JPH01120012A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPH01120012A
JPH01120012A JP62277632A JP27763287A JPH01120012A JP H01120012 A JPH01120012 A JP H01120012A JP 62277632 A JP62277632 A JP 62277632A JP 27763287 A JP27763287 A JP 27763287A JP H01120012 A JPH01120012 A JP H01120012A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
type
compound semiconductor
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62277632A
Other languages
Japanese (ja)
Inventor
Akiyuki Serizawa
芹澤 晧之
Yoshikazu Hori
義和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62277632A priority Critical patent/JPH01120012A/en
Publication of JPH01120012A publication Critical patent/JPH01120012A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/70Removing or ejecting blown articles from the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a III-V compound semiconductor of good quality on a silicon sub strate so that the integration of optical circuits and electronic circuits, and so forth are enabled, by employing a specific structure in which an InxGa1-xP layer is grown on the silicon substrate with the parts of the component x thereof being progressively increased, and the III-V compound semiconductor layers are formed on the InxGa1-xP layer in order to form a device section therein. CONSTITUTION:A first semiconductor layer 2 of InxGa1-xP semiconductor is formed on a silicon substrate 1 with the parts of the component x being progressively increased from the x=0, approximately. Second semiconductor layers 3-5 of a III-V compound semiconductor are then formed on the first semiconductor layer 2, respectively, in order to form a semiconductor device section therein. For example, an n type InxGax-1P layer 2, which has such a graded composition in that the parts of the component x is gradually increased from x=0, approximately, at the lower surface in contact with the silicon substrate 1 from the lower surface to the upper surface, is first pro vided on the silicon substrate 1. Then, an n type AlyGazIn(1-y-z)P layer 3, an active layer 4 of AlyGazIn(1-y-z) layer or InxGa1-xP layer, a p type AlyGazIn(1-y-z)P layer 5, n and p type buried layers 6, 7 of AlyGazIn(1-y-z)P layer, and n and p type electrode layers 8, 9 are provided, respectively. Thereby a buried type laser is produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体装置に関し、特に半導体のFIC
Tやダイオードなどの電子デバイスあるいは半導体レー
ザ、受光素子、光導波路などの光デバイスを81 基体
上に構成しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to compound semiconductor devices, and in particular to semiconductor FIC devices.
Electronic devices such as T-shirts and diodes, or optical devices such as semiconductor lasers, light-receiving elements, and optical waveguides are intended to be constructed on the 81 substrate.

従来の技術 従来の半導体電子デバイスはSi単結晶基板上に構成さ
れ今や高密度、高集積な超LSIが実現できるところに
まで発展してきた。また、超高速動作の電子デバイスが
期待されているGΔム$を中心とする化合物半導体は結
晶の欠陥が多いことや、プロセス技術がSiはどに至っ
ていないことなどによシまだ高密度集積化や高品質なデ
バイスを大量忙供給できるところにまで至っていない。
2. Description of the Related Art Conventional semiconductor electronic devices are constructed on Si single crystal substrates, and have now developed to the point where high-density, highly integrated ultra-LSIs can be realized. In addition, compound semiconductors, mainly GΔm, which are expected to be used for ultra-high-speed electronic devices, have many crystal defects and process technology has not reached the level of Si, so high-density integration is still difficult. We have not yet reached the point where we can supply large quantities of high-quality devices.

一方、半導体レーザを中心とする光デバイスにおいては
直接遷移型の半導体が必要とされSiは間接遷移型半導
体のため使用できない。GaAgやInPなどの化合物
半導体が一般に使用されるが電子デバイス同様に十分良
質な結晶基板が得られていない。
On the other hand, optical devices such as semiconductor lasers require a direct transition type semiconductor, and Si cannot be used because it is an indirect transition type semiconductor. Compound semiconductors such as GaAg and InP are commonly used, but as with electronic devices, sufficiently high quality crystal substrates have not been obtained.

最近、Siの良質、安衛、大面積という特長とGaAs
のもつ高易動度、直接遷移という特長を合わせ持たそう
という目的でSi上にGaAs層のエピタキシャル成長
が為されるようになってきた。
Recently, the advantages of Si's high quality, safety, and large area, and GaAs'
GaAs layers have been epitaxially grown on Si in order to combine the characteristics of high mobility and direct transition with Si.

発明が解決しようとする問題点 しかし、エピタキシャル成長は可能になってきているも
のの、成長層の割れ、はがれ、欠陥など多くの問題点を
含んでおシ、実用には至っていない。
Problems to be Solved by the Invention However, although epitaxial growth has become possible, it has many problems such as cracking, peeling, and defects in the grown layer, and has not been put into practical use.

そこで本発明はSi上に良質のm−v族化合物半導体の
形成しようとするものであり、さらに、半導体レーザな
どの光デバイスとSi のもつ特長を一体化デバイスと
して実現しようとするものである。
Therefore, the present invention aims to form a high quality m-v group compound semiconductor on Si, and further aims to realize the features of optical devices such as semiconductor lasers and Si as an integrated device.

問題点を解決するだめの手段 本発明は、Si基体上への良質な■−マ族化合物半導体
層を得る方法として、Si基体上にInzGa 1−z
P層を介在させることによシ結晶性の改善をはかったも
のである。特に、InGaAsP、あるいはAlGaI
nP化合物半導体は可視光の発光材料として有望であシ
、Si基体上にInxGa1−XP層ヲXを徐々に増加
させて成長させる。あるいは組成の異なるInGaPの
層格子を成長させる。その上にInGaAsPあるいは
InGaAsPの層を成長させる。
Means for Solving the Problems The present invention provides a method for obtaining a high-quality ■-Ma group compound semiconductor layer on a Si substrate.
The crystallinity is improved by interposing a P layer. In particular, InGaAsP or AlGaI
The nP compound semiconductor is promising as a visible light emitting material, and is grown by gradually increasing the number of InxGa1-XP layers on the Si substrate. Alternatively, a layer lattice of InGaP with different compositions is grown. A layer of InGaAsP or InGaAsP is grown thereon.

この成長させた層を利用してデバイスを構成する。This grown layer is used to construct a device.

デバイスとしては半導体レーザ、受光素子、光導波路な
どの光回路あるいは電気IC等である、さらに、光回路
はm−v族化合物半導体成長層中に形成し、電子回路は
Si基板中に形成することも可能である。
Devices include optical circuits such as semiconductor lasers, light-receiving elements, and optical waveguides, or electric ICs.Furthermore, optical circuits are formed in the m-v group compound semiconductor growth layer, and electronic circuits are formed in the Si substrate. is also possible.

作用 単結晶上に単結晶薄膜を結晶成長するときには表面状態
、熱膨張係数の差、格子整合、結晶格子形などの要因が
大きく作用する。特に、結晶格子型が一致しているとき
は格子定数の差が大きくエピタキシャル成長を左右し、
結晶性に大きな影響を及ぼす。そこで、本特許において
はSi基体の格子定数に非常に近いInzGa 1−z
Pの(X Z O)を最初の成長組成とし、漸時In組
成を増大していって所望の格子定数の組成まで変化させ
、その上にデバイス構成の良質組成膜を得られるという
作用効果をもつものである。さらに、一般的にはSi上
に短波長発光素子を形成することは困難であり、GaA
s/Siの結晶においても高効率の発光素子を得るとこ
ろにまでに至っていない。本特許においてはGaAs/
Siよりももっと小さい格子不整合で短波発光素子に必
要とされるInGaAsP 。
Function When growing a single crystal thin film on a single crystal, factors such as surface condition, difference in thermal expansion coefficient, lattice matching, and crystal lattice shape play a large role. In particular, when the crystal lattice types match, the difference in lattice constants greatly influences epitaxial growth.
It has a large effect on crystallinity. Therefore, in this patent, InzGa 1-z which is very close to the lattice constant of the Si substrate
The initial growth composition is P (X Z O), and the In composition is gradually increased until the composition has a desired lattice constant, and on top of that, a high-quality composition film with a device configuration can be obtained. It is something that we have. Furthermore, it is generally difficult to form short wavelength light emitting elements on Si, and GaA
Even with s/Si crystals, it has not yet been possible to obtain a highly efficient light emitting device. In this patent, GaAs/
InGaAsP has a much smaller lattice mismatch than Si and is required for short wave light emitting devices.

A/GaInP等の結晶成長を可能にするという作用効
果をもつものである。
This has the effect of enabling crystal growth of A/GaInP and the like.

実施例 第1−2第2図に本発明の実施列を示す。第1図はSi
基板上に形成されたレーザの斜視図を示す。第2図は活
性領域を含む断面構造である。1はn−8i基板であシ
、2はn −InzGa 1−xP層であり組成XはS
i基板上にx=0近くよシ順次増加するグレーデッドな
組成となっている。3はn−人/yGazIn(1−y
−z) P(バンドギャップIC+)層であり、4は活
性層であるム#yGaz In (+−y−z )P(
バンドギャップに2)層でE + > E 2 、ある
いはInzGa 1−xp層である。5はP −A、5
yG!LzIn(1−y−2)P層(バンドギャップE
3)でE3)42である。6゜アはn型、p型の埋込み
層でA、5yGazIn1−y−zP層である。8およ
び9はn型、p型の電極層である。
Embodiments 1-2 FIG. 2 shows the implementation of the present invention. Figure 1 shows Si
FIG. 2 shows a perspective view of a laser formed on a substrate. FIG. 2 shows a cross-sectional structure including the active region. 1 is an n-8i substrate, 2 is an n-InzGa 1-xP layer, and the composition X is S.
The i-substrate has a graded composition that gradually increases from near x=0. 3 is n-people/yGazIn(1-y
-z) P (bandgap IC+) layer, and 4 is the active layer Mu#yGaz In (+-y-z)P(
2) In the bandgap layer, E + > E 2 or an InzGa 1-xp layer. 5 is P-A, 5
yG! LzIn(1-y-2)P layer (band gap E
3) and E3) is 42. 6°A is an n-type and p-type buried layer, which is a 5yGazIn1-yzP layer. 8 and 9 are n-type and p-type electrode layers.

本埋込み型のレーザは8,9間に電流を通すことによっ
て活性層4で再結合され、層3,5,6゜7で光のとじ
込めが行なわれる。Si上にInzGal−xP層をグ
レーデッドに格子定数を変化させることにより、クラッ
ド層3および活性層4と格子定数を一致させることがで
き、結晶性が良く、欠陥の少ないムβGaInP層を形
成することができる。
This buried type laser is recombined in the active layer 4 by passing a current between the layers 8 and 9, and the light is confined in the layers 3, 5, and 6. By changing the lattice constant of the InzGal-xP layer on Si in a graded manner, the lattice constant can be made to match that of the cladding layer 3 and the active layer 4, forming a βGaInP layer with good crystallinity and few defects. be able to.

第3図に人1P−GULP−InPおよびInP−Ga
P−GaAs−InAs組成とバンドギャップの関係を
図示する。直線H−B−Cは格子定数の同じ組成を示す
。たとえば3.5の組成は人魚、4はB点あるいは0点
、6,7はH点の組成を示す。
Figure 3 shows human 1P-GULP-InP and InP-Ga.
The relationship between P-GaAs-InAs composition and band gap is illustrated. Straight lines H-B-C indicate the same composition of lattice constants. For example, the composition of 3.5 indicates a mermaid, 4 indicates the composition of point B or point 0, and 6 and 7 indicate the composition of point H.

また、InGaAsP系についても同様に良好な結晶成
長が行なえる。C−Gはやはり等格子定数線であるが、
第1図、第2図における活性領域3にC点組成を、3,
5,6.7のクラッドや埋込み層にInGaP、G点や
InGaAsP D点あるいはム1GalnPのB点組
成などを使うことができる。
Similarly, good crystal growth can be achieved with InGaAsP systems as well. C-G is still an equilattice constant line, but
The active region 3 in FIGS. 1 and 2 has a C point composition of 3,
InGaP, G point, InGaAsP D point, or B point composition of Mu1GalnP can be used for the cladding and buried layer of Nos. 5 and 6.7.

このとき層3,5,6.7は同一組成である必要はなく
、活性領域3のバンドギャップより大きくとれば良いこ
とは言うまでもない。従ってInGaAsP系において
は3のクラッド層を必ずしも必要としない。このような
構成によって従来得られにくかった短波長(可視光)レ
ーザが8層基体上に構成することができる。また、本実
施例はレーザの場合を示したが面発光、あるいは端面発
光のLEDであっても良い。
At this time, it goes without saying that the layers 3, 5, and 6.7 do not need to have the same composition, but only need to have a band gap larger than that of the active region 3. Therefore, in the InGaAsP system, three cladding layers are not necessarily required. With this configuration, a short wavelength (visible light) laser, which has been difficult to obtain in the past, can be constructed on an eight-layer substrate. Further, although this embodiment shows the case of a laser, a surface-emitting or edge-emitting LED may also be used.

以上は第1図における2層をI nzG a 1−3C
P層のXを順次増加させるグレーデツト層の場合につい
て述べたが、この第2層を第3図におけるInGaP(
G点)層を含む超格子によっても同様な効果を見いだす
ことができる。第1図における2層を、GaPあるいは
InGaP(F点組成)とInGaP(B点組成)をS
i基板上に約6oλずつ交互に10〜20層形成する。
The above describes the two layers in Figure 1 as I nzGa 1-3C
We have described the case of a graded layer in which X of the P layer is increased sequentially, but this second layer is made of InGaP (
A similar effect can be found with a superlattice containing a layer (G point). The two layers in Figure 1 are GaP or InGaP (F point composition) and InGaP (B point composition).
10 to 20 layers of approximately 6oλ each are alternately formed on the i-substrate.

この詔格子膜上に4,6層を形成し活性領域及びクラッ
ド層を形成し、前述同様に第1図のレーザを構成するこ
とが可能となる。
By forming 4th and 6th layers on this lattice film to form an active region and a cladding layer, it becomes possible to construct the laser shown in FIG. 1 in the same manner as described above.

Si上にInxGa 、−xP層のグレーデツト層を形
成することによってInGaAsPだけでな(、GaA
SP Sbなども格子整合?とって成長させることが可
能であり、受光素子や、電子回路を形成することも可能
である。第4図は受光素子を構成した例である。
By forming graded layers of InxGa and -xP on Si, we can create not only InGaAsP (, GaA
Is SP Sb etc. also lattice matched? It is possible to grow the material, and it is also possible to form light-receiving elements and electronic circuits. FIG. 4 shows an example of a configuration of a light receiving element.

Si基本1上にn −InGaPのグレーデツド層2を
形成し、その上にn −InGaAs5Pあるいはn 
−GaAsSbPの層10が形成される。さらに、バン
ドギャップの大きいP −InGBAsP層11が形成
される。電極層12 、13i形成することにより、シ
ングルへテロ構造のPNあるいはPIN形の受光素子と
なる。
A graded layer 2 of n-InGaP is formed on the Si base 1, and a graded layer 2 of n-InGaP or n-InGaP is formed on top of it.
- A layer 10 of GaAsSbP is formed. Furthermore, a P-InGBAsP layer 11 with a large band gap is formed. By forming the electrode layers 12 and 13i, a single heterostructure PN or PIN type light receiving element is obtained.

さらに、このようなSi上へ■−■族化合物半導体の成
長によって、Si層を拡散でP#全形成し受光素子の受
光部分とすることも可能であり、■−v族部で発生した
光のモニタ用受光部とすることもできる。Si層中には
レーザやI、EDの駆動回路、制御回路、あるいは信号
処理回路などの電子XCを形成することもでき、m−マ
族半導体層には光デバイスを中心とする光回路を形成し
、両者の特長を兼ね備えた光集積回路が可能となる。
Furthermore, by growing such a ■-■ group compound semiconductor on Si, it is possible to completely form a P# Si layer by diffusion and use it as a light-receiving part of a light-receiving element. It can also be used as a monitor light receiving section. Electronic XCs such as laser, I, and ED drive circuits, control circuits, or signal processing circuits can be formed in the Si layer, and optical circuits mainly for optical devices can be formed in the m-Ma semiconductor layer. However, it becomes possible to create an optical integrated circuit that combines the features of both.

このSi上への■−マ族の成長には1例としてMO−C
VD法が使われる。InGaP層の形成にはソース材料
として(CH535I n 、 (CH5)5Ga  
あるいは(C2Hs )5In 、 (C2Hs )5
Gaなどの有機金属がPのソース源としてはPH4など
が使われる。
For the growth of the ■-Ma group on this Si, MO-C is an example.
The VD method is used. For the formation of the InGaP layer, (CH535In, (CH5)5Ga) was used as the source material.
Or (C2Hs)5In, (C2Hs)5
PH4 or the like is used as a source of P in an organic metal such as Ga.

700 ”Q〜900’(::に基板Siを置き、外部
よシ上記有機金属をH2をキャリアガスとして導入し、
InGaP層を成長させる。このとき(CI(5)3G
’Lの量を徐々に増加させていくと、良質なInGaP
 層が形成される。この上にさらに各種デバイス用の良
質な■−マ族混晶結晶が成長される。
700 "Q ~ 900' (:: Place the substrate Si on
Grow an InGaP layer. At this time (CI(5)3G
'By gradually increasing the amount of L, high-quality InGaP
A layer is formed. On top of this, high-quality -M group mixed crystals for various devices are grown.

発明の効果 以上のように、本発明によれば、次の効果を得ることが
できる。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1)  Si基体上にInGaP層のグレーデツト層
を形成することにより良質な■−v族膜を得ることがで
きる。
(1) By forming a graded InGaP layer on a Si substrate, a high-quality 1-V group film can be obtained.

(2)光回路と電子回路を一体化することが可能である
(2) It is possible to integrate optical circuits and electronic circuits.

(3)大面積が可能である。(3) Large area is possible.

(4)安価である。(4) It is inexpensive.

などの効果を有す。It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のレーザ構造の斜視図、第2
図は第1図のレーザの断面図、第3図は同レーザを構成
するInGaAgP 、 A、jGaInPの状態図、
第4図は本発明の他の実施例の受光素子の断面図である
。 1−・・−n−5i基板、2 ・−・−・n −工nx
Ga I −xp。 3・・・・n−人%GazIn (+ −y −z )
P、 4・・・・・活性層、6・・・・・P−AdGa
InP層。
FIG. 1 is a perspective view of a laser structure according to an embodiment of the present invention, and FIG.
The figure is a cross-sectional view of the laser in Figure 1, and Figure 3 is a state diagram of InGaAgP, A, and jGaInP that make up the laser.
FIG. 4 is a sectional view of a light receiving element according to another embodiment of the present invention. 1-...-n-5i board, 2...-n-nx
GaI-xp. 3...n- people%GazIn (+ -y -z)
P, 4...active layer, 6...P-AdGa
InP layer.

Claims (3)

【特許請求の範囲】[Claims] (1)Si基体上にIn_XGa_1_−_xP半導体
の組成XをX=0近傍より徐々に増加するように変化さ
せた第1の半導体層を形成し、この第1の半導体層上に
III−V族化合物半導体の第2の半導体層を形成し、こ
の第2の半導体層に半導体デバイスを構成してなる化合
物半導体装置。
(1) A first semiconductor layer in which the composition X of an In_XGa_1_-_xP semiconductor is gradually increased from around X=0 is formed on a Si substrate, and on this first semiconductor layer,
A compound semiconductor device comprising forming a second semiconductor layer of a group III-V compound semiconductor and configuring a semiconductor device in the second semiconductor layer.
(2)第2の半導体層に構成される半導体デバイスがI
nGaAsPあるいはAlGaInP層を発光領域とす
る活性領域を有する半導体レーザである特許請求の範囲
第1項に記載の化合物半導体装置。
(2) The semiconductor device configured in the second semiconductor layer is I
The compound semiconductor device according to claim 1, which is a semiconductor laser having an active region having an nGaAsP or AlGaInP layer as a light emitting region.
(3)Si基体上に組成Xの異なるIn_XGa_1_
−_XP半導体を交互にさらに多段に成長させた超格子
膜上にIII−V族化合物半導体デバイスを構成する特許
請求の範囲第1項記載の化合物半導体装置。
(3) In_XGa_1_ with different compositions X on Si substrate
2. The compound semiconductor device according to claim 1, wherein the III-V compound semiconductor device is constructed on a superlattice film in which -_XP semiconductors are grown alternately in multiple stages.
JP62277632A 1987-11-02 1987-11-02 Compound semiconductor device Pending JPH01120012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62277632A JPH01120012A (en) 1987-11-02 1987-11-02 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277632A JPH01120012A (en) 1987-11-02 1987-11-02 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH01120012A true JPH01120012A (en) 1989-05-12

Family

ID=17586135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277632A Pending JPH01120012A (en) 1987-11-02 1987-11-02 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH01120012A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742622A2 (en) * 1995-03-27 1996-11-13 Mitsubishi Cable Industries, Ltd. Laser diode
US9344200B2 (en) 2014-10-08 2016-05-17 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth
US9395489B2 (en) 2014-10-08 2016-07-19 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material
US9595805B2 (en) 2014-09-22 2017-03-14 International Business Machines Corporation III-V photonic integrated circuits on silicon substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753928A (en) * 1980-09-18 1982-03-31 Oki Electric Ind Co Ltd Compound semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753928A (en) * 1980-09-18 1982-03-31 Oki Electric Ind Co Ltd Compound semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742622A2 (en) * 1995-03-27 1996-11-13 Mitsubishi Cable Industries, Ltd. Laser diode
EP0742622A3 (en) * 1995-03-27 1997-02-19 Mitsubishi Cable Ind Ltd Laser diode
US9595805B2 (en) 2014-09-22 2017-03-14 International Business Machines Corporation III-V photonic integrated circuits on silicon substrate
US10439356B2 (en) 2014-09-22 2019-10-08 International Business Machines Corporation III-V photonic integrated circuits on silicon substrate
US10756506B2 (en) 2014-09-22 2020-08-25 International Business Machines Corporation III-V photonic integrated circuits on silicon substrate
US9344200B2 (en) 2014-10-08 2016-05-17 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth
US9395489B2 (en) 2014-10-08 2016-07-19 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material
US9590393B2 (en) 2014-10-08 2017-03-07 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth
US9726819B2 (en) 2014-10-08 2017-08-08 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth
US9864135B2 (en) 2014-10-08 2018-01-09 International Business Machines Corporation Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material

Similar Documents

Publication Publication Date Title
DE19715572A1 (en) Selective epitaxy of III-V nitride semiconductor layers
CN1964093A (en) Nitride semiconductor device
JPS55165691A (en) Compound semiconductor laser element
JPS58216486A (en) Semiconductor laser and manufacture thereof
JPS62188385A (en) Semiconductor light-emitting element
JPH01120012A (en) Compound semiconductor device
JPH04192585A (en) Semiconductor light-emitting element
JP2002299249A (en) Semiconductor substrate, semiconductor element and method for forming semiconductor layer
JPH0897466A (en) Light emitting device
JPH05347432A (en) Semiconductor light-emitting element
JPH0439988A (en) Semiconductor light emitting device
JPH03166785A (en) Semiconductor laser element
Bellavance et al. Room‐temperature mesa lasers grown by selective liquid phase epitaxy
JPS62119981A (en) Manufacture of optical semiconductor device
JPS6223191A (en) Manufacture of ridge type semiconductor laser device
JPS63164384A (en) Semiconductor light-emitting device
JPS63177487A (en) Semiconductor device
JPS62130572A (en) Semiconductor light emitting device
JPH03225983A (en) Semiconductor laser
JPS621293A (en) Semiconductor light-emitting element
JP2968159B2 (en) Method for manufacturing semiconductor laser device
JPH05327010A (en) Manufacture of semiconductor light-emitting device
JPS62217690A (en) Semiconductor light-emitting device and manufacture thereof
JPH02237190A (en) Semiconductor laser
JPH07335550A (en) Method for forming p-i-n junction in horizontal direction of compound semiconductor thin film