JPS58182890A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS58182890A
JPS58182890A JP6683582A JP6683582A JPS58182890A JP S58182890 A JPS58182890 A JP S58182890A JP 6683582 A JP6683582 A JP 6683582A JP 6683582 A JP6683582 A JP 6683582A JP S58182890 A JPS58182890 A JP S58182890A
Authority
JP
Japan
Prior art keywords
compound semiconductor
layer
epitaxially grown
diffraction grating
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6683582A
Other languages
Japanese (ja)
Inventor
Tatsuo Fuji
藤 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP6683582A priority Critical patent/JPS58182890A/en
Publication of JPS58182890A publication Critical patent/JPS58182890A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Abstract

PURPOSE:To form the section of the periodic groove of a pattern of a diffraction grating of a distributed feedback type semiconductor laser containing the diffraction grating by controlling precisely the thickness of a film by an epitaxial technique in a square. CONSTITUTION:The first compound semiconductor GaAs and the second compound semiconductor GaAlAs thin layer formed with hetero junction are repeatedly epitaxially grown on the surface of the first compound semiconductor substrate 1, alternately laminated, thereby forming composite layer of 2, 1, 2', 1'',..., 2n', 1n'. These thin layers are regulated in thickness of 2,000Angstrom corresponding to the width of the 0-order mode oscillation groove. The first compound semiconductor layer 1(n+1) is eventually formed thickly, the surface vertical to the epitaxially grown surface is produced, polished, and the second compound semiconductor layer 2(n+1)' is epitaxially grown. Another surface is produced, the first compound semiconductor layer is thickly epitaxially grown. Electrodes 7, 8 are formed, thereby completing single hetero junction distribution feedback type laser.

Description

【発明の詳細な説明】 本発明は半導体レーザ装置の製造方法にかかり、特に理
i急値に近い発光効率を有する分布帰還形半導体レーザ
4看の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor laser device, and more particularly to a method of manufacturing a distributed feedback semiconductor laser having a luminous efficiency close to a steep value.

回折格子を内蔵する分布帰還形半導体レーザ装置は、へ
き開面を使用する必要はなく、発光効率全理論値に近づ
けられる可能性を有するため盛んに研究が続けられてい
る。なお回折格子のピッチはレーザ発振波長λとすると
1/2(n+1)λ(n=0、1.2.3.  ・・・
・・)でなければならないが、発光効率はn=o (0
次モード)が最もよく、また回折格子の断面は方形のと
きが最も高いことが知られている。
Distributed feedback semiconductor laser devices with a built-in diffraction grating do not require the use of cleavage planes and have the potential to bring the luminous efficiency close to the total theoretical value, and are therefore being actively researched. Note that the pitch of the diffraction grating is 1/2(n+1)λ (n=0, 1.2.3. . .
), but the luminous efficiency is n=o (0
It is known that the diffraction grating has a rectangular cross section.

然るに従来の分布帰還型の回折格子はホトレジスト技術
によりパターンを形成し、そのパターン全エピタキシャ
ル成長技術により埋めて形成する。
However, the conventional distributed feedback type diffraction grating is formed by forming a pattern using a photoresist technique and then filling the entire pattern with an epitaxial growth technique.

例えばGaps−GaAlAs系の半導体レーザ装置に
おいてはその波長は約800iである。従って0次モー
ドを発生させるには回折格子の幅は8000/2/2と
なり、即ち2000大のパターン全形成する必要がある
。このパターンの形成は寸法的に容易でなく、かつ形成
されるエツチングによる回折格子は壺も望ましい方形の
溝は形成できず、化学的エツチングによる微細パターン
形成において、良く見られる正弦波形あるいは化合物半
導体特有のエツチング速度の強い面方位依存性による三
角形ないし台形のものしか形成することができない。
For example, in a Gaps-GaAlAs semiconductor laser device, the wavelength is about 800i. Therefore, in order to generate the 0th-order mode, the width of the diffraction grating is 8000/2/2, that is, it is necessary to form a complete pattern of 2000 sizes. The formation of this pattern is not easy in terms of dimensions, and the etched diffraction grating that is formed cannot form the desired rectangular grooves. Only triangular or trapezoidal shapes can be formed due to the strong dependence of the etching rate on the surface orientation.

従って0次モードのみの発生はむずかしいと共に、形成
した回折格子が方形に程遠いため光の閉じ込み効率は著
しく低下する結果となる。
Therefore, it is difficult to generate only the zero-order mode, and the formed diffraction grating is far from rectangular, resulting in a significant decrease in light confinement efficiency.

従って不発明は以上の問題点に対処してなされ導体レー
ザ装置の製造方法全提供するにある。
SUMMARY OF THE INVENTION Therefore, the object of the invention is to address the above problems and provide a complete method for manufacturing a conductor laser device.

すなわち本発明の要旨は、第1の化合物半導体基板の一
生面に第1の化合物半導体の薄層と前記第1の化合物半
導体とへテロ接合を形成する第2の化合物半導体の薄層
とを繰返しエピタキシャル成長し、最後に第1の化合物
半導体の層をエピタキシャル成長した後、エピタキシャ
ル成長面に垂直な面を出して研磨し、さらに前記研磨面
表面に酋t!。
That is, the gist of the present invention is to repeatedly form a thin layer of a first compound semiconductor and a thin layer of a second compound semiconductor forming a heterojunction with the first compound semiconductor on the entire surface of a first compound semiconductor substrate. After epitaxially growing and finally epitaxially growing a first compound semiconductor layer, polishing is performed with the surface perpendicular to the epitaxial growth surface exposed, and then a layer of t! is applied to the surface of the polished surface. .

〔第2の化合物半導体の層をエピタキシャル成長するこ
と全特命とする半導体レーザ装置の燗造方法にある。
[This is a method for manufacturing a semiconductor laser device in which a second compound semiconductor layer is epitaxially grown.

以下図面を参照し本発明の詳細な説明 第1 1”<l (al〜(elは本発明の一実施例に
よる半導体レーザ装置の製造方法を示す工程別断面図で
ある。
DETAILED DESCRIPTION OF THE INVENTION The following is a detailed description of the present invention with reference to the drawings. 1"<l (al~(el) is a cross-sectional view showing each step of a method for manufacturing a semiconductor laser device according to an embodiment of the present invention.

なお本発明はエピタキシャル技術、特にM B E(m
olecular  Beam Epitaxy)  
によれば任意の伝導形および不純物濃度のエピタキシャ
ル薄膜を極めて高精度に膜厚が制御できることに着関し
、0次モード発振に必要な回折格子の2000λのパタ
ーンの周期的溝を、しかもその断面を好ましい方形に形
成することに特徴がある。
Note that the present invention relates to epitaxial technology, particularly M B E (m
olecular beam epitaxy)
According to the authors, it is possible to control the film thickness of an epitaxial thin film of any conductivity type and impurity concentration with extremely high precision, and the periodic grooves of the 2000λ pattern of the diffraction grating necessary for zero-order mode oscillation, as well as its cross section, have been developed. It is characterized by being formed into a preferred rectangular shape.

すなわち第1図(alにおいて1はGapsの半導体基
板、1の表面には通常はOaAs基板と同じ第1の化合
物半導体の薄層がMBEによシェビタキシャル成長され
る。ただしこの場合第1の化合物半導体の薄層は省略し
てもよい(図面には表示してない)。2は第1の化合物
半導体上にMBEにより形成した第2の化合物半導体で
第1の化合物半導体層とへテロ接合を形成するGaA.
/As の薄層である。また1′は2の上に同様にエピ
タキシャルされた第1の化合物半導体の薄層である。そ
の後以上のように第1の化合物半導体と第2の化合物半
導体が交互に積層され2. +/ 、 2/ 、 1/
/曲1n: 2n’の複層が形成される。これらの薄層
は上記したように何れも0次モード発振の溝の幅に和尚
する2000Aの厚さに調節されている。必要な数の層
が形成されると最後に第1の化合物半導(n+1)’ 体層1    を厚く形成する。
That is, as shown in FIG. The thin layer of semiconductor may be omitted (not shown in the drawing). 2 is a second compound semiconductor formed on the first compound semiconductor by MBE, and a heterojunction with the first compound semiconductor layer is formed. Forming GaA.
/As is a thin layer. 1' is a thin layer of a first compound semiconductor similarly epitaxially deposited on 2; Thereafter, the first compound semiconductor and the second compound semiconductor are alternately stacked as described above.2. +/ , 2/ , 1/
/Song 1n: A 2n' multilayer is formed. As mentioned above, each of these thin layers is adjusted to have a thickness of 2000 Å, which corresponds to the width of the groove for zero-order mode oscillation. After the required number of layers have been formed, the first compound semiconductor (n+1)' body layer 1 is finally formed thickly.

次に第11図(biVC示すとお力エピタキシャル成長
面に垂直な面全出し研磨する。次に研磨面金清浄化し該
表面に第2の化合物半導体のGaAl!As 膚2(n
+1)’,エビタキシャル成長する。然るときは該エピ
タキシャル層は第1の化合物半導体1およびそのエビタ
キシャル層1’,1’,1“・・−・・1n′。
Next, as shown in FIG. 11 (biVC), the entire surface perpendicular to the epitaxial growth surface is polished. Next, the polished surface is cleaned, and a GaAl!As layer 2 (n) of the second compound semiconductor is applied to the surface.
+1)', evitaxial growth. In that case, the epitaxial layer is the first compound semiconductor 1 and its epitaxial layers 1', 1', 1'', . . ., 1n'.

1 ( n + 1 )’とはへテロ接合を形成し、第
2の化合物半導体のエビタキシャル層2.2’,2“・
・−・・n/とは接続される(第1図(cl参照)。
1 (n + 1)' forms a heterojunction, and the second compound semiconductor epitaxial layer 2.2', 2".
... n/ is connected (see Fig. 1 (cl)).

次に複層のエピタキシャル成長層に直角なもう一方の面
全出し、研磨,洗滌したのち第1の化合物半導体層を厚
くエピタキシャル成長させる。このときは多層エピタキ
シャル層により区画形成さ 5 一 れた矩形領域のうち同じ第1の化合物半導体層とは接続
され、俯2の化合物半導体層とは区画され第1図(di
の形態となる。第1図(diにそれぞれ電極7、8を形
成するとシングルへテロ接合分布帰還形レーザが完成す
る(第1図(e)参照)。第1図(e)J:、C明らか
&とおりGaAs 層1(n+1”K:は2000λの
溝が形成され、溝はさきにのべたとおり2000λのエ
ピタキシャル層が用いられ 1 ( n + l )’
およヒ2 ( n + 1 )’の両層はエピタキシャ
ル層に直角の面に付着されているので200OAの幅を
持つ矩形に形成されている。すなわちGa As  半
導体レーザの回折格子として最も望ましい幅を持った回
折格子が形成できたことになり、0次モードで発振し、
キャリアの蓄積効果の良好な化合物半導体レーザを得る
ことができる。
Next, the other surface perpendicular to the multiple epitaxially grown layers is fully exposed, polished, and cleaned, and then a first compound semiconductor layer is grown thickly epitaxially. At this time, the same first compound semiconductor layer of the divided rectangular regions formed by the multilayer epitaxial layer is connected to the same first compound semiconductor layer, and the compound semiconductor layer of the top 2 is separated and
It takes the form of Figure 1 (By forming electrodes 7 and 8 on di, respectively, a single heterojunction distributed feedback laser is completed (see Figure 1 (e)). Figure 1 (e) J:, C clearly & clearly GaAs layer 1(n+1"K: is a groove of 2000λ, and as mentioned earlier, an epitaxial layer of 2000λ is used for the groove. 1(n+l)'
Both layers 2(n+1)' and 2(n+1)' are formed in a rectangular shape with a width of 200 OA since they are deposited on planes perpendicular to the epitaxial layer. In other words, a diffraction grating with the most desirable width as a diffraction grating for a GaAs semiconductor laser has been formed, and it oscillates in the zero-order mode.
A compound semiconductor laser with a good carrier accumulation effect can be obtained.

第2図は本発明の他の実施例によシ製造された半導体レ
ーザ装置の説明用の断面図であり、本発明方法をダブル
へテロ接合分布帰還形レーザに適 6 一 よシ形成されたn形のGaAs層であり、また12は第
1図(e)の2(n+1)7層を含み同形のエピタキシ
ャル薄層より形成されたGaAs層とへテロ接合q邑ル
As を形成するn形のキ酊ロ惰f層である。
FIG. 2 is an explanatory cross-sectional view of a semiconductor laser device manufactured according to another embodiment of the present invention, in which the method of the present invention is applied to a double heterojunction distributed feedback laser. 12 is an n-type GaAs layer, and 12 is an n-type layer forming a heterojunction with a GaAs layer formed from epitaxial thin layers of the same shape, including the 2(n+1)7 layer shown in FIG. 1(e). This is the inebriated inertia f layer.

従ってGa As層12の表面には第1図(al〜(d
lと全く同じ工程でつくられた規定寸法の方形の回折格
子が形成されている。更に!’74!’Jw12の上に
は活世層としてp形のGaAs層13が形成されている
。また活性層13の上にはp形の素4ム千層14が形成
されている。この構成で12および14の層の材質は活
性層13より光の屈折率が小さくえらばれている。
Therefore, on the surface of the GaAs layer 12, as shown in FIG.
A rectangular diffraction grating with specified dimensions is formed using exactly the same process as in 1. Even more! '74! 'A p-type GaAs layer 13 is formed as an active layer on the Jw 12. Further, on the active layer 13, a p-type elemental layer 14 is formed. In this configuration, the materials for the layers 12 and 14 are selected to have a smaller refractive index for light than the active layer 13.

以上の構成において、活性層13のほかに、12はO次
発振に好適な回折格子を含む光ガイドおよびキャリア閉
じ込み層であり、14は同じく光子およびキャリアの閉
じ込み層である。閉じ込みは活性層13よりその両側の
閉じ込み層12および14の光の屈折率を小さくしたこ
とと回折格子の望ましい寸法と形におうところが犬であ
る。
In the above configuration, in addition to the active layer 13, 12 is a light guide and carrier confinement layer including a diffraction grating suitable for O-order oscillation, and 14 is also a photon and carrier confinement layer. The confinement is achieved by making the light refractive index of the confinement layers 12 and 14 on both sides of the active layer smaller than that of the active layer 13, and by the desired size and shape of the diffraction grating.

以上の説明かられかるように本構成によれば活性層13
において発生した光およびキャリアは玉確に望ましい寸
法と形に形成された回折格子と活性層13をはさむ閉じ
込み層12および14により閉じ込められ発光効率のよ
い希望の光を得ることができる。
As can be seen from the above description, according to this configuration, the active layer 13
The light and carriers generated are confined by the confinement layers 12 and 14 sandwiching the active layer 13 and a diffraction grating formed in exactly the desired size and shape, thereby making it possible to obtain desired light with high luminous efficiency.

以上説明したとお9本発明によれば発光効率の良い分布
帰還形の半導体レーザ装置を得ることができる。
As described above, according to the present invention, it is possible to obtain a distributed feedback type semiconductor laser device with high luminous efficiency.

なお本発明の説明では2つの実施例について述べたが他
の分布帰還形の半導体レーザ装置にも同様に適用できる
ことは言うまでもない。
In the description of the present invention, two embodiments have been described, but it goes without saying that the present invention can be similarly applied to other distributed feedback type semiconductor laser devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(e)は本発明の一実施例による半導体
レーザ装置の製造方法を示す工程別断面図、第2図は本
発明の他の実施例によシ製造された半導体レーザ装置の
断面図である。 1・・・・・GaAs化合物半導体基板、1′、1“、
1n′・・・・・・エピタキシャルGaps薄層、1(
n+1)’・・・・・・厚いGaAs−cピタキシャル
層、2.2’ 、 2″、 2n・・・電極、11・・
・・・・GaAs層、12・面・光ガイド。 キャリア閉じ込め層、13・・・・・活性層、14・川
・・光子及びキャリア閉じ込め層。  9−
1A to 1E are cross-sectional views showing steps for manufacturing a semiconductor laser device according to one embodiment of the present invention, and FIG. 2 is a semiconductor laser device manufactured according to another embodiment of the present invention. It is a cross-sectional view of 1...GaAs compound semiconductor substrate, 1', 1'',
1n'...Epitaxial Gaps thin layer, 1(
n+1)'... Thick GaAs-c pitaxial layer, 2.2', 2'', 2n... Electrode, 11...
...GaAs layer, 12 planes, light guide. Carrier confinement layer, 13... Active layer, 14... Photon and carrier confinement layer. 9-

Claims (1)

【特許請求の範囲】[Claims] 第1の化合物半導体基板の一生表面に、第1の化合物半
導体の薄層と前記第1の化合物半導体とへテロ接合を形
成する第2の化合物半導体の薄層とを繰返しエピタキシ
ャル成長し、最後に第1の化合物半導体のJl−エピタ
キシャル成長した後、全エピタキシャル成長することを
特徴とする半導体レーザ装置の製造方法。
A thin layer of a first compound semiconductor and a thin layer of a second compound semiconductor forming a heterojunction with the first compound semiconductor are epitaxially grown repeatedly on the surface of the first compound semiconductor substrate, and finally a thin layer of a second compound semiconductor forming a heterojunction with the first compound semiconductor is epitaxially grown. 1. A method for manufacturing a semiconductor laser device, characterized in that after Jl-epitaxial growth of the compound semiconductor of No. 1, full epitaxial growth is performed.
JP6683582A 1982-04-21 1982-04-21 Manufacture of semiconductor laser Pending JPS58182890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6683582A JPS58182890A (en) 1982-04-21 1982-04-21 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6683582A JPS58182890A (en) 1982-04-21 1982-04-21 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS58182890A true JPS58182890A (en) 1983-10-25

Family

ID=13327292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6683582A Pending JPS58182890A (en) 1982-04-21 1982-04-21 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58182890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559192A2 (en) * 1992-03-06 1993-09-08 Nippon Telegraph And Telephone Corporation Distributed reflector and wavelength-tunable semiconductor laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648192A (en) * 1979-09-13 1981-05-01 Xerox Corp Lateral light emitting electroluminescence unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648192A (en) * 1979-09-13 1981-05-01 Xerox Corp Lateral light emitting electroluminescence unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559192A2 (en) * 1992-03-06 1993-09-08 Nippon Telegraph And Telephone Corporation Distributed reflector and wavelength-tunable semiconductor laser

Similar Documents

Publication Publication Date Title
US4835783A (en) Semiconductor laser
JPH02266514A (en) Semiconductor device in hetero structure and its manufacture
TW502480B (en) Method of fabricating a semiconductor light-emitting device and the semiconductor light-emitting device
JP2855729B2 (en) Surface emitting laser and method of manufacturing the same
JP2008078340A (en) Semiconductor laser element and manufacturing method therefor
JPS61222216A (en) Manufacture of superlattice semiconductor device
JPS58182890A (en) Manufacture of semiconductor laser
JPS60113488A (en) Manufacture of element having effect of one-dimensional quantum size
JP3278035B2 (en) Quantum box structure with current confinement structure and its fabrication method
JPH03238813A (en) Epitaxial growth method
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPH01120012A (en) Compound semiconductor device
JPS63196089A (en) Manufacture of semiconductor light emitting device
JPS62179790A (en) Semiconductor laser
JPH02146722A (en) Manufacture of quantum fine line
JPS6114788A (en) Manufacture of two-dimensional quantum well structure
JP3422933B2 (en) Method for manufacturing semiconductor device
JPH01102984A (en) Semiconductor device and manufacture thereof
JPS63231304A (en) Thin film lens
JPH0629620A (en) Manufacturing method of semiconductor laser
JPH04124890A (en) Production of semiconductor laser
JPS62229892A (en) Semiconductor device and manufacture thereof
JPS60158688A (en) Semiconductor laser
JPH02105488A (en) Distributed feedback type semiconductor laser
JPH01293686A (en) Manufacture of semiconductor laser element