JPH01120012A - Compound semiconductor device - Google Patents
Compound semiconductor deviceInfo
- Publication number
- JPH01120012A JPH01120012A JP62277632A JP27763287A JPH01120012A JP H01120012 A JPH01120012 A JP H01120012A JP 62277632 A JP62277632 A JP 62277632A JP 27763287 A JP27763287 A JP 27763287A JP H01120012 A JPH01120012 A JP H01120012A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor
- type
- compound semiconductor
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- 150000001875 compounds Chemical class 0.000 title claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 230000003287 optical effect Effects 0.000 abstract description 12
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 230000010354 integration Effects 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 5
- 239000010703 silicon Substances 0.000 abstract 5
- 239000013078 crystal Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 238000005253 cladding Methods 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/70—Removing or ejecting blown articles from the mould
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Recrystallisation Techniques (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は化合物半導体装置に関し、特に半導体のFIC
Tやダイオードなどの電子デバイスあるいは半導体レー
ザ、受光素子、光導波路などの光デバイスを81 基体
上に構成しようとするものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to compound semiconductor devices, and in particular to semiconductor FIC devices.
Electronic devices such as T-shirts and diodes, or optical devices such as semiconductor lasers, light-receiving elements, and optical waveguides are intended to be constructed on the 81 substrate.
従来の技術
従来の半導体電子デバイスはSi単結晶基板上に構成さ
れ今や高密度、高集積な超LSIが実現できるところに
まで発展してきた。また、超高速動作の電子デバイスが
期待されているGΔム$を中心とする化合物半導体は結
晶の欠陥が多いことや、プロセス技術がSiはどに至っ
ていないことなどによシまだ高密度集積化や高品質なデ
バイスを大量忙供給できるところにまで至っていない。2. Description of the Related Art Conventional semiconductor electronic devices are constructed on Si single crystal substrates, and have now developed to the point where high-density, highly integrated ultra-LSIs can be realized. In addition, compound semiconductors, mainly GΔm, which are expected to be used for ultra-high-speed electronic devices, have many crystal defects and process technology has not reached the level of Si, so high-density integration is still difficult. We have not yet reached the point where we can supply large quantities of high-quality devices.
一方、半導体レーザを中心とする光デバイスにおいては
直接遷移型の半導体が必要とされSiは間接遷移型半導
体のため使用できない。GaAgやInPなどの化合物
半導体が一般に使用されるが電子デバイス同様に十分良
質な結晶基板が得られていない。On the other hand, optical devices such as semiconductor lasers require a direct transition type semiconductor, and Si cannot be used because it is an indirect transition type semiconductor. Compound semiconductors such as GaAg and InP are commonly used, but as with electronic devices, sufficiently high quality crystal substrates have not been obtained.
最近、Siの良質、安衛、大面積という特長とGaAs
のもつ高易動度、直接遷移という特長を合わせ持たそう
という目的でSi上にGaAs層のエピタキシャル成長
が為されるようになってきた。Recently, the advantages of Si's high quality, safety, and large area, and GaAs'
GaAs layers have been epitaxially grown on Si in order to combine the characteristics of high mobility and direct transition with Si.
発明が解決しようとする問題点
しかし、エピタキシャル成長は可能になってきているも
のの、成長層の割れ、はがれ、欠陥など多くの問題点を
含んでおシ、実用には至っていない。Problems to be Solved by the Invention However, although epitaxial growth has become possible, it has many problems such as cracking, peeling, and defects in the grown layer, and has not been put into practical use.
そこで本発明はSi上に良質のm−v族化合物半導体の
形成しようとするものであり、さらに、半導体レーザな
どの光デバイスとSi のもつ特長を一体化デバイスと
して実現しようとするものである。Therefore, the present invention aims to form a high quality m-v group compound semiconductor on Si, and further aims to realize the features of optical devices such as semiconductor lasers and Si as an integrated device.
問題点を解決するだめの手段
本発明は、Si基体上への良質な■−マ族化合物半導体
層を得る方法として、Si基体上にInzGa 1−z
P層を介在させることによシ結晶性の改善をはかったも
のである。特に、InGaAsP、あるいはAlGaI
nP化合物半導体は可視光の発光材料として有望であシ
、Si基体上にInxGa1−XP層ヲXを徐々に増加
させて成長させる。あるいは組成の異なるInGaPの
層格子を成長させる。その上にInGaAsPあるいは
InGaAsPの層を成長させる。Means for Solving the Problems The present invention provides a method for obtaining a high-quality ■-Ma group compound semiconductor layer on a Si substrate.
The crystallinity is improved by interposing a P layer. In particular, InGaAsP or AlGaI
The nP compound semiconductor is promising as a visible light emitting material, and is grown by gradually increasing the number of InxGa1-XP layers on the Si substrate. Alternatively, a layer lattice of InGaP with different compositions is grown. A layer of InGaAsP or InGaAsP is grown thereon.
この成長させた層を利用してデバイスを構成する。This grown layer is used to construct a device.
デバイスとしては半導体レーザ、受光素子、光導波路な
どの光回路あるいは電気IC等である、さらに、光回路
はm−v族化合物半導体成長層中に形成し、電子回路は
Si基板中に形成することも可能である。Devices include optical circuits such as semiconductor lasers, light-receiving elements, and optical waveguides, or electric ICs.Furthermore, optical circuits are formed in the m-v group compound semiconductor growth layer, and electronic circuits are formed in the Si substrate. is also possible.
作用
単結晶上に単結晶薄膜を結晶成長するときには表面状態
、熱膨張係数の差、格子整合、結晶格子形などの要因が
大きく作用する。特に、結晶格子型が一致しているとき
は格子定数の差が大きくエピタキシャル成長を左右し、
結晶性に大きな影響を及ぼす。そこで、本特許において
はSi基体の格子定数に非常に近いInzGa 1−z
Pの(X Z O)を最初の成長組成とし、漸時In組
成を増大していって所望の格子定数の組成まで変化させ
、その上にデバイス構成の良質組成膜を得られるという
作用効果をもつものである。さらに、一般的にはSi上
に短波長発光素子を形成することは困難であり、GaA
s/Siの結晶においても高効率の発光素子を得るとこ
ろにまでに至っていない。本特許においてはGaAs/
Siよりももっと小さい格子不整合で短波発光素子に必
要とされるInGaAsP 。Function When growing a single crystal thin film on a single crystal, factors such as surface condition, difference in thermal expansion coefficient, lattice matching, and crystal lattice shape play a large role. In particular, when the crystal lattice types match, the difference in lattice constants greatly influences epitaxial growth.
It has a large effect on crystallinity. Therefore, in this patent, InzGa 1-z which is very close to the lattice constant of the Si substrate
The initial growth composition is P (X Z O), and the In composition is gradually increased until the composition has a desired lattice constant, and on top of that, a high-quality composition film with a device configuration can be obtained. It is something that we have. Furthermore, it is generally difficult to form short wavelength light emitting elements on Si, and GaA
Even with s/Si crystals, it has not yet been possible to obtain a highly efficient light emitting device. In this patent, GaAs/
InGaAsP has a much smaller lattice mismatch than Si and is required for short wave light emitting devices.
A/GaInP等の結晶成長を可能にするという作用効
果をもつものである。This has the effect of enabling crystal growth of A/GaInP and the like.
実施例
第1−2第2図に本発明の実施列を示す。第1図はSi
基板上に形成されたレーザの斜視図を示す。第2図は活
性領域を含む断面構造である。1はn−8i基板であシ
、2はn −InzGa 1−xP層であり組成XはS
i基板上にx=0近くよシ順次増加するグレーデッドな
組成となっている。3はn−人/yGazIn(1−y
−z) P(バンドギャップIC+)層であり、4は活
性層であるム#yGaz In (+−y−z )P(
バンドギャップに2)層でE + > E 2 、ある
いはInzGa 1−xp層である。5はP −A、5
yG!LzIn(1−y−2)P層(バンドギャップE
3)でE3)42である。6゜アはn型、p型の埋込み
層でA、5yGazIn1−y−zP層である。8およ
び9はn型、p型の電極層である。Embodiments 1-2 FIG. 2 shows the implementation of the present invention. Figure 1 shows Si
FIG. 2 shows a perspective view of a laser formed on a substrate. FIG. 2 shows a cross-sectional structure including the active region. 1 is an n-8i substrate, 2 is an n-InzGa 1-xP layer, and the composition X is S.
The i-substrate has a graded composition that gradually increases from near x=0. 3 is n-people/yGazIn(1-y
-z) P (bandgap IC+) layer, and 4 is the active layer Mu#yGaz In (+-y-z)P(
2) In the bandgap layer, E + > E 2 or an InzGa 1-xp layer. 5 is P-A, 5
yG! LzIn(1-y-2)P layer (band gap E
3) and E3) is 42. 6°A is an n-type and p-type buried layer, which is a 5yGazIn1-yzP layer. 8 and 9 are n-type and p-type electrode layers.
本埋込み型のレーザは8,9間に電流を通すことによっ
て活性層4で再結合され、層3,5,6゜7で光のとじ
込めが行なわれる。Si上にInzGal−xP層をグ
レーデッドに格子定数を変化させることにより、クラッ
ド層3および活性層4と格子定数を一致させることがで
き、結晶性が良く、欠陥の少ないムβGaInP層を形
成することができる。This buried type laser is recombined in the active layer 4 by passing a current between the layers 8 and 9, and the light is confined in the layers 3, 5, and 6. By changing the lattice constant of the InzGal-xP layer on Si in a graded manner, the lattice constant can be made to match that of the cladding layer 3 and the active layer 4, forming a βGaInP layer with good crystallinity and few defects. be able to.
第3図に人1P−GULP−InPおよびInP−Ga
P−GaAs−InAs組成とバンドギャップの関係を
図示する。直線H−B−Cは格子定数の同じ組成を示す
。たとえば3.5の組成は人魚、4はB点あるいは0点
、6,7はH点の組成を示す。Figure 3 shows human 1P-GULP-InP and InP-Ga.
The relationship between P-GaAs-InAs composition and band gap is illustrated. Straight lines H-B-C indicate the same composition of lattice constants. For example, the composition of 3.5 indicates a mermaid, 4 indicates the composition of point B or point 0, and 6 and 7 indicate the composition of point H.
また、InGaAsP系についても同様に良好な結晶成
長が行なえる。C−Gはやはり等格子定数線であるが、
第1図、第2図における活性領域3にC点組成を、3,
5,6.7のクラッドや埋込み層にInGaP、G点や
InGaAsP D点あるいはム1GalnPのB点組
成などを使うことができる。Similarly, good crystal growth can be achieved with InGaAsP systems as well. C-G is still an equilattice constant line, but
The active region 3 in FIGS. 1 and 2 has a C point composition of 3,
InGaP, G point, InGaAsP D point, or B point composition of Mu1GalnP can be used for the cladding and buried layer of Nos. 5 and 6.7.
このとき層3,5,6.7は同一組成である必要はなく
、活性領域3のバンドギャップより大きくとれば良いこ
とは言うまでもない。従ってInGaAsP系において
は3のクラッド層を必ずしも必要としない。このような
構成によって従来得られにくかった短波長(可視光)レ
ーザが8層基体上に構成することができる。また、本実
施例はレーザの場合を示したが面発光、あるいは端面発
光のLEDであっても良い。At this time, it goes without saying that the layers 3, 5, and 6.7 do not need to have the same composition, but only need to have a band gap larger than that of the active region 3. Therefore, in the InGaAsP system, three cladding layers are not necessarily required. With this configuration, a short wavelength (visible light) laser, which has been difficult to obtain in the past, can be constructed on an eight-layer substrate. Further, although this embodiment shows the case of a laser, a surface-emitting or edge-emitting LED may also be used.
以上は第1図における2層をI nzG a 1−3C
P層のXを順次増加させるグレーデツト層の場合につい
て述べたが、この第2層を第3図におけるInGaP(
G点)層を含む超格子によっても同様な効果を見いだす
ことができる。第1図における2層を、GaPあるいは
InGaP(F点組成)とInGaP(B点組成)をS
i基板上に約6oλずつ交互に10〜20層形成する。The above describes the two layers in Figure 1 as I nzGa 1-3C
We have described the case of a graded layer in which X of the P layer is increased sequentially, but this second layer is made of InGaP (
A similar effect can be found with a superlattice containing a layer (G point). The two layers in Figure 1 are GaP or InGaP (F point composition) and InGaP (B point composition).
10 to 20 layers of approximately 6oλ each are alternately formed on the i-substrate.
この詔格子膜上に4,6層を形成し活性領域及びクラッ
ド層を形成し、前述同様に第1図のレーザを構成するこ
とが可能となる。By forming 4th and 6th layers on this lattice film to form an active region and a cladding layer, it becomes possible to construct the laser shown in FIG. 1 in the same manner as described above.
Si上にInxGa 、−xP層のグレーデツト層を形
成することによってInGaAsPだけでな(、GaA
SP Sbなども格子整合?とって成長させることが可
能であり、受光素子や、電子回路を形成することも可能
である。第4図は受光素子を構成した例である。By forming graded layers of InxGa and -xP on Si, we can create not only InGaAsP (, GaA
Is SP Sb etc. also lattice matched? It is possible to grow the material, and it is also possible to form light-receiving elements and electronic circuits. FIG. 4 shows an example of a configuration of a light receiving element.
Si基本1上にn −InGaPのグレーデツド層2を
形成し、その上にn −InGaAs5Pあるいはn
−GaAsSbPの層10が形成される。さらに、バン
ドギャップの大きいP −InGBAsP層11が形成
される。電極層12 、13i形成することにより、シ
ングルへテロ構造のPNあるいはPIN形の受光素子と
なる。A graded layer 2 of n-InGaP is formed on the Si base 1, and a graded layer 2 of n-InGaP or n-InGaP is formed on top of it.
- A layer 10 of GaAsSbP is formed. Furthermore, a P-InGBAsP layer 11 with a large band gap is formed. By forming the electrode layers 12 and 13i, a single heterostructure PN or PIN type light receiving element is obtained.
さらに、このようなSi上へ■−■族化合物半導体の成
長によって、Si層を拡散でP#全形成し受光素子の受
光部分とすることも可能であり、■−v族部で発生した
光のモニタ用受光部とすることもできる。Si層中には
レーザやI、EDの駆動回路、制御回路、あるいは信号
処理回路などの電子XCを形成することもでき、m−マ
族半導体層には光デバイスを中心とする光回路を形成し
、両者の特長を兼ね備えた光集積回路が可能となる。Furthermore, by growing such a ■-■ group compound semiconductor on Si, it is possible to completely form a P# Si layer by diffusion and use it as a light-receiving part of a light-receiving element. It can also be used as a monitor light receiving section. Electronic XCs such as laser, I, and ED drive circuits, control circuits, or signal processing circuits can be formed in the Si layer, and optical circuits mainly for optical devices can be formed in the m-Ma semiconductor layer. However, it becomes possible to create an optical integrated circuit that combines the features of both.
このSi上への■−マ族の成長には1例としてMO−C
VD法が使われる。InGaP層の形成にはソース材料
として(CH535I n 、 (CH5)5Ga
あるいは(C2Hs )5In 、 (C2Hs )5
Gaなどの有機金属がPのソース源としてはPH4など
が使われる。For the growth of the ■-Ma group on this Si, MO-C is an example.
The VD method is used. For the formation of the InGaP layer, (CH535In, (CH5)5Ga) was used as the source material.
Or (C2Hs)5In, (C2Hs)5
PH4 or the like is used as a source of P in an organic metal such as Ga.
700 ”Q〜900’(::に基板Siを置き、外部
よシ上記有機金属をH2をキャリアガスとして導入し、
InGaP層を成長させる。このとき(CI(5)3G
’Lの量を徐々に増加させていくと、良質なInGaP
層が形成される。この上にさらに各種デバイス用の良
質な■−マ族混晶結晶が成長される。700 "Q ~ 900' (:: Place the substrate Si on
Grow an InGaP layer. At this time (CI(5)3G
'By gradually increasing the amount of L, high-quality InGaP
A layer is formed. On top of this, high-quality -M group mixed crystals for various devices are grown.
発明の効果
以上のように、本発明によれば、次の効果を得ることが
できる。Effects of the Invention As described above, according to the present invention, the following effects can be obtained.
(1) Si基体上にInGaP層のグレーデツト層
を形成することにより良質な■−v族膜を得ることがで
きる。(1) By forming a graded InGaP layer on a Si substrate, a high-quality 1-V group film can be obtained.
(2)光回路と電子回路を一体化することが可能である
。(2) It is possible to integrate optical circuits and electronic circuits.
(3)大面積が可能である。(3) Large area is possible.
(4)安価である。(4) It is inexpensive.
などの効果を有す。It has the following effects.
第1図は本発明の一実施例のレーザ構造の斜視図、第2
図は第1図のレーザの断面図、第3図は同レーザを構成
するInGaAgP 、 A、jGaInPの状態図、
第4図は本発明の他の実施例の受光素子の断面図である
。
1−・・−n−5i基板、2 ・−・−・n −工nx
Ga I −xp。
3・・・・n−人%GazIn (+ −y −z )
P、 4・・・・・活性層、6・・・・・P−AdGa
InP層。FIG. 1 is a perspective view of a laser structure according to an embodiment of the present invention, and FIG.
The figure is a cross-sectional view of the laser in Figure 1, and Figure 3 is a state diagram of InGaAgP, A, and jGaInP that make up the laser.
FIG. 4 is a sectional view of a light receiving element according to another embodiment of the present invention. 1-...-n-5i board, 2...-n-nx
GaI-xp. 3...n- people%GazIn (+ -y -z)
P, 4...active layer, 6...P-AdGa
InP layer.
Claims (3)
の組成XをX=0近傍より徐々に増加するように変化さ
せた第1の半導体層を形成し、この第1の半導体層上に
III−V族化合物半導体の第2の半導体層を形成し、こ
の第2の半導体層に半導体デバイスを構成してなる化合
物半導体装置。(1) A first semiconductor layer in which the composition X of an In_XGa_1_-_xP semiconductor is gradually increased from around X=0 is formed on a Si substrate, and on this first semiconductor layer,
A compound semiconductor device comprising forming a second semiconductor layer of a group III-V compound semiconductor and configuring a semiconductor device in the second semiconductor layer.
nGaAsPあるいはAlGaInP層を発光領域とす
る活性領域を有する半導体レーザである特許請求の範囲
第1項に記載の化合物半導体装置。(2) The semiconductor device configured in the second semiconductor layer is I
The compound semiconductor device according to claim 1, which is a semiconductor laser having an active region having an nGaAsP or AlGaInP layer as a light emitting region.
−_XP半導体を交互にさらに多段に成長させた超格子
膜上にIII−V族化合物半導体デバイスを構成する特許
請求の範囲第1項記載の化合物半導体装置。(3) In_XGa_1_ with different compositions X on Si substrate
2. The compound semiconductor device according to claim 1, wherein the III-V compound semiconductor device is constructed on a superlattice film in which -_XP semiconductors are grown alternately in multiple stages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62277632A JPH01120012A (en) | 1987-11-02 | 1987-11-02 | Compound semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62277632A JPH01120012A (en) | 1987-11-02 | 1987-11-02 | Compound semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01120012A true JPH01120012A (en) | 1989-05-12 |
Family
ID=17586135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62277632A Pending JPH01120012A (en) | 1987-11-02 | 1987-11-02 | Compound semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01120012A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0742622A2 (en) * | 1995-03-27 | 1996-11-13 | Mitsubishi Cable Industries, Ltd. | Laser diode |
US9344200B2 (en) | 2014-10-08 | 2016-05-17 | International Business Machines Corporation | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth |
US9395489B2 (en) | 2014-10-08 | 2016-07-19 | International Business Machines Corporation | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material |
US9595805B2 (en) | 2014-09-22 | 2017-03-14 | International Business Machines Corporation | III-V photonic integrated circuits on silicon substrate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5753928A (en) * | 1980-09-18 | 1982-03-31 | Oki Electric Ind Co Ltd | Compound semiconductor device |
-
1987
- 1987-11-02 JP JP62277632A patent/JPH01120012A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5753928A (en) * | 1980-09-18 | 1982-03-31 | Oki Electric Ind Co Ltd | Compound semiconductor device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0742622A2 (en) * | 1995-03-27 | 1996-11-13 | Mitsubishi Cable Industries, Ltd. | Laser diode |
EP0742622A3 (en) * | 1995-03-27 | 1997-02-19 | Mitsubishi Cable Ind Ltd | Laser diode |
US9595805B2 (en) | 2014-09-22 | 2017-03-14 | International Business Machines Corporation | III-V photonic integrated circuits on silicon substrate |
US10439356B2 (en) | 2014-09-22 | 2019-10-08 | International Business Machines Corporation | III-V photonic integrated circuits on silicon substrate |
US10756506B2 (en) | 2014-09-22 | 2020-08-25 | International Business Machines Corporation | III-V photonic integrated circuits on silicon substrate |
US9344200B2 (en) | 2014-10-08 | 2016-05-17 | International Business Machines Corporation | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth |
US9395489B2 (en) | 2014-10-08 | 2016-07-19 | International Business Machines Corporation | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material |
US9590393B2 (en) | 2014-10-08 | 2017-03-07 | International Business Machines Corporation | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth |
US9726819B2 (en) | 2014-10-08 | 2017-08-08 | International Business Machines Corporation | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxial semiconductor material formed using lateral overgrowth |
US9864135B2 (en) | 2014-10-08 | 2018-01-09 | International Business Machines Corporation | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19715572A1 (en) | Selective epitaxy of III-V nitride semiconductor layers | |
CN1964093A (en) | Nitride semiconductor device | |
JPS55165691A (en) | Compound semiconductor laser element | |
JPS58216486A (en) | Semiconductor laser and manufacture thereof | |
JPS62188385A (en) | Semiconductor light-emitting element | |
JPH01120012A (en) | Compound semiconductor device | |
JPH04192585A (en) | Semiconductor light-emitting element | |
JP2002299249A (en) | Semiconductor substrate, semiconductor element and method for forming semiconductor layer | |
JPH0897466A (en) | Light emitting device | |
JPH05347432A (en) | Semiconductor light-emitting element | |
JPH0439988A (en) | Semiconductor light emitting device | |
JPH03166785A (en) | Semiconductor laser element | |
Bellavance et al. | Room‐temperature mesa lasers grown by selective liquid phase epitaxy | |
JPS62119981A (en) | Manufacture of optical semiconductor device | |
JPS6223191A (en) | Manufacture of ridge type semiconductor laser device | |
JPS63164384A (en) | Semiconductor light-emitting device | |
JPS63177487A (en) | Semiconductor device | |
JPS62130572A (en) | Semiconductor light emitting device | |
JPH03225983A (en) | Semiconductor laser | |
JPS621293A (en) | Semiconductor light-emitting element | |
JP2968159B2 (en) | Method for manufacturing semiconductor laser device | |
JPH05327010A (en) | Manufacture of semiconductor light-emitting device | |
JPS62217690A (en) | Semiconductor light-emitting device and manufacture thereof | |
JPH02237190A (en) | Semiconductor laser | |
JPH07335550A (en) | Method for forming p-i-n junction in horizontal direction of compound semiconductor thin film |