用いられる高純度一酸化炭素を製造するのに適している。 In the method according to the present embodiment, by using a single activated carbon 1a as a catalyst, it is possible to remove oxygen contained as an impurity while avoiding the mixing of metals. Therefore, it is highly used in industrial applications such as semiconductor manufacturing processes. Suitable for producing pure carbon monoxide.

以下に実施例を挙げて本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

〔実施例1〕
内径11cm、長さ120cmのSUS製の管に活性炭(粒状白鷺G2X、大阪ガスケミカル(株)製)を5.2kg充填し、触媒槽を調製した。9.8MPaに圧縮した粗一酸化炭素ガス(原料ガス)を、前記触媒槽の温度を20〜25℃に保ちながら、空間速度にして36.6/minで前記触媒槽に連続で導入した。導入した粗一酸化炭素ガス中の酸素濃度は1.40モルppmであり、二酸化炭素は検出されなかった。酸素と二酸化炭素の濃度については、ガスクロマトグラフ(パルス放電型光イオン化検出器:PDD)で分析した。前記触媒槽への粗一酸化炭素ガスの導入開始から20分後、触媒槽出口から排出される一酸化炭素ガスの分析を行い、酸素と二酸化炭素の濃度を確認した。その結果、酸素濃度が1.35モルppm、二酸化炭素濃度が0.10モルppmであった。
[Example 1]
A SUS tube having an inner diameter of 11 cm and a length of 120 cm was filled with 5.2 kg of activated carbon (granular Shirasagi G2X, manufactured by Osaka Gas Chemical Co., Ltd.) to prepare a catalyst tank. Crude carbon monoxide gas (raw material gas) compressed to 9.8 MPa was continuously introduced into the catalyst tank at a space velocity of 36.6 / min while maintaining the temperature of the catalyst tank at 20 to 25 ° C. The oxygen concentration in the introduced crude carbon monoxide gas was 1.40 mol ppm, and carbon dioxide was not detected. The concentrations of oxygen and carbon dioxide were analyzed by gas chromatography (pulse discharge type photoionization detector: PDD). Twenty minutes after the start of introduction of the crude carbon monoxide gas into the catalyst tank, the carbon monoxide gas discharged from the outlet of the catalyst tank was analyzed to confirm the concentrations of oxygen and carbon dioxide. As a result, the oxygen concentration was 1.35 molppm and the carbon dioxide concentration was 0.10 molppm.

〔実施例2〕
触媒槽の温度を35〜40℃に変更した以外は実施例1と同様にして実験を行った。触媒槽から排出される一酸化炭素ガスの分析を行ったところ、酸素濃度が1.00モルppm、二酸化炭素濃度が0.80モルppmであった。
[Example 2]
The experiment was carried out in the same manner as in Example 1 except that the temperature of the catalyst tank was changed to 35-40 ° C. When the carbon monoxide gas discharged from the catalyst tank was analyzed, the oxygen concentration was 1.00 molppm and the carbon dioxide concentration was 0.80 molppm.

〔実施例3〕
内径1cm、長さ30cmのSUS製の管に活性炭(粒状白鷺G2X、大阪ガスケミカル(株)製)を10.6g充填し、触媒槽を調製した。0.1MPaに圧縮した一酸化炭素ガス(原料ガス)を、前記触媒槽の温度を40〜45℃に保ちながら、空間速度にして8.7/minで前記触媒槽に連続で導入した。導入した粗一酸化炭素ガス中の酸素濃度は25.0モルppmであり、二酸化炭素は検出されなかった。触媒槽出口から排出される一酸化炭素ガスの分析を行ったところ、1時間経過後には酸素濃度が23.2モルppm、二酸化炭素濃度が4.2モルppmであった。2時間経過後には酸素濃度が23.6モルppm、二酸化炭素濃度が4.7モルppmであった。2ヶ月経過後には、酸素濃度が23.4モルppm、二酸化炭素濃度が4.5モルppmであった。
[Example 3]
A catalyst tank was prepared by filling 10.6 g of activated carbon (granular Shirasagi G2X, manufactured by Osaka Gas Chemical Co., Ltd.) in a SUS tube having an inner diameter of 1 cm and a length of 30 cm. Carbon monoxide gas (raw material gas) compressed to 0.1 MPa was continuously introduced into the catalyst tank at an air velocity of 8.7 / min while maintaining the temperature of the catalyst tank at 40 to 45 ° C. The oxygen concentration in the introduced crude carbon monoxide gas was 25.0 mol ppm, and carbon dioxide was not detected. When the carbon monoxide gas discharged from the outlet of the catalyst tank was analyzed, the oxygen concentration was 23.2 molppm and the carbon dioxide concentration was 4.2 molppm after 1 hour. After 2 hours, the oxygen concentration was 23.6 molppm and the carbon dioxide concentration was 4.7 molppm. After 2 months, the oxygen concentration was 23.4 mol ppm and the carbon dioxide concentration was 4.5 mol ppm.

〔参考例1〕
実施例3における活性炭に代えてAl23(住友化学(株)製)を用いて、実施例3と同様の実験を行った。触媒槽出口から排出される一酸化炭素ガスの分析を行ったところ、1時間経過後には酸素濃度が24.5モルppm、二酸化炭素濃度が0モルppmであった。2時間後には酸素濃度が25モルppm、二酸化炭素濃度が0モルppmであった。
[Reference Example 1]
The same experiment as in Example 3 was carried out using Al 2 O 3 (manufactured by Sumitomo Chemical Co., Ltd.) instead of the activated carbon in Example 3. When the carbon monoxide gas discharged from the outlet of the catalyst tank was analyzed, the oxygen concentration was 24.5 molppm and the carbon dioxide concentration was 0 molppm after 1 hour. After 2 hours, the oxygen concentration was 25 mol ppm and the carbon dioxide concentration was 0 mol ppm.

〔評価〕
実施例1では、触媒槽で処理する前の粗一酸化炭素ガス中の酸素濃度は1.40モルppmであったものが、触媒槽から排出された生成ガスにおいては酸素濃度が1.35モルppmに減少して、0.10モルppmの二酸化炭素が生成されていた。このことより、触媒槽における活性炭が触媒として作用し、酸素と一酸化炭素を反応させて二酸化炭素を生成させているものと理解される。なお、酸素の反応割合が小さいのは、もともと酸素濃度が極めて低いからであり、粗一酸化炭素ガスにおける酸素濃度が低くなればなるほど、その反応割合低下傾向は強くなる。また、反応割合が低い場合でも、図1に基づいて説明したように、同じ酸素除去工程を繰り返すことで、目標とする一酸化炭素ガスの純度に到達することはできる。
[Evaluation]
In Example 1, the oxygen concentration in the crude carbon monoxide gas before treatment in the catalyst tank was 1.40 mol ppm, but in the produced gas discharged from the catalyst tank, the oxygen concentration was 1.35 mol. Decreased to ppm, 0.10 mol ppm of carbon dioxide was produced. From this, it is understood that the activated carbon in the catalyst tank acts as a catalyst and reacts oxygen with carbon monoxide to generate carbon dioxide. The reaction ratio of oxygen is small because the oxygen concentration is originally extremely low, and the lower the oxygen concentration in the crude carbon monoxide gas, the stronger the tendency of the reaction ratio to decrease. Further, even when the reaction ratio is low, the target purity of carbon monoxide gas can be reached by repeating the same oxygen removal step as described with reference to FIG.

実施例2からは、反応温度を高めることで1回の工程で除去できる酸素の割合を高めることができることが理解できる。 From Example 2, it can be understood that the proportion of oxygen that can be removed in one step can be increased by increasing the reaction temperature.

実施例3によれば、触媒槽における反応圧力を大気圧まで低下させても、反応温度を40〜45℃まで若干高めることで酸素を除去が可能であることが理解できる。また、活性炭の触媒活性は、反応を2ヶ月続けても低下しないことも分かり、酸素除去工程を目的とする一酸化炭素の純度が達成されるまで繰り返しても、何も問題ないことが了解される。さらに、参考例1を実施例3と対比すれば、活性炭と同じ反応条件ではAl23を用いても触媒作用を示すことはなく、活性炭単体による触媒作用が確認できる。According to Example 3, it can be understood that even if the reaction pressure in the catalyst tank is lowered to atmospheric pressure, oxygen can be removed by slightly raising the reaction temperature to 40 to 45 ° C. It was also found that the catalytic activity of activated carbon did not decrease even if the reaction was continued for 2 months, and it was understood that there would be no problem even if the reaction was repeated until the purity of carbon monoxide for the purpose of the oxygen removal step was achieved. To. Further, when Reference Example 1 is compared with Example 3, the catalytic action by the activated carbon alone can be confirmed without showing the catalytic action even if Al 2 O 3 is used under the same reaction conditions as the activated carbon.

1:触媒槽
1a:活性炭
2:ガス洗浄容器
2a:アルカリ水溶液
4:コンプレッサ
7b:循環ライン
1: Catalyst tank 1a: Activated carbon 2: Gas cleaning container 2a: Alkaline aqueous solution 4: Compressor 7b: Circulation line

Claims (7)

酸素を含む粗一酸化炭素ガスを、金属を担持させていない活性炭と接触させることを特徴とする、粗一酸化炭素ガスから酸素を除去する方法。 A method for removing oxygen from crude carbon monoxide gas, which comprises contacting a crude carbon monoxide gas containing oxygen with activated carbon on which no metal is supported. 前記粗一酸化炭素ガスと前記活性炭との接触は、前記活性炭を充填した触媒槽に前記粗一酸化炭素ガスを導入することにより行う、請求項1に記載の方法。 The method according to claim 1, wherein the contact between the crude carbon monoxide gas and the activated carbon is performed by introducing the crude carbon monoxide gas into a catalyst tank filled with the activated carbon. 前記粗一酸化炭素ガスにおける酸素濃度が0.1〜1000モルppmである、請求項1に記載の方法。 The method according to claim 1, wherein the oxygen concentration in the crude carbon monoxide gas is 0.1 to 1000 mol ppm. 前記粗一酸化炭素ガスと前記活性炭との接触温度が20〜80℃の範囲である、請求項1に記載の方法。 The method according to claim 1, wherein the contact temperature between the crude carbon monoxide gas and the activated carbon is in the range of 20 to 80 ° C. 前記粗一酸化炭素ガスと前記活性炭との接触温度が30〜50℃の範囲である、請求項1に記載の方法。 The method according to claim 1, wherein the contact temperature between the crude carbon monoxide gas and the activated carbon is in the range of 30 to 50 ° C. 請求項1ないし5のいずれかに記載の酸素除去方法により粗一酸化炭素ガスから酸素を除去する工程と、前記酸素除去工程により得られる生成ガスをアルカリ水溶液で洗浄することにより二酸化炭素を除去する工程と、を含む、一酸化炭素の精製方法。 Carbon dioxide is removed by washing the produced gas obtained by the step of removing oxygen from the crude carbon monoxide gas by the oxygen removing method according to any one of claims 1 to 5 and the oxygen removing step with an alkaline aqueous solution. A method for purifying carbon monoxide, including steps. 前記酸素除去工程と前記二酸化炭素除去工程とが、一酸化炭素が目的とする純度になるまで繰り返される、請求項6に記載の方法。 The method according to claim 6, wherein the oxygen removing step and the carbon dioxide removing step are repeated until carbon monoxide reaches the desired purity.
JP2020504879A 2018-03-06 2019-02-08 Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas Active JP7119064B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018039259 2018-03-06
JP2018039259 2018-03-06
PCT/JP2019/004705 WO2019171882A1 (en) 2018-03-06 2019-02-08 Method of removing oxygen from crude carbon monoxide gas and method of purifying carbon monoxide gas

Publications (2)

Publication Number Publication Date
JPWO2019171882A1 true JPWO2019171882A1 (en) 2021-02-18
JP7119064B2 JP7119064B2 (en) 2022-08-16

Family

ID=67847146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020504879A Active JP7119064B2 (en) 2018-03-06 2019-02-08 Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas

Country Status (4)

Country Link
JP (1) JP7119064B2 (en)
KR (1) KR102596869B1 (en)
CN (1) CN111770892B (en)
WO (1) WO2019171882A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230382741A1 (en) 2020-10-08 2023-11-30 Resonac Corporation Method for removing oxygen molecule and method for purifying carbon monoxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132543A (en) * 1985-12-03 1987-06-15 Taiyo Sanso Kk Molecular sieve active carbon and its production and method for separating specific gas from mixed gases using same
JPS63251496A (en) * 1987-04-08 1988-10-18 Kawasaki Steel Corp Method of purifying gas mainly composed of carbon monoxide
JPH02189389A (en) * 1989-01-18 1990-07-25 Kawasaki Steel Corp Purification of gas containing carbon monooxide as main component
JP2000034115A (en) * 1998-07-21 2000-02-02 Sumitomo Seika Chem Co Ltd Production of high-purity carbon monoxide

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481987A (en) * 1967-08-14 1969-12-02 Union Oil Co Removal of oxygen impurity from carbon monoxide
JPS60161317A (en) 1984-01-31 1985-08-23 Kansai Coke & Chem Co Ltd Method for removing oxygen from oxygen-containing gas consisting essentially of carbon monoxide
JPS60190495A (en) * 1984-03-10 1985-09-27 Kansai Coke & Chem Co Ltd Method of purification raw material gas for synthesis comprising carbon monoxide as main component
JPH0789012B2 (en) * 1986-12-26 1995-09-27 大同ほくさん株式会社 Carbon monoxide separation and purification equipment
JPH0668109B2 (en) * 1987-04-08 1994-08-31 川崎製鉄株式会社 Method for purifying gas containing carbon monoxide as a main component
JP3041445B2 (en) 1993-07-12 2000-05-15 住友精化株式会社 Method for producing high-purity carbon monoxide
JP3856872B2 (en) 1996-06-18 2006-12-13 住友精化株式会社 Method for producing high purity carbon monoxide
CN1073876C (en) * 1997-10-24 2001-10-31 化学工业部西南化工研究设计院 Pressure swing adsorption process for separating carbon monooxide from carbon monooxide contg. mixed gas
EP1287889B1 (en) * 2001-09-03 2012-11-14 Nissan Motor Co., Ltd. Catalyst for selectively oxidizing carbon monoxide
CN1465523A (en) * 2002-07-02 2004-01-07 鹰 杨 Method for refining mixed gas at least containing carbon monoxide, carbon dioxide, nitrogen and hydrogen
DE602004019662D1 (en) * 2003-09-26 2009-04-09 3M Innovative Properties Co NANOSCALIC GOLD CALCULATORS, ACTIVATING AGENTS, SUPPORT MEDIA AND RELATED METHODOLOGIES FOR THE MANUFACTURE OF SUCH CATALYST SYSTEMS, ESPECIALLY WHEN THE GOLDS ARE DISPOSED ON THE CARRIER MEDIA BY PVD
ZA200607439B (en) * 2005-09-07 2008-05-28 Boc Group Inc Process for gas purification
CN101302009B (en) * 2008-06-23 2010-06-02 四川天一科技股份有限公司 Method for transporting, purifying and purifying carbon monooxide from silicon carbide refining furnace gas
JP5566815B2 (en) * 2010-08-31 2014-08-06 大陽日酸株式会社 Gas purification method and gas purification apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132543A (en) * 1985-12-03 1987-06-15 Taiyo Sanso Kk Molecular sieve active carbon and its production and method for separating specific gas from mixed gases using same
JPS63251496A (en) * 1987-04-08 1988-10-18 Kawasaki Steel Corp Method of purifying gas mainly composed of carbon monoxide
JPH02189389A (en) * 1989-01-18 1990-07-25 Kawasaki Steel Corp Purification of gas containing carbon monooxide as main component
JP2000034115A (en) * 1998-07-21 2000-02-02 Sumitomo Seika Chem Co Ltd Production of high-purity carbon monoxide

Also Published As

Publication number Publication date
TW201938487A (en) 2019-10-01
JP7119064B2 (en) 2022-08-16
WO2019171882A1 (en) 2019-09-12
KR102596869B1 (en) 2023-11-02
CN111770892A (en) 2020-10-13
CN111770892B (en) 2023-06-30
KR20200127225A (en) 2020-11-10

Similar Documents

Publication Publication Date Title
JP5566815B2 (en) Gas purification method and gas purification apparatus
CN207227001U (en) Utilize MOCVD tail gas co-producing high-purity hydrogen and the device of high-purity ammon
JP2008537720A (en) Purification of nitrogen trifluoride
JP7119064B2 (en) Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas
CN101653688B (en) Process flow for removing CO2 and H2S in gas mixture
US7691351B2 (en) Method for treatment of a gas stream containing silicon tetrafluoride and hydrogen chloride
US20100290977A1 (en) Method of removing hydrocarbon impurities from a gas
US9272906B2 (en) Method for purification of ammonia, mixtures of nitrogen and hydrogen, or nitrogen, hydrogen and ammonia
US9174853B2 (en) Method for producing high purity germane by a continuous or semi-continuous process
EP3356292B1 (en) Method for purification of a co2 stream
US9090463B2 (en) Method for producing gas products from syngas
JP2989477B2 (en) Purification method of ultra-high purity acetonitrile and crude acetonitrile
JP2000034115A (en) Production of high-purity carbon monoxide
WO2022075351A1 (en) Method for removing oxygen molecule and method for purifying carbon monoxide
CN205435447U (en) Nitrous oxide separation and purification device in oxalic acid tail gas
JP2006527297A (en) Purification of H2 / CO mixture by catalytic reaction of NOx
JP2024071553A (en) Method for producing high purity nitric oxide
CN117776863A (en) C (C) 3 F 8 And C-C 4 F 8 Is separated by a separation method of (2)
KR20190074414A (en) Method for producing high concentration effective gas using multi membrane from by-product gas generated from steelworks and device for the same
KR20240046711A (en) Carbon monoxide production method and production device
JP2023095971A (en) Method of producing carbon monoxide
JPH07278043A (en) Production of acetic acid
JP2011006296A (en) Method for producing carbon monoxide and method for producing phosgene using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R150 Certificate of patent or registration of utility model

Ref document number: 7119064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150