JPWO2019143945A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019143945A5
JPWO2019143945A5 JP2020539230A JP2020539230A JPWO2019143945A5 JP WO2019143945 A5 JPWO2019143945 A5 JP WO2019143945A5 JP 2020539230 A JP2020539230 A JP 2020539230A JP 2020539230 A JP2020539230 A JP 2020539230A JP WO2019143945 A5 JPWO2019143945 A5 JP WO2019143945A5
Authority
JP
Japan
Prior art keywords
porous
region
multilayer
porous region
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020539230A
Other languages
Japanese (ja)
Other versions
JP2021511662A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/014204 external-priority patent/WO2019143945A1/en
Publication of JP2021511662A publication Critical patent/JP2021511662A/en
Publication of JPWO2019143945A5 publication Critical patent/JPWO2019143945A5/ja
Pending legal-status Critical Current

Links

Description

図1は、例証的実施形態による、DBRのための多孔性多重層処理を用いて層状構造を成長させるためのプロセスを図示する例示的略図を示す。プロセス100は、102において、基板104を選択することによって開始する。106において、基板の一部が、第1の多孔度を伴う多孔性部分108として、基板104内で修正される。例えば、多孔性部分108は、基板104のエリアが、エッチングされ、多孔性部分108を形成するように、基板104のあるエリアを酸性電流にさらすことによって生成される。第1の多孔度は、酸性電流の濃度および/または流体速度を制御することによって構成され得る。110において、1つ以上のエピタキシャル層112が、多孔性多重層108の上にエピタキシャルに成長させられ、エピタキシャル層112は、活性量子井戸キャップを閉じ込めることができる。114において、多孔性多重層108と同じ多孔度を有する別の多孔性多重層116が、支持層112の上に作成される。第2の多孔性多重層116は、多孔性多重層108と整列させられ、VCSELを作成する。
FIG. 1 shows an exemplary diagram illustrating a process for growing a layered structure using porous multi-layer processing for DBRs, according to an illustrative embodiment. Process 100 begins at 102 by selecting a substrate 104 . At 106, a portion of the substrate is modified within substrate 104 as porous portion 108 with a first porosity. For example, porous portion 108 is created by exposing an area of substrate 104 to an acidic current such that the area of substrate 104 is etched to form porous portion 108 . The first porosity can be configured by controlling the acid current concentration and/or fluid velocity. At 110, one or more epitaxial layers 112 are epitaxially grown over the porous multilayer 108, where the epitaxial layers 112 can confine the active quantum well cap. At 114 , another porous multilayer 116 having the same porosity as porous multilayer 108 is formed over support layer 112 . A second porous multilayer 116 is aligned with porous multilayer 108 to create a VCSEL.

Claims (21)

構造であって、前記構造は、
第1の多孔度を有する第1の多孔性領域を含む基板であって、前記第1の多孔性領域は、前記基板内に形成されている、基板と、
前記第1の多孔性領域の上にエピタキシャルに成長させられた活性量子井戸領域と、
前記活性量子井戸領域の上にある第2の多孔性領域であって、前記第2の多孔性領域は、 前記第1の多孔度を有する、第2の多孔性領域と
を備え、
前記第2の多孔性領域のエッジは、前記第1の多孔性領域のエッジと整列しており、
前記基板は、単一のベース材料である、構造。
A structure, said structure comprising:
a substrate including a first porous region having a first porosity, said first porous region being formed within said substrate;
an active quantum well region epitaxially grown over the first porous region;
a second porous region overlying the active quantum well region, the second porous region having the first porosity;
edges of the second porous region are aligned with edges of the first porous region;
The structure wherein the substrate is a single base material.
前記基板は、ゲルマニウムまたはヒ化ガリウムから構成されている、請求項1に記載の構造。 2. The structure of claim 1, wherein said substrate is composed of germanium or gallium arsenide. 前記第1の多孔性領域および前記第1の多孔性領域と整列している前記活性量子井戸領域の少なくとも第1の部分および前記第2の多孔性領域のスタックは、第1の波長における第1の光波が前記スタックを通過することを可能にする、請求項1に記載の構造。 At least a first portion of the active quantum well region and a stack of the second porous regions aligned with the first porous region and the first porous region are at a first wavelength at a first wavelength. of light waves to pass through said stack. 前記構造は、前記第1の多孔性領域と前記活性量子井戸領域との間で前記基板の上に成長させられた第1のエピタキシャル分散ブラッグ反射器多重層をさらに備え、
前記第2の多孔性領域は、前記活性量子井戸領域の上にある第2のエピタキシャル分散ブラッグ反射器多重層を含み、
前記第1のエピタキシャル分散ブラッグ反射器多重層の第1の反射率は、前記第2のエピタキシャル分散ブラッグ反射器多重層の第2の反射率と異なり、これにより、前記第1の多孔性領域および前記第1のエピタキシャル分散ブラッグ反射器多重層および前記第2のエピタキシャル分散ブラッグ反射器多重層のスタックに、第1の波長における第1の光波が前記スタックを通過することを可能にすることを行わせる、請求項1に記載の構造。
the structure further comprising a first epitaxial distributed Bragg reflector multilayer grown over the substrate between the first porous region and the active quantum well region;
said second porous region comprising a second epitaxial distributed Bragg reflector multilayer overlying said active quantum well region;
The first reflectivity of the first epitaxial distributed Bragg reflector multilayer is different than the second reflectivity of the second epitaxial distributed Bragg reflector multilayer, thereby providing the first porous region and performing a stack of the first epitaxial distributed Bragg reflector multilayer and the second epitaxial distributed Bragg reflector multilayer for allowing a first light wave at a first wavelength to pass through the stack; 2. The structure of claim 1, wherein the structure is
前記第1の多孔性領域および前記第2の多孔性領域は、前記活性量子井戸領域における第1の領域と整列しており、前記基板は、第3の多孔性領域を含み、前記第3の多孔性領域は、前記基板内に形成されており、
前記構造は、前記活性量子井戸領域の上にある第4の多孔性領域をさらに備え、前記第4の多孔性領域は、第2の多孔度を有し、
前記第2の多孔性領域および前記第4の多孔性領域は、前記活性量子井戸領域の上に成長させられたバルク層の多孔性部分であり、
前記第3の多孔性領域および前記第4の多孔性領域は、前記活性量子井戸領域における第2の領域と整列している、請求項1に記載の構造。
The first porous region and the second porous region are aligned with a first region in the active quantum well region, the substrate includes a third porous region, and the third porous region comprises: a porous region is formed in the substrate;
the structure further comprising a fourth porous region overlying the active quantum well region, the fourth porous region having a second porosity;
said second porous region and said fourth porous region are porous portions of a bulk layer grown over said active quantum well region;
2. The structure of claim 1, wherein said third porous region and said fourth porous region are aligned with a second region in said active quantum well region.
前記第1の多孔性領域と前記第3の多孔性領域とは、異なる寸法または異なる多孔度を有し、
前記第2の多孔性領域と前記第4の多孔性領域とは、異なる寸法または異なる多孔度を有する、請求項5に記載の構造。
the first porous region and the third porous region have different dimensions or different porosities;
6. The structure of claim 5, wherein said second porous region and said fourth porous region have different dimensions or different porosities.
前記第1の多孔性領域および前記活性量子井戸領域の少なくとも前記第1の領域および前記第2の多孔性領域は、第1の波長における第1の光波が通過することを可能にする第1のVCSELを形成しており、前記第3の多孔性領域および前記活性量子井戸領域の少なくとも前記第2の領域および前記第4の多孔性領域は、第2の波長における第2の光波が通過することを可能にする第2のVCSELを形成している、請求項5に記載の構造。 At least the first and second porous regions of the first porous region and the active quantum well region are configured to allow passage of a first optical wave at a first wavelength. forming a VCSEL, wherein at least the second and fourth porous regions of the third porous region and the active quantum well region are transparent to a second light wave at a second wavelength; 6. The structure of claim 5 forming a second VCSEL that enables 前記第2の多孔性領域は、前記活性量子井戸領域の上に成長させられたバルク層の多孔性部分であり、
前記バルク層は、空間的に分散させられた複数の多孔性多重層を有し、前記空間的に分散させられた複数の多孔性多重層のうちの各多孔性多重層は、特定の波長における光波が通過することを可能にするために、各多孔性多重層の特定の反射率をもたらすように選択された多孔度を有する、請求項1に記載の構造。
said second porous region is a porous portion of a bulk layer grown over said active quantum well region;
The bulk layer has a plurality of spatially distributed porous multilayers, each porous multilayer of the plurality of spatially distributed porous multilayers having a specific wavelength of 2. The structure of claim 1, having a porosity selected to provide a particular reflectivity of each porous multilayer to allow light waves to pass through.
前記構造は、シュードモルフィック高電子移動度トランジスタまたはヘテロ接合バイポーラトランジスタをさらに備え、前記シュードモルフィック高電子移動度トランジスタまたは前記ヘテロ接合バイポーラトランジスタは、前記第2の多孔性領域と前記第4の多孔性領域との間のスペースにおいてバルクウエハの中に統合されている、請求項5に記載の構造。 The structure further comprises a pseudomorphic high electron mobility transistor or a heterojunction bipolar transistor, wherein the pseudomorphic high electron mobility transistor or the heterojunction bipolar transistor comprises the second porous region and the fourth porous region. 6. The structure of claim 5 integrated into the bulk wafer in spaces between the porous regions. 前記第2の多孔性領域および前記第4の多孔性領域は、前記第1の多孔度を有し、かつ、前記バルクウエハにおける連続した多孔性多重層として互いに接続されている、請求項5に記載の構造。 6. The method of claim 5, wherein said second porous region and said fourth porous region have said first porosity and are connected to each other as a continuous porous multilayer in said bulk wafer. structure. 前記構造は、1つ以上の垂直の多孔性部分をさらに備え、前記1つ以上の垂直の多孔性部分は、前記第1の多孔性領域および前記活性量子井戸領域および前記第2の多孔性領域に対して垂直であり、かつ、前記第1の多孔性領域および前記活性量子井戸領域および前記第2の多孔性領域を横断し、
前記1つ以上の多孔性部分は、前記第1の多孔性領域および前記活性量子井戸領域および前記第2の多孔性領域のスタックを分割することにより、複数のVCSELを形成している、請求項1に記載の構造。
The structure further comprises one or more vertical porous portions, wherein the one or more vertical porous portions comprises the first porous region and the active quantum well region and the second porous region. perpendicular to and across the first porous region and the active quantum well region and the second porous region;
4. The one or more porous portions form a plurality of VCSELs by dividing the stack of the first porous region and the active quantum well region and the second porous region. 1. The structure described in 1.
少なくとも1つの垂直の多孔性部分の厚さおよび多孔度が、多孔性フィルタを形成するために選択され、前記多孔性フィルタは、第3の波長における第3の光波が前記複数のVCSELからの2つの隣接するVCSEL間を通ることを可能にする、請求項11に記載の構造。 The thickness and porosity of at least one vertical porous portion are selected to form a porous filter, said porous filter being such that a third light wave at a third wavelength is 2 from said plurality of VCSELs. 12. The structure of claim 11 allowing passage between two adjacent VCSELs. 少なくとも1つの垂直の多孔性部分の厚さおよび多孔度が、多孔性隔離部を形成するために選択され、前記多孔性隔離部は、前記複数のVCSELからの2つの隣接するVCSEL間のどんな光波の通過も可能にしない、請求項11に記載の構造。 The thickness and porosity of at least one vertical porous portion are selected to form a porous separator, said porous separator blocking any light wave between two adjacent VCSELs from said plurality of VCSELs. 12. The structure of claim 11 which also does not allow passage of 構造であって、前記構造は、
基板であって、
第1の多孔度を有する第1の多孔性領域であって、前記第1の多孔性領域は、前記基板内に形成されている、第1の多孔性領域と、
第2の多孔度を有する第2の多孔性領域であって、前記第2の多孔性領域は、前記基板内に形成されており、前記第2の多孔性領域は、前記第1の多孔性領域から分離されている、第2の多孔性領域と
を備える基板と、
前記第1の多孔性領域および前記第2の多孔性領域の上にエピタキシャルに成長させられた活性量子井戸領域と、
前記第1の多孔性領域の上方にあり、かつ、前記活性量子井戸領域の上にある第3の多孔性領域であって、前記第3の多孔性領域は、前記第1の多孔度を有する、第3の多孔性領域と、
前記第2の多孔性領域の上方にあり、かつ、前記活性量子井戸領域の上にある第4の多孔性領域であって、前記第4の多孔性領域は、前記第2の多孔度を有し、前記第4の多孔性領域は、前記第3の多孔性領域から分離されている、第4の多孔性領域と
を備え、
前記基板は、単一のベース材料である、構造。
A structure, said structure comprising:
a substrate,
a first porous region having a first porosity, said first porous region being formed within said substrate;
a second porosity region having a second porosity, said second porosity region being formed within said substrate, said second porosity region having said first porosity; a second porous region separated from the region;
an active quantum well region epitaxially grown over said first porous region and said second porous region;
a third porous region overlying said first porous region and overlying said active quantum well region, said third porous region having said first porosity , a third porous region, and
a fourth porous region overlying said second porous region and overlying said active quantum well region, said fourth porous region having said second porosity; and said fourth porous region comprises a fourth porous region separated from said third porous region;
The structure wherein the substrate is a single base material.
前記活性量子井戸領域は、前記第1の多孔性領域と前記第2の多孔性領域との間に横方向に延在している、請求項14に記載の構造。 15. The structure of claim 14, wherein said active quantum well region extends laterally between said first porous region and said second porous region. 方法であって、前記方法は、
第1の多孔度を有する第1の多孔性領域を基板内に形成することと、
前記第1の多孔性領域の上に活性量子井戸領域をエピタキシャルに成長させることと、
前記活性量子井戸領域の上に第2の多孔性領域を形成することであって、前記第2の多孔性領域は、前記第1の多孔度を有する、ことと
を含み、
前記基板は、単一のベース材料である、方法。
A method, the method comprising:
forming a first porous region within the substrate having a first porosity;
epitaxially growing an active quantum well region over the first porous region;
forming a second porous region over the active quantum well region, wherein the second porous region has the first porosity;
The method, wherein the substrate is a single base material.
前記第1の多孔性領域を形成することは、酸性電流を用いて前記基板の領域をエッチングすることを含む、請求項16に記載の方法。 17. The method of claim 16, wherein forming the first porous region comprises etching a region of the substrate using an acid current . 前記第1の多孔性領域を形成することは、前記酸性電流の濃度および前記酸性電流の流体速度のうちの1つ以上を制御することを含む、請求項17に記載の方法。 18. The method of claim 17, wherein forming the first porous region comprises controlling one or more of concentration of the acid current and fluid velocity of the acid current . 前記第1の多孔性領域は、第1の多孔性多重層を備え、前記第1の多孔性多重層は、多孔性の層と実質的に非多孔性の層とを交互に備え、
前記第2の多孔性領域は、第2の多孔性多重層を備え、前記第2の多孔性多重層は、多孔性の層と実質的に非多孔性の層とを交互に備える、請求項1に記載の構造。
said first porous region comprising a first porous multilayer, said first porous multilayer comprising alternating porous and substantially non-porous layers;
10. The second porous region comprises a second porous multilayer, the second porous multilayer comprising alternating porous and substantially non-porous layers. 1. The structure described in 1.
前記第1の多孔性領域は、第1の多孔性多重層を備え、前記第1の多孔性多重層は、多孔性の層と実質的に非多孔性の層とを交互に備え、
前記第2の多孔性領域は、第2の多孔性多重層を備え、前記第2の多孔性多重層は、多孔性の層と実質的に非多孔性の層とを交互に備え、
前記第3の多孔性領域は、第3の多孔性多重層を備え、前記第3の多孔性多重層は、多孔性の層と実質的に非多孔性の層とを交互に備え、
前記第4の多孔性領域は、第4の多孔性多重層を備え、前記第4の多孔性多重層は、多孔性の層と実質的に非多孔性の層とを交互に備える、請求項14に記載の構造。
said first porous region comprising a first porous multilayer, said first porous multilayer comprising alternating porous and substantially non-porous layers;
said second porous region comprises a second porous multilayer, said second porous multilayer comprising alternating porous and substantially non-porous layers;
said third porous region comprising a third porous multilayer, said third porous multilayer comprising alternating porous and substantially non-porous layers;
10. The fourth porous region comprises a fourth porous multilayer, wherein the fourth porous multilayer comprises alternating porous and substantially non-porous layers. The structure described in 14.
前記第1の多孔性領域は、第1の多孔性多重層を備え、前記第1の多孔性多重層は、多孔性の層と実質的に非多孔性の層とを交互に備え、
前記第2の多孔性領域は、第2の多孔性多重層を備え、前記第2の多孔性多重層は、多孔性の層と実質的に非多孔性の層とを交互に備える、請求項16に記載の方法。
said first porous region comprising a first porous multilayer, said first porous multilayer comprising alternating porous and substantially non-porous layers;
10. The second porous region comprises a second porous multilayer, the second porous multilayer comprising alternating porous and substantially non-porous layers. 16. The method according to 16.
JP2020539230A 2018-01-18 2019-01-18 Porous dispersion Bragg reflector for laser applications Pending JP2021511662A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862618985P 2018-01-18 2018-01-18
US62/618,985 2018-01-18
PCT/US2019/014204 WO2019143945A1 (en) 2018-01-18 2019-01-18 Porous distributed bragg reflectors for laser applications

Publications (2)

Publication Number Publication Date
JP2021511662A JP2021511662A (en) 2021-05-06
JPWO2019143945A5 true JPWO2019143945A5 (en) 2023-08-24

Family

ID=65352146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020539230A Pending JP2021511662A (en) 2018-01-18 2019-01-18 Porous dispersion Bragg reflector for laser applications

Country Status (8)

Country Link
US (1) US11201451B2 (en)
EP (2) EP4213319A1 (en)
JP (1) JP2021511662A (en)
KR (1) KR20200111724A (en)
CN (1) CN111630735A (en)
SG (1) SG11202005786SA (en)
TW (1) TWI827578B (en)
WO (1) WO2019143945A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848838B (en) * 2017-04-06 2019-11-29 中国科学院半导体研究所 GaN base VCSEL chip and preparation method based on porous DBR
US10868213B2 (en) * 2018-06-26 2020-12-15 Lumileds Llc LED utilizing internal color conversion with light extraction enhancements
GB2612040A (en) 2021-10-19 2023-04-26 Iqe Plc Porous distributed Bragg reflector apparatuses, systems, and methods
WO2024044998A1 (en) * 2022-08-30 2024-03-07 Huawei Technologies Co., Ltd. Low-coherence surface-emitting laser (lcsel)

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283447A (en) * 1992-01-21 1994-02-01 Bandgap Technology Corporation Integration of transistors with vertical cavity surface emitting lasers
US5306385A (en) * 1992-09-15 1994-04-26 Texas Instruments Incorporated Method for generating photoluminescence emission lines from transition element doped CAF2 thin films over a Si-based substrate
GB2347559B (en) * 1995-11-30 2000-11-15 Hewlett Packard Co Vertical cavity surface emitting lasers
US5939732A (en) * 1997-05-22 1999-08-17 Kulite Semiconductor Products, Inc. Vertical cavity-emitting porous silicon carbide light-emitting diode device and preparation thereof
DE19807783A1 (en) * 1998-02-18 1999-09-02 Siemens Ag Component with a light transmitter and a light receiver
US6376269B1 (en) * 1999-02-02 2002-04-23 Agilent Technologies, Inc. Vertical cavity surface emitting laser (VCSEL) using buried Bragg reflectors and method for producing same
US6746777B1 (en) * 2000-05-31 2004-06-08 Applied Optoelectronics, Inc. Alternative substrates for epitaxial growth
KR100754156B1 (en) * 2000-08-23 2007-09-03 삼성전자주식회사 Multiple wavelength vertical-cavity surface emitting laser and method for manufacturing thereof
US6549556B1 (en) * 2000-12-01 2003-04-15 Applied Optoelectronics, Inc. Vertical-cavity surface-emitting laser with bottom dielectric distributed bragg reflector
JP2002246695A (en) * 2001-02-13 2002-08-30 Canon Inc Method for manufacturing semiconductor device using porous substrate, and semiconductor device
US20020163688A1 (en) * 2001-03-26 2002-11-07 Zuhua Zhu Optical communications system and vertical cavity surface emitting laser therefor
US20020179930A1 (en) * 2001-06-01 2002-12-05 Motorola, Inc. Composite semiconductor structure and device with optical testing elements
US6697413B2 (en) * 2001-10-31 2004-02-24 Applied Optoelectronics, Inc. Tunable vertical-cavity surface-emitting laser with tuning junction
US6850548B2 (en) * 2001-12-28 2005-02-01 Finisar Corporation Assymmetric distributed Bragg reflector for vertical cavity surface emitting lasers
US6771680B2 (en) * 2002-10-22 2004-08-03 Agilent Technologies, Inc Electrically-pumped, multiple active region vertical-cavity surface-emitting laser (VCSEL)
GB2399940A (en) * 2003-03-25 2004-09-29 Sharp Kk Vertical cavity surface emitting laser
JP4235530B2 (en) * 2003-10-20 2009-03-11 キヤノン株式会社 Surface-emitting diode, surface-emitting diode array, and manufacturing method thereof
JP4138629B2 (en) * 2003-11-06 2008-08-27 株式会社東芝 Surface emitting semiconductor device and manufacturing method thereof
JP4833665B2 (en) * 2004-02-17 2011-12-07 古河電気工業株式会社 Manufacturing method of photonic crystal semiconductor device
JP4710282B2 (en) * 2004-09-06 2011-06-29 富士ゼロックス株式会社 Multi-wavelength surface emitting laser manufacturing method
JP4568125B2 (en) * 2005-01-17 2010-10-27 株式会社東芝 Surface emitting semiconductor device
JP4027392B2 (en) * 2005-04-28 2007-12-26 キヤノン株式会社 Vertical cavity surface emitting laser device
JP4919628B2 (en) * 2005-07-28 2012-04-18 株式会社リコー Surface emitting laser, surface emitting laser array, optical writing system, and optical transmission system
US7499481B2 (en) * 2006-11-14 2009-03-03 Canon Kabushiki Kaisha Surface-emitting laser and method for producing the same
JP4235674B2 (en) * 2006-11-14 2009-03-11 キヤノン株式会社 Surface emitting laser device and manufacturing method thereof
JP2009170508A (en) * 2008-01-11 2009-07-30 Furukawa Electric Co Ltd:The Surface-emitting semiconductor laser and manufacturing method thereof
EP2529394A4 (en) * 2010-01-27 2017-11-15 Yale University Conductivity based selective etch for gan devices and applications thereof
WO2013016676A2 (en) * 2011-07-27 2013-01-31 MYTEK, LLC (doing business as VIXAR) Method and apparatus including improved vertical-cavity surface-emitting lasers
KR101272833B1 (en) * 2012-02-03 2013-06-11 광주과학기술원 Optical device having the silicon distributed bragg reflector structure and method for fabricating the same
WO2014004261A1 (en) * 2012-06-28 2014-01-03 Yale University Lateral electrochemical etching of iii-nitride materials for microfabrication
US20170093128A1 (en) * 2014-03-04 2017-03-30 Hewlett Packard Enterprise Development Lp Vertical-cavity surface-emitting lasers
US11095096B2 (en) * 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
WO2016045935A1 (en) * 2014-09-25 2016-03-31 Koninklijke Philips N.V. Vertical cavity surface emitting laser
US11043792B2 (en) * 2014-09-30 2021-06-22 Yale University Method for GaN vertical microcavity surface emitting laser (VCSEL)
US10790410B2 (en) * 2015-10-23 2020-09-29 Sensor Electronic Technology, Inc. Light extraction from optoelectronic device
US11495670B2 (en) * 2016-09-22 2022-11-08 Iqe Plc Integrated epitaxial metal electrodes
CN106848838B (en) * 2017-04-06 2019-11-29 中国科学院半导体研究所 GaN base VCSEL chip and preparation method based on porous DBR
US11038321B2 (en) * 2018-10-12 2021-06-15 The Board Of Trustees Of The University Of Illinois Single mode VCSELs with low threshold and high speed operation

Similar Documents

Publication Publication Date Title
TWI405379B (en) Vertical cavity surface emitting laser device and manufacturing method thereof
US20120175670A1 (en) Light emitting element, method for manufacturing light emitting element, light emitting element assembly, and method for manufacturing light emitting element assembly
TWI827578B (en) Porous distributed bragg reflectors for laser applications
WO2020175909A1 (en) Vertical-cavity surface-emitting laser
JPWO2019143945A5 (en)
JP2855729B2 (en) Surface emitting laser and method of manufacturing the same
JP2008047627A (en) Semiconductor light-emitting element and its manufacturing method
JP2595779B2 (en) Surface emitting laser and method of manufacturing the same
JPH08236500A (en) Rear surface etching for generating distortion layer
JPH03237784A (en) Semiconductor element and manufacture thereof
TW201240249A (en) Vertical cavity surface emitting laser and manufacturing method thereof
JP4500963B2 (en) Quantum semiconductor device and manufacturing method thereof
JPH11220206A (en) Manufacture of multiple-wavelength surface light-emitting semiconductor laser device
JPS61258487A (en) Manufacture of quantum well laser
JPH04216691A (en) Semiconductor laser device and its manufacture
JP2006114612A (en) Optical semiconductor device
JP2012033705A (en) Two-dimensional photonic crystal laser
KR100701127B1 (en) Method for forming quantum dots by alternate growth process
JPS648477B2 (en)
JP2010074078A (en) Method for preparing surface emitting semiconductor laser
JPH04196281A (en) Visible light semiconductor laser
JPH0677531A (en) Semiconductor light emitting element and its manufacture
JPH09283737A (en) Quantum dot array structure
JPS58182890A (en) Manufacture of semiconductor laser
JPH02146722A (en) Manufacture of quantum fine line