TW201240249A - Vertical cavity surface emitting laser and manufacturing method thereof - Google Patents

Vertical cavity surface emitting laser and manufacturing method thereof Download PDF

Info

Publication number
TW201240249A
TW201240249A TW100109067A TW100109067A TW201240249A TW 201240249 A TW201240249 A TW 201240249A TW 100109067 A TW100109067 A TW 100109067A TW 100109067 A TW100109067 A TW 100109067A TW 201240249 A TW201240249 A TW 201240249A
Authority
TW
Taiwan
Prior art keywords
mask
cavity surface
emitting laser
vertical cavity
layer
Prior art date
Application number
TW100109067A
Other languages
Chinese (zh)
Other versions
TWI459670B (en
Inventor
Chih-Cheng Chen
Po-Han Chen
Cheng-Ju Wu
Jin-Shan Pan
Original Assignee
True Light Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by True Light Corp filed Critical True Light Corp
Priority to TW100109067A priority Critical patent/TWI459670B/en
Publication of TW201240249A publication Critical patent/TW201240249A/en
Application granted granted Critical
Publication of TWI459670B publication Critical patent/TWI459670B/en

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

The present invention provides a vertical cavity surface emitting laser including a substrate and an epitaxial layer stack forming on the substrate. The epitaxial layer stack has a circular zinc-diffusion zone, a circular ion-implantation zone under the zinc-diffusion zone, a circular oxidation zone under the ion-implantation zone and an active zone under the ion-implantation zone. The zinc-diffusion zone has a zinc-diffusion hole. The ion-implantation zone has an ion-implantation hole. The oxidation zone has an oxidation hole. The zinc-diffusion hole, the ion-implantation hole and the oxidation hole are connected with each other. In addition, a manufacturing method of the above vertical cavity surface emitting laser is also provided.

Description

201240249 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是關於一種雷射元件,尤其是關於一種垂直共振 腔面射型雷射及其製作方法。 【先前技術】 [0002] 垂直共振腔面射型雷射(VCSEL)之主要特徵在於可以大致 上以垂直其晶片上表面的方式發出光線。VCSEL通常可透 過化學氣相沉積(MOCVD)或分子束磊晶(MBE)等沉積方法 來形成具有多層結構之磊晶疊層,並透過常見的半導體 u 製程來加以製作。 [0003] 磊晶疊層包含一為主要發光區之主動區(active region) ’ 以及二分別位於該主動區之上下兩側的布拉格反 射鏡(DBR)堆疊層。該二布拉格反射鏡堆疊層之間構成一 雷射共振腔’可供主動區產生特定波長的光線在其内來 回反射以產生增益(gain)|t大作用。為了獲得較佳的光 電特性,通常會在上側的布拉格反射鏡堆疊層内形成一 〇 電流侷限通孔(currerit confinement aperture),用 以限制電流的流動路徑,藉以降低臨界電流並提升光電 轉換效率。 [0004] 100109067 傳統製作電流紐通孔的方法包括離子佈植法以及選擇 性氧化法等方法,且這兩種方法各有其有優缺點。如第 一圖所示,-種已知眺SEL,選擇同時採用此兩種方法 ,該VCSEL的遙晶疊層1Q中不但具有—離子佈植偈限區 更具有-位在離子佈植侷限區u下方的氧化偈限區 12。離子職紐㈣餘化如㈣兩者分別具有_ 第3頁/共22頁 表單編號AOim 览' m 一 100201534! 201240249 侷限通孔110、120,且兩個侷限通孔110、120須在垂直 方向對準,以便獲得較佳的電流侷限特性及具有較佳的 光譜特性。 [0005] [0006] 然而,上述設計雖然可以降低高階模態,但是也會衍生 出高阻抗及模態不穩定的現象,不利高速元件的操作。 【發明内容】 因此,本發明之目的在於提供一種垂直共振腔面射型雷 射及其製作方法,可提供穩定的少模態雷射光束和低阻 抗的垂直共振腔面射型雷射。 [0007] [0008] 100109067 為達上述目的,本發明之击古 垂直共振腔面射型雷射,包 —基板以及一蟲晶暴a。名 β #晶疊層形成於該基板上, 包含有一環狀鋅擴散區、— 位於該鋅擴散區下方之環 離子佈植區、一位於離子 κ ,_ 怖植區下方之環狀氧化區, 及一位於該環狀氧化區 ^ B _ 万之主動區,其中,該鋅擴- &具有一鋅擴散通孔,# ' ,,,/離子佈植區具有一離子佈植: 孔,且該氧化區具有— ™與該氧擴散通孔、; 並且,上述本發明之垂吉 ^ > 共振腔面射型.雷射之製作方〉 包含下列步驟:首先提 曰聶廢.基板;於該基板上形成一; Β日疊層,在該磊晶疊層 a ^ g )成—第一遮罩,該第一遮」 具有一環狀孔隙;透過 I ^裒狀孔隙對該遙晶疊層進行| 子佈植,以形成一環狀鉍7 ^ ^ 兮石s聂® * 子佈植區;透過該環狀孔隙j 该站日日疊層進行鋅擴散, 後» , 从形成一環狀鋅擴散區;在i 第一遮罩上形成一第二 u,-., p,- R , 知罩,藉以遮蔽該第一遮罩之ί 狀孔降,以及透過該第〜说 表單編號Α0101 第4 i ^ 罩及該第二遮罩對該蠢晶^ 頁/共22頁 1002015342-0201240249 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a laser element, and more particularly to a vertical resonance cavity surface-emitting laser and a method of fabricating the same. [Prior Art] [0002] A main feature of a vertical cavity surface-emitting laser (VCSEL) is that light can be emitted substantially in a manner perpendicular to the upper surface of the wafer. VCSELs are typically formed by deposition methods such as chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) to form epitaxial stacks having a multilayer structure and fabricated through common semiconductor u processes. [0003] The epitaxial stack includes an active region ′ that is a primary illuminating region and two Bragg reflector (DBR) stacked layers that are respectively located above and below the active region. A laser cavity is formed between the stacked layers of the two Bragg mirrors to allow the active region to generate light of a specific wavelength to be reflected back therein to generate a gain|t. In order to obtain better photo-electric characteristics, a curricular current confinement aperture is usually formed in the upper Bragg mirror stack layer to limit the current flow path, thereby reducing the critical current and improving the photoelectric conversion efficiency. [0004] 100109067 Traditional methods for fabricating current through-holes include ion implantation and selective oxidation, and both have their own advantages and disadvantages. As shown in the first figure, a known 眺SEL is selected, and the two methods are selected at the same time. The spatial crystal 1Q of the VCSEL has not only the ion implantation region but also the -position in the ion implantation region. The yttrium oxide region 12 below u. Ion job new (4) Yu Hua as (4) have two _ page 3 / total 22 page form number AOim view ' m a 100201534! 201240249 limited through holes 110, 120, and two restricted through holes 110, 120 must be in the vertical direction Alignment to achieve better current confinement characteristics and better spectral characteristics. [0006] However, although the above design can lower the high-order mode, it also causes high impedance and modal instability, which is disadvantageous for the operation of high-speed components. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a vertical cavity surface-emitting laser and a method of fabricating the same that provide a stable low-mode laser beam and a low-resistance vertical cavity surface-emitting laser. [0008] [0008] 100109067 In order to achieve the above object, the present invention is a vertical-resonant surface-emitting laser, a package-substrate and a worm crystal a. The β# crystal stack is formed on the substrate, and comprises a ring-shaped zinc diffusion region, a ring ion implantation region located below the zinc diffusion region, and an annular oxidation region located below the ion κ, _ And an active region located in the annular oxidation zone ^B_10000, wherein the zinc diffusion- & has a zinc diffusion via, and the #', ,, / ion implantation region has an ion implantation: a hole, and The oxidized region has a TM and the oxygen diffusion via, and the above-described method of the present invention is characterized in that: Forming on the substrate; a stack of the next day, in the epitaxial layer a ^ g ) forming a first mask, the first mask having an annular aperture; the stack of transparent crystals through the I ^ 裒 aperture The layer is carried out | sub-planting to form a ring-shaped 铋7 ^ ^ 兮石s 聂 * * * * ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 该 该 该 该 该 该 该 该 该 该a zinc diffusion region; forming a second u, -., p, - R on the first mask, to cover the first mask, and to The number ~ says form number Α 0101 4th i ^ hood and the second mask on the stupid crystal ^ page / total 22 pages 1002015342-0

201240249 層進行钱刻,以形成一島狀平台。 [0009] 此外,本發明之另一種垂直共振腔面射型雷射之製作方 法,包含下列步驟:提供一基板;於該基板上形成一磊 ❹ [0010] 晶疊層,且該磊晶疊層包含有—高鋁含量層;在該磊曰 ®層上升&gt; 成一第一遮罩,該第一遮罩具有一環狀孔隙. 透過該環狀孔隙對該磊晶疊層進行辞擴散,以形成一環 狀辞擴散區;在該第一遮罩上形成一第二遮罩,藉以遮 蔽該第一遮罩之環狀孔隙;透過該第—遮罩及該第二遮 罩對該磊晶疊層進行钱刻,以形成一島狀平台;以及對 該高鋁含量層進行氧化以形成一環狀氧化區。 【實施方式】 有關本發明之技術内容、詳細說明,以及功效,現配合 圖式說明如下:.The 201240249 layer is engraved to form an island-like platform. [0009] In addition, another method for fabricating a vertical cavity surface-emitting laser according to the present invention includes the steps of: providing a substrate; forming an epitaxial layer on the substrate, and the epitaxial stack The layer includes a layer of high aluminum content; rising in the layer of protrusion </ RTI> into a first mask, the first mask having an annular aperture. The epitaxial layer is diffused through the annular aperture, Forming a ring-shaped diffusion region; forming a second mask on the first mask to shield the annular aperture of the first mask; and transmitting the first mask through the first mask and the second mask The crystal laminate is engraved to form an island-like platform; and the high aluminum content layer is oxidized to form an annular oxidation region. [Embodiment] The technical content, detailed description, and efficacy of the present invention are described as follows:

[0011] 如第二圖A所示,本發明之一種垂直共振腔面射型雷射, 主要包含一基板21,以及形成於該基板21上之一蠢晶疊 ❹ 層22。該蟲晶疊層22可以AIG.aAs/GaAs系統之化合物半 導體為基礎,但不神此限,實際實施時亦可為A1N/[0011] As shown in FIG. 2A, a vertical cavity surface-emitting laser of the present invention mainly comprises a substrate 21 and an amorphous layer 22 formed on the substrate 21. The insect crystal laminate 22 can be based on a compound semiconductor of the AIG.aAs/GaAs system, but it is not limited thereto, and may be A1N/ in practice.

GaN/InGaN等材料系統,並可依所需之雷射的波長來決 定。其波長不限,可為紅外光、可見光或紫外光等。詳 細說明其結構,該磊晶疊層22由下而上依序包含形成在 該基板21上的一第一布拉格反射鏡221、一第一分隔層 222、一主動層223、一第二分隔層224,以及一第二布 拉格反射鏡225。該第一布拉格反射鏡221及第二布拉格 反射鏡225分別具有多層之堆疊膜層,藉以反射光線。該 主動層223亦可具有多層之堆疊膜層。並且,第二布拉格 100109067 表單編號A0101 第5頁/共22頁 1002015342-0 201240249 反射鏡225的堆疊膜層中具有一高鋁含量層(圖未示)。 [0012] [0013] [0014] [0015] 此外,在該磊晶疊層22中更包含有一環狀鋅擴散區犯、 —位於該鋅擴散區32下方之環狀離子佈植區24,以及一 位於離子佈植區24下方之環狀氧化區27。特別注意的是 ’該辞擴散區32具有一鋅擴散通孔321,該離子佈植區24 具有一離子佈植通孔241,且該氧化區27具有一氧化通孔 271,且該鋅擴散通孔321、該離子佈植通孔241與該氧 化通孔271係相互連通。 藉著與該離子佈植通孔241及該氧化適孔271相互連通的 鋅擴散通孔321,對本發明之垂直共振腔面射型雷射作模 態控制,可使其所發雷射光之模態穩定,並減少高階模 態的存在。此外’該鋅擴散區32更可使該雷射光場分布 呈現高斯分佈或是圈狀分佈’並且,有助於降低垂直共 振腔面射型雷射本身的阻抗^較佳地,該鋅擴散通孔奶 之轴心、該離子佈植通孔241之軸心與該氧化通孔271的 轴。相互對齊時’可使上述模態控制以及阻抗降低的效 果達到最佳。此外,如第二圖B所示之另一種實施例,其 結構大致與第二圖A相同,不同之處在於將上述第二電極 改為設置在基板21的下表面上,形成第二圖B中所示之第 二電極33。 本發明之垂直共振腔面射型雷射之製作方法,首先,如 第三圖所示,提供-基板2卜並於該基板21上形成-遙 晶疊層22。 接著’在該蟲晶叠層22上以半導體製程形成一第 一遮罩 100109067 表單編號A0101 第6頁/共22頁 1002015342-0 201240249 23。該帛純化 製成,實際實施時,其ρ 由微影及姓刻製程所 該第一料23包含在該二限。如第四圖所示, ,以及—環__则:^切成的—^形部231 部232,且該圓形部231及^圓形部231同心的圓環 狀孔隙233。 及㈣環部232之間界定出-環 [0016] Ο 賴晶疊層22進行離子佈:第::罩23之環狀孔_ 鏡225内形成一環狀離子佈植區μ:第二布拉格反射 係對齊該笫m⑻幅纖之_心 «Η //,小 [0017] ❹ [0018] 接者透過該環狀孔隙233對該蟲晶叠層^進一步進行辞 擴散,如第六圖所示,首先,形成—覆蓋該第一遮㈣ 以及該離子佈植區24上表面之氧化鋅薄賴,然後,如 第七圖所示,在該氧化鋅薄膜3〇上進一步形成一覆蓋層 31 °接著’如第顿所示’對該氧化辞薄膜30進行熱處 理’使氡化鋅薄獅之鋅成分向下擴散進人該離子佈植 區24,以形成一環狀鋅擴散區32。並且,如第九圖所示 ,將該鋅擴散區32上方之氧化鋅薄賴以及覆蓋層31移 除。 接著,如第十圖所示,利用半導體製程在該第一遮罩23 上形成一第二遮罩25,藉以遮蔽該第一遮罩23之環狀孔 隙233。该第二遮罩25為氮化矽薄膜經由微影及蝕刻製程 所製成,實際實施時,其材質不以此限。如第十一圖所 示,該第二遮罩25為圓形,其可配合遮蔽該第一遮罩23 100109067 表單編號A0101 第7頁/共22頁 1002015342-0 201240249 之環狀孔隙233,以保護第二布拉格反射鏡225的部分區 域,即第二遮罩25所覆蓋的區域。在實際製作上,需注 意要使該第二遮罩25的邊緣完全地落在該第一遮罩23的 圓環部232上,以至少能完整涵蓋該圓形部231以及該環 狀孔隙233,且不可超出該圓環部232之外。 [0019] 圓環部232的寬度W係考量所使用的半導體製程設備所能 達到之最小疊對誤差。如第十二圖所示,當半導體製程 設備之疊對誤差導致第二遮罩25的中心與該第一遮罩23 的中心無法對齊時,該第二遮罩25的邊緣仍可完全地落 在該第一遮罩23的圓環部232上,也就是說,藉由控制該 圓環部232的寬度W,來吸收半導體製程設備之疊對誤差 。因此,若實際所使用的半導體製程設備之最小疊對誤 差較大時,可考慮加寬該圓環部232的寬度W,以使該第 二遮罩25的邊緣落在該第一遮罩23的圓環部232上。 [0020] 然後,如第十三圖所示,透過該第一遮罩23及第二遮罩 25對該磊晶疊層22進行蝕刻,並向下蝕刻至該第一布拉 格反射鏡221,以形成一島狀平台26。由於該第二遮罩25 的邊緣完全地落在該第一遮罩23的圓環部232上,所以蝕 刻出來的島狀平台26之邊緣真正是由圓環部232的邊緣所 控制,也就是說,島狀平台26的邊緣對齊於該第一遮罩 23的邊緣,並且,島狀平台26的中心實際上已對齊於該 第一遮罩23的中心,也更對齊該離子佈植通孔241之中心 〇 [0021] 接著,如第十四圖所示,對該第二布拉格反射鏡225之高 銘含量層進行氧化,以形成一位在該離子佈植區2 4與該 100109067 表單編號A0101 第8頁/共22頁 1002015342-0 201240249 主動區223之間的環狀氧化區27,且此氧化區27具有一氧 化通孔271。由於氧化疋由島狀平台26之侧面gw均勻地 向内進行’因此所形成之氧化通孔271的中心會對齊於島 狀平台26的中心’也對齊該離子佈植通孔24ι之中心。藉 此’可降低氧化區27之元件光場侷限(index guiding) 效應,並集中電流提高電流侷限(gain guiding)效應, 以改善光譜特性。 [0022] Ο [0023] Ο [0024] [0025] [0026] 最後,去除該第一遮罩23以及該第二遮罩25。並且,如 第二圖A所示,利用金屬薄膜沉積製程,在該第二布拉格 反射鏡225上形成一第一電極28,並在緣第—布拉格反射 鏡221上形成一第·一電極29。或者,亦可如第二圖b所干 ,在基板21的下表面製作第二電極33 ^如此,即完成本 發明垂直共振腔面射型雷射之製作。 需說明的是,以上本發明之垂直共振腔面射型雷射之製 作方法,係形成了離子佈植區24、鋅擴散輊32以及氧化 區27三者,然而,實際實施時,亦可僅進行離子佈植區 24、鋅擴散區32二者,或是辞擴散區32以及氧化區27二 者。 惟以上所述者僅為本發明之較佳實施例,並非用以限定 本發明之實施範圍。凡依本發明申請專利範圍所作之等 效變化與修飾,皆仍屬本發明專利所涵蓋範圍之内。 【圖式簡單說明】 第一圖為傳統之垂直共振腔面射型雷射; 第二圖A為本發明垂直共振腔面射型雷射之側視示意圖; 100109067 表單編號A0101 第9頁/共22頁 1002015342-0 201240249 [0027] 第二圖B為本發明垂直共振腔面射型雷射之側視示意圖; 以及 [0028] 第三圖至第十四圖為本發明垂直共振腔面射型雷射之製 作方法的各步驟示意圖。 【主要元件符號說明】 [0029] 基板21 [0030] 遙晶豐層2 2 [0031] 第一布拉格反射鏡221 [0032] 第一分隔層222 [0033] 主動層2 2 3 [0034] 第二分隔層224 [0035] 第二布拉格反射鏡225 [0036] 第一遮罩2 3 [0037] 圓形部2 31 [0038] 圓環部232 [0039] 環狀孔隙233 [0040] 環狀離子佈植區24 [0041] 離子佈植通孔241 [0042] 第二遮罩25 [0043] 島狀平台26 100109067 表單編號A0101 第10頁/共22頁 1002015342-0 201240249 [0044] [0045] [0046] [0047] [0048] [0049] [0050] Ο [0051] [0052] 側面2 61 氧化區27 氧化通孔271 第一電極28 第二電極29 氧化鋅薄膜30 覆蓋層31 鋅擴散區32 鋅擴散通孔321 ❹ 100109067 表單編號Α0101 第11頁/共22頁 1002015342-0Material systems such as GaN/InGaN can be determined by the wavelength of the laser required. The wavelength is not limited and may be infrared light, visible light or ultraviolet light. The structure of the epitaxial layer 22 includes a first Bragg mirror 221, a first spacer layer 222, an active layer 223, and a second spacer layer formed on the substrate 21 from bottom to top. 224, and a second Bragg reflector 225. The first Bragg reflector 221 and the second Bragg mirror 225 each have a plurality of stacked film layers for reflecting light. The active layer 223 can also have multiple layers of stacked layers. Also, the second Prague 100109067 Form No. A0101 Page 5 of 22 1002015342-0 201240249 The mirror layer of the mirror 225 has a high aluminum content layer (not shown). [0015] In addition, the epitaxial layer 22 further includes a ring-shaped zinc diffusion region, a ring-shaped ion implantation region 24 located below the zinc diffusion region 32, and An annular oxidized zone 27 is located below the ion implantation zone 24. It is to be noted that the diffusion region 32 has a zinc diffusion via 321 having an ion implantation via 241, and the oxide region 27 has an oxidized via 271, and the zinc diffusion is The hole 321 and the ion implantation through hole 241 and the oxidation through hole 271 communicate with each other. The modal control of the vertical cavity surface-emitting laser of the present invention is performed by the zinc diffusion through hole 321 communicating with the ion implantation through hole 241 and the oxidized suitable hole 271, so that the laser light can be modulated. The state is stable and reduces the existence of higher order modes. In addition, the zinc diffusion region 32 can make the laser light field distribution exhibit a Gaussian distribution or a ring-shaped distribution and can help reduce the impedance of the vertical cavity surface-emitting laser itself. Preferably, the zinc diffusion is The axis of the hole milk, the axis of the ion implantation through hole 241, and the axis of the oxidation through hole 271. When aligning with each other, the effects of the above modal control and impedance reduction can be optimized. In addition, as another embodiment shown in FIG. 24B, the structure is substantially the same as that of the second FIG. A, except that the second electrode is instead disposed on the lower surface of the substrate 21 to form a second figure B. The second electrode 33 is shown. In the method of fabricating a vertical cavity surface-emitting laser of the present invention, first, as shown in the third figure, a substrate 2 is provided and a remote crystal layer 22 is formed on the substrate 21. Next, a first mask is formed on the crystal laminate 22 by a semiconductor process. 100109067 Form No. A0101 Page 6 of 22 1002015342-0 201240249 23. The crucible is prepared by purification, and in practice, the first material 23 is included in the second limit by the lithography and surname process. As shown in the fourth figure, and the ring __ is: ^ cut into the 231 portion 232, and the circular portion 231 and the circular portion 231 are concentric annular apertures 233. And (4) defining a ring between the ring portions 232 [0016] Ο lining the layer 22 for ion cloth: the:: annular hole of the cover 23 _ a circular ion implantation region is formed in the mirror 225: second Prague The reflection system is aligned with the 笫m(8) web _心«Η //, small [0017] ❹ [0018] The receiver further spreads the worm layer through the annular aperture 233, as shown in the sixth figure First, forming a cover layer covering the first cover (four) and the upper surface of the ion implantation region 24, and then forming a cover layer 31 on the zinc oxide film 3〇 as shown in FIG. Then, 'the heat treatment of the oxidized film 30' is carried out as shown in the figure, and the zinc component of the zinc thin lion is diffused downward into the ion implantation zone 24 to form a circular zinc diffusion zone 32. Further, as shown in the ninth figure, the zinc oxide thinning and the coating layer 31 above the zinc diffusion region 32 are removed. Next, as shown in the tenth figure, a second mask 25 is formed on the first mask 23 by a semiconductor process to shield the annular aperture 233 of the first mask 23. The second mask 25 is made of a tantalum nitride film through a lithography and etching process. In actual implementation, the material is not limited thereto. As shown in FIG. 11 , the second mask 25 is circular, and can cooperate with the annular aperture 233 of the first mask 23 100109067 Form No. A0101 7/22 pages 1002015342-0 201240249 to A partial area of the second Bragg reflector 225, that is, an area covered by the second mask 25 is protected. In actual production, it should be noted that the edge of the second mask 25 completely falls on the annular portion 232 of the first mask 23 to at least completely cover the circular portion 231 and the annular aperture 233. And must not exceed the annular portion 232. [0019] The width W of the annular portion 232 is a measure of the minimum stacking error that can be achieved with the semiconductor process equipment used. As shown in the twelfth figure, when the stacking error of the semiconductor processing apparatus causes the center of the second mask 25 to be out of alignment with the center of the first mask 23, the edge of the second mask 25 can still completely fall. On the annular portion 232 of the first mask 23, that is, by controlling the width W of the annular portion 232, the stacking error of the semiconductor process equipment is absorbed. Therefore, if the minimum stacking error of the semiconductor processing device actually used is large, it is conceivable to widen the width W of the annular portion 232 so that the edge of the second mask 25 falls on the first mask 23 On the ring portion 232. [0020] Then, as shown in FIG. 13, the epitaxial layer 22 is etched through the first mask 23 and the second mask 25, and etched down to the first Bragg mirror 221 to An island platform 26 is formed. Since the edge of the second mask 25 completely falls on the annular portion 232 of the first mask 23, the edge of the etched island-like platform 26 is actually controlled by the edge of the annular portion 232, that is, It is said that the edge of the island platform 26 is aligned with the edge of the first mask 23, and the center of the island platform 26 is actually aligned with the center of the first mask 23, and is also aligned with the ion implanted through hole. Center 241 [0021] Next, as shown in FIG. 14, the high-content layer of the second Bragg reflector 225 is oxidized to form a bit in the ion implantation region 24 and the 100109067 form number A0101 Page 8 of 22 1002015342-0 201240249 An annular oxidized zone 27 between the active zones 223, and this oxidized zone 27 has an oxidized via 271. Since the cerium oxide is uniformly inwardly formed by the side gw of the island-shaped platform 26, the center of the oxidized through-hole 271 formed so as to be aligned with the center of the island-like platform 26 is also aligned with the center of the ion-implanted through-hole 24i. By this, the element-directed index guiding effect of the oxidized region 27 can be reduced, and the current can be concentrated to increase the gain guiding effect to improve the spectral characteristics. [0022] Ο [0024] [0026] Finally, the first mask 23 and the second mask 25 are removed. Further, as shown in Fig. A, a first electrode 28 is formed on the second Bragg mirror 225 by a metal thin film deposition process, and a first electrode 29 is formed on the edge-Bragd mirror 221. Alternatively, the second electrode 33 may be formed on the lower surface of the substrate 21 as in the second drawing b. Thus, the fabrication of the vertical cavity surface-emitting laser of the present invention is completed. It should be noted that, in the above method for fabricating the vertical cavity surface-emitting laser of the present invention, the ion implantation region 24, the zinc diffusion buffer 32, and the oxidation region 27 are formed. However, in actual implementation, only Both the ion implantation zone 24, the zinc diffusion zone 32, or both the diffusion zone 32 and the oxidation zone 27 are performed. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. All the equivalent changes and modifications made by the scope of the present invention remain within the scope of the present invention. [Simple diagram of the figure] The first picture is a conventional vertical cavity surface type laser; the second picture A is a side view of the vertical cavity surface type laser of the present invention; 100109067 Form No. A0101 Page 9 / Total 22 pp. 1002015342-0 201240249 [0027] FIG. 2B is a side view showing a vertical cavity surface-emitting laser of the present invention; and [0028] FIGS. 3 to 14 are vertical cavity surface type of the present invention. Schematic diagram of each step of the laser fabrication method. [Main Element Symbol Description] [0029] Substrate 21 [0030] Remote Crystal Layer 2 [0031] First Bragg Reflector 221 [0032] First Separation Layer 222 [0033] Active Layer 2 2 3 [0034] Second Separation layer 224 [0035] Second Bragg reflector 225 [0036] First mask 2 3 [0037] Circular portion 2 31 [0038] Annular portion 232 [0039] Annular aperture 233 [0040] Annular ion cloth Planting Area 24 [0041] Ion Implanting Through Hole 241 [0042] Second Mask 25 [0043] Island Platform 26 100109067 Form No. A0101 Page 10 / Total 22 Page 1002015342-0 201240249 [0044] [0045] [0046 [0048] [0050] [0052] [0052] side 2 61 oxidation zone 27 oxidation via 271 first electrode 28 second electrode 29 zinc oxide film 30 cladding layer 31 zinc diffusion region 32 zinc Diffusion through hole 321 ❹ 100109067 Form number Α 0101 Page 11 / Total 22 pages 1002015342-0

Claims (1)

201240249 七、申請專利範圍: 1 · 一種垂直共振腔面射型雷射,包含: 一基板;以及 一蟲晶疊層,形成於該基板上’該磊晶疊層包含有一環狀 鋅擴散區、一位於該鋅擴散區下方之環狀離子佈植區、一 位於離子佈植區下方之環狀氧化區,以及一位於該環狀氧 化區下方之主動區; 其中,該鋅擴散區具有一鋅擴散通孔,該離子佈植區具有 —離子佈植通孔,且該氧化區具有一氧化通孔,且該鋅擴 散通孔、該離子佈植通孔舆該氧化通孔係相互連通。 .如申請專利範圍第1項所述之垂直共振腔面射型雷射,其 中且該鋅擴散通孔之軸心、該離子佈植通孔之軸心與該氧 化通孔的轴心係相互對齊。 •如申請專利範圍第1項所述之垂直共振腔面射型雷射,其 中該蟲晶疊層包含-位在該主動區―侧之第一布拉格反射 鏡,-k在該主動區另-側之第二布拉格反射鏡。 種垂直共振腔面射型雷射之製作方法,包含下列步驟: (A)提供一基板; (B)於該基板上形成一磊晶疊層; 該第一遮罩具有一 (C)在該蠢晶疊層上形成一第一遮罩 環狀孔隙; (D)透過該環狀㈣對該€晶疊層進行離子佈植,以形成 一環狀離子佈植區; ⑻透過該環狀孔㈣縣晶#層進㈣擴散以形成一 環狀鋅擴散區; 100109067 表單編號Α0101 第12頁/共22頁 1002015342-0 201240249 (F) 在該第一遮罩上形成一第二遮罩,藉以遮蔽該第一遮 罩之環狀孔隙;以及 (G) 透過該第一遮罩及該第二遮罩對該遙晶疊層進行钱刻 ,以形成一島狀平台。 如申請專利範圍第4項所述之垂直共振腔面射型雷射之製 作方法,其中形成該磊晶疊層包含形成一第一布拉格反射 鏡、一第二布拉格反射鏡,以及一位在該第一布拉格反射 鏡與第二布拉格反射鏡之間的主動區。 如申請專利範圍第4項所述之垂直共振腔面射型雷射之製 作方法,其中該磊晶疊層包含有一高銘含量層,且更包含 在該島狀平台形成後,對該高鋁含量層進行氧化以形成一 環狀氧化區。 如申請專利範圍第6項所述之垂直共振腔面射型雷射之製 作方法,其中該高鋁含量層係屬於該第二布拉格反射鏡。 如申請專利範圍第4項所述之垂直共振腔面射型雷射之製 作方法,其中形成該第一遮罩包含在該磊晶疊層上形成一 圓形部以及一環繞該圓形部且與該圓形部同心的圓環部, ❹ 且該圓形部及該圓環部之間界定出該環狀孔隙。 如申請專利範圍第8項所述之垂直共振腔面射型雷射之製 作方法,其中使該第二遮罩至少完整涵蓋該圓形部以及該 環狀孔隙,且不可超出該圓環部之外。 ίο . 一種垂直共振腔面射型雷射之製作方法,包含下列步驟: (A) 提供一基板; (B) 於該基板上形成一蟲晶疊層,且該蟲晶疊層包含有一 高铭含量層; (C) 在該磊晶疊層上形成一第一遮罩,該第一遮罩具有一 100109067 表單編號A0101 第13頁/共22頁 1002015342-0 201240249 環狀孔隙; (D) 透過該環狀孔隙對該磊晶疊層進行鋅擴散,以形成一 環狀鋅擴散區; (E) 在該第一遮罩上形成一第二遮罩,藉以遮蔽該第一遮 罩之環狀孔隙: (F) 透過該第一遮罩及該第二遮罩對該蠢晶疊層進行姓刻 ,以形成一島狀平台;以及 (G) 對該高鋁含量層進行氧化以形成一環狀氧化區。 11 .如申請專利範圍第10項所述之垂直共振腔面射型雷射之製 作方法,其中形成該蟲晶疊層包含形成一第一布拉格反射 鏡、一第二布拉格反射鏡,以及一位在該第一布拉格反射 鏡與第二布拉格反射鏡之間的主動區。 12 .如申請專利範圍第11項所述之垂直共振腔面射型雷射之製 作方法,其中該高鋁含量層係屬於該第二布拉格反射鏡。 13 .如申請專利範圍第10項所述之垂直共振腔面射型雷射之製 作方法,其中形成該第一遮罩包含在該磊晶疊層上形成一 圓形部以及一環繞該圓形部且與該圓形部同心的圓環部, 且該圓形部及該圓環部之間界定出該環狀孔隙。 14 .如申請專利範圍第10項所述之垂直共振腔面射型雷射之製 作方法,其中使該第二遮罩至少完整涵蓋該圓形部以及該 環狀孔隙,且不可超出該圓環部之外。 100109067 表單編號A0101 第14頁/共22頁 1002015342-0201240249 VII. Patent application scope: 1 · A vertical cavity surface-emitting laser comprising: a substrate; and a worm layer laminated on the substrate, the epitaxial layer includes a ring-shaped zinc diffusion region, a ring-shaped ion implantation zone located below the zinc diffusion zone, an annular oxidation zone located below the ion implantation zone, and an active zone below the annular oxidation zone; wherein the zinc diffusion zone has a zinc a diffusion via, the ion implantation region has an ion implantation via, and the oxidation region has an oxidation via, and the zinc diffusion via, the ion implantation via, and the oxide via are in communication with each other. The vertical cavity surface-emitting laser according to claim 1, wherein the axis of the zinc diffusion via, the axis of the ion implantation via, and the axis of the oxide via are mutually Align. The vertical cavity surface-emitting laser according to claim 1, wherein the worm layer comprises a first Bragg mirror at the side of the active region, and -k is in the active region - The second Bragg mirror on the side. The method for manufacturing a vertical cavity surface-emitting laser includes the following steps: (A) providing a substrate; (B) forming an epitaxial layer on the substrate; the first mask having a (C) in the Forming a first mask annular aperture on the stray layer stack; (D) ion implanting the billet stack through the ring (4) to form a ring-shaped ion implantation region; (8) penetrating the annular hole (4) The county crystal layer (4) diffuses to form a ring-shaped zinc diffusion region; 100109067 Form No. 1010101 Page 12 of 221002015342-0 201240249 (F) Form a second mask on the first mask, thereby Masking the annular aperture of the first mask; and (G) etching the remote crystal laminate through the first mask and the second mask to form an island-like platform. The method for fabricating a vertical cavity surface-emitting laser according to claim 4, wherein the forming the epitaxial layer comprises forming a first Bragg mirror, a second Bragg mirror, and a bit An active region between the first Bragg mirror and the second Bragg mirror. The method for fabricating a vertical cavity surface-emitting laser according to claim 4, wherein the epitaxial layer comprises a layer of high-content content, and further comprising the high-aluminum layer after the island-like platform is formed. The content layer is oxidized to form an annular oxidation zone. The method of fabricating a vertical cavity surface-emitting laser according to claim 6, wherein the high aluminum content layer belongs to the second Bragg mirror. The method of fabricating a vertical cavity surface-emitting laser according to claim 4, wherein the forming the first mask comprises forming a circular portion on the epitaxial layer and surrounding the circular portion and An annular portion concentric with the circular portion, and the annular aperture is defined between the circular portion and the annular portion. The method for fabricating a vertical cavity surface-emitting laser according to claim 8, wherein the second mask at least completely covers the circular portion and the annular aperture, and the annular portion is not allowed to be exceeded. outer. Οο. A method of fabricating a vertical cavity surface-emitting laser comprising the steps of: (A) providing a substrate; (B) forming a worm layer on the substrate, and the worm layer comprises a high-inscription a content layer; (C) forming a first mask on the epitaxial layer, the first mask having a 100109067 form number A0101 page 13 / total 22 pages 1002015342-0 201240249 annular aperture; (D) through The annular aperture is zinc-diffused to form an annular zinc diffusion region; (E) forming a second mask on the first mask to shield the first mask ring Pore: (F) surname the stray layer through the first mask and the second mask to form an island-like platform; and (G) oxidize the high-aluminum content layer to form a ring Oxidized zone. 11. The method of fabricating a vertical cavity surface-emitting laser according to claim 10, wherein forming the crystallite stack comprises forming a first Bragg mirror, a second Bragg mirror, and a bit An active region between the first Bragg mirror and the second Bragg mirror. 12. The method of fabricating a vertical cavity surface-emitting laser according to claim 11, wherein the high aluminum content layer belongs to the second Bragg mirror. 13. The method of fabricating a vertical cavity surface-emitting laser according to claim 10, wherein the forming the first mask comprises forming a circular portion on the epitaxial layer and surrounding the circle And an annular portion concentric with the circular portion, and the annular aperture is defined between the circular portion and the annular portion. 14. The method of fabricating a vertical cavity surface-emitting laser according to claim 10, wherein the second mask is at least completely covered by the circular portion and the annular aperture, and the ring is not exceeded Outside the department. 100109067 Form No. A0101 Page 14 of 22 1002015342-0
TW100109067A 2011-03-17 2011-03-17 Vertical cavity surface emitting laser and manufacturing method thereof TWI459670B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100109067A TWI459670B (en) 2011-03-17 2011-03-17 Vertical cavity surface emitting laser and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100109067A TWI459670B (en) 2011-03-17 2011-03-17 Vertical cavity surface emitting laser and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201240249A true TW201240249A (en) 2012-10-01
TWI459670B TWI459670B (en) 2014-11-01

Family

ID=47599749

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109067A TWI459670B (en) 2011-03-17 2011-03-17 Vertical cavity surface emitting laser and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI459670B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI758061B (en) * 2016-02-23 2022-03-11 美商盧曼頓運作有限公司 Compact emitter design for a vertical-cavity surface-emitting laser
US11699774B2 (en) 2017-05-09 2023-07-11 Epistar Corporation Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785808B (en) * 2021-09-17 2022-12-01 兆勁科技股份有限公司 Process method for improving zinc diffusion process to form high-speed single-mode VCSEL device and laser structure made by this method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI758061B (en) * 2016-02-23 2022-03-11 美商盧曼頓運作有限公司 Compact emitter design for a vertical-cavity surface-emitting laser
US11437784B2 (en) 2016-02-23 2022-09-06 Lumentum Operations Llc Compact emitter design for a vertical-cavity surface-emitting laser
US11699774B2 (en) 2017-05-09 2023-07-11 Epistar Corporation Semiconductor device

Also Published As

Publication number Publication date
TWI459670B (en) 2014-11-01

Similar Documents

Publication Publication Date Title
TWI405379B (en) Vertical cavity surface emitting laser device and manufacturing method thereof
EP0999621B1 (en) Semiconductor device with aligned oxide apertures and contact to an intervening layer
JP2005045162A (en) Semiconductor device and method of manufacturing the same
US7680162B2 (en) Long wavelength vertical cavity surface emitting laser device and method of fabricating the same
WO2007142184A1 (en) Planar light emission semiconductor laser and its manufacturing method
JP2009038063A (en) Method for manufacturing surface-emitting laser
JP2019016750A (en) Semiconductor laser element
CN109891692A (en) The VCSEL array of infusion regrowth VCSEL and the isomery combination with different VCSEL types
EP3741015B1 (en) Porous distributed bragg reflectors for laser applications
JP2007073945A (en) Surface emission laser and manufacturing method of two-dimensional photonic crystal therein
US20210135429A1 (en) Oxide spacer hcg vcsels and fabrication methods
JP5110395B2 (en) Semiconductor laser device
JP2011155087A (en) Surface-emitting semiconductor laser and manufacturing method thereof
TW201830811A (en) Structure of vcsel and method for manufacturing the same
TW201240249A (en) Vertical cavity surface emitting laser and manufacturing method thereof
JP6722199B2 (en) Wide-area laser with anti-guide region for high-order transverse mode suppression
US7629187B2 (en) Fabrication method of semiconductor luminescent device
JP2006091880A (en) Method and apparatus for low parasitic capacitance butt-joint passive waveguide connected to active structure
JPWO2005074080A1 (en) Surface emitting laser and manufacturing method thereof
US20100166032A1 (en) Buried Aperture Nitride Light-Emiting Device
JP2000277852A (en) Surface emitting semiconductor laser and manufacturing method
JP2008226974A (en) Multifilm structure, surface-emitting laser composed of multifilm structure, and manufacturing method therefor
CN111404023A (en) Laser device and method for manufacturing laser device
CN102738703B (en) Vertical resonant cavity surface emitting laser and manufacturing method thereof
EP0944143A1 (en) Surface light emitting laser and method of production thereof