JPWO2019107576A1 - 始原生殖細胞/始原生殖細胞様細胞の維持増幅及び分化誘導方法 - Google Patents

始原生殖細胞/始原生殖細胞様細胞の維持増幅及び分化誘導方法 Download PDF

Info

Publication number
JPWO2019107576A1
JPWO2019107576A1 JP2019556772A JP2019556772A JPWO2019107576A1 JP WO2019107576 A1 JPWO2019107576 A1 JP WO2019107576A1 JP 2019556772 A JP2019556772 A JP 2019556772A JP 2019556772 A JP2019556772 A JP 2019556772A JP WO2019107576 A1 JPWO2019107576 A1 JP WO2019107576A1
Authority
JP
Japan
Prior art keywords
pgclc
cells
pgc
cell
genes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019556772A
Other languages
English (en)
Other versions
JP7307481B2 (ja
Inventor
通紀 斎藤
通紀 斎藤
浩 大田
浩 大田
英孝 宮内
英孝 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2019107576A1 publication Critical patent/JPWO2019107576A1/ja
Application granted granted Critical
Publication of JP7307481B2 publication Critical patent/JP7307481B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/0611Primordial germ cells, e.g. embryonic germ cells [EG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/0609Oocytes, oogonia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/01Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/04Immunosuppressors, e.g. cyclosporin, tacrolimus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、PGC/PGCLCを、ホスホジエステラーゼ4(PDE4)阻害薬及び/又はシクロスポリンAの存在下、好ましくはさらにフォルスコリンの存在下で培養することを含む、PGC/PGCLCの維持増幅方法、並びに、PGC/PGCLCを、骨形成タンパク質(BMP)及びレチノイン酸(RA)の存在下で培養することを含む、PGC/PGCLCから卵母細胞を誘導する方法を提供する。

Description

本発明は、始原生殖細胞もしくは始原生殖細胞様細胞の維持増幅方法、当該細胞からの卵子形成の誘導方法、並びにそのための試薬等に関する。
発生生物学における主要な課題は、必須の発生経路をインビトロで再構成することであり、これは、新たな実験の機会を提供するだけでなく医学的応用の基礎としても役立つものである。本発明者らは以前、アクチビンA及び塩基性線維芽細胞増殖因子(bFGF)を含むサイトカインを用いて、胚性幹細胞(「ES細胞」、「ESC」と略記する場合がある)/人工多能性幹細胞(「iPS細胞」、「iPSC」と略記する場合がある)をエピブラスト様細胞(「EpiLC」と略記する場合がある)へ誘導し、その後、BMP4を含むサイトカインを用いて、始原生殖細胞(「PGC」と略記する場合がある)様細胞(「PGC様細胞」、「PGCLC」と略記する場合がある)へと誘導する培養系を確立した(例えば、特許文献1、非特許文献1を参照)。さらに、該PGCLCを新生仔マウスの卵嚢下に移植して卵子に分化させ、そこから正常な子孫を得ることに成功した(非特許文献2)。また、多能性幹細胞(「PSC」と略記する場合がある)からPGCLCを経て卵子をインビトロで誘導することにも成功している(非特許文献3)。
しかしながら、PGC/PGCLCは、試験管内で増殖及び分化をコントロールすることが難しく、研究を進める上で大きな問題となっている。
フォルスコリンがPGCの増殖に有効であることが報告されている(非特許文献4)。フォルスコリンはアデニル酸シクラーゼを活性化し、細胞内cAMPレベルを上昇させる。減数分裂の休止には細胞内cAMPレベルが関与するとされているが、フォルスコリンの添加のみで十分なcAMPレベルの上昇及びPGCの増殖が起こるかについては不明のままである。
一方、卵子形成誘導については、従来法はいずれも生殖巣の体細胞を必要とするが、当該細胞から供給されるどの因子が実際に卵子形成に寄与するのかが不明であるばかりでなく、胎生期の生殖巣由来の体細胞を用いるため、ヒト等の他の動物種においてはその採取がきわめて困難であるという問題がある。
国際公開第2012/020687号
Hayashi,K.,Ohta,H.,Kurimoto,K.,Aramaki,S.& Saitou,M.Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells.Cell1 46,519−532(2011). Hayashi,K.et al.Offspring from oocytes derived from in vitro primordial germ cell−like cells in mice.Science 338,971−975(2012). Hikabe O,Hamazaki N,Nagamatsu G,Obata Y,Hirao Y,Hamada N,Shimamoto S,Imamura T,Nakashima K,Saitou M,Hayashi K.Reconstitution in vitro of the entire cycle of the mouse female germ line.Nature.2016 Nov 10;539(7628):299−303. Farini D,Scaldaferri ML,Iona S,La Sala G,De Felici M.Growth factors sustain primordial germ cell survival,proliferation and entering into meiosis in the absence of somatic cells.Dev Biol.2005 Sep1;285(1):49−56.
従って、本発明の目的は、生殖巣の体細胞を用いることなく、PGC/PGCLCを試験管内で増殖させる培養系並びに当該細胞から卵子形成を誘導できる培養系を提供することである。
本発明者らは、上記の目的を達成すべく、マウスESCから誘導したPGCLCを用い、約2000の化合物ライブラリーをスクリーニングした結果、PGCLCの増殖を顕著に増大させた上位25の化合物の中に、PGCの増殖を支持することが既知のフォルスコリンやレチノイン酸(RA)シグナリングアゴニストに加え、ホスホジエステラーゼ4(PDE4)阻害薬が数多く含まれることを見出した。PDE4阻害薬はcAMPの加水分解を阻害することで細胞内cAMPレベルを上昇させることから、本発明者らは、該阻害薬とフォルスコリンとの併用効果について検討した。その結果、PDE4阻害薬とフォルスコリンとは、相乗的にPGCLCの増殖を平均で約25倍(最大約50倍)、E9.5のPGCの増殖を平均で約8倍にまで増大させた。
さらに、本発明者らは、前記スクリーニングで同定された他の化合物をさらに併用することにより、PGC/PGCLCの増殖効率をより改善し得るかどうかを調べた。その結果、PDE4阻害薬とフォルスコリンに加えて、シクロスポリンAを用いることにより、PGCLC及びPGC(E9.5)の増殖を、平均でそれぞれ約50倍及び約16倍にまで増大させることに成功した。
しかも、いずれの場合においても、増幅中、PGCLCは、親のインプリントを含むすべてのゲノム領域においてDNAメチロームを進行的に消去し、どちらの性でもないPGCとしての特性を維持しつつ、生殖細胞におけるゲノムワイドなDNA脱メチル化を忠実に再現した。
さらに、本発明者らは、上記増幅培養したPGCLCを用い、生殖巣体細胞の非存在下、インビトロで雌性分化を可能にする培養系の検討を行った結果、RAと骨形成タンパク質(BMP)を同時に作用させることで、卵母細胞様細胞を誘導することに成功した。この卵母細胞様細胞は卵母細胞と同様な減数分裂像を示し、網羅的遺伝子発現解析の結果、その遺伝子発現は胎生期の卵母細胞に酷似することが明らかとなった。また、この方法によれば、90%以上のPGCLCを卵母細胞様細胞に分化させ得ることが示された。重要なことに、本発明者らは、この雌性生殖細胞への分化誘導には、適切に増殖させたPGC/PGCLCで観察されるが、誘導直後のPGC/PGCLCでは観察されない、関連遺伝子の脱メチル化により特徴づけられる、適切な細胞のコンピテンスが必要であることを明らかにした。
本発明者らは、これらの知見に基づいて、図15に示すような生殖細胞における雌性への性分化のメカニズムのモデルを構築し、本発明を完成するに至った。
すなわち、本発明は以下のとおりである。
[1]PGC又は単離されたPSC由来のPGCLCの維持増幅方法であって、PGC又はPGCLCをPDE4阻害薬及び/又はシクロスポリンAの存在下で培養することを含む、方法。
[2]PGC又はPGCLCを、フォルスコリンをさらに含む条件下で培養することを含む、[1]に記載の方法。
[3]PDE4阻害薬及び/又はシクロスポリンAを含有してなる、PGC又はPGCLCの維持増幅用試薬。
[4]フォルスコリンを組み合わせてなる、[3]に記載の試薬。
[5]PGC又はPGCLCから卵母細胞を誘導する方法であって、PGC又はPGCLCを、BMP及びRAの存在下で培養することを含む、方法。
[6]BMPがBMP2、BMP5及びBMP7から選ばれる1以上である、[5]に記載の方法。
[7]BMP及びRAを組み合わせてなる、PGC又はPGCLCから卵母細胞を誘導するための試薬。
[8]BMPがBMP2、BMP5及びBMP7から選ばれる1以上である、[7]に記載の試薬。
[9]PGC又はPGCLCから卵母細胞を誘導する方法であって、
(a)PGC又はPGCLCをPDE4阻害薬及び/又はシクロスポリンAの存在下で培養し、PGC又はPGCLCを維持増幅すること、並びに
(b)工程(a)で得られたPGC又はPGCLCを、BMP及びRAの存在下で培養するBMP及びRAの存在下で培養することを含む、方法。
本発明によれば、PGC/PGCLCから試験管内において卵子を作製できる可能性があり、不妊症に関する基礎研究への展開、生殖補助医療への応用が期待される。
図1は、PGCLC増殖を刺激する化合物の同定について示す。A)PGCLCを用いた化合物ライブラリー・スクリーニングの実験手順。B)化合物ライブラリー・スクリーニング(10μM)の結果の散布図。セルアナライザーで検出した、各化合物に対するBlimp1−mVenus(BV)シグナルの倍数差(d7/d1)をプロットした。陰性対照についての平均値(赤線)及び3SD(標準偏差;赤色点線)を示す。PDE4阻害薬、RARアゴニスト及びフォルスコリンについての結果を、オレンジ色、青色及び緑色でそれぞれ示す。C)代表的なPDE4阻害薬(GSK256066,10μM)によるPGCLC増殖の刺激。スクリーニングの7日目における96ウェルプレートの温度分布図(heatmap image)(上図)について、GSK256066を含有しているウェル(青色の四角)のBV蛍光像を増幅した(左下図及び右下図)。スケールバー:(左図)1mm;(右図)100μm。D)スクリーニング(10μM)における上位25化合物(>+3SDs)のカテゴリーを分類している円グラフ。E)スクリーニング(10μM)において、PGCLC増殖/生存に悪影響を及ぼす426化合物(<−3SD)のカテゴリーを分類している円グラフ。 図2は、PGCLCの増幅培養システムの確立について示す。A)PGCLC増殖におけるフォルスコリン及びロリプラムの影響。d4 PGCLCを、基礎培地(10% KSR、2.5% FCS及び100ng/ml SCFを含むGMEM)を用い、m220−5フィーダー(NC;陰性対照)上で培養し、10μMのフォルスコリン(F10)、ロリプラム(R10)及びフォルスコリン・ロリプラムの両方(FR10)が、PGCLC増殖に及ぼす影響を調べた。PGCLC数を、培養3日目(c3)、5日目(c5)、7日目(c7)及び9日目(c9)に計数した。プレートに播種された(plated)PGCLC数に対する、各時点でのPGCLC数の倍数増加の平均を、標準偏差と共に示す(n=3)。B)FR10を含んだ、d4 PGCLCの代表的な培養。写真(明視野(BF)、Blimp1−mVenus(BV)及びStella−ECFP(SC)の像)及びBVSC FACSプロット(培養液中の生存している単一細胞)を培養1日目(d4c1)、3日目(d4c3)、5日目(d4c5)及び7日目(d4c7)に取得した。スケールバーは100μm。C)(左図)雄(BVSC R8、BDF1−2、BCF1−2)及び雌(H14、H18)のESC株から誘導したPGCLCのFR10による増幅。最初にプレートに播種したPGCLC数に対するd4c7時点でのPGCLCの倍数増加を、各ESC株の各実験についてプロットした。平均値を赤色のバーで示す。(右図)左のパネルで測定したように、E9.5PGCをFR10によって増幅した。D)培養したPGCLC(BV:緑色)を、phalloidin(赤色)で染色した。スケールバーは20μm。E)d4 PGCLCの細胞内cAMP濃度の上昇に及ぼすFR10の影響。3つの独立した実験に由来する、標準偏差と共に平均値を示す。F)〜H)培養されたPGCLCs(F)及び雄の胚性生殖細胞(G)の細胞周期の状態。表示する細胞型の、FACS分析による、細胞周期の状態についての代表的なプロットを示す。縦軸はBrdUの取り込みを表わし、横軸はDNA含有量(7AAD)を表わす。S期、G2/M期及びG1期の細胞を、各集団のパーセンテージと共に、紫色、青色及び赤色で、それぞれ示す。3つの独立した実験に由来する、標準偏差と共に平均値を(H)に示す。 図3は、培養されたPGCLCによる頑健な精子形成を示す。A)W/W精巣(左図、未移植)、BDF1−2(中図)又はBCF1−2(右図)ESC株から誘導した、d4c7 PGCLCを移植後、7ヶ月。B)〜D)d4c7 PGCLC(BDF1−2)を移植され、精子形成を示す精細管(B、C)及びその結果として得られた精子(D)。E)〜G)移植を受けた精巣(E、F)及び尾部精巣上体(G)の切片のヘマトキシリン及びエオシン(HE)染色。H)〜K)レシピエント・マウスの尾部精巣上体から採取した精子(H)を用いた、in vitro受精(IVF)。結果として得られた2細胞胚(I)及びその子(J、K)を示す(Jは正常な胎盤が付いている)。L)〜N)d4c7 PGCLCs(BDF1−2)を移植したレシピエントW/Wマウスの生殖能力。レシピエントW/Wマウスの生殖能力を、自然交配によって確認した(L)。(M)d4c7 PGCLCsを移植したレシピエントW/Wマウスの子供(litter)のサイズ。平均値を赤色のバーで示す。(N)d4c7 PGCLCに由来する子供の、BV及びSC導入遺伝子の遺伝子型。データ情報:スケールバーは、(A)1mm;(B)2mm;(C,E)0.5mm;(D)20μm;(F、G、I)100μm;(H)25μm。 図4は、培養されたPGCLCのトランスクリプトーム解析を示す。A)d4c7 PGCLCs[Blip1−mVenus(BV)陽性]におけるDDX4(上図)、DAZL(中図)及びOCT4(底図)レベルの免疫蛍光(IF)分析を、E13.5雄性生殖細胞と比較した。中央の列において、d4c7 PGCLCについて、緑色の点線で輪郭を描写した。デンシトメトリー[DDX4(n=48)、DAZL(n=77)、OCT4(n=61)]で測定した、E13.5雄性生殖細胞における平均レベルに対する、d4c7 PGCLCのレベルの比を、右に示す(平均を赤色のバーで示す)。スケールバーは5μm。B)表示する細胞のトランスクリプトームのPCA。C)、D)d4c7 PGCLC及びE13.5雄性/雌性生殖細胞における、上方(C)/下方(D)調節された遺伝子のオーバーラップを示すベン図を、d6 PGCLCと比較した。各カテゴリーにおける遺伝子数を示す。E)PGCLC培養又は生殖細胞発達(E9.5−E13.5)の過程における、d6及びd4c7 PGCLC間での、発現レベル差のボックスプロット[中央値(横線)、25th及び75thパーセンタイル(ボックス)並びに5th及び95thパーセンタイル(エラーバー)]を、DEGのd6 PGCLCs(log倍の差)と比較した。色が示すものは、表示の通り。F)d6(x軸)及びd4c7(y軸)PGCLCと比較した、E13.5生殖細胞(雄性又は雌性におけるより大きい値)におけるlog発現レベル変化の散布図。d6 PGCLCと比較して、d4c7における上方調節された遺伝子を、赤色のオープンサークル(“d4c7/d6>2”)で示し、x>1(即ち、d6 PGCLCと比較して、E13.5生殖細胞で上方調節されている)場合、E13.5生殖細胞及びd4c7 PGCLC間の倍数差によって分類される;「E13.5で完全に活性化した」(E13.5生殖細胞で上方調節されている、黄色);「d4c7で完全に活性化した」(2倍差以内、シアン色);及び「d4c7で過剰に活性化した」(E13.5生殖細胞で下方調節されている、灰色)。代表的な遺伝子及び選択されたGOタームを示す。既報の「生殖系列遺伝子」(Weber et al,2007;Borgel et al,2010;Kurimoto et al,2015)又は他の関連遺伝子を、それぞれ赤色又は青色とした。 図5は、培養されたPGCLCのキー・エピジェネティック特性を示す。A)d4c7PGCLC[Blimp1−mVenus(BV)陽性]における5mC(上図)、H3K27me3(中図)及びH3K9me2(底図)のIF分析を、EpiLCと比較した。中央の列において、d4c7 PGCLCを、緑色の点線で輪郭を描写した。デンシトメトリー[5mC(n=49)、H3K27me3(n=44)、H3K9me2(n=46)]で測定した、EpiLCにおける平均と比べた、d4c7 PGCLCの相対的レベルを、右に示す(平均を赤色のバーで示す)。スケールバーは5μm。B)d4c7 PGCLCs(BV陽性)におけるDNMT1、DNMT3A、DNMT3B及びUHRF1のレベルのIF分析を、EpiLCと比較した。中央の列において、d4c7 PGCLCを、緑色の点線で輪郭を描写した。デンシトメトリー[DNMT1(n=57)、DNMT3A(n=56)、DNMT3B(n=51)、UHRF1(n=55)]で測定した、EpiLCにおける平均と比較したときの、d4c7 PGCLCにおける相対的なレベルを、右に示す(平均を赤色のバーで示す)。スケールバーは5μm。C)表示された細胞型における、Prdm14(左図)及びHoxbクラスター(右図)周辺の100−kb領域における、ChIP−seq(H3K4me3、H3K27ac及びH3K27me3)並びに5mCレベルのトラック図(tracks)。d4c7 PGCLCsは、ピンク色の陰影を付けた。転写開始部位(TSSs)を点線で示す。 図6は、培養されたPGCLCにおけるDNAメチル化の消去を示す。A)d6、d4c3、d4c7 PGCLCs並びにE10.5及びE13.5雄性生殖細胞における5mCレベルを、EpiLCにおけるそれと比較した散布図。2−kbの特有のゲノム領域(等高線プロット、上図)、ICRs及び「生殖系列遺伝子」(n=102)(中図)並びに反復コンセンサス配列(底図)の5mCレベルを示す。後者の2つについては、プロモーターの5mCレベルと一緒に示す。等高線は、100領域の間隔で描き、黄色の点線は、原点と頂点を繋ぎ、及び傾きを示す。色が示すものは、表示の通り。B)E10.5雄性PGC及びd4c3 PGCLCsの間、並びにE13.5雄性生殖細胞及びd4c7 PGCLCの間での、5mCレベルを比較した散布図。色が示すものは、A)におけるものと同じ。C)d6及びd4c7 PGCLC間で脱メチル化されたプロモーターの定義;d6においては、5mC>20%、d4c7においては、<20%(赤色オープンサークル、n=7,737)。D)プロモーターDNAの脱メチル化と、d6及びd4c7 PGCLC間で異なって発現した遺伝子との間のオーバーラップを示すベン図。d6及びd4c7 PGCLCの間で、脱メチル化したプロモーターを、LCP及び非LCPにおいて分類する。各カテゴリーにおける遺伝子数を示す。 図7は、培養されたPGCLCにおけるヒストン修飾動態を示す。A)EpiLC及びd6 PGCLC間(左図)、並びにd6及びd4c7 PGCLC間(右図)で、log H3K27acレベルを比較した散布図。d4c7及びd6に偏ったH3K27acのピークを、それぞれ、オレンジ色及びシアン色で示す。B)ペアワイズ比較におけるH3K27acレベルの相関係数の温度分布図。色が示すものは、表示の通り。C)d4c7 PGCLCs(d6においては、5mC>20%及びd4c7においては、<20%、赤色オープンサークル)単独、並びにd6及びd4c7 PGCLC(d6及びd4c7においては、5mC<5%、青色オープンサークル)の両方における、プロモーター脱メチル化/非メチル化の定義。D)全遺伝子(左図、黒色)、d4c7 PGCLCにおいてのみ、プロモーターが脱メチル化された遺伝子(中図、赤色)並びにd6及びd4c7 PGCLCの両方において、プロモーターが脱メチル化/非メチル化遺伝子(右図、青色)のTSS周辺における、d6及びd4c7 PGCLC間で、log H3K27me3レベルを比較した散布図。E)ESC、EpiLC並びにd6及びd4c7 PGCLCにおける二価遺伝子の数。F)PGCLC誘導及び増幅の間における、表示されたGOターム富化の推移。 図8は、培養された雌性PGCLCにおけるX染色体の再活性化を示す。A)PGCLC誘導の間、雌性PGCLCにおいて1本のX染色体が失われた。(左図)DNA FISHによって、Huwelを染色した雌性EpiLCの代表的な像。XX及びXO EpiLCを、それぞれ、青色及びオレンジ色の点線で囲い輪郭を描写した。(右図)2つの雌性ESC株(H14及びH18)に由来し、PGCLC誘導/増幅の間のX染色体数。スケールバーは、25μm。B)Huwel及びH3K27me3について二重染色した、培養された雌性PGCLCにおける、X染色体の再活性化の評価。(左図)HuwelのDNA FISH及びH3K27me3の免疫蛍光の代表的な像。2本のX染色体を保持している細胞において、X染色体の再活性化を評価した。(右図)雌性MEF及びd4/d4c3/d4c7 PGCLCにおける、Huwel及びH3K27me3シグナルの分析。スケールバーは、5μm。C)PGCLC誘導/増幅の間のエピジェネティック調節のモデル。(左図)in vivo、E9.5〜E13.5、雄性及び雌性生殖細胞の両方が、大幅に増殖し(〜>100倍増幅)(Tam & Snow,1981;Kagiwada et al,2013)、包括的にDNAメチロームを消去する。その間、E11.5あたりから、生殖腺体細胞からのシグナルを受け取り、完全に「生殖細胞系列」遺伝子を獲得し、雄性又は雌性分化を開始する[Spiller & Bowles,2015に概説されている]。(右図)d4からd4c7 PGCLCsにまで増幅培養する間(〜20倍増幅)、PGCLCは、in vivoにおいて、PGCs/生殖細胞として、包括的にDNAメチロームを消去する。しかしながら、生殖腺体細胞からのシグナルに対応する、きっかけを欠いているために、PGCLCは、キーとなる遺伝子周辺で、少なくとも部分的には、H3K27me3レベルの補償的な上方調節を介して、本質的に初期の転写特性を保持しており、それゆえ、「生殖細胞系列遺伝子」、及び雄性/雌性特性を中程度に獲得する。本研究において分析した遺伝子の発現の要約、5mC、H3K4me3及びH3K27me3レベルについての、データセットEV7を参照。 図9は、雌性生殖細胞への運命決定を誘導する因子のスクリーニングを示す。A(左)雌性生殖細胞の運命を誘導する因子のスクリーニングのスキーム。Blimp1−mVenus(BV);Stella−ECFP(SC);Dazl−tdTomato(DT)(XY)またはBVSC;mVH−RFP(VR)(XX)ESCsより誘導されたd4/c0 PGCLC(BV(+)細胞)をm220フィーダー細胞上にFACSでソートし、フォルスコリン、ロリプラムおよびSCF存在下で10%KSR(GK10)および2.5%ウシ胎仔血清(FCS)を含むGMEMで培養した(Ohta et al,2017)。スクリーニング用のサイトカイン/化学物質はc3から提供された(フォルスコリン、ロリプラムおよびSCFは培養を通して提供された)。(右)RNA−Seq(Sasaki et al,2015;Yamashiro et al,2016;Ohta et al,2017)で測定された、d4 PGCLCならびにE9.5からE13.5の生殖細胞(E12.5およびE13.5の雌性生殖細胞)におけるDazlおよびDdx4の発現。2つの複製の平均を示す。B(左上)FACSのスキーム。c7でBV(+)細胞間のDTレベルを解析した。(右)示された条件での培養についてのFACSの結果。数値は示されたゲート内のDT(+)細胞のパーセンテージを示す。示されたサイトカインの濃度は500ng/mlである。(左下)スクリーニングの結果の概要。示された条件下におけるBV(+)細胞間でのDT(+)細胞のパーセンテージを示す。C、D(左)示された条件下でのc9細胞(BVSCVR)の代表的なFACSプロット。上のプロットの囲まれた領域[SC(+)細胞]は、下のプロットのBVおよびVRと分離された。E15.5一次卵母細胞のBVSCプロットをCに示す。(右)示された条件下でのVR(+)細胞のパーセンテージ。2つの独立した試験の平均および標準偏差(SD)を示す。E DAPIで染色した、E15.5胎児卵母細胞におけるDDX4およびSCP3の発現(右)、ならびにBVSC ESCs(XX)から誘導されたc9 RAB2細胞[BV/SC(+)](左)。スケールバーは20μm。F BVSC ESCs(XX)から誘導されたc9 RAB2細胞[左パネル:BV/SC(+)/SCP3(+)卵母細胞嚢胞様構造]におけるTEX14の発現(矢印)(挿入図は囲まれた領域を増幅したもの)、およびE15.5での胎児卵母細胞におけるTEX14の発現。スケールバーは10μm。 図10は、BMPおよびRAによるPGCLCにおける雌性運命決定の誘導を示す。A コントロール(左)、RA(100nM)を用いた(中央)、ならびにRA(100nM)およびBMP2(300ng/ml)を用いた(右)条件下でのc5、c7およびc9におけるPGCLC培養の代表的なFACSプロット[上:Blimp1−mVenus(BV);Stella−ECFP(SC)の発現;下:BV;mVH−RFP(VR)の発現]。上パネルにおいて囲まれたSC(+)細胞を下のパネルで分析し、囲まれた領域の細胞のパーセンテージとともに示す。B RA(100nM)およびBMP2(300ng/ml)を用いたPGCLC培養中のc5、c7およびc9でのBV/SC(+)細胞のBVSC蛍光(左)およびSCP3/STRA8/DAZLの発現(右)。挿入図は左パネルの囲まれた領域を増幅したものである。スケールバーは40μm(左)、10μm(左、挿入図)および20μm(右)。C IF解析に基づく、c5、c7およびc9でのBV/SC(+)細胞間でのSTRA8(+)およびSCP3(+)細胞のパーセンテージ。2つの独立した試験の平均および標準偏差(SD)を示す。D 減数分裂前期に入ることの同時性。縦軸はコロニー数を示す。横軸はBV/SC(+)コロニー内のSCP3(+)細胞のパーセンテージを示す。2以上の細胞からなるコロニーをカウントした。SCP3が発現している、またはしていない代表的なコロニーのイメージを右に示す。スケールバーは20μm。E コントロール培養ならびにRA(100nM)およびBMP2(300ng/ml)を用いた培養間でのBV(+)細胞の数。1,500BV(+)d4 PGCLCを培養0日目に播種した。1つのドットは5つの複製された培養ウェルの平均を表し、バーはドットの平均を示す。F EdUおよび7AAD取り込みによって分析された、コントロール、RA(100nM)を用いた、ならびにRA(100nM)およびBMP2(300ng/ml)を用いた条件下で培養された、c5、c7およびc9でのPGCLCの細胞周期。G RAおよびBMP2を用いたc9でのSCP3/cH2AX/SCP1発現のスプレッド分析(Meuwissen et al,1992;Yuan et al,2000;Mahadevaiah et al,2001)により試験された減数分裂の進行。示されたステージでの細胞のパーセンテージを示す。スケールバーは20μm。 図11は、BMPおよびRAによるPGCにおける雌性運命決定の誘導を示す。A PGC培養のスキーム。フォルスコリン、ロリプラムおよびSCFを用いてm220フィーダー細胞上でStella−EGFP(SG)(+)細胞を培養した。RA(100nM)および/またはBMP2(300ng/ml)はc0に提供された。B 示された条件下におけるc4でのDDX4/SCP3/SGの発現。スケールバーは20μm。C DDX4(+)細胞間でのSCP3(+)細胞のパーセンテージ。複製されたウェルの平均およびSDを示す。D E11.5胎児卵巣培養のスキーム。BMS493(10μM)またはLDN1931189(500nM)はc0に提供された。E 示された条件下でのc4におけるDDX4/SCP3の発現。スケールバーは20μm。F DDX4(+)細胞間でのSCP3(+)細胞のパーセンテージ。2つの独立した試験の平均およびSDを示す。G 妊娠したマウスにおけるLDN1931189投与(2.5mg/kg、12時間毎)のスキーム。H 水(対照)またはLDN1931189(G)を投与した胚性卵巣における、E14.5でのDDX4/SCP3の発現。スケールバーは20μm。I DDX4(+)細胞間でのSCP3(+)細胞のパーセンテージ。生殖腺の2つの前方および2つの後方領域における平均およびSDを示す。J 水(対照)またはLDN1931189(G)を投与した雌性または雄性VR(+)細胞の、FACSで解析したE14.5での相対mVH−RFP(VR)強度。対照の細胞のVR強度を100としている。K 水(対照)またはLDN1931189(G)を投与した雌性または雄性VR(+)細胞における、qPCRで解析したE14.5での遺伝子の相対的な発現レベル。対照の細胞のレベルを100としている。ND、不検出。 図12は、PGCLC/PGCの雌性性決定の間のトランスクリプトームを示す。A 少なくとも1つのサンプル(15,849の遺伝子)においてlog(RPM+1)>2である遺伝子を用いた、示された細胞のUHC(フォード法)および主な遺伝子の発現レベルのヒートマップ。ct:RAまたはBMP2を用いずに培養されたPGCLC。色分けを示す。B in vivo(E9.5−E11.5 PGC、E12.5−E15.5雄性および雌性生殖細胞)およびin vitro(培養されたPGCLC)での生殖細胞のPCA。紫色の点線の円は、PGC(E9.5、E10.5、E11.5)およびPGCLC(c0、c3、c9)をクラスター化したものである。赤色の点線の円は、胎児卵母細胞(E14.5、E15.5雌性生殖細胞)およびc9 RAB2細胞をクラスター化したものである。青、赤、ピンクおよび黄色は、それぞれ、雄性生殖細胞、雌性生殖細胞、RAを用いて培養されたPGCLCおよびRAB2を用いて培養されたPGCLCを表す。C(上)E14.5雄性および雌性生殖細胞(左)、ならびにE14.5雌性生殖細胞およびE9.5生殖細胞(右)間での遺伝子発現を比較した散布図。オレンジ、緑、赤、青およびグレーのドットは、それぞれ、初期PGC遺伝子[318遺伝子:logfold−change:E9.5−雄性/雌性E14.5>2,E9.5のlog(RPM+1)>4]、後期生殖細胞遺伝子[254遺伝子:log fold−change:雄性/雌性E14.5−E9.5>2、雄性/雌性E14.5のlog(RPM+1)>4]、胎児卵母細胞遺伝子[476遺伝子:log fold−change:雌性E14.5−雄性E14.5>2、雌性E14.5−E9.5>2、雌性E14.5のlog(RPM+1)at>4]、PSG遺伝子[323遺伝子:log fold−change:雄性E14.5−雌性E14.5>2,雄性E14.5−E9.5>2、雄性E14.5のlog(RPM+1)>4]、および分類されていない遺伝子を示す。(左下)in vivoおよびin vitroでの生殖細胞における、初期PGC遺伝子(オレンジ)、後期生殖細胞遺伝子(緑)、胎児卵母細胞遺伝子(赤)、PSG遺伝子(青)発現のヒートマップ。(右下)GOエンリッチメント(P値が示されている)および各遺伝子クラスの主な遺伝子。D 示された細胞における胎児卵母細胞遺伝子(左)および後期生殖細胞遺伝子(右)レベルのボックスプロット[平均(横線)、25および75パーセンタイル(ボックス)、ならびに5および95パーセンタイル(エラーバー)を示す]。E PGCLC/PGCの女性性決定の間の主な遺伝子の発現[log(RPM+1)]。2つの複製の平均を示す。紫、緑およびオレンジ色で塗りつぶされた丸および赤い丸は、それぞれ、E9.5PGC、E14.5胎児卵母細胞、c9 RAB2細胞およびc9 RA細胞を表す。遺伝子名の上にある線は、(C)に示すように色分けされている。 図13は、雌性性決定におけるSTRA8の機能を示す。A RAB2を用いた、c3、c5、c7およびc9での野生型(WT)およびStra8ノックアウト(SK1)PGCLCの代表的なFACSプロット(BVSC)。B(A)に示す培養中、FACSにより推定されたStella−ECFP(SC)(+)細胞の数。初期BV(+)細胞数(c0)は5,000であった。2つの独立した試験の平均およびSDを示す。C EdUおよび7AAD取り込みにより分析した、コントロール(上)またはRAB2(下)を用いた条件下で培養したc9のWTおよびPGCLCの細胞周期。D示された細胞のPCA。矢印はWTとSK1細胞との間の違いを強調するものである。赤い点線の円は、胎児卵母細胞(E14.5、E15.5雌性生殖細胞)およびc9 RAB2細胞をクラスター化したものである。E RAB2を用いて培養したc5、c7およびc9でのWTとSK1細胞との間のDEGの数[log(RPM+1)>4,log(fold−change)>2]。F(上)WTおよびSK1細胞の間での遺伝子発現の散布図の比較、ならびにDEGの選択されたGOターム。4つの遺伝子クラスの色分けを示す。(下)WTとSK1 c9 RAB2細胞との間の胎児卵母細胞遺伝子または後期生殖細胞遺伝子間のNon−DEG[log(fold−change)<1]およびそれらの選択されたGOターム。胎児卵母細胞遺伝子および後期生殖細胞遺伝子について、それぞれ、合計で、476個中153個(約32.1%)および254個(約64.6%)の遺伝子がnon−DEGである。G 示された細胞における胎児卵母細胞遺伝子、後期生殖細胞遺伝子およびRA遺伝子レベルのボックスプロット[平均(横線)、25および75パーセンタイル(ボックス)、ならびに5および95パーセンタイル(エラーバー)を示す]。c9 KO、RAB2を用いたc9 SK1細胞;c9 WT細胞、RAB2を用いたc9 WT細胞。H RAB2培養中のWTおよびSK1細胞における主な遺伝子の発現[log(RPM+1)]。2つの複製の平均を示す。色分けを示す。 図14は、雌性生殖細胞の運命決定のための細胞のコンピテンスを示す。A 実験のスキーム。Ct:対照;RB:d4/c0またはc7から48時間、RAB2を培養。B 示された細胞のPCA。黒または赤で囲まれた黄色の円は、それぞれ、d4/c0、c0 Ctおよびc0 RBまたはc7、c7 Ctおよびc7 RB細胞を表す。黒または黄色の矢印は、CtまたはRB培養細胞を示す。C c0 RBおよびCt培養の間(左)、ならびにc7 RBおよびCt培養の間(右)のDEGの数。D c7 CT細胞と比較して、c7 RB細胞においてアップレギュレーションされた218の遺伝子についてのGOターム。E c0 Ct/RB(左)およびc7 Ct/RB(右)細胞における発現、ならびにc0(左)およびc7(右)細胞(Shirane et al,2016;Ohta et al,2017)におけるプロモーター−5mCレベルとの間の関係の散布図。赤と青の円は、それぞれ、d4/c0とc7のPGCLCの%5mCの差が>20%(42遺伝子)または<20%(110遺伝子)である“減数分裂”遺伝子(GO:0007126)(D)を示す。赤で囲まれた黒丸は、C7 RB細胞でlog(RPM+1)>5の遺伝子を示す。太字は、c0 RB細胞でlog(RPM+1)>5の遺伝子を示す。F 示された細胞における“減数分裂”遺伝子のレベルのボックスプロット[平均(横線)、25および75パーセンタイル(ボックス)、ならびに5および95パーセンタイル(エラーバー)を示す]。*統計的有意差[スチューデントt検定、P<0.05]。色分けは(E)と同様である。G 初期から後期(E9.5からE11.5)のPGC移行中の減数分裂減数分裂(減数分裂)遺伝子の発現差異(左)とd4/c0からc7 PGCLC培養中のそれらの発現差、およびc7からc7 RAB2 PGCLC培養中のPGCからE13.5雌性生殖細胞移行期の後期(右)の関係の散布図。色分けと太字は(E)と同様である。相関係数を示す。H “減数分裂”遺伝子発現に基づく、E9.5 PGC、E11.5 PGC、E13.5雌性および雄性生殖細胞、d4/c0 PGCLC、c7 PGCLCおよびc7 RAB2 PGCLCのPCA。 図15は、マウス生殖細胞における雌性性決定機構のモデルを示す。A胚盤葉からの胎児卵母細胞の分化のための、細胞運命の移行およびシグナリング要件のモデル。エピブラストからのPGC特定は、BMPシグナリングに依存する(Lawson et al,1999;Saitou et al,2002;Ohinata et al,2009)。初期から後期にかけてのPGCの成熟は、SCFおよびcAMPシグナリングを介したPGC伝播と相まって、受動的および能動的メカニズム(Yamaguchi et al、2012;Kagiwada et al、2013)によって、主なプロモーターのDNA脱メチル化に依存する。後期PGCから胎児一次卵母細胞への分化は、BMPおよびRAシグナリングに依存する。B BMPとRAシグナリングの役割のモデル。BMPおよびRAシグナリングは、初期PGC遺伝子(例えば、Prdm1、Prdm14、Tfap2c、Pou5f1、Sox2、NanogおよびEsrrb)の抑制および後期の生殖細胞遺伝子(例えば、Ddx4、Dazl、Piwil2、Mov10l1、およびMael)および胎児卵母細胞遺伝子(例えば、減数分裂遺伝子としてStra8、Rec8、Sycp3、Hormad1および卵母細胞発生遺伝子としてFigla、Ybx2、Sohlh2)のアップレギュレーションに寄与する。BMPシグナル伝達により、STRA8は減数分裂遺伝子の発現を促進し、RAシグナリング(RA遺伝子)によって誘導される発達遺伝子の異所性発現を阻害する。STRA8は、後期生殖細胞遺伝子および卵母細胞発生遺伝子に有意な影響を及ぼさない。BMPシグナル伝達なしでは、STRA8は減数分裂の遺伝子を完全にアップレギュレートすることができず、減数分裂の進入を誘導することもできない。BMPおよびRAシグナリングは前精原細胞遺伝子をアップレギュレートしない。 図16は、シクロスポリンA(CsA)がPGCLCの増殖を促進可能であることを示す。A)化合物ライブラリー・スクリーニング(左:10μM,右:1μM)の結果の散布図。各化合物に対するBVシグナルの倍数差(d7/d1)をプロットした。陰性対照についての平均値(赤線)及び3SD(標準偏差;赤色点線)を示す。左の散布図は図1Bと同じ散布図で、CsAを示した。右の散布図は1μMの濃度を用いて化合物ライブラリー・スクリーニングを行い、CsAを示した。B)PGCLCの培養系におけるCsAの濃度検討。左から10μM,5μM,1μM,0μMのCsAをPGCLCに作用させ、倍数差(d7/d1)を示した。NC:陰性対象、PC:陽性対象(LIF)。5μMのCsAがPGCLCの増殖に至適であることがわかる。C)CsAの効果を調べるための実験手順。フォルスコリンおよびロリプラム(FR10)の存在下においてCsAの添加の有無の影響を調べた。D)PGCLCの増殖におけるCsAの影響。d4 PGCLCを、基礎培地(10% KSR、2.5%FCS及び100ng/ml SCFを含むGMEM)を用い、m220−5フィーダー上で培養し、FR10もしくはFR10にCsA(5μM)を添加し、PGCLCの増殖に及ぼす影響を調べた。PGCLC数を、培養3日目(c3)、5日目(c5)、7日目(c7)及び9日目(c9)に計数した。プレートに播種された(plated)PGCLC数に対する、各時点でのPGCLC数の倍数増加の平均を、標準偏差と共に示す(n=3)。E)FR10にCsAを添加した、d4 PGCLCの代表的な培養。写真(明視野(BF)、Blimp1−mVenus(BV)及びStella−ECFP(SC)の像を培養3日目(d4c3)、5日目(d4c5)、7日目(d4c7)及び9日目(d4c9)に取得した。F)FR10(左図)もしくはFR10にCsAを添加し培養したPGCLCsの細胞周期の状態(中央図)。右図にG1期、S期、G2/M期の平均を標準偏差と共に示す(n=3)。G)FR10(左図)もしくはFR10にCsAを添加し培養したPGCLCsの細胞死の状態(中央図)。右図にアポトーシスを起こした細胞の平均を標準偏差と共に示す(n=3)。H)FK506のPGCLCの増殖に及ぼす影響。左からそれぞれCsAもしくはFK506を10μM,5μM,1μM,0μMの濃度でPGCLCに作用させ、倍数差(d7/d1)を示した。NC:陰性対象、PC:陽性対象(LIF)。 図17は、CsA存在下で培養したPGCLCの遺伝子発現、エピジェネティック特性およびin vivo PGCにおけるCsAの効果を示す。A)表示する細胞のトランスクリプトームのPCA。B)CsA存在下で培養したd4c7 PGCLC[Blimp1−mVenus(BV)陽性]における5mC(上図)、H3K27me3(中図)及びH3K9me2(底図)のIF分析を、EpiLCと比較した。中央の列において、d4c7 PGCLCを、緑色の点線で輪郭を描写した。C)デンシトメトリー[FR10:5mC(n=53)、H3K27me3(n=56)、H3K9me2(n=51);+CsA:5mC(n=53)、H3K27me3(n=59)、H3K9me2(n=57)]で測定したd4c7 PGCLCの蛍光量を、EpiLCにおける平均と比べた相対的レベルを示す(平均を赤色のバーで示す)。D)in vivo PGCにおけるCsAの増殖効果。E9.5のPGCをFR10もしくはFR10にCsAを添加した培養液で培養し、最初にプレートに播種したPGC数に対するd4c5時点でのPGCの倍数増加を、プロットした(n=3)。 図18は、CsA存在下で培養されたPGCLCによる頑健な精子形成を示す。A)〜D)CsA存在下で培養したd4c7 PGCLCを精巣へ移植し、精子形成を示す精細管(A、B)及び移植を受けた精巣(C、D)の切片のヘマトキシリン及びエオシン(HE)染色。E)〜H)レシピエント・マウスの精巣から採取した精子(E)を用いた顕微授精実験(intracytoplasmic sperm injection;ICSI)。結果として得られた2細胞胚(F)及びその子(G、H)を示す(Gは正常な胎盤が付いている)。I)d4c7 PGCLCに由来する子供の、BV及びSC導入遺伝子の遺伝子型。PC:陽性対象。J)d4c7 PGCLCに由来する子供の体重変化(n=14)。生後1週間から4週間までの体重変化を示す(平均を赤色のバーで示す)。
[I]PGC/PGCLCの維持増幅方法
本発明は、PGC又は単離されたPSC由来のPGCLCのインビトロでの維持増幅方法(「本発明の方法(I)」と略記する場合がある)を提供する。当該方法は、PGC又はPGCLCをPDE4阻害薬及び/又はシクロスポリンAの存在下で培養することを特徴とする。
1.PGC/PGCLCの製造
1−1.PGCの製造
本発明で用いられるPGCは、例えばマウスの場合、例えば胎生(E)9.5〜11.5日の胚から、PGC特異的マーカー(例、Blimp1、Stella等)の発現を指標としてFACS等の手法により単離することができるが、これに限定されず、当該技術分野において自体公知のいかなる方法によっても単離することができる。あるいは、より初期のマウス胚から同様に単離したPGCを、下記1−2.に記載の方法により、移動期PGCに相当するステージまで培養して用いることもできる。マウス以外の哺乳動物についても、それぞれ上記マウスの胎齢に対応する胎齢の胚から、同様にして調製することができる。本明細書においては、以下、特にことわらない限り、PGCのステージをマウス胚の胎齢により代表して示すが、他の哺乳動物においては、マウス胚の胎齢にそれぞれ対応する胎齢として理解されるべきである。かかる換算は当該技術分野において周知である。
1−2.PSCからのPGCLCの製造
本発明で用いられるPGCLCは、単離されたPSCからインビトロで誘導され、かつPGCと同等の特性を有するものであればいかなるものであってもよいが、例えば、前記特許文献1及び非特許文献1に記載されるPGCLCが挙げられる。該PGCLCは、単離されたPSCから、以下に示す方法により、エピブラスト様細胞(EpiLC)を経由して製造することができる。
PGCLC製造の出発材料として使用するPSCは、未分化状態を保持したまま増殖できる「自己複製能」と、三つの一次胚葉すべてに分化できる「分化多能性」とを有する、単離された未分化細胞であればいずれでもよい。ここで「単離された」とは、生体内(インビボ)から生体外(インビトロ)の状態におかれたことを意味し、必ずしも純化されている必要はない。例えば、単離されたPSCとして、iPS細胞、ES細胞、胚性生殖(EG)細胞、胚性癌(EC)細胞などが挙げられるが、好ましくはiPS細胞又はES細胞である。
本発明の方法(I)は、いずれかのPSCが樹立されているか、樹立可能である、任意の哺乳動物種において適用することができる。このような哺乳動物の例として、ヒト、マウス、ラット、サル、イヌ、ブタ、ウシ、ネコ、ヤギ、ヒツジ、ウサギ、モルモット、ハムスター等が挙げられるが、好ましくはヒト、マウス、ラット、サル、イヌ等、より好ましくはヒト又はマウスである。
(1)多能性幹細胞の作製
(i)ES細胞
多能性幹細胞は自体公知の方法により取得することができる。例えば、ES細胞の作製方法としては、哺乳動物の胚盤胞ステージにおける内部細胞塊を培養する方法(例えば、Manipulating the Mouse Embryo:A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1994)を参照)、体細胞核移植によって作製された初期胚を培養する方法(Wilmut et al.,Nature,385,810(1997);Cibelli et al.,Science,280,1256(1998);入谷明ら,蛋白質核酸酵素,44,892(1999);Baguisi etal.,Nature Biotechnology,17,456(1999);Wakayama et al.,Nature,394,369(1998);Wakayama et al.,Nature Genetics,22,127(1999);Wakayama et al.,Proc.Natl.Acad.Sci.USA,96,14984(1999);RideoutIII et al.,Nature Genetics,24,109(2000))などが挙げられるが、これらに限定されない。また、ES細胞は、所定の機関より入手でき、さらには市販品を購入することもできる。例えば、ヒトES細胞株であるH1及びH9は、ウィスコンシン大学のWiCell Instituteより入手可能であり、KhES−1、KhES−2及びKhES−3は、京都大学再生医科学研究所より入手可能である。ES細胞を体細胞核移植により作製する場合、体細胞の種類や体細胞を採取するソースは下記iPS細胞作製の場合に準ずる。
(ii)iPS細胞
iPS細胞は、体細胞に核初期化物質を導入することにより作製することができる。
(a)体細胞ソース
iPS細胞作製のための出発材料として用いることのできる体細胞は、哺乳動物(例えば、マウス又はヒト)由来の生殖細胞以外のいかなる細胞であってもよい。例えば、角質化する上皮細胞(例、角質化表皮細胞)、粘膜上皮細胞(例、舌表層の上皮細胞)、外分泌腺上皮細胞(例、乳腺細胞)、ホルモン分泌細胞(例、副腎髄質細胞)、代謝・貯蔵用の細胞(例、肝細胞)、境界面を構成する内腔上皮細胞(例、I型肺胞細胞)、内鎖管の内腔上皮細胞(例、血管内皮細胞)、運搬能をもつ繊毛のある細胞(例、気道上皮細胞)、細胞外マトリックス分泌用細胞(例、線維芽細胞)、収縮性細胞(例、平滑筋細胞)、血液と免疫系の細胞(例、Tリンパ球)、感覚に関する細胞(例、桿細胞)、自律神経系ニューロン(例、コリン作動性ニューロン)、感覚器と末梢ニューロンの支持細胞(例、随伴細胞)、中枢神経系の神経細胞とグリア細胞(例、星状グリア細胞)、色素細胞(例、網膜色素上皮細胞)、及びそれらの前駆細胞(組織前駆細胞)等が挙げられる。細胞の分化の程度に特に制限はなく、未分化な前駆細胞(体性幹細胞も含む)であっても、最終分化した成熟細胞であっても、同様に本発明における体細胞の起源として使用することができる。ここで未分化な前駆細胞としては、例えば、脂肪由来間質(幹)細胞、神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)が挙げられる。
体細胞を採取するソースとなる哺乳動物個体の選択は特に制限されないが、最終産物としてGSCLCがヒト不妊などの疾患の治療に使用される場合には、移植片拒絶及び/又はGvHDを予防するという観点から、患者本人の細胞であるか、又は患者のHLA型と同一若しくは実質的に同一であるHLA型を有する他人から体細胞を採取することが好ましい。ここで「実質的に同一であるHLA型」とは、免疫抑制剤などの使用により、ドナー体細胞由来のiPS細胞から分化誘導することにより得られた細胞を患者に移植した場合に移植細胞が生着可能な程度にHLAの型が一致していることをいう。例えば、主たるHLA(HLA−A、HLA−B及びHLA−DRの主要な3遺伝子座、又はさらにHLA−Cwを含む4遺伝子座)が同一である場合などが挙げられる(以下同じ)。PGC様細胞をヒトに投与(移植)しないが、例えば、患者の薬剤感受性や副作用の有無を評価するためのスクリーニング用の細胞のソースとして使用する場合には、同様に患者本人又は薬剤感受性や副作用と相関する遺伝子多型が同一である他人から体細胞を採取する必要がある。
哺乳動物から分離した体細胞は、細胞の種類に応じて、その培養に適した自体公知の培地で前培養することができる。そのような培地としては、例えば、約5〜20%の胎仔ウシ血清を含む最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、RPMI1640培地、199培地、F12培地などが挙げられるが、それらに限定されない。核初期化物質及びiPS細胞の樹立効率改善物質と細胞との接触に際し、例えば、カチオニックリポソームなど導入試薬を用いる場合には、導入効率の低下を防ぐため、予め無血清培地に交換しておくことが好ましい場合がある。
(b)核初期化物質
本発明において「核初期化物質」とは、体細胞からiPS細胞を誘導することができる物質(群)であれば、タンパク性因子又はそれをコードする核酸(ベクターに組み込まれた形態を含む)、あるいは低分子化合物等のいかなる物質から構成されてもよい。核初期化物質がタンパク性因子又はそれをコードする核酸の場合、好ましくは以下の組み合わせが例示される(以下においては、タンパク性因子の名称のみを記載する)。
(1)Oct3/4、Klf4、c−Myc
(2)Oct3/4、Klf4、c−Myc、Sox2(ここで、Sox2はSox1、Sox3、Sox15、Sox17又はSox18で置換可能である。また、Klf4はKlf1、Klf2又はKlf5で置換可能である。さらに、c−MycはT58A(活性型変異体)、N−Myc又はL−Mycで置換可能である。)
(3)Oct3/4、Klf4、c−Myc、Sox2、Fbx15、Nanog、Eras、ECAT15−2、TclI、β−catenin(活性型変異体S33Y)
(4)Oct3/4、Klf4、c−Myc、Sox2、TERT、SV40 Large T antigen(以下、SV40LT)
(5)Oct3/4、Klf4、c−Myc、Sox2、TERT、HPV16 E6
(6)Oct3/4、Klf4、c−Myc、Sox2、TERT、HPV16 E7
(7)Oct3/4、Klf4、c−Myc、Sox2、TERT、HPV6 E6、HPV16 E7
(8)Oct3/4、Klf4、c−Myc、Sox2、TERT、Bmil
(上記因子のさらなる情報については、WO2007/069666を参照(但し、上記(2)の組み合わせにおいて、Sox2からSox18への置換、Klf4からKlf1若しくはKlf5への置換については、Nature Biotechnology,26,101−106(2008)を参照)。「Oct3/4、Klf4、c−Myc、Sox2」の組み合わせについては、Cell,126,663−676(2006)、Cell,131,861−872(2007)等も参照。「Oct3/4、Klf2(又はKlf5)、c−Myc、Sox2」の組み合わせについては、Nat.Cell Biol.,11,197−203(2009)も参照。「Oct3/4、Klf4、c−Myc、Sox2、hTERT、SV40LT」の組み合わせについては、Nature,451,141−146(2008)も参照。)
(9)Oct3/4、Klf4、Sox2(Nature Biotechnology,26,101−106(2008)を参照)
(10)Oct3/4、Sox2、Nanog、Lin28(Science,318,1917−1920(2007)を参照)
(11)Oct3/4、Sox2、Nanog、Lin28、hTERT、SV40LT(Stem Cells,26,1998−2005(2008)を参照)
(12)Oct3/4、Klf4、c−Myc、Sox2、Nanog、Lin28(Cell Research(2008)600−603を参照)
(13)Oct3/4、Klf4、c−Myc、Sox2、SV40LT(Stem Cells,26,1998−2005(2008)も参照)
(14)Oct3/4、Klf4(Nature 454:646−650(2008)、Cell Stem Cell,2:525−528(2008)を参照)
(15)Oct3/4、c−Myc(Nature 454:646−650(2008)を参照)
(16)Oct3/4、Sox2(Nature,451,141−146(2008)、WO2008/118820を参照)
(17)Oct3/4、Sox2、Nanog(WO2008/118820を参照)
(18)Oct3/4、Sox2、Lin28(WO2008/118820を参照)
(19)Oct3/4、Sox2、c−Myc、Fsrrb(ここで、EssrrbはEsrrgで置換可能である。Nat.Cell Biol.,11,197−203(2009)を参照)
(20)Oct3/4、Sox2、Esrrb(Nat.Cell Biol.,11,197−203(2009)を参照)
(21)Oct3/4、Klf4、L−Myc
(22)Oct3/4、Nanog
(23)Oct3/4
(24)Oct3/4、Klf4、c−Myc、Sox2、Nanog、Lin28、SV40LT(Science,324:797−801(2009)を参照)
上記(1)〜(24)において、Oct3/4に代えて他のOctファミリーのメンバー、例えばOct1A、Oct6などを用いることもできる。また、Sox2(又はSox1、Sox3、Sox15、Sox17、Sox18)に代えて他のSoxファミリーのメンバー、例えばSox7などを用いることもできる。さらにLin28に代えて他のLinファミリーのメンバー、例えばLin28bなどを用いることもできる。
また、上記(1)〜(24)には該当しないが、それらのいずれかにおける構成要素をすべて含み、且つ任意の他の物質をさらに含む組み合わせも、本発明における「核初期化物質」の範疇に含まれ得る。また、核初期化の対象となる体細胞が上記(1)〜(24)のいずれかにおける構成要素の一部を、核初期化のために十分なレベルで内在的に発現している条件下にあっては、当該構成要素を除いた残りの構成要素のみの組み合わせもまた、本発明における「核初期化物質」の範疇に含まれ得る。
これらの組み合わせの中で、Oct3/4、Sox2、Klf4、c−Myc、Nanog、Lin28及びSV40LTから選択される少なくとも1つ、好ましくは2つ以上、より好ましくは3つ以上が、好ましい核初期化物質である。
とりわけ、得られるiPS細胞を治療用途に用いることを念頭においた場合、Oct3/4、Sox2及びKlf4の3因子の組み合わせ(即ち、上記(9))が好ましい。一方、iPS細胞を治療用途に用いることを念頭に置かない場合(例えば、創薬スクリーニング等の研究ツールとして用いる場合など)は、Oct3/4、Sox2、Klf4及びc−Mycの4因子のほか、Oct3/4、Klf4、c−Myc、Sox2及びLin28の5因子か、それにNanogを加えた6因子(即ち、上記(12))、さらにSV40 Large T加えた7因子(即ち、上記(24))が好ましい。
さらに、上記におけるc−MycをL−Mycに変更した組み合わせも、好ましい核初期化物質の例として挙げられる。
上記の各核初期化物質のマウス及びヒトcDNA配列情報は、WO2007/069666に記載のNCBIaccession numbersを参照することにより取得することができ(Nanogは当該公報中では「ECAT4」との名称で記載されている。尚、Lin28、Lin28b、Esrrb、Esrrg及びL−Mycのマウス及びヒトcDNA配列情報は、それぞれ下記NCBI accession numbersを参照することにより取得できる。)、当業者は容易にこれらのcDNAを単離することができる。
遺伝子名 マウス ヒト
Lin28 NM_145833 NM_024674
Lin28b NM_001031772 NM_001004317
Esrrb NM_011934 NM_004452
Esrrg NM_011935 NM_001438
L−Myc NM_008506 NM_001033081
核初期化物質としてタンパク性因子を用いる場合には、得られたcDNAを適当な発現ベクターに挿入して宿主細胞に導入し、該培養細胞又はその馴化培地から組換えタンパク性因子を回収することにより調製することができる。一方、核初期化物質としてタンパク性因子をコードする核酸を用いる場合、得られたcDNAを、ウイルスベクター、プラスミドベクター、エピソーマルベクター等に挿入して発現ベクターを構築し、核初期化工程に供される。
(c)核初期化物質の体細胞への導入方法
核初期化物質の体細胞への導入は、該物質がタンパク性因子である場合、自体公知の細胞へのタンパク質導入方法を用いて実施することができる。ヒトへの臨床応用を念頭におく場合、その出発材料たるiPS細胞も遺伝子操作なしに作製されたものであることが好ましい。
そのような方法としては、例えば、タンパク質導入試薬を用いる方法、タンパク質導入ドメイン(PTD)若しくは細胞透過性ペプチド(CPP)融合タンパク質を用いる方法、マイクロインジェクション法などが挙げられる。タンパク質導入試薬としては、カチオン性脂質をベースとしたBioPOTER Protein Delivery Reagent(Gene Therapy Systmes)、Pro−JectTMProtein Transfection Reagent(PIERCE)及びProVectin(IMGENEX)、脂質をベースとしたProfect−1(Targeting Systems)、膜透過性ペプチドをベースとしたPenetrainPeptide(Q biogene)及びChariot Kit(Active Motif)、HVJエンベロープ(不活化センダイウイルス)を利用したGenomONE(石原産業)等が市販されている。導入はこれらの試薬に添付のプロトコルに従って行うことができるが、一般的な手順は以下の通りである。核初期化物質を適当な溶媒(例えば、PBS、HEPES等の緩衝液)に希釈し、導入試薬を加えて室温で約5〜15分程度インキュベートして複合体を形成させ、これを無血清培地に交換した細胞に添加して37℃で1ないし数時間インキュベートする。その後培地を除去して血清含有培地に交換する。
PTDとしては、ショウジョウバエ由来のAntP、HIV由来のTAT(Frankel,A.et al,Cell55,1189−93(1988);Green,M.& Loewenstein,P.M.Cell 55,1179−88(1988))、Penetratin(Derossi,D.et al,J.Biol.Chem.269,10444−50(1994))、Buforin II(Park,C.B.et al.Proc.Natl Acad.Sci.USA 97,8245−50(2000))、Transportan(Pooga,M.et al.FASEB J.12,67−77(1998))、MAP(model amphipathic peptide)(Oehlke,J.et al.Biochim.Biophys.Acta.1414,127−39(1998))、K−FGF(Lin,Y.Z.et al.J.Biol.Chem.270,14255−14258(1995))、Ku70(Sawada,M.et al.Nature CellBiol.5,352−7(2003))、Prion(Lundberg,P.et al.Biochem.Biophys.Res.Commun.299,85−90(2002))、pVEC(Elmquist,A.et al.Exp.Cell Res.269,237−44(2001))、Pep−1(Morris,M.C.et al.Nature Biotechnol.19,1173−6(2001))、Pep−7(Gao,C.et al.Bioorg.Med.Chem.10,4057−65(2002))、SynBl(Rousselle,C.et al.MoI.Pharmacol.57,679−86(2000))、HN−I(Hong,F.D.& Clayman,G L.Cancer Res.60,6551−6(2000))、HSV由来のVP22等のタンパク質の細胞通過ドメインを用いたものが開発されている。PTD由来のCPPとしては、11R(Cell Stem Cell,4:381−384(2009))や9R(Cell Stem Cell,4:472−476(2009))等のポリアルギニンが挙げられる。
核初期化物質のcDNAとPTD若しくはCPP配列とを組み込んだ融合タンパク質発現ベクターを作製して、ベクターを用いて組換え発現させる。融合タンパク質を回収して導入に用いる。導入は、タンパク質導入試薬を添加しない以外は上記と同様にして行うことができる。
マイクロインジェクションは、先端径1μm程度のガラス針にタンパク質溶液を入れ、細胞に穿刺導入する方法であり、確実に細胞内にタンパク質を導入することができる。
iPS細胞の樹立効率を重視するのであれば、核初期化物質を、タンパク性因子自体としてではなく、それをコードする核酸の形態で用いることも好ましい。該核酸はDNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよく、また、該核酸は二本鎖であっても、一本鎖であってもよい。好ましくは、該核酸は二本鎖DNA、特にcDNAである。
核初期化物質のcDNAは、宿主となる体細胞で機能し得るプロモーターを含む適当な発現ベクターに挿入される。発現ベクターとしては、例えば、レトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、センダイウイルスなどのウイルスベクター、動物細胞発現プラスミド(例、pA1−11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neo)などが用いられ得る。
用いるベクターの種類は、得られるiPS細胞の用途に応じて適宜選択することができる。例えば、アデノウイルスベクター、プラスミドベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、レンチウイルスベクター、センダイウイルスベクター、エピソーマルベクターなどが使用され得る。
発現ベクターにおいて使用されるプロモーターとしては、例えば、EF1αプロモーター、CAGプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV−TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなどが用いられる。なかでも、EF1αプロモーター、CAGプロモーター、MoMuLV LTR、CMVプロモーター、SRαプロモーターなどが好ましい。
発現ベクターは、プロモーターの他に、所望によりエンハンサー、ポリA付加シグナル、選択マーカー遺伝子、SV40複製起点などを含有していてもよい。選択マーカー遺伝子としては、例えば、ジヒドロ葉酸還元酵素遺伝子、ネオマイシン耐性遺伝子、ピューロマイシン耐性遺伝子等が挙げられる。
核初期化物質である核酸(初期化遺伝子)は、各々別個の発現ベクター上に組み込んでもよいし、1つの発現ベクターに2種類以上、好ましくは2〜3種類の遺伝子を組み込んでもよい。遺伝子導入効率の高いレトロウイルスやレンチウイルスベクターを用いる場合は前者が、プラスミド、アデノウイルス、エピソーマルベクターなどを用いる場合は後者を選択することが好ましい。さらに、2種類以上の遺伝子を組み込んだ発現ベクターと、1遺伝子のみを組み込んだ別の発現ベクターとを併用することもできる。
上記において複数の初期化遺伝子を1つの発現ベクターに組み込む場合、これら複数の遺伝子は、好ましくはポリシストロニック発現を可能にする配列を介して発現ベクターに組み込むことができる。ポリシストロニック発現を可能にする配列を用いることにより、1種類の発現ベクターに組み込まれている複数の遺伝子をより効率的に発現させることが可能になる。ポリシストロニック発現を可能にする配列としては、例えば、口蹄疫ウイルスの2A配列(PLoS ONE 3,e2532,2008、Stem Cells 25,1707,2007)、IRES配列(U.S.Patent No.4,937,190)など、好ましくは2A配列を用いることができる。
核初期化物質である核酸を含む発現ベクターは、ベクターの種類に応じて、自体公知の手法により細胞に導入することができる。例えば、ウイルスベクターの場合、該核酸を含むプラスミドを適当なパッケージング細胞(例、Plat−E細胞)や相補細胞株(例、293細胞)に導入して、培養上清中に産生されるウイルスベクターを回収し、各ウイルスベクターに応じた適切な方法により、該ベクターを細胞に感染させる。例えば、ベクターとしてレトロウイルスベクターを用いる具体的手段がWO2007/69666、Cell,126,663−676(2006)及びCell,131,861−872(2007)に開示されている。ベクターとしてレンチウイルスベクターを用いる場合については、Science,318,1917−1920(2007)に開示がある。iPS細胞から誘導されるPGC様細胞を不妊治療や生殖細胞の遺伝子治療などの再生医療として利用する場合、初期化遺伝子の発現(再活性化)は、iPS細胞由来のPGC様細胞から再生された生殖細胞又は生殖組織における発癌リスクを高める可能性があるので、核初期化物質をコードする核酸は細胞の染色体に組み込まれず、一過的に発現することが好ましい。かかる観点からは、染色体への取込みが稀なアデノウイルスベクターの使用が好ましい。アデノウイルスベクターを用いる具体的手段は、Science,322,945−949(2008)に開示されている。また、アデノ随伴ウイルスベクターも染色体への取込み頻度が低く、アデノウイルスベクターと比べて細胞毒性や炎症惹起作用が低いので、別の好ましいベクターとして挙げられる。センダイウイルスベクターは染色体外で安定に存在することができ、必要に応じてsiRNAにより分解除去することができるので、同様に好ましく利用され得る。センダイウイルスベクターについては、J.Biol.Chem.,282,27383−27391(2007)や特許第3602058号に記載のものを用いることができる。
レトロウイルスベクターやレンチウイルスベクターを用いる場合は、いったん導入遺伝子のサイレンシングが起こったとしても、後に再活性化される可能性があるので、例えば、Cre/loxPシステムを用いて、不要となった時点で核初期化物質をコードする核酸を切り出す方法が好ましく用いられ得る。即ち、該核酸の両端にloxP配列を配置しておき、iPS細胞が誘導された後で、プラスミドベクター若しくはアデノウイルスベクターを用いて細胞にCreリコンビナーゼを作用させ、loxP配列に挟まれた領域を切り出すことができる。また、LTR U3領域のエンハンサー−プロモーター配列は、挿入突然変異によって近傍の宿主遺伝子を上方制御する可能性があるので、当該配列を欠失、若しくはSV40などのポリアデニル化配列で置換した3’−自己不活性化(SIN)LTRを使用して、切り出されずゲノム中に残存するloxP配列より外側のLTRによる内因性遺伝子の発現制御を回避することがより好ましい。Cre−loxPシステム及びSIN LTRを用いる具体的手段は、Chang et al.,Stem Cells,27:1042−1049(2009)に開示されている。
一方、非ウイルスベクターであるプラスミドベクターの場合には、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法、遺伝子銃法などを用いて該ベクターを細胞に導入することができる。ベクターとしてプラスミドを用いる具体的手段は、例えばScience,322,949−953(2008)等に記載されている。
プラスミドベクターやアデノウイルスベクター等を用いる場合、遺伝子導入は1回以上の任意の回数(例えば、1回以上10回以下、又は1回以上5回以下など)行うことができる。2種以上の発現ベクターを体細胞に導入する場合には、これらの全ての種類の発現ベクターを同時に体細胞に導入することが好ましいが、この場合においても、導入操作は1回以上の任意の回数(例えば、1回以上10回以下、又は1回以上5回以下など)行うことができ、好ましくは導入操作を2回以上(たとえば3回又は4回)繰り返して行うことができる。
尚、アデノウイルスやプラスミドを用いる場合でも、導入遺伝子が染色体に組み込まれることがあるので、結局はサザンブロットやPCRにより染色体への遺伝子挿入がないことを確認する必要がある。そのため、上記Cre−loxPシステムのように、いったん染色体に導入遺伝子を組み込んだ後に、該遺伝子を除去する手段を用いることは好都合であり得る。別の好ましい一実施態様においては、トランスポゾンを用いて染色体に導入遺伝子を組み込んだ後に、プラスミドベクター若しくはアデノウイルスベクターを用いて細胞に転移酵素を作用させ、導入遺伝子を完全に染色体から除去する方法が用いられ得る。好ましいトランスポゾンとしては、例えば、鱗翅目昆虫由来のトランスポゾンであるpiggyBac等が挙げられる。piggyBacトランスポゾンを用いる具体的手段は、Kaji,K.et al.,Nature,458:771−775(2009)、Woltjen et al.,Nature,458:766−770(2009)に開示されている。
別の好ましい非組込み型ベクターとして、染色体外で自律複製可能なエピソーマルベクターが挙げられる。エピソーマルベクターを用いる具体的手段は、Yu et al.,Science,324,797−801(2009)に開示されている。必要に応じて、エピソーマルベクターの複製に必要なベクター要素の5’側及び3’側にloxP配列を同方向に配置したエピソーマルベクターに初期化遺伝子を挿入した発現ベクターを構築し、これを体細胞に導入することもできる。
該エピソーマルベクターとしては、例えば、EBV、SV40等に由来する自律複製に必要な配列をベクター要素として含むベクターが挙げられる。自律複製に必要なベクター要素としては、具体的には、複製開始点と、複製開始点に結合して複製を制御するタンパク質をコードする遺伝子であり、例えば、EBVにあっては複製開始点oriPとEBNA−1遺伝子、SV40にあっては複製開始点oriとSV40 large T antigen遺伝子が挙げられる。
また、エピソーマル発現ベクターは、初期化遺伝子の転写を制御するプロモーターを含む。該プロモーターとしては、前記と同様のプロモーターが用いられ得る。また、エピソーマル発現ベクターは、前記と同様に、所望によりエンハンサー、ポリA付加シグナル、選択マーカー遺伝子などをさらに含有していてもよい。選択マーカー遺伝子としては、例えば、ジヒドロ葉酸還元酵素遺伝子、ネオマイシン耐性遺伝子等が挙げられる。
エピソーマルベクターは、例えばリポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法、遺伝子銃法などを用いて該ベクターを細胞に導入することができる。具体的には、例えばScience,324:797−801(2009)に記載される方法を用いることができる。
iPS細胞から初期化遺伝子の複製に必要なベクター要素が除去されたか否かの確認は、該ベクターの一部をプローブ又はプライマーとして用い、該iPS細胞から単離したエピソーム画分を鋳型としてサザンブロット分析又はPCR分析を行い、バンドの有無又は検出バンドの長さを調べることにより実施することができる。エピソーム画分の調製は当該分野で周知の方法を用いて行えばよく、例えば、Science,324:797−801(2009)に記載される方法を用いることができる。
核初期化物質が低分子化合物である場合、該物質の体細胞への導入は、該物質を適当な濃度で水性若しくは非水性溶媒に溶解し、ヒト又はマウスより単離した体細胞の培養に適した培地(例えば、約5〜20%の胎仔ウシ血清を含む最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、RPMI1640培地、199培地、F12培地など)中に、核初期化物質濃度が体細胞において核初期化が起こるのに十分で且つ細胞毒性がみられない範囲となるように該物質溶液を添加して、細胞を一定期間培養することにより実施することができる。核初期化物質濃度は用いる核初期化物質の種類によって異なるが、約0.1nM〜約100nMの範囲で適宜選択される。接触期間は細胞の核初期化が達成されるのに十分な時間であれば特に制限はないが、通常は陽性コロニーが出現するまで培地に共存させておけばよい。
(d)iPS細胞の樹立効率改善物質
従来iPS細胞の樹立効率が低いために、近年、その効率を改善する物質が種々提案されている。よって前記核初期化物質に加え、これら樹立効率改善物質を体細胞に接触させることにより、iPS細胞の樹立効率をより高めることが期待できる。
iPS細胞の樹立効率改善物質としては、例えば、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸(VPA)(Nat.Biotechnol.,26(7):795−797(2008))、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害薬、HDACに対するsiRNA及びshRNA(例、HDAC1 siRNA Smartpool(登録商標)(Millipore)、HuSH 29mer shRNA Constructs against HDAC1(OriGene)等)等の核酸性発現阻害薬など]、DNAメチルトランスフェラーゼ阻害薬(例えば5’−azacytidine)(Nat.Biotechnol.,26(7):795−797(2008))、G9aヒストンメチルトランスフェラーゼ阻害薬[例えば、BIX−01294(Cell Stem Cell,2:525−528(2008))等の低分子阻害薬、G9aに対するsiRNA及びshRNA(例、G9a siRNA(human)(Santa Cruz Biotechnology)等)等の核酸性発現阻害薬など]、L−channel calcium agonist(例えばBayk8644)(Cell Stem Cell,3,568−574(2008))、p53阻害薬(例えばp53に対するsiRNA及びshRNA(Cell Stem Cell,3,475−479(2008))、UTF1(Cell Stem Cell,3,475−479(2008))、Wnt Signaling(例えばsoluble Wnt3a)(Cell Stem Cell,3,132−135(2008))、2i/LIF(2iはmitogen−activated protein kinase signalling及びglycogen synthase kinase−3の阻害薬、PloS Biology,6(10),2237−2247(2008))等が挙げられるが、それらに限定されない。前記で核酸性の発現阻害薬はsiRNA又はshRNAをコードするDNAを含む発現ベクターの形態であってもよい。
尚、前記核初期化物質の構成要素のうち、例えばSV40 large T等は、体細胞の核初期化のために必須ではなく補助的な因子であるという点において、iPS細胞の樹立効率改善物質の範疇にも含まれ得る。核初期化の機序が明らかでない現状においては、核初期化に必須の因子以外の補助的な因子について、それらを核初期化物質として位置づけるか、あるいはiPS細胞の樹立効率改善物質として位置づけるかは便宜的であってもよい。即ち、体細胞の核初期化プロセスは、体細胞への核初期化物質及びiPS細胞の樹立効率改善物質の接触によって生じる全体的事象として捉えられるので、当業者にとって両者を必ずしも明確に区別する必要性はないであろう。
iPS細胞の樹立効率改善物質の体細胞への接触は、該物質が(a)タンパク性因子である場合、(b)該タンパク性因子をコードする核酸である場合、あるいは(c)低分子化合物である場合に応じて、それぞれ上記したように実施することができる。
iPS細胞の樹立効率改善物質は、該物質の非存在下と比較して体細胞からのiPS細胞樹立効率が有意に改善される限り、核初期化物質と同時に体細胞に接触させてもよいし、また、どちらかを先に接触させてもよい。一実施態様において、例えば、核初期化物質がタンパク性因子をコードする核酸であり、iPS細胞の樹立効率改善物質が化学的阻害物質である場合には、前者は遺伝子導入処理からタンパク性因子を大量発現するまでに一定期間のラグがあるのに対し、後者は速やかに細胞に作用しうることから、遺伝子導入処理から一定期間細胞を培養した後に、iPS細胞の樹立効率改善物質を培地に添加することができる。別の実施態様において、例えば、核初期化物質とiPS細胞の樹立効率改善物質とがいずれもウイルスベクターやプラスミドベクターの形態で用いられる場合には、両者を同時に細胞に導入してもよい。
(e)培養条件による樹立効率の改善
体細胞の核初期化工程において低酸素条件下で細胞を培養することにより、iPS細胞の樹立効率をさらに改善することができる。本明細書において「低酸素条件」とは、細胞を培養する際の雰囲気中の酸素濃度が、大気中のそれよりも有意に低いことを意味する。具体的には、通常の細胞培養で一般的に使用される5〜10%CO/95〜90%大気の雰囲気中の酸素濃度よりも低い酸素濃度の条件が挙げられ、例えば雰囲気中の酸素濃度が18%以下の条件が該当する。好ましくは、雰囲気中の酸素濃度は15%以下(例、14%以下、13%以下、12%以下、11%以下など)、10%以下(例、9%以下、8%以下、7%以下、6%以下など)、又は5%以下(例、4%以下、3%以下、2%以下など)である。また、雰囲気中の酸素濃度は、好ましくは0.1%以上(例、0.2%以上、0.3%以上、0.4%以上など)、0.5%以上(例、0.6%以上、0.7%以上、0.8%以上、0.9%以上など)、又は1%以上(例、1.1%以上、1.2%以上、1.3%以上、1.4%以上など)である。
細胞の環境において低酸素状態を創出する手法は特に制限されないが、酸素濃度の調節可能なCOインキュベーター内で細胞を培養する方法が最も容易であり、好適な例として挙げられる。酸素濃度の調節可能なCOインキュベーターは、種々の機器メーカーから販売されている(例えば、Thermo scientific社、池本理化学工業、十慈フィールド、和研薬株式会社などのメーカー製の低酸素培養用COインキュベーターを用いることができる)。
低酸素条件下で細胞培養を開始する時期は、iPS細胞の樹立効率が正常酸素濃度(20%)の場合に比して改善されることを妨げない限り特に限定されない。開始時期は、体細胞への核初期化物質の接触より前であっても、後であってもよく、該接触と同時であってもよい。例えば、体細胞に核初期化物質を接触させた直後から、あるいは接触後一定期間(例えば、1ないし10(例、2、3、4、5、6、7、8又は9)日)おいた後に低酸素条件下で培養することが好ましい。
低酸素条件下で細胞を培養する期間も、iPS細胞の樹立効率が正常酸素濃度(20%)の場合に比して改善されることを妨げない限り特に限定されず、例えば3日以上、5日以上、7日以上又は10日以上で、50日以下、40日以下、35日以下又は30日以下の期間等が挙げられるが、それらに限定されない。低酸素条件下での好ましい培養期間は、雰囲気中の酸素濃度によっても変動し、当業者は用いる酸素濃度に応じて適宜当該培養期間を調整することができる。また、一実施態様において、iPS細胞の候補コロニーの選択を、薬剤耐性を指標にして行う場合には、薬剤選択を開始する迄に低酸素条件から正常酸素濃度に戻すことが好ましい。
さらに、低酸素条件下で細胞培養を開始する好ましい時期及び好ましい培養期間は、用いられる核初期化物質の種類、正常酸素濃度条件下でのiPS細胞樹立効率などによっても変動する。
核初期化物質(及びiPS細胞の樹立効率改善物質)を接触させた後、細胞を、例えばES細胞の培養に適した条件下で培養することができる。マウス細胞の場合、通常の培地に分化抑制因子としてLeukemia Inhibitory Factor(LIF)を添加して培養を行う。一方、ヒト細胞の場合には、LIFの代わりに塩基性線維芽細胞増殖因子(bFGF)及び/又は幹細胞因子(SCF)を添加することが望ましい。また通常、細胞は、フィーダー細胞として、放射線や抗生物質で処理して細胞分裂を停止させたマウス胎仔由来の線維芽細胞(MEF)の共存下で培養される。MEFとしては、通常STO細胞等がよく使われるが、iPS細胞の誘導には、SNL細胞(McMahon,A.P.& Bradley,A.Cell 62,1073−1085(1990))等がよく使われている。フィーダー細胞との共培養は、核初期化物質の接触より前から開始してもよいし、該接触時から、あるいは該接触より後(例えば1〜10日後)から開始してもよい。
iPS細胞の候補コロニーの選択は、薬剤耐性とレポーター活性を指標とする方法と目視による形態観察による方法とが挙げられる。前者としては、例えば、分化多能性細胞において特異的に高発現する遺伝子(例えば、Fbx15、Nanog、Oct3/4など、好ましくはNanog又はOct3/4)の遺伝子座に、薬剤耐性遺伝子及び/又はレポーター遺伝子をターゲッティングした組換え体細胞を用い、薬剤耐性及び/又はレポーター活性陽性のコロニーを選択するというものである。そのような組換え体細胞としては、例えばFbx15遺伝子座にβgeo(β−ガラクトシダーゼとネオマイシンホスホトランスフェラーゼとの融合タンパク質をコードする)遺伝子をノックインしたマウス由来のMEF(Takahashi & Yamanaka,Cell,126,663−676(2006))、あるいはNanog遺伝子座に緑色蛍光タンパク質(GFP)遺伝子とピューロマイシン耐性遺伝子を組み込んだトランスジェニックマウス由来のMEF(Okita et al.,Nature,448,313−317(2007))等が挙げられる。一方、目視による形態観察で候補コロニーを選択する方法としては、例えばTakahashi et al.,Cell,131,861−872(2007)に記載の方法が挙げられる。レポーター細胞を用いる方法は簡便で効率的ではあるが、iPS細胞がヒトの治療用途を目的として作製される場合、安全性の観点から目視によるコロニー選択が望ましい。核初期化物質としてOct3/4、Klf4及びSox2の3因子を用いた場合、樹立クローン数は減少するものの生じるコロニーのほとんどがES細胞と比較して遜色のない高品質のiPS細胞であることから、レポーター細胞を用いなくとも効率よくiPS細胞を樹立することが可能である。
選択されたコロニーの細胞がiPS細胞であることの確認は、上記したNanog(若しくはOct3/4)レポーター陽性(ピューロマイシン耐性、GFP陽性など)及び目視によるES細胞様コロニーの形成によっても行い得るが、より正確性を期すために、各種ES細胞特異的遺伝子の発現を解析したり、選択された細胞をマウスに移植してテラトーマ形成を確認する等の試験を実施することもできる。
(iii)ナイーヴヒトES及びiPS細胞
胚盤胞期胚から誘導される従来のヒトES細胞は、マウスES細胞と非常に異なる生物学的(形態的、分子的及び機能的)特性を有する。マウス多能性幹細胞は、2つの機能的に区別される状態、即ちLIF依存的なES細胞と、bFGF依存的なエピブラスト幹細胞(EpiSC)とで存在し得る。分子学的解析から、ヒトES細胞の多能性状態は、マウスES細胞のそれではなく、むしろマウスEpiSCのそれに類似していることが示唆されている。最近、LIFの存在下にOct3/4、Sox2、Klf4、c−Myc及びNanogを異所的に誘導するか(Cell Stem Cells,6:535−546,2010参照)、LIF並びにGSK3β及びERK1/2経路阻害薬と組み合わせて、Oct3/4、Klf4及びKlf2を異所的に誘導する(Proc.Natl.Acad.Sci.USA,オンライン公開doi/10.1073/pnas.1004584107参照)ことにより、マウスES細胞様の多能性状態にあるヒトES及びiPS細胞(ナイーヴヒトES及びiPS細胞とも呼ばれる)が樹立されている。これらのナイーヴヒトES及びiPS細胞は、それらの多能性が従来のヒトES及びiPS細胞に比べてより未熟であるため、本発明のための出発材料として好適であり得る。
(2)PSCからEpiLCへの分化誘導
分化誘導用の基本培地としては、例えば、Neurobasal培地、Neural Progenitor Basal培地、NS−A培地、BME培地、BGJb培地、CMRL 1066培地、最小必須培地(MEM)、Eagle MEM培地、αMEM培地、ダルベッコ改変イーグル培地(DMEM)、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、DMEM/F12培地、ハム培地、RPMI 1640培地、Fischer’s培地、及びこれらの混合培地などが挙げられるが、これらに限定されない。
培地は、血清含有培地又は無血清培地であり得る。好ましくは、無血清培地が使用され得る。無血清培地(SFM)とは、未処理又は未精製の血清をいずれも含まない培地を意味し、従って、精製された血液由来成分又は動物組織由来成分(増殖因子など)を含有する培地が挙げられ得る。血清(例えば、ウシ胎児血清(FBS)、ヒト血清など)の濃度は、0〜20%、好ましくは0〜5%、より好ましくは0〜2%、最も好ましくは0%(すなわち、無血清)であり得る。SFMは任意の血清代替物を含んでよく、又は含まなくてもよい。血清代替物としては、例えば、アルブミン(例えば、脂質リッチアルブミン、組換えアルブミン等のアルブミン代替物、植物デンプン、デキストラン及びタンパク質加水分解物等)、トランスフェリン(又は他の鉄輸送体)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2−メルカプトエタノール、3’−チオグリセロールあるいはこれらの均等物などを適宜含有する物質が挙げられ得る。かかる血清代替物は、例えば、WO 98/30679に記載の方法により調製できる。また、より簡便にするため、市販のものを利用できる。かかる市販の物質としては、Knockout(商標)Serum Replacement(KSR)、Chemically−defined Lipid concentrated、及びGlutamax(Invitorogen)が挙げられる。
培地は、自体公知のその他の添加物を含んでもよい。本発明の方法により、原腸陥入前のエピブラスト細胞と同等のEpiLCが製造される限り、添加物は特に限定されないが、例えば、成長因子(例えば、インスリンなど)、ポリアミン類(例えば、プトレシンなど)、ミネラル(例えば、セレン酸ナトリウムなど)、糖類(例えば、グルコースなど)、有機酸(例えば、ピルビン酸、乳酸など)、アミノ酸(例えば、非必須アミノ酸(NEAA)、L−グルタミンなど)、還元剤(例えば、2−メルカプトエタノールなど)、ビタミン類(例えば、アスコルビン酸、d−ビオチンなど)、ステロイド(例えば、[ベータ]−エストラジオール、プロゲステロンなど)、抗生物質(例えば、ストレプトマイシン、ペニシリン、ゲンタマイシンなど)、緩衝剤(例えば、HEPESなど)、栄養添加物(例えば、B27supplement、N2 supplement、StemPro−Nutrient Supplementなど)を挙げることができる。各添加物は自体公知の濃度範囲で含まれることが好ましい。
本発明のEpiLCの製造方法において、多能性幹細胞は、フィーダー細胞の存在下又は不在下にて培養されてよい。フィーダー細胞は、本発明の方法によりEpiLCが製造され得る限り、特に限定されない。ESC、iPSCなどの多能性幹細胞の培養に使用するために自体公知のフィーダー細胞を使用することができる。例えば、線維芽細胞(マウス胚性線維芽細胞、マウス線維芽細胞株STOなど)が挙げられ得る。フィーダー細胞は、自体公知の方法、例えば、放射線(ガンマ線など)、抗癌剤(マイトマイシンCなど)での処理などにより不活性化されていることが好ましい。しかし、本発明の好ましい実施態様において、多能性幹細胞は、無フィーダー条件下で培養される。
多能性幹細胞からEpiLCへの分化誘導用培地(培地A)は、基本培地にアクチビンAを必須の添加物として含有する。アクチビンAの濃度は、例えば、約5ng/ml以上、好ましくは約10ng/ml以上、より好ましくは約15ng/ml以上、また、例えば、約40ng/ml以下、好ましくは約30ng/ml以下、より好ましくは25ng/ml以下である。
培地Aには、bFGF及び/又はKSRがさらに含有されていることが好ましい。bFGF及びKSRは、有効濃度範囲で存在する場合にEpiLCの誘導効率を顕著に増大させる。bFGFの濃度は、例えば、約5ng/ml以上、好ましくは約7.5ng/ml以上、より好ましくは約10ng/ml以上であり、また、例えば、約30ng/ml以下、好ましくは約20ng/ml以下、より好ましくは約15ng/ml以下である。KSRの濃度は、例えば、約0.1w/w%以上、好ましくは約0.3w/w%以上、より好ましくは約0.5w/w%以上であり、また、例えば、約5w/w%以下、好ましくは約3w/w%以下、より好ましくは約2w/w%以下である。
特に好ましい態様においては、培地Aは基本培地に加えて、アクチビンA、bFGF及びKSRを含有する。これらの成分の適切な濃度は、アクチビンAについては約10〜約30ng/ml、好ましくは約15〜約25ng/ml、bFGFについては約7.5〜約20ng/ml、好ましくは約10〜約15ng/ml、KSRについては約0.3〜約3w/w%、好ましくは約0.5〜約2w/w%の範囲に亘って選択することができる。
培地Aに含まれるアクチビンA及びbFGFは、そのソースに関して限定を受けず、任意の哺乳動物(例えば、ヒト、マウス、サル、ブタ、ラット、イヌなど)の細胞から単離及び精製されてよい。培養に供する多能性幹細胞と同種のアクチビンA及びbFGFを使用することが好ましい。アクチビンA及びbFGFは、化学的に合成されてもよく、無細胞翻訳系を用いて生化学的に合成されてもよく、或いは各タンパク質をコードする核酸を有する形質転換体から製造されてもよい。アクチビンA及びbFGFの組換え産物は市販されている。
多能性幹細胞をEpiLCに誘導するために使用される培養器は、特に限定されないが、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マルチプレート、マルチウェルプレート、マイクロスライド、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、及びローラーボトルが挙げられ得る。培養器は細胞接着性であり得る。細胞接着性の培養器は、培養器表面の細胞への接着性を向上させる目的で、細胞外マトリックス(ECM)などの任意の細胞接着用基質でコートされたものであり得る。細胞接着用基質は、多能性幹細胞又はフィーダー細胞(用いられる場合)の接着を目的とする任意の物質であり得る。細胞接着用基質としては、コラーゲン、ゼラチン、ポリ−L−リジン、ポリ−D−リジン、ポリ−L−オルニチン、ラミニン、及びフィブロネクチン並びにそれらの混合物、例えばマトリゲル、並びに溶解細胞膜調製物(lysed cell membrane preparations)が挙げられる(Klimanskaya I et al 2005.Lancet 365:p1636−1641)。
この培養において、多能性幹細胞を上記培養器上に播き、例えば、約10〜10細胞/cm、好ましくは約2〜8×10細胞/cmの細胞密度とし、1〜10%CO/99〜90%大気の雰囲気下、インキュベーター中で約30〜40℃、好ましくは約37℃で、3日未満、好ましくは約2日間(例えば、48±12時間、好ましくは48±6時間)培養する。培養の結果、扁平なエピブラスト様構造を有する細胞が一様に現れる。
EpiLCへの分化の事実は、例えば、EpiLC及び/又は多能性幹細胞のマーカー遺伝子の発現レベルをRT−PCRにより分析することにより確認できる。本発明のEpiLCは、E5.5〜E6.0のエピブラスト様(原腸陥入前エピブラスト様)状態にある細胞を意味する。より詳細には、EpiLCは、以下の特性のいずれか又は両方を有する細胞として定義される:
(1)分化誘導前の多能性幹細胞に比して、Fgf5、Wnt3及びDnmt3bから選択される少なくとも1つの遺伝子発現の上昇、
(2)分化誘導前の多能性幹細胞に比して、Gata4、Gata6、Sox17及びBlimp1から選択される少なくとも1つの遺伝子発現の低下。
従って、EpiLCへの分化の事実は、培養により得られた細胞中、Fgf5、Wnt3及びDnmt3bから選択される少なくとも1つ、並びに/又はGata4、Gata6、Sox17及びBlimp1から選択される少なくとも1つの発現レベルを測定し、分化誘導前の多能性幹細胞のものと発現レベルを比較することにより確認できる。
より好ましくは、本発明におけるEpiLCは、以下の特性を有する:
(1)Oct3/4の持続的な遺伝子発現;
(2)分化誘導前の多能性幹細胞に比して、Sox2及びNanogの遺伝子発現の低下;
(3)分化誘導前の多能性幹細胞に比して、Fgf5、Wnt3及びDnmt3bの遺伝子発現の上昇;及び
(4)分化誘導前の多能性幹細胞に比して、Gata4、Gata6、Sox17及びBlimp1の遺伝子発現の低下。
上述のとおり、好ましい態様において、本発明における培地Aは、アクチビンA、bFGF及びKSRを含有する。従って、本発明はまた、アクチビンA、bFGF及びKSRを含む、多能性幹細胞からEpiLCへの分化誘導用試薬キットも提供する。これらの成分は、水又は適当な緩衝液中に溶解した形態で提供されてもよく、凍結乾燥粉末として提供され、用時適当な溶媒に溶解して用いることもできる。また、これらの成分はそれぞれ単独の試薬としてキット化されていてもよいし、互いに悪影響を与えない限り、2種以上を混合して1つの試薬として提供することもできる。
(3)EpiLCからPGCLCへの分化誘導
このようにして得られたEpiLCをBMP4及びLIFの存在下で培養することにより、PGC様細胞へと分化誘導することができる(Cell,137,571−584(2009))。従って、本発明の第二の側面は、上記(2)の方法により得られたEpiLCを介して、多能性幹細胞からPGC様細胞を製造する方法に関する。すなわち、該方法は、
I)上記(2)に記載のいずれかの方法に従って多能性幹細胞からEpiLCを製造する工程;及び
II)工程I)で得られたEpiLCをBMP4及びLIFの存在下で培養する工程
を含む。
工程II)での分化誘導用基本培地としては、工程I)で使用するために例示した基本培地が同様に好ましく使用される。正常な精子形成に貢献できるPGC様細胞が本発明の方法により製造できる限り、培地は、工程I)で使用するために例示した添加物と同じ添加物を含有してよい。
培地は、血清含有培地又は無血清培地(SFM)であり得る。好ましくは、無血清培地が使用され得る。血清(例えば、ウシ胎児血清(FBS)、ヒト血清など)の濃度は、0〜20%、好ましくは0〜5%、より好ましくは0〜2%、最も好ましくは0%(すなわち無血清)であり得る。SFMは、KSRなど任意の血清代替物を含んでよく、又は含まなくともよい。
EpiLCからPGC様細胞への分化誘導用培地(培地B)は、基本培地の必須添加物として、骨形成タンパク質4(bone morphogenetic protein 4)(BMP4)及び白血病阻止因子(leukemia inhibitory factor)(LIF)を含有する。BMP4の濃度は、例えば、約100ng/ml以上、好ましくは約200ng/ml以上、より好ましくは約300ng/ml以上である。また、BMP4の濃度は、例えば、約1,000ng/ml以下、好ましくは約800ng/ml以下、より好ましくは600ng/ml以下である。LIFの濃度は、例えば、約300U/ml以上、好ましくは約500U/ml以上、より好ましくは約800U/ml以上である。また、LIFの濃度は、例えば、約2,000U/ml以下、好ましくは約1,500U/ml以下、より好ましくは1,200U/ml以下である。
培地Bは、幹細胞因子(SCF)、骨形成タンパク質8b(BMP8b)及び上皮成長因子(EGF)から選択される少なくとも1つの添加物をさらに含有することが好ましい。SCF、BMP8b及びEGFは、有効濃度範囲で存在した場合に、PGC様細胞がBlimp1−及びStella−陽性状態で維持される期間を著しく延長する。SCFの濃度は、例えば、約30ng/ml以上、好ましくは約50ng/ml以上、より好ましくは約80ng/ml以上である。また、SCFの濃度は、例えば、約200ng/ml以下、好ましくは約150ng/ml以下、より好ましくは約120ng/ml以下である。BMP8bの濃度は、例えば、約100ng/ml以上、好ましくは約200ng/ml以上、より好ましくは約300ng/ml以上である。また、BMP8bの濃度は、例えば、約1,000ng/ml以下、好ましくは約800ng/ml以下、より好ましくは600ng/ml以下である。EGFの濃度は、例えば、約10ng/ml以上、好ましくは約20ng/ml以上、より好ましくは約30ng/ml以上である。また、EGFの濃度は、例えば、約100ng/ml以下、好ましくは約80ng/ml以下、より好ましくは約60ng/ml以下である。
特に好ましい実施態様において、培地Bは、基本培地に加えてBMP、LIF、SCF、BMP8b及びEGFを含有する。これら成分の濃度は、BMP4については約200〜800ng/ml、好ましくは約300〜600ng/ml、LIFについては約500〜1500U/ml、好ましくは約800〜1,200U/ml、SCFについては約50〜150ng/ml、好ましくは約80〜120ng/ml、BMP8bについては約200〜800ng/ml、好ましくは約300〜600ng/ml、EGFについては約20〜80ng/ml、好ましくは約30〜60ng/mlの範囲に亘って適宜選択され得る。
培地Bに含有されるBMP4、LIF、SCF、BMP8b及びEGFは、そのソースに関して特に限定されず、任意の哺乳動物(例えば、ヒト、マウス、サル、ブタ、ラット、イヌなど)の細胞から単離及び精製されてよい。培養に供するEpiLCと同種のBMP4、LIF、SCF、BMP8b及びEGFを使用することが好ましい。BMP4、LIF、SCF、BMP8b及びEGFは、化学的に合成されてもよく、無細胞翻訳系を用いて生化学的に合成されてもよく、或いは各タンパク質をコードする核酸を有する形質転換体から製造されてもよい。BMP4、LIF、SCF、BMP8b及びEGFの組換え産物は市販されている。
この培養において、自体公知の細胞非接着性又は低接着性培養器にEpiLCを播種し、例えば、約3〜10×10細胞/mL、好ましくは約4〜8×10細胞/mLの細胞密度とし、1〜10%CO/99〜90%大気の雰囲気中、インキュベーター中で約30〜40℃、好ましくは約37℃で、約4〜10日間、好ましくは約4〜8日間、より好ましくは約4〜6日間、さらに好ましくは約4日間培養する。
PGC様細胞への分化の事実は、例えば、RT−PCRなどによりBlimp1の発現を分析することによって確認できる。さらに必要に応じて、他の遺伝子や細胞表面抗原の発現を調べることもできる。他の遺伝子の例にはStellaが挙げられる。Blimp1−及び/又はStella−プロモーターの制御下にある蛍光タンパク質遺伝子を有する多能性幹細胞を出発物質として使用する場合には、PGC様細胞への分化の事実はFACS分析により確認できる。ヒト又は他の非マウス哺乳動物に由来するESC又はiPSCなど、多能性幹細胞が適切なトランスジェニックレポーターを有さない場合には、PGC様細胞の分化の事実は、PGC様細胞に特異的に発現する1種以上の細胞表面抗原を用いて、FACS分析などにより確認することが好ましい。細胞表面抗原として、好ましくはSSEA−1及びインテグリン−β3が例示される。
前記工程I)及びII)により製造される、多能性幹細胞に由来するPGC様細胞を含む細胞集団は、PGC様細胞の精製された集団であってよく、PGC様細胞以外に1種以上の細胞が共存してもよい。ここで、「PGC様細胞」は、分化誘導前のEpiLCに比してBlimp1及び/又はStellaの発現の上昇を示し、正常な精子形成に貢献でき、免疫不全マウスに移植された場合にテラトーマを形成しない細胞として定義される。上述のとおり、Blimp1−及び/又はStella−プロモーターの制御下にある蛍光タンパク質遺伝子を有する多能性幹細胞を出発物質として使用してPGC様細胞を誘導する場合、セルソーターを用いて、前記工程II)で得られた細胞集団をソーティングすることにより、Blimp1−及び/又はStella−陽性PGC様細胞を容易に単離し精製できる。PGC様細胞は、マーカーとして、Blimp1及びStellaとともに発現が増加する遺伝子(例、Nanog)の制御下にあるレポーターを用いてFACSにより単離し精製することもできる。
2.PGC/PGCLCの維持増幅
本工程では、例えば、上記の方法により得られたPGC又はPGCLCを、PDE4阻害薬及び/又はシクロスポリンAの存在下で培養する。用いるPGCLCが不均一な細胞集団である場合、例えば、FACSを用いて、SSEA−1陽性及びインテグリン−β3陽性の細胞分画を単離して用いることができる。PGCLCとしては、EpiLCからの分化誘導開始日をd0として、d4〜d10、好ましくはd4〜d8、より好ましくはd4〜d6、さらに好ましくは約d4の細胞が用いられ得る。
本工程に使用される培地は、基本培地として、PSCからEpiLCへの分化誘導に関して例示した培地を、同様に使用することができる。培地には、血清又は血清代替物を添加することが好ましい。ここで用いられる血清又は血清代替物の種類及び添加濃度は、PSCからEpiLCへの分化誘導に関して例示されたものが、同様に使用可能である。また、培地は、自体公知のその他の添加物を含んでもよい。そのような添加物としては、PGC/PGCLCの維持増幅を支持し得る限り、特に制限されず、PSCからEpiLCへの分化誘導に関して例示されたものが、同様に使用可能である。例えば、本工程に使用される培地として、10%Knockout Serum Replacement(KSR)、2.5%胎仔ウシ血清(FCS)、0.1mM NEAA、1mMピルビン酸ナトリウム、0.1mM 2−メルカプトエタノール、100U/mlペニシリン、0.1mg/mlストレプトマイシン、2mM L−グルタミンを含むGMEM培地等が挙げられるが、これに限定されない。
上記培地に添加されるPDE4阻害薬としては、PDE4の酵素活性、即ち、cAMPの加水分解活性を阻害し得る物質であれば特に制限はないが、好ましくはPDE4の選択的阻害薬(ホスホジエステラーゼ(PDE)以外の酵素だけでなく、PDE4以外のPDEsも阻害しない)である。例えば、イブジラスト、S−(+)−ロリプラム、ロリプラム、GSK256066、シロミラスト等が挙げられるがこれに限定されない。
PDE4阻害薬の濃度は、例えば、約0.1μM以上、好ましくは約0.5μM以上、より好ましくは約1μM以上である。また、PDE4阻害薬の濃度は、例えば、約100μM以下、好ましくは約50μM以下、より好ましくは30μM以下である。好ましい実施態様において、PDE4阻害薬の濃度は、約0.5〜50μM、好ましくは約1〜30μM範囲内で適宜選択され得る。
本明細書において「シクロスポリンA」とは、IUPAC名:cyclo{−[(2S,3R,4R,6E)−3−Hydroxy−4−methyl−2−methylaminooct−6−enoyl]−L−2−aminobutanoyl−N−methylglycyl−N−methyl−L−leucyl−L−valyl−N−methyl−L−leucyl−L−alanyl−D−alanyl−N−methyl−L−leucyl−N−methyl−L−leucyl−N−methyl−L−valyl−}にて特定される11アミノ酸からなる環状ポリペプチドの他、自体公知のその誘導体(例えば、WO 2012/051194等参照)も含まれる。シクロスポリンAは、それを産生する真菌から発酵法により単離することもできるし、周知のペプチド合成技術により有機合成することもできる。また、市販のシクロスポリンA(例えば、シグマ−アルドリッチ社)を使用することもできる。
シクロスポリンAの濃度は、例えば、約0.1μM以上、好ましくは約0.5μM以上、より好ましくは約1μM以上である。また、シクロスポリンAの濃度は、例えば、約100μM以下、好ましくは約50μM以下、より好ましくは30μM以下である。好ましい実施態様において、シクロスポリンAの濃度は、約0.5〜50μM、好ましくは約1〜30μM、より好ましくは約1〜10μMの範囲内で適宜選択され得る。
好ましくは、本培養工程は、少なくともPDE4阻害薬を含有する培地、より好ましくは、さらにシクロスポリンAを含有する培地を用いて実施される。
好ましい実施態様において、本培養工程はフォルスコリンをさらに含有する培地を用いて実施される。
フォルスコリンはアデニル酸シクラーゼの強力な活性化薬であり、PDE4阻害薬とは異なる作用機序で細胞内cAMPレベルを上昇させることから、PDE4阻害薬と相乗的に作用して、PGC/PGCLCの増幅効率を顕著に増大させることができる。
フォルスコリンの濃度は、例えば、約0.1μM以上、好ましくは約0.5μM以上、より好ましくは約1μM以上である、また、フォルスコリンの濃度は、例えば、約100μM以下、好ましくは約50μM以下、より好ましくは30μM以下である。好ましい実施態様において、フォルスコリンの濃度は、約0.5〜50μM、好ましくは約1〜30μM範囲内で適宜選択され得る。
PGC/PGCLCの維持増幅用培地には、SCFがさらに含有されていることが好ましい。SCFの濃度は、例えば、約30ng/ml以上、好ましくは約50ng/ml以上、より好ましくは約80ng/ml以上である。また、SCFの濃度は、例えば、約200ng/ml以下、好ましくは約150ng/ml以下、より好ましくは約120ng/ml以下である。好ましい実施態様において、SCFの濃度は、約50〜150ng/ml、好ましくは約80〜120ng/mlの範囲内で適宜選択され得る。
特に好ましい実施態様においては、PGC/PGCLCの維持増幅用培地は、10μM PDE4阻害薬、10μMフォルスコリン及び100ng/ml SCFを含有する。尚、他のPGC増殖刺激因子と併用するとPGC/PGCLCのEGCへの脱分化を促進する可能性があるため、PGC/PGCLCの維持増幅用培地にはLIFを添加しないことが好ましい場合がある。
PGC/PGCLCの維持増幅方法において、PGC/PGCLCは、フィーダー細胞の存在下又は非在下にて培養されてよい。フィーダー細胞の種類は特に限定されないが、自体公知のフィーダー細胞を使用することができる。例えば、線維芽細胞(マウス胚性線維芽細胞、マウス線維芽細胞株STOなど)が挙げられ得る。フィーダー細胞は、自体公知の方法、例えば、放射線(ガンマ線など)、抗癌剤(マイトマイシンCなど)での処理などにより不活性化されていることが好ましい。フィーダー細胞がPDE4阻害薬及び/又はフォルスコリンに対して脆弱である場合には、予めこれらの添加物の存在下で数世代フィーダー細胞を継代培養して、該添加物に馴化させておくことが望ましい。
PGC/PGCLCの維持増幅のために使用される培養器は特に限定されず、例えばPSCからEpiLCへの分化誘導において例示されたものが、同様に使用可能である。
この培養において、PGC/PGCLCを(フィーダー細胞が予め播種された)培養器上に播き、例えば、約10〜10細胞/cm、好ましくは約2〜8×10細胞/cmの細胞密度とし、1〜10%CO/99〜90%大気の雰囲気下、インキュベーター中で約30〜40℃、好ましくは約37℃で、3〜9日間、好ましくは4〜8日間、より好ましくは5〜7日間培養する。培養の結果、扁平なコロニーが形成され、Blimp1及びStellaを強発現し続け、糸状及び葉状仮足を伴う運動性細胞の特徴を示し、移動期のPGCの特性を維持する。
網羅的遺伝子発現解析の結果から、上記のようにして得られる増幅PGCLCは、後期PGC(E12.5以降)にて発現する遺伝子群(例、Dazl,Ddx4,Piwil2,Mael等)の発現を上昇させずに、移動期PGCの遺伝子発現を維持する。
また、エピジェネティック解析の結果から、増幅PGCLCでは、すべてのゲノム領域において5−メチルシトシンが進行的に消去され、生殖巣の生殖細胞におけるゲノムワイドな脱メチル化が忠実に再現されている。即ち、本発明の方法により得られる増幅PGC/PGCLCは、性分化直前の生殖系列のエピジェネティックな白紙状態を再現している。
本発明の方法(I)により得られる増幅PGC/PGCLCは種々の目的で使用できる。例えば、レシピエント動物の精巣に移植されたPGC/PGCLCは、精巣での精子形成及び健常な子孫の創出に確実に貢献できるので、不妊、又は生殖組織の遺伝性疾患の治療に使用できる。
PGC/PGCLCの精巣への移植は、WO 2004/092357及びBiol.Reprod.,69:612−616(2003)に記載の方法において、生殖幹細胞(germline stem cells:GS細胞)の代わりにPGC/PGCLCを使用することにより実施できる。あるいは、PGC/PGCLCをWO 2004/092357及びBiol.Reprod.(2003)と同様の方法で培養して、GS細胞へと分化誘導した後、精巣に移植できる。
PGC/PGCLC(PGC/PGCLCを含む細胞集団を含む;以下同じ)は、常套手段に従って医薬上許容される担体と混合するなどして、非経口製剤、好ましくは、注射剤、懸濁剤又は点滴剤として製造される。当該非経口製剤に含まれ得る医薬上許容される担体としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D−ソルビトール、D−マンニトール、塩化ナトリウムなど)などの注射用の水性液を挙げることができる。本発明の剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤、酸化防止剤などと配合しても良い。
本発明の剤を水性懸濁剤として調製する場合、上記水性液の1つにPGC/PGCLCを約1.0×10〜約1.0×10細胞/mLの細胞密度となるように懸濁させる。
本発明の剤は、幹細胞の低温保存に通常使用される条件下で低温保存し、使用直前に融解することができる。
このようにして得られる製剤は、安定で低毒性であるので、ヒトなどの哺乳動物に対して安全に投与することができる。投与方法は特に限定されないが、製剤は、精細管へと、注射又は点滴により投与されることが好ましい。男性不妊患者については、例えば、1回につきPGC様細胞量として約1.0×10〜約1×10細胞量の剤を、約1〜2週間隔で、1又は2〜10回投与するのが通常、好都合である。
[II]PGC/PGCLCからの卵母細胞の誘導方法
本発明の方法(I)により得られる増幅PGC/PGCLCを、BMP及びRAの存在下で培養することにより、生殖巣の体細胞の非存在下で卵母細胞に分化誘導することができる。従って、本発明はまた、PGC又はPGCLCをBMP及びRAの存在下で培養することを含む、該細胞から卵母細胞を誘導する方法(「本発明の方法(II)」と略記する場合がある)を提供する。
本発明の方法(II)は、生殖巣の体細胞の非存在下で行われることを特徴とする。ここで「生殖巣」とは、生殖細胞とそれらを支持する体細胞からなる構造体をいう。母胎で、胎児(仔)の始原生殖細胞(PGC)におけるオス、メスの性分化が始まる頃(マウスでは受精後12.5日齢(E12.5))までに形成される。PGCはオス、メス各々に特徴的な生殖巣の体細胞に包まれながら、配偶子(精子や卵子)へと分化する。従来法では、PGCが前精原細胞や卵母細胞となる時点の細胞環境を模倣すべく、この時期の生殖巣(例えば、マウスの場合、E12.0〜E13.0、好ましくは約E12.5)の体細胞とPGC/PGCLCとを共培養するが、本発明の方法(II)では、生殖巣体細胞を必要としないので、操作が煩雑でないだけでなく、規定された条件下で卵母細胞への分化を行うことができ、さらに、ヒトをはじめとする、胎生期の生殖巣体細胞の採取が困難な動物種へも実用的に使用可能である。
本発明の方法(II)において使用するPGC/PGCLCは、少なくとも後期PGCや減数分裂に重要な遺伝子群が脱メチル化された状態にあれば特に限定されないが、エピブラストやEpiLCから誘導直後のPGC/PGCLCは、ゲノムの脱メチル化が不十分であるので、本発明の方法(I)により得られる増幅PGC/PGCLCを用いることが好ましい。例えば、PDE4阻害薬、好ましくはさらにフォルスコリン、より好ましくはさらにSCFの存在下で、例えば3日間以上、好ましくは3〜9日間、より好ましくは3〜8日間、さらに好ましくは3〜7日間培養したPGC/PGCLCを用いることができる。
本発明の方法(II)において使用される培地は、基本培地として、PSCからEpiLCへの分化誘導に関して例示した培地を、同様に使用することができる。培地には、血清又は血清代替物を添加することが好ましい。ここで用いられる血清又は血清代替物の種類及び添加濃度は、PSCからEpiLCへの分化誘導に関して例示されたものが、同様に使用可能である。また、培地は、自体公知のその他の添加物を含んでもよい。そのような添加物としては、PGC/PGCLCから卵母細胞への分化を支持し得る限り、特に制限されず、PSCからEpiLCへの分化誘導に関して例示されたものが、同様に使用可能である。例えば、本工程に使用される培地として、本発明の方法(I)と同様に、10%Knockout Serum Replacement(KSR)、2.5%胎仔ウシ血清(FCS)、0.1mM NEAA、1mMピルビン酸ナトリウム、0.1mM 2−メルカプトエタノール、100U/mlペニシリン、0.1mg/mlストレプトマイシン、2mM L−グルタミンを含むGMEM培地等が挙げられるが、これに限定されない。
上記培地に添加されるBMPとしては、PGC/PGCLCから卵母細胞への分化を支持し得る限り特に制限はないが、例えば、BMP2、BMP4、BMP5、BMP7等が挙げられる。好ましくは、BMP2、BMP5又はBMP7である。BMPはいずれか1種のみを用いてもよいし、2種以上のBMPを組み合わせて用いてもよい。
BMPの濃度は、例えば、約100ng/ml以上、好ましくは約200ng/ml以上、より好ましくは約300ng/ml以上である。また、BMPの濃度は、例えば、約1,000ng/ml以下、好ましくは約800ng/ml以下、より好ましくは600ng/ml以下である。好ましい実施態様において、BMPの濃度は、約200〜800ng/ml、好ましくは約300〜600ng/mlの範囲内で適宜選択され得る。
RAの濃度は、例えば、約10nM以上、好ましくは約30nM以上、より好ましくは約50nM以上である、また、RAの濃度は、例えば、約500nM以下、好ましくは約300μM以下、より好ましくは200μM以下である。好ましい実施態様において、RAの濃度は、約30〜300nM、好ましくは約50〜200nM範囲内で適宜選択され得る。
好ましい実施態様において、PGC/PGCLCからの卵母細胞誘導用培地には、前記PGC/PGCLCの維持増幅用培地と同様に、PDE4阻害薬、フォルスコリン及びSCFがさらに含有されている。各添加物の濃度は、本発明の方法(I)について前記したのと同様の濃度範囲内で適宜選択され得る。
特に好ましい実施態様においては、PGC/PGCLCからの卵母細胞誘導用培地は、500ng/mlBMP及び100nM RAを含有する。
PGC/PGCLCからの卵母細胞の誘導方法において、PGC/PGCLCは、フィーダー細胞の存在下又は非在下にて培養されてよい。フィーダー細胞の種類は特に限定されないが、自体公知のフィーダー細胞を使用することができる。本培養工程に使用される培養器は特に限定されず、例えばPSCからEpiLCへの分化誘導において例示されたものが、同様に使用可能である。
この培養において、例えば、本発明の方法(I)においてPGC/PGCLCを維持増幅条件においてから3〜9日後、好ましくは3〜8日後、より好ましくは3〜7日後に、培地をBMP及びRAを添加した培地に交換して、さらに2〜7日間、好ましくは2〜6日間培養を続けることができる。培養の結果、PGC/PGCLCはDazl陽性、Ddx4陽性、SCP3陽性の卵母細胞様細胞に同期して分化し、減数分裂の厚糸期まで分化する。
以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。
[I]PDE4阻害薬及び該阻害薬とフォルスコリンとの併用によるPGC/PGCLCの維持増幅
以下に引用する文献の詳細情報については、Ohta,H.et al.,EMBO J.,36(13):1888−1907(2017)を参照のこと。
<材料と方法>
マウス
全ての動物実験は、京都大学の倫理ガイドラインに基づき行った。BVSC(Acc.No.BV,CDB0460T;SC,CDB0465T:http://www.cdb.riken.jp/arg/TG%20mutant%20mice%20list.html)及びStella−EGFPトランスジェニックマウスを、以前報告されたように(Payer et al,2006;Seki et al,2007;Ohinata et al,2008)樹立し、ほとんどC57BL/6のバックグラウンドで維持した。WBB6F1−W/Wv、C57BL/6、DBA/2、C3H、BDF1、及びICRマウスを、SLC(Shizuoka、Japan)から購入した。膣栓を確認した日の正午を胎生期(E)0.5とした。全てのマウスを、14時間の明/10時間の暗のサイクル下で、特定の病原体のない動物施設に収容した。
ES細胞(ESC)の誘導と培養
BVSC R8、H14、及びH18は以前に報告されている(Hayashi et al,2011,2012)。メスのBVSCマウス(ほとんどC57BL/6のバックグラウンド)をオスのDBA/2又はC3Hマウスと交配し、BDF1又はBCF1胚を得た。胚盤胞を、2i(PD0325901,0.4μM:Stemgent、San Diego、CA;CHIR99021,3μM:Stemgent)及びLIF(1,000U/ml;Merck Millipore)を含むN2B27培地中の96ウェルプレートのウェル中で、マウス胎児線維芽細胞(MEF)(Ying et al、2008;Hayashi et al、2011)上に播種し、培養した。増殖したコロニーを、TrypLE(Thermo Fisher Scientific)で解離することにより継代した。2継代まで、ESCをMEF上で維持した。その後、ポリ−L−オルニチン(0.01%;Sigma)及びラミニン(10ng/ml;BD Biosciences)でコーティングしたディッシュ上でオスのESCを培養し、フィーダーフリーで維持した。
EpiLC及びPGCLCの誘導
EpiLC及びPGCLCの誘導を、以前報告されたように行った(Hayashi et al,2011)。簡潔に述べると、アクチビンA(20ng/ml)、bFGF(12ng/ml)、及びKSR(1%)を含むN2B27培地中で、ヒト血漿フィブロネクチン(16.7mg/ml)でコーティングした12ウェルプレートのウェル上に、1x10個のESCを播種することにより、EpiLCを誘導した。サイトカインBMP4(500ng/ml;R&D Systems)、LIF(1,000U/ml;Merck Millipore)、SCF(100ng/ml;R&D Systems)及びEGF(50ng/ml;R&D Systems)の存在下で、無血清培地[15%KSRを含むGK15;GMEM(Thermo Fisher Scientific)、0.1mM NEAA,1mMピルビン酸ナトリウム、0.1mM 2−メルカプトエタノール、100U/mlペニシリン、0.1mg/mlストレプトマイシン、及び2mM L−グルタミン]を含む、低細胞結合U底96ウェルプレート(Thermo Scientific)のウェルを用いて、浮遊条件下でd2のEpiLCからPGCLCを誘導した。化合物ライブラリースクリーニング用の多数のPGCLCを調製するために、同じ培地を用いて、AgglreWell400(STEMCELL Technologies)でPGCLCを誘導した。
蛍光活性化セルソーティング
以前報告されたように(Hayashi et al,2011)、細胞凝集体からのサンプル調製を行った。FACSをFACSAriaIII(BD)セルソーターで行った。BV及びSC蛍光をFITC及びAmCyan Horizon V500チャネルでそれぞれ検出した。データをFACSDiva(BD)ソフトウェアを用いて分析した。
m220亜系統株(subline)の樹立
m220細胞株(Majumdar et al,1994)を、10%FCSを含むDMEM中で、ゼラチンをコーティングしたプレート上で培養した。m220細胞はマイトマイシンC(MMC)処理に対して非常に脆弱であったため、MMCに対して耐性のあるm220亜系統株を樹立した。簡潔に述べると、FACSにより、単一のm220細胞を96ウェルプレート(6プレート)のウェル上に播種した。播種1週間後、ウェルの約半分で細胞増殖が観察された。細胞を2つの96ウェルプレートのそれぞれの1つのウェルに継代した後、一方のプレートをレプリカとして凍結し、他方のプレートをMMCで処理した(4μg/ml、2時間)。MMC処理後10日目に、顕微鏡観察によりMMC耐性を評価した。合計で242個のm220亜系統株を樹立し、7個の亜系統株が高いMMC耐性を示した。主にm220−5亜系統株を実験に使用した。
細胞分析装置によるBV(+)PGCLCの検出
d4 PGCLCを、FACSにより96ウェルプレート中のm220−5フィーダー上に播種し、BV蛍光を細胞分析装置(Cellavista;SynenTec)によりモニターした。BV用の蛍光写真を、以下の設定でCellavista細胞分析装置により撮影した:10×objectives;exposure time:140μsec;gain:4×;binning:4×4;excitation:500/24nm;emission:542/27nm。BV蛍光を、以下のアルゴリズム/属性パラメータを用いて検出した:sensitivity:10;region merging:200;min.granule intensity:50;well edge distance:200;contrast:1;size:3,000;intensity:255;roughness:500;granularity:100;granule intensity:255;granule count:10,000;longishness:100;compactness:1。BV蛍光の検出には「細胞核」の値を用いた。
PGCLC増殖のための化合物ライブラリースクリーニング
化合物ライブラリーを、10μM及び1μMの濃度でスクリーニングした。MMCで処理したm220−5細胞を含む96ウェルプレートを使用した。各96ウェルプレートにおいて、陰性(DMSOのみ)及び陽性(LIF)対照を両側に割り当て、化合物を80ウェルに添加した。BDF1−2 ESCから誘導した200個のBV(+)d4 PGCLCを、96ウェルプレートのウェルに播種し、Cellavista細胞分析装置により培養1日目(c1)、c3、c5及びc7でBV蛍光を測定した。BV蛍光の検出には、「細胞核」の値を用いた。d4 PGCLCの増殖速度は実験間でわずかに相違していたので、異なる実験からの値を最初の実験から得られた陰性対照の平均値に基づいて調整した。各化合物について、c1とc7との間のBV蛍光の倍数差(fold difference)を計算し、ネガティブコントロールの平均値の3SDを超える倍数差値を有する化合物を、PGCLCの増殖を増強するものとして同定した。
d4 PGCLC及びE9.5PGCの増幅培養
MMCで処理をしたm220−5フィーダーはフォルスコリンとロリプラムに対して脆弱であったので、m220−5細胞をフォルスコリン及びロリプラムの両方を10μM用いて3継代培養して、MMC処理(1−2μg/ml、2時間)をする前にこれらの化合物に適応させた。d4 PGCLC又はE9.5PGC(BDF1×Stella−EGFP)をFACSで選別し、10%KSR、0.1mM NEAA、1mMピルビン酸ナトリウム、0.1mM 2−メルカプトエタノール、100U/mlペニシリン、0.1mg/mlストレプトマイシン、2mM L−グルタミン、2.5%FCS、100ng/ml SCF、10μMフォルスコリン、及び10μMロリプラムを含有するGMEM培地中で、m220−5細胞上に播種した。培養培地の半分を2日ごとに交換した。
免疫蛍光
次の抗体を示した希釈液で使用した:ウサギ抗MVH(1/250;Abcam ab13840);ウサギ抗DAZL(1/250;Abcam ab34139);マウス抗OCT4(1/250;BD 611203);マウス抗−5mC(1/500;Abcam ab10805);ウサギ抗H3K27me3(1/500;Millipore 07−449);ウサギ抗H3K9me2(1/500;Millipore 07−441);ウサギ抗DNMT1(1/100;Santa Cruz Biotechnology sc−20701);マウス抗DNMT3A(1/200;Abcam ab13888);マウス抗DNMT3B(1/200;Novus Biologicals NB100−56514);ウサギ抗UHRF1(1/100;Santa Cruz Biotechnology sc−98817);及びニワトリ抗GFP(1/500;Abcam ab13970)。Thermo Fisher Scientificから入手した次の二次抗体を1/500希釈で使用した:Alexa Fluor 568ヤギ抗ウサギIgG;Alexa Fluor 568ヤギ抗マウスIgG;Alexa Fluor 488ヤギ抗ニワトリIgG。F−アクチンを染色するために、Alexa Fluor 568とコンジュゲートしたファロイジン(1/40、Thermo Fisher Scientific A12380)を使用した。
免疫蛍光染色のプロトコルは以前報告されている(Hayashi et al,2011;Nakaki et al,2013)。MVH、DAZL及びOCT4染色のため、d4c7 PGCLC(BDF1−2)をFACSで選別し、E13.5のオスのPGCと1:1の割合で混合し、Cyto Spin 4(Thermo Fisher Scientific)を用いて、MASでコーティングしたガラススライド上に広げた。Alexa Fluor647とコンジュゲートしたSSEA1抗体を用いて、FACSによりE13.5の雄性生殖細胞(ICR)を選別した。5mC、H3K27me3及びH3K9me2染色のために、d4c7 PGCLC(BDF1−2)をFACSで選別し、1:1の割合でd2 EpiLCと混合し、Cyto Spin 4(Thermo Fisher Scientific)を用いて、MASでコーティングしたガラススライド上に広げた。画像を共焦点顕微鏡(Zeiss,LSM780)でキャプチャーし、シグナル強度をImageJ(NIH)によって解析した。
cAMP濃度の測定
細胞内のcAMP濃度を、cAMPGlo Max assay kit(Promega)を用いて、メーカーの説明書に従い測定した。精製されたcAMPを用いた標準曲線を、Δ相対的な光量(ΔRLU)(RLU[O nM]−RLU[X nM])を計算することにより作成した。各サンプルについて、1x10 d4 PGCLCをフォルスコリン及び/又はロリプラムで30分間室温で前処理し、ΔRLU(RLU[未処理サンプル]−RLU[処理済みサンプル])を計算した。化学的処理による細胞内のcAMPレベルの増加は、cAMP標準曲線から推量した。3つの生物学的複製物(biological replicate)を各サンプルについて分析した。
細胞周期分析
E13.5、E14.5及びE15.5におけるESC、EpiLC、d4、d4c3、d4c5及びd4c7 PGCLC(BDF1−2)及び雄性生殖細胞の細胞周期状態を既報(Kagiwada et al,2013)と同様にして調べた。培養細胞を標識するために、細胞をBrdU(10μM)と共に30分間インキュベートした。生殖細胞を標識するために、メスのマウス(ICR)をStella−EGFPオスと交配させ、妊娠したメスに1mgのBrdUを腹腔内注射し、30分後に胚を回収した。培養細胞又は雄性生殖腺をTrypLE処理により単一細胞に分散させた。BrdUの取り込みを検出するため、メーカーの説明書に従い、APC−BrdU Flow Kit(BD Biosciences)を使用した。染色されたサンプルを、FACSDiva(BD)softwareと共にBD FACSAriaIII(BD)を用いて分析し、PGCLC又は雄性生殖細胞をそれぞれBV又はStella−EGFPの蛍光により同定した。3つの生物学的複製物を各サンプルについて分析した。
W/W マウスの精巣へのPGCLCの移植
PGCLCをFACSで精製した後、無作為に選択した新生仔(出生後7日)又は成体のW/Wマウスの精巣に、以前報告されたように(Chuma et al、2005)、精巣当たり1×10〜1×10個の細胞を注入した。必要に応じて、免疫抑制のために抗マウスCD4抗体(用量当たり50mg、クローンGK1.5;Biolegend)を0、2又は4日目に腹腔内注射した(Kanatsu−Shinohara et al,2003)。妊娠を評価するため、移植後10週のレシピエントをBDF1のメスと交配させた。以前報告されたように(Ohinata et al,2008)、BVSCトランスジーンの子孫の遺伝子型決定を行った。HE染色のために、精巣又は精巣上体をブアン溶液で固定し、パラフィンに包埋し、切片を作成した。
体外受精
精子を精巣上体尾部から回収し、HTF培地(Kyudo Co.,Ltd.)中で37℃、1時間プレインキュベートした。PMSG及びhCGを注入することにより過排卵させたBDF1のメスから卵子を回収し、HTF培地中の精子と受精させた。得られた2細胞胚を、妊娠後(dpc)0.5日目に偽妊娠ICRメスの卵管に移した。仔を18.5dpcで帝王切開により分娩させた。
LacZ染色
精細管をPBS中の2%パラホルムアルデヒド及び0.2%グルタルアルデヒドで4℃、1時間固定した。PBSで3回洗浄した後、精細管をX−gal溶液(0.1%X−gal、0.1%Triton X−100、1mM MgCl、3mM K[Fe(CN)]及び3mM K[Fe(CN)]を含むPBS)で37℃、2〜3時間インキュベートした。
PGCLCにおけるDNA FISH及び免疫蛍光−DNA FISH
ESC、EpiLCs、及びメスのMEFをTrypLEで解離し、d4、d4c3及びd4c7 PGCLCを、FACSを用いて精製した。細胞サンプルをポリ−L−リシン(Sigma)でコーティングしたガラスカバースリップ上に、少量のPBS中で移し、固定前に過剰の培地を吸引することにより、カバースリップに接着させた。DNA FISHのため、カバースリップ上の細胞サンプルを、3%パラホルムアルデヒド(PFA)(pH7.4)中で10分間固定し、0.5%Triton X−100/PBS中で3分間、氷上で透過処理し、−20℃で70%エタノール中に保存した。エタノールの希釈系列で脱水した後、70%ホルムアミド/2×SSC(pH7.4)中で80℃、30分間変性させ、再度氷冷エタノール系列で脱水した。次に、Huwel用の蛍光BACプローブ(RP24−157H12)と37℃で一晩ハイブリダイズさせた。カバースリップをDAPI(1μg/ml)で対比染色し、Vectashield(Vector Laboratories)にマウントした。
免疫蛍光とそれに続くDNA FISHを、既報(Chaumeil et al,2004,2008)と同様に行った。カバースリップ上の細胞サンプルを3%PFA(pH7.4)中で、室温で10分間固定した。0.5%Triton X−100/PBS中で、3分間氷上で細胞の透過処理を行った。PBSで洗浄した後、調製物を1%BSA(Sigma)/PBS中で30分間ブロッキングし、抗H3K27me3(1/200;Millipore)と共に4℃で一晩インキュベートし、次いでPBSで3回洗浄し、Alexa Fluor 488抗ウサギの二次抗体(1/500;Thermo Fisher Scientific)で、30分間室温でインキュベートした。PBS中で洗浄した後、調製物を室温で10分間、4%PFA中で固定した後、PBSで洗浄した。調製物を0.7%Triton X−100、0.1M HCl中で、10分間氷上でインキュベートした。次いでそれらを2×SSC中で、10分間、室温で2回洗浄した。最後に、調製物を80℃で30分間、70%ホルムアミド/2×SSC(pH7.4)中で変性させ、氷冷2×SSC中に浸漬し、上記のHuwel用の蛍光BACプローブとハイブリダイズさせた。
RNAシーケンシング(RNA−seq)
RNAeasy Micro Kit(Qiagen)を使用して、ESC、EpiLC及びBV及びSC二重陽性(本明細書において「BVSC(+)」と略記する場合がある)のd4、d6、d4c3、d4c5、及びd4c7 PGCLC(各2つの生物学的複製物)から全RNAを精製した。以前報告されたように(Kurimoto et al,2006)、10ng RNA(1,000細胞に当たる)をcDNA複製法に供し、以前報告されたように(Nakamura et al,2015)、3’末端をSOLiD 5500xl systemでディープシーケンシングした。以前の研究(Kagiwada et al,2013)で調製した、E10.5PGC、E12.5及びE13.5のオス/メスの生殖細胞由来の1ng RNA、並びにE9.5PGCから増幅したcDNA(各2つの生物学的複製)もまた、RNA−seqに供した。
クロマチン免疫沈降シーケンス(ChIP−seq)
ChIP−seqを、既報(Kurimoto et al,2015)と同様に実施した。簡潔に述べると、1×10〜1×10BV(+)d4c7 PGCLCをFACSで精製し、10分間室温で、1%ホルマリン(Sigma)で固定し、続いて150mMグリシンでクエンチした。固定した細胞をPBSで洗浄し、1%SDSを含む溶解緩衝液に溶解し、Bioruptor UCD250を用いて高出力で30秒間の10サイクルで超音波処理した。可溶化したクロマチン画分を、M280 Dynabeadsヒツジ抗マウスIgG(Life Technologies)と複合体中の、ヒストンH3K4me3、H3K27ac、又はH3K27me3に対するマウスモノクローナル抗体(Hayashi−Takanakaら、2011)と共に4℃で一晩回転させながらインキュベートした(各2つの生物学的複製物)。洗浄後、1%SDS及び10mM DTTを含有する緩衝液中でクロマチンを溶出させた。溶離液を65℃、一晩で逆架橋させ、4μgのプロテイナーゼKで45℃、1時間処理し、Qiaquick PCR purification column(Qiagen)で精製した。次いで、ChIP処理したDNA及び入力DNAを、超音波処理(Covaris、Woburn、MA)により約150bpの平均サイズにせん断し、既報(Kurimoto et al,2015)のSOLiD5500xl systemでのディープシーケンシングのためのライブラリー調製方法に供した(Kurimotoら、2015)。
全ゲノムのバイサルファイトシーケンシング(bisulfite sequencing)(WGBS)
以前報告されたように(Shirane et al,2016)WGBSを実施した。簡潔に述べると、150mM NaCl、10mM EDTA、0.5%SDS及び1mg/mLプロテイナーゼKを含有する10mMトリス−Cl(pH8.0)で、精製したBV陽性のd4c3及びd4c7 PGCLC(各2つの生物学的複製物)を、55℃で一晩振盪しながら溶解した。この溶解物を1.32μg/mlのRNase Aと共に37℃で1時間インキュベートし、TEで飽和したフェノールで1回、フェノール−クロロホルムで2回、クロロホルムで1回抽出した。ゲノムDNAを等容量のイソプロパノールで沈殿させ、70%エタノールで2回洗浄し、風乾した後、10mMトリス−Cl(pH8.0)に溶解した。精製したゲノムDNA(50ng)を0.5ngの非メチル化ラムダファージDNA(Promega)でスパイクし、以前報告されたような(Shirane et al,2016)Illumina HiSeq 1500/2500システム上でのディープシーケンシングのため、post−bisulfite adaptor tagging(PBAT)法(Miura et al,2012)を用いてバイサルファイト変換及びライブラリー構築に供した。
RNA−seqのデータ解析
以前に記載されたように(Nakamura et al,2015)、cutadapt v1.3(Martin,2011)、tophat v1.4.1/bowtie v1.0.1(Kim et al,2013)、及びcufflinks v2.2.0(Trapnell et al,2012)を用いて、RNA−seqリードデータをマウスmm10ゲノム上にマッピングし、伸長した転写物の末端部位を有する参照遺伝子にアノテートした。発現レベルをreads per million−mapped reads(RPM)に対して正規化した。有意な発現レベルは、log(RPM+1)>3として定義した。発現レベルの倍数変化(fold changes)が2より大きい場合(即ち、log(RPM+1)の差が1より大きい場合)、遺伝子は差次的に発現されるとみなした。少なくとも1つの試料において有意に発現し、少なくとも1対の比較(10,437遺伝子)で差次的に発現された遺伝子を、主成分分析(PCA)及びunsupervised hierarchical clustering(UHC)に使用した。差次的に発現される遺伝子のGeneontology(GO)(Ashburner et al,2000)を、DAVIDプログラム(Huang da et al,2009)を用いて分析した。
ChIP−seqのデータ解析
以前報告されたように(Kurimoto et al,2015)、bowtie v1.1.2(Langmead et al,2009),picard−tools v2.1.0(http://broadinstitute.github.io/picard/)、IGVtools v2.3.52(Robinson et al,2011)、samtools v1.3(Li et al,2009)、及びMACS v2.1.0(Zhang et al,2008)を用いて、ESC、EpiLC、d6 PGCLC(Kurimoto et al,2015)、及びd4c7 PGCLCのリードデータを、マウスmm10ゲノム上にマッピングし、分析した。リードパターンをIGVにより可視化した(Robinson et al、2011)。
近接(1kb以内)で検出されたP値が10−5未満のH3K4me3ピークを単一のピークとして結合し、中心からの500bp内のピークのリード密度をInputのもので正規化した(それらの500bp以上及び5kb以内)(IP/入力レベル)。TSSから2kb以内に位置するIP/入力レベルの最も高いH3K4me3ピークをTSSに関連したピークとみなした。TSSに関連したH3K4me3ピークのIP/入力レベルは、有意な発現レベルの95パーセンタイルを有する遺伝子に関連するものに対してさらに正規化し、H3K4me3レベルとして定義した。
近接(1kb以内)で検出されたP値が10−20より小さいH3K27acピークを単一のピークとして結合した。中央から500bp以内のピークのリード密度を、log IP/入力レベルの平均値に対して正規化し、H3K27acレベルとして定義した。H3K27acレベルの倍数変化が2より大きい場合、H3K27acピークはd6−又はd4c7に偏っていると考えた。
TSS(1kb以内)及びTSSに関連したH3K4me3ピーク周辺の領域のH3K27me3のリード密度を、Inputによって正規化し、H3K27me3を定義するため、log(RPM+1)が2.5より大きく3.5より小さい発現レベルを有する遺伝子のTSSの周辺のH3K27me3のIP/入力レベルの平均に対して正規化した。
WGBSのデータ分析
アダプタートリミング、マウスmm10ゲノムへのマッピング、及びWGBSデータの分析を、Trim Galore! v0.4.1(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)、cutadapt v1.9.1、及びBismark v0.15.0(Krueger & Andrews,2011)、bowtie v1.1.2及びRプログラムを使用して、既報(Shirane et al,2016)と同様に実施した。バイサルファイト変換率は、陽性対照としてのラムダファージゲノムを使用して、>99.5%と見積もった。
以前報告したように(HCP、ICP及びLCP)(Borgel et al、2010)、プロモーターを、転写開始部位から0.9kb上流及び0.4kb下流の領域として定義し、GC含量及びCpG密度に応じて3つのカテゴリーに分類した。少なくとも5個のCpGを有するプロモーターを、メチル化分析に使用した。E12.5胚で定義されたICRの座標を、従前の刊行物(Tomizawa et al、2011)から得た。反復因子のメチル化分析のために、処理されたリードを反復コンセンサス配列(Shirane et al、2016)にマッピングし、そして少なくとも4リードをカバーするCpG部位を使用した。RepeatMasker(Smit、AFA、Hubley、R&Green、P.Repeat−Masker Open−4.0。2013−2015 http://www.repeatmasker.org)を使用して、リピートと重複しているユニークにマッピングされた領域を定義した。ユニークにマッピングされた全ゲノム領域の分析のために、1kbの重複を有する2kbのスライドウィンドウにおける5mCレベルを計算した。
ユニークにマッピングされた領域のメチル化分析のために、4未満のリードと200以上のリードをカバーしたCpG部位を除外した。従って、メチル化/非メチル化シトシンをコールするための最少配列深度は、4であった。反復因子のメチル化分析のために、処理されたリードを反復コンセンサス配列(RepBase19.0.4)にマッピングし、そして少なくとも5リードをカバーするCpG部位を使用した。
アクセッション番号
d4c3/d4c5/d4c PGCLC及びE9.5/E12.5生殖細胞のRNA配列データに関するアクセッション番号は、GSE87644(GEOデータベース)である。ESC/EpiLC/d4/d6 PGCLC[BVSC(+)](GSE67259)及びE10.5/E11.5/E13.5生殖細胞(GSE74094)のRNA配列データを、GEOデータベースからダウンロードした。d4c7 PGCLCのH3K4me3、H3K27ac、及びH3K27me3のChIP配列データに関するアクセッション番号は、GSE87645(GEOデータベース)である。
ESC/EpiLC/d2/d4/d6 PGCLC(GSE60204)のH3K4me3、H3K27ac、H3K27me3のChIP配列データを、GEOデータベースからダウンロードした。d4c3/d4c7 PGCLCのWGBS配列データのアクセッション番号は、DRA005166(DDBJデータベース)である。ESC/EpiLC/d2/d4/d6 PGCLC(DRA003471)及びE10.5/E13.5 PGC(DRA000607)のWGBS配列データを、DDBJデータベースからダウンロードした。
<結果>
PGCLCを増幅する化合物のスクリーニング
Blimp1−mVenus及びStella−ECFP(以下、Blimp1−mVenusをBV、Stella−ECFPをSCともいう)トランスジーン(Ohinata et al、2008)を有するいくつかの新規なマウス胚性幹細胞(ESC)の雄性幹細胞株を得て、PGCLCの誘導および増殖に対するそれらの効率を評価した。すべてのESC株は、アクチビンA(ActA)及び塩基性線維芽細胞成長因子(bFGF)によりEpiLCに誘導され、骨形成タンパク質4(BMP4)、白血病抑制因子(LIF)、幹細胞因子(SCF)、及び上皮成長因子(EGF)によりBV陽性もしくはBV及びSC二重陽性(本明細書において「BV/BVSC(+)」と略記する場合がある)のPGCLCに誘導された。浮遊凝集体中のBV(+)PGCLCの数は、誘導の6日目(d6)または8日目(d8)まで増加し、その後減少した。これは、本発明者らの以前の報告(Hayashi et al、2011)と一致する。評価した株の中で、BVSC BDF1−2は、浮遊凝集体中で最も強固な誘導および増殖を示した。この株をその後のスクリーニングに用いた。
浮遊凝集物中で増殖期にあると思われるd4 PGCLCを、PGCの生存を支持することが知られている膜結合型のSCFを発現するm220フィーダー(Dolci et al,1991;Majumdar et al,1994)とともに、96ウェルプレート上に播種することとした。また、細胞分析装置を用いて、BV(+)PGCLCの増殖を増強する化合物をスクリーニングすることとした(図1A)。ESCやEGCはBlimp1もしくはBVを発現しないか低くしか発現しないため(Durcova−Hills et al,2008;Ohinata et al,2008;Hayashi et al,2011)、BV陽性は、PGCLCの増殖を、胚性生殖細胞(EGC)へのPGCLC脱分化と区別すると推論された(Matsui et al,1992)。m220細胞は、フィーダーとしてそれらの調製に必要とされるマイトマイシンC(MMC)処理に対して非常に脆弱であったので、MMC処理に耐性を有するm220亜系統株(subline)をクローン化して用いた。選択された条件下で、PGCの増殖を刺激することが知られている古典的な因子であるLIF(Matsui et al,1991)を用いて、7日間の培養後に、BV蛍光の対応する増加として、PGCLCの増殖を細胞分析装置により首尾よくモニタリングした。この単純な陽性対照条件下で、PGCLCのEGCへの脱分化は、ほとんど又は全くないことが確認された。従って、7日間の培養後にBV(+)d4 PGCLCを増幅する能力について、細胞内シグナル伝達分子/経路の多様なセットを標的とする、合計約2,000の化合物のスクリーニングを行った。その結果、10μMの濃度で、陰性対照培養と比較してBV(+)細胞を有意に増幅した63の化合物を同定した。培養1日目と7日目との間のBV蛍光の倍数差(fold difference)は、陰性対照の平均値の3SD(標準偏差)よりも大きかった(図1B及びC)。特に、上位25のヒットした化合物のうち、5つ(20%)はホスホジエステラーゼ4(PDE4)に対する選択的阻害薬[イブジラスト、S−(+)−ロリプラム、ロリプラム、GSK256066、シロミラスト]、3つ(12%)はレチノイン酸(RA)シグナル伝達に対するアゴニスト(アシトレチン、TTNPB、レチノイン酸)であり、1つはフォルスコリンであった(図1D)。PDE4はサイクリックAMP(cAMP)のAMPへの加水分解を触媒し、したがってPDE4阻害薬は細胞内cAMPレベルを増加させる(Pierreら、2009;Keravis&Lugnier、2012)。フォルスコリンはアデニレートシクラーゼの強力な活性化因子であり、したがって細胞内cAMPレベルも上昇させる(Pierre et al、2009)。RAシグナル伝達およびフォルスコリンは、PGCの増殖を刺激することが知られている(De Felici et al,1993;Koshimizu et al,1995)。他のPDEに対する選択的阻害薬又はPDEに対する非選択的阻害薬は、PGCLCの増殖に対して正の効果を示さなかった。図1Cは、培養7日目の、PDE4阻害薬、GSK256066の存在下でのBV(+)細胞の増殖を示し、独特の平坦な形態を有する複数のコロニーの形成を明らかにするものである。同じ化合物ライブラリーのいくつかを用いて、1μMの濃度で同様のスクリーニングを行ったところ、同じクラスの化合物(PDE4の選択的阻害薬、RAシグナル伝達のアゴニスト、及びフォルスコリン)をPGCLC増殖の強力な刺激物質として同定した。
また、10および1μMスクリーニングからそれぞれ、BV(+)細胞の増殖または生存に負の影響を及ぼす426および178の化合物を同定した(培養1日目と7日目との間のBV蛍光の倍数減少(fold reductions)は、陰性対照の平均値の3SDよりも大きかった:図1BおよびE)。そのような化合物は、受容体チロシンキナーゼ(RTK)シグナル伝達、ホスファチジルイノシトール3キナーゼ(PI3K)シグナル伝達、哺乳類ラパマイシン標的(mTOR)シグナル伝達、Janusキナーゼ(JAK)シグナル伝達、およびAKTシグナル伝達に対する経路[reviewed in(Saitou & Yamaji,2012)]のような、PGC増殖/生存に正の影響を及ぼすことが知られているものを含む、主要なシグナル伝達経路の阻害薬、ならびに細胞周期/細胞分裂およびDNA複製/修復のための阻害薬を含む。まとめると、これらの知見は、スクリーニングがPGCの増殖/生存に関連する主要な経路に影響を与える化合物を首尾よく同定したことを強く示している。
PGCLC増幅に対するロリプラム及びフォルスコリンの相乗効果
ヒットした化合物の中で、PDE4阻害薬が最も濃縮された化合物であったため(図1D)、その後の研究において、PDE4阻害薬の1つであるロリプラムの効果に焦点を当てることにした。ロリプラムは、効率的なPDE4阻害薬として、多様な実験において再現性よく使用されている(Keravis&Lugnier、2012)。m220フィーダー上のSCFの存在下でGMEM/10%KSR/2.5%FCS中のBVSC BDF1−2 ESCから誘導されたd4 PGCLCの増殖について、ロリプラム、フォルスコリン及びそれらの併用(異なるメカニズムにより、両方とも細胞内cAMP濃度を増加させる)(Pierre et al、2009)の効果を評価した。LIFはPGC増殖の他の刺激因子とともに適用した場合、PGCLCのEGCへの脱分化を高める可能性があるので(Matsui et al,1992)、この培養物に含めないこととした。ロリプラム単独(10μM)の効果は、比較的軽度であり、フォルスコリン単独(10μM)の効果と同様であった(図2A)。しかし、ロリプラムとフォルスコリンを併用すると、d4 PGCLCの増殖を効果的に刺激した:ロリプラムとフォルスコリンの両方を10μMとすると(FR10)、d4 PGCLCは培養7日目(d4c7)まで少なくとも強く安定した増殖を示し、4から5回の倍加に相当する20倍以上増加した(図2A−C)。重要なことに、増幅された細胞は平らなコロニーを形成し、BVSCを強く発現し続け、顕著な糸状仮足および鞭毛腺腫を伴う運動細胞の特徴を示したことから(図2B及びD)、FR10による増幅後に移動期PGCの特性を維持していることが示唆される。
フォルスコリン及びロリプラムが実際にPGCLC中のcAMP濃度を上昇させるかどうかを調べるために、フォルスコリン、ロリプラム、またはその両方に応答するPGCLCのcAMP濃度の増加を測定した。図2Eに示すように、フォルスコリンとロリプラムとは、独立して、PGCLC中のcAMP濃度を約4nM/1x10 d4 PGCLCに増加させた。より顕著には、フォルスコリンとロリプラムを同時に添加すると(FR10)、PGCLC中のcAMP濃度が約40nM/1×10 d4 PGCLC超に上昇した。
FR10は、他の雄性及び雌性のESC株から誘導されたPGCLCを、培養7日目で約20倍の平均増幅率(average expansion rate)で増幅するのに有効であった。場合によっては、PGCLCを約50倍に増幅し、これは5−6回の倍加に相当した(図2C)。FR10はまた、E9.5でのPGCの増幅にも有効であったが、幾分限定された程度までであり(最大約8倍の増幅、図2C)、これは、胚から直接単離されたE9.5PGCとインビトロでPSCから誘導されたd4 PGCとの間の現在の条件下での生存性の差によるものであろう。細胞周期分析は、培養7日目でSおよびG2/M期のわずかな減少、及び明らかな対応する増加を伴って、培養されたPGCLCの大部分(>約60%)がS期にあることを明らかにした(図2F及びH)。これは、E13.5後のG0/G1期に増殖が停止し、阻止された胚生殖腺における雄生殖細胞の細胞周期特性(Western et al,2008)とは著しく対照的である(図2G及びH)。これらの知見は、ロリプラムとフォルスコリンがPGCLCの細胞周期を進行させるために相乗的に作用することを示すものであり、おそらくcAMPシグナル伝達の強固な活性化を介して起こるものである。
増幅培養されたPGCLCの精子形成の強力な能力
次に、培養中にFR10により増幅されたPGCLCがPGC/PGCLCとしての機能を維持するかどうかを評価した。この目的のために、BVSC BDF1−2、BCF1−2、又はR8(主にC57BL/6)ESCsから誘発されたd4c7及びd4 PGCLCを、内因性生殖細胞を欠く新生児W/Wvマウスの精巣に移植した。BVSC BDF1−2又はBCF1−2 ESCから誘導されたd4c7 PGCLC及びd4 PGCLCを移植した精巣は、移植7ヶ月後に顕著な大きさの増大を示し(図3A)、精子形成の証拠を伴う多数の精細管を含み、実際に豊富な精子を産生した(図3B−F)。注目すべきことに、BVSC BDF1−2又はBCF1−2ESC由来のd4c7及びd4 PGCLCの両方による精子形成の回復は、精子が精巣上体に輸送されるほど顕著になり、そのような精子は、明らかに正常な子孫を産生するために体外受精(IVF)に使用される頑強な運動性を獲得した(図3G−K)。したがって、BVSC BDF1−2またはBCF1−2 ESC由来のd4c7及びd4 PGCLCのレシピエントの雄は、自然交配によって実質的に同腹仔の大きさの子孫を産生することができ、得られた子孫は明らかに正常な成長を示した(図3L−N)。
対照的に、BVSC R8 ESC由来のd4c7又はd4 PGCLCを移植した精巣は、サイズのおだやかな増加しか示さず、精子形成を伴う精細管の数が少なくなり、得られた精子は精巣上体に達しなかった。それにもかかわらず、以前に報告したように(Hayashi et al、2011)、得られた精子の細胞質内注入(ICSI)で明らかに正常な子孫を得ることができた。重要なことに、d4/d6 PGCLC又はPGC(Ohtaら、2004)の場合のように、いずれのESC株から誘導されたd4c7 PGCLCも成体精巣に定着できなかった。移植のいずれにおいても奇形腫の形成は認められなかった。まとめると、これらの知見は、培養中にFR10により増幅されたPGCLCが本来の機能特性を忠実に維持し、ハイブリッドな遺伝的バックグラウンドを有するPGCLCが不妊マウスの精子形成を再構成するのに十分強力であるため、レシピエントマウスが自然交配により子孫を産生することを示す。
増幅培養中のPGCLCの転写特性
次に、増幅培養中のPGCLCの詳細な転写特性(transcriptional properties)を決定した。第1に、免疫蛍光(IF)分析により、d4c7 PGCLCは、E13.5の雄性生殖細胞と比較して、より高いレベルのOCT4を発現する一方で、PGCが胚性腺のコロニー形成後に徐々にアップレギュレートする主要な翻訳調節因子であるDDX4およびDAZL(Fujiwaraら、1994;Cookeら、1996)をより低いレベルで発現することが明らかになった(いくつかのd4c7 PGCLCはDAZLを完全に発現するようであった)(図4A)。第2に、RNAシーケンシング(RNA−seq)法(Nakamura et al、2015、2016)により、培養したPGCLC[BVC R8 ESCから誘導されたd4c3、d4c5及びd4c7 PGCLC]の転写物を決定し、それらをESC、EpiLC、d4/6 PGCLC、及び生殖細胞[E9.5、E10.5及びE11.5のPGC;E12.5及びE13.5の雄性/雌性生殖細胞(Kagiwada et al,2013)]の転写物と比較した。注目すべきことに、主成分分析(PCA)は、培養したPGCLCをd4/6PGCLCと、次いでE9.5、E10.5及びE11.5PGCと、近くでクラスター化したが、E12.5及びE13.5雌雄/雌性生殖細胞とは遠く離れており(図4B)、これは、PGCLCは、その増幅培養中にトランスクリプトームを完全に維持することを示す。一方、unsupervised hierarchical clustering(UHC)及びPGCLC間のPCAは、d4からd6へ、次いでd4c3、d4c5、およびd4c7 PGCLCへのPGCLCsの特性の漸進的な移行を明らかにした。したがって、増幅培養中、PGCLCは指向性の転写変化(directional transcriptional change)を起こすようであり、その初期段階は浮動集合体でも現れる。d4c7及びd6 PGCLCの間、ならびにE13.5及びd6 PGCLC雄性/雌性生殖細胞の間に差次的に発現される遺伝子(DEG)を同定した。d4c7 PGCLCは、478および409遺伝子をそれぞれアップ/ダウンレギュレートし、アップレギュレートされた遺伝子は、「細胞内シグナル伝達カスケード」及び「パターン特定プロセス」などのgene ontology(GO)機能的タームを有するものでエンリッチされていた。PCAと一致して、E13.5及びd6 PGCLC雄性/雌性生殖細胞間のDEGは、数がはるかに大きかった(図4C及びD)。E13.5雄性/雌性生殖細胞は、2,381及び1,705の遺伝子をそれぞれアップ/ダウンレギュレートし、これらのDEGは、生殖細胞発生中の主要な発生進行を反映するGOタームのエンリッチメントを示した。例えば、雄性で特異的にアップレギュレートされる遺伝子は、「転写」(Foxo1、Utf1、Pou6f1)および「クロマチン構成」(Ezh1、Prmt5、Kdm2a)でエンリッチされ、雌性で特異的にアップレギュレートされる遺伝子は、「転写の調節」(Gata2、Msx1、Cdx2)および「配偶子世代」(Figla、Nr6a1、Rec8)でエンリッチされ、特に、雄性及び雌性の両方において一般にアップレギュレートされる遺伝子は、「減数分裂」(Spo11、Mael、Sycp1)、「染色体編成」(Ehmt1、Suv39h1、Smarcc1)、および「メチル化」(Piwil4、Satb1)したがって、減数分裂およびトランスポゾン抑制のような生殖系列機能に関与する遺伝子として以前に同定され、主にDNAメチル化によって体細胞で抑制されている、いわゆる「生殖系列遺伝子」に対してエンリッチされた。
PGCLC間のUHCおよびPCAと一致して、d4c7及びd6 PGCLC間のDEGは、培養中にこのような状態を漸進的に獲得し(図4E)、特にin vivoでの胚細胞発生中に進行性のアップ/ダウンレギュレーションも示した(図4E)。それらは少数部分を構成し、その大部分はE13.5およびd6 PGCLCにおける雄性/雌性生殖細胞間のDEGに含まれていた(図4CおよびD)。重要なことに、これらは、性特異的制御のバイアスを示さなかった(図4C及びD)。d4c7 PGCLC及びd6 PGCLCの間のDEG、ならびにE13.5及びd6 PGCLCでの雄性/雌性生殖細胞間のDEGの間の関係のより詳細な洞察を得るために、E13.5及びd4 PGCLCにおける雄性/雌性生殖細胞間の発現レベル差を、E13.5及びd6 PGCLCでの雌性/雌性生殖細胞間の発現レベル差に対してプロットした(図4F)。この分析により、d6 PGCLCと比較して、E13.5およびd4c7 PGCLCでの雄性/雌性生殖細胞において一般にアップレギュレートされる306の遺伝子のうち、104の遺伝子が部分的にのみ活性化され(E13.5−d4c7>2倍)、197個の遺伝子が完全にd4c7 PGCLCにおいて活性化された(−2倍<E13.5−d4c7<2倍)(図4F)ことが明らかになった。前者はDdx4、Dazl、Brdt、Asz1、Dmrt1、Stra8、Sycp3、Syce1及びSmc1bなどの遺伝子を含み、「生殖系列遺伝子」でエンリッチされ、後者はPiwil2、Rpl10l、Rpl36及びRhox遺伝子を含んだ(図4F)。一方、d6 PGCLCと比較して、E13.5およびd4c7 PGCLCでの雄性/雌性生殖細胞において一般にダウンレギュレートされる252の遺伝子のうち、68の遺伝子は部分的にのみダウンレギュレートされ(E13.5−d4c7<−2倍)、180の遺伝子はd4c7 PGCLCにおいて完全にダウンレギュレートされた(−2倍<E13.5−d4c7<2倍)。これらの知見は、増幅中に、PGCLCは、移動期PGCの特性を本質的に維持しながら、性分化の前に胚性腺で現れる生殖細胞成熟プログラムの一部を徐々に獲得することを実証している。
増幅培養中のPGCLCのエピジェネティック特性
培養されたPGCLCの特性を支配するメカニズムを探索するために、それらのエピジェネティックプロファイルを決定した。IF分析により、d4c7 PGCLCは、EpiLCと比較して、5メチルシトロン(5mC)レベルが低いことが明らかになった(図5A)。トランスクリプトーム解析の結果と一致して、d4c7 PGCLCは、EpiLCと比較して、同様のレベルのDNMT1を発現したが、DNMT3A/3B及びUHRF1のレベルがはるかに低かった(図5B)。さらに、d4c7 PGCLCは、EpiLCと比較して、ヒストンH3リジン27三メチル化[H3K27me3:ポリコーム複合体2(PRC2)による抑制を表す]レベル及びH3K9ジメチル化[H3K9me2:G9A/GLPによる抑制を表す]レベルが、それぞれ高く及び低かった(図5A)。したがって、d4c7 PGCLCのエピジェネティック特性は、d4c7 PGCLCがd6PGCLCよりも5mCレベルがはるかに低いと思われる点を除き、d6 PGCLCのエピジェネティック特性(Hayashi et al、2011;Kurimoto et al、2015)と著しく類似しているようであった。
そこで、全ゲノムのバイサルファイトシーケンシング(WGBS)により、(BVSC R8 ESCから誘導された)d4c3及びd4c7 PGCLCにおけるDNAメチル化のゲノムワイドレベルおよび分布を定量し、また、クロマチン免疫沈降シーケンス(ChIP−seq)に続いて大規模なパラレルシーケンスにより、(BVSC R8またはBDF1−2ESCから誘導される)d4c7 PGCLCにおけるH3K4me3(プロモーター活性を示す)、H3K27アセチル化(ac)(活性エンハンサーを示す)、及びH3K27me3のゲノムワイドレベルおよび分布を定量し、さらに、最近報告されたPGCLCの誘導の間の主要な細胞型(ESCs、EpiLCs、ならびにd2、d4及びd6 PGCLC)のデータ(Kurimotoら、2015;Shiraneら、2016)と比較して、これらのデータを分析した。バイサルファイトシーケンシングは5mC及び5−ヒドロキシメチルシトシン(5hmC)を区別せず(Hayatsu&Shiragami、1979)、また、PGCLCの誘導の間の5hmCレベルはほとんど無視できるので(Shirane et al、2016)、以下、5mCと5hmCを総称して5mCとする。図5Cは、Prdm14遺伝子座およびHoxbクラスター周辺のWGBSおよびChIP−seqトラック遷移を示す。活性型(H3K4me3およびH3K27ac)および抑制型(H3K27me3)ヒストン修飾の両方が、d6およびd4c7 PGCLC間で比較的類似の分布を示した(図5C)一方で、IF分析と一致して、著しく、PGCLCの培養中に両座において5mCがほぼ完全に消去された。これは、PGCLCの増幅が、ヒストン修飾を維持しながら、徐々に5mCを消去するプロセスであることを示唆している。
培養したPGCLCにおける包括的なDNAメチル化消去
次に、PGCLC培養中の5mCレベルの動態に関するより詳細な分析を行った。CpH(H=A、C、又はT)メチル化は、PGCLCの誘導の間制限され(Shirane et al、2016)、哺乳類細胞では明確な生物学的役割を示さないことが分かっているため(Schubeler、2015)、CpGの5mCsに焦点を当てた。ゲノムワイドDNAメチル化状態の主要なパラメータとして、ユニークな配列領域全体の5mCレベルの平均を決定した(ユニークな領域:1kbの重複を伴う2kbのスライドウィンドウ)。プロモーター(高、中、及び低CpG密度プロモーター:それぞれHCP、ICP、及びLCP)(Weberら、2007)、反復因子のコンセンサス配列[長鎖散在反復配列1(LINE1);嚢内A粒子(IAP);IAP以外の内因性レトロウイルス配列(ERV);メジャーおよびマイナーサテライト]、およびインプリンティングされた遺伝子の刷り込み制御領域(ICR)を別々に決定した。また、非プロモーターCpGアイランド(CGI)、エキソン、イントロン、遺伝子間領域、細胞型特異的エンハンサー(Kurimotoら、2015)、および「生殖系列遺伝子」のCGI(Weber et al,2007;Borgel et al,2010;Kurimoto et al,2015)の5mCレベルを決定した。
既報のとおり、PGCLCsは、胚盤葉と非常に類似したDNAメチロームを有するEpiLCsで確立された5mCsの連続希釈を示し、その結果、d6 PGCLCsは、平均約37%の5mCレベル(約E9.0−9.5での移動期PGCと類似していると考えられる状態)を獲得する。驚くべきことに、Prdm14遺伝子座およびHoxb遺伝子座の分析と一致して、培養したPGCLCにおいて、ユニークな領域、繰り返し、および別個の調節要素について異なるキネティクスで、d4/d6細胞の5mCレベルの連続希釈が存在した。その結果、d4c7細胞には約6%の平均5mCレベルしかなく(図6A)、生殖系列サイクル全体を通じて最低の5mCレベルを有するE13.5生殖細胞(Seisenbergerら、2012;Kobayashiら、2013)と同等のレベルであった。重要なことに、リピート、脱メチル化に耐性のある「生殖系列遺伝子」のプロモーター、及びインプリンティングされた遺伝子のICRを含む、実質的に全てのゲノムエレメントにおける5mC分布パターンは、d4c3 PGCLCとE10.5PGCとの間、及びd4c7 PGCLCとE13.5生殖細胞の間で著しく類似していたが、一方で、類似の5mCレベルを示す、d4c3 PGCLCと、2つのキナーゼ阻害剤(2i)を用いて培養したESC(Habibi et al,2013;Shirane et al,2016)との間の5mC分布パターンは、異なっていた。これは、培養したPGCLCにおけるDNAの脱メチル化は、in vivoのPGCにおけるメカニズムと、同じではないにしても類似したメカニズムを有しているが、インビトロで2iによって誘発されるメカニズムとは類似しないことを示唆している。DNAの脱メチル化を回避する「escapee」(5mC>20%)(Sepisenberger et al,2012)を分析し、escapeeがd4c7 PGCLCとE13.5生殖細胞との間でも大きく重なっており、それらの大部分はIAPの近くに存在することを見出した。従って、m220フィーダー上でのPGCLCの誘導及びFR10を用いたそれらの培養は、包括的にPGCにおけるDNAのメチル化リプログラミングを再構成した。それにもかかわらず、前記で実証したように、培養したPGCLCは、基本的に遊走性のPGCの転写状態を維持した(図4B)。
従って、プロモーターの脱メチル化がd4c7 PGCLCにおける転写活性化に及ぼす影響を調べた。培養したPGCLCにおける全体的なDNAの脱メチル化を反映して、d6 PGCLCとd4c7 PGCLCとの間で7,737個ものプロモーターが脱メチル化された(d6で5mC>20%、d4c7で<20%)(図6C)。d6 PGCLCと比較してd4c7 PGCLCでアップレギュレートされた478個の遺伝子のうち、96個の遺伝子がプロモーターの脱メチル化がされており、27個は、104個の部分的にアップレギュレートされた遺伝子(E13.5−d4c7>2倍)(Ddx4、Dazl、Brdt、Asz1、Dmrt1、Stra8、Sycp3、Syce1、Smc1bなど)に含まれており、34個は、完全にアップレギュレートされた197個の遺伝子(−2倍<E13.5−d4c7<2倍)(Piwil2、Rpl10l、Rpl36、Rhox遺伝子など)に含まれていた(図6D)。部分的に/完全にアップレギュレートされた遺伝子の中で、プロモーターが脱メチル化された遺伝子の割合は、部分的に/完全にダウンレギュレートされた遺伝子の中で、プロモーターが脱メチル化された遺伝子の割合より高かった(図6D)。プロモーターの脱メチル化自体が、培養したPGCLCにおける限られた数だけの特異的遺伝子の活性化に部分的に寄与すると結論づける。
培養したPGCLCの脱メチル化プロモーターにおけるH3K27me3の代償的アップレギュレーション
次に、PGCLCの誘導及び拡大中のH3K4me3、H3K27ac及びH3K27me3の分布の動態を解析した。PGCLC誘発中の主要な細胞型の場合と同様に、高レベルのH3K4me3は、d4c7 PGCLCにおいてHCPと主に結合し、転写開始点(TSS)の周辺のH3K4me3レベルは、関連遺伝子の発現レベルと正の相関関係があった(Ohta et el.,2017.図EV5A及びB)。このことは、d6 PGCLCとd4c7 PGCLCとの間の転写類似性を反映しており、ゲノムにわたるH3K4me3プロファイルは、d6 PGCLCとd4c7 PGCLCとの間で類似していた。重要なことに、エンハンサーの使用を示し、かつ異なる細胞型間(Calo & Wysocka,2013)、及びPGCLC誘発中(Kurimoto et al,2015)における、高度に動的な変化を示すH3K27acの分布も、d6 PGCLCとd4c7 PGCLCとの間で類似していた(図7A及びB)。これは、遺伝子発現自体だけでなく、遺伝子発現の調節もPGCLC培養の間大いに保存されていることを示している。それにもかかわらず、d6 PGCLCとd4c7 PGCLCとの間の潜在的な調節性の差異を示すであろう、d6 PGCLC又はd4c7 PGCLCのいずれかに特異的なH3K27acのピーク(TSS及び遺伝子体から15kb未満)を同定した。
H3K27me3の分布パターンもまた、d6 PGCLCとd4c7 PGCLCとの間で非常に類似しているようであった(図7C及びD)。しかし重要なことに、d6 PGCLCとd4c7 PGCLCの間で実質的な脱メチル化を有するプロモーター(d6では5mC>20%、d4c7で<20%、7737プロモーター)は、d4c7 PGCLCにおいてd6 PGCLCよりも高いH3K27me3の濃縮レベルを有する一般的な傾向を示したが、5mCレベルに変化がないプロモーターはそのような傾向を示さなかった(図7C及びD)。EpiLCとd6 PGCLCとの間で実質的な脱メチル化を示したにもかかわらず、前記プロモーターはEpiLCとd6PGCLCとの間のH3K27me3濃縮レベルの全体的な変化を示さなかった。これらの知見は、培養したPGC中の広範かつほとんど完全なプロモーターの脱メチル化が、H3K27me3濃縮レベルの付随的なアップレギュレーションにより少なくとも部分的に代償されることを示し、これが培養したPGCLCにおける遊走性のPGCの転写状態の維持に寄与するのであろう。
適切な発生のきっかけの活性化を支える状態である(Voigt et al,2013)、H3K4me3を活性化し、H3K27me3を抑制する二価の(bivalent)プロモーターを評価した(二価の定義については、材料及び方法を参照のこと)。以前の報告(Kurimoto et al,2015)と一致して、二価の遺伝子の数は主要な培養細胞型間において、EpiLCで最大であり、d6及びd4c7 PGCLCは同様の数の二価の遺伝子を示した(図7E)。しかし、d6 PGCLCとd4c7 PGCLCの間の二価の遺伝子の重複は、比較的中程度であった(〜519/1,058(〜49%))。これは、2つの異なる試料における2つのヒストン修飾の組合せのレベルを正確に比較すること対する内在する技術的な困難性に一部起因する。それにもかかわらず、d4c7 PGCLCの二価の遺伝子は、d6 PGCLCのものと比較して、「パターン特定プロセス(pattern specification process)」及び「胚の形態形成(embryonic morphogenesis)」などのGOタームにおいてより高い濃縮度を示した(図7F)。例えば、d4c7 PGCLCは、H3K27me3の高レベルによってクラスターが抑制されていても、Hoxcクラスターの周りで上昇したH3K4me3レベルを獲得した。d4c7 PGCLCが、エピジェネティックな「白紙状態」を示す、ゲノムワイドな5mC及びH3K9me2レベル(図5A及び6)(Kurimoto et al,2015)の非常にレベルが低い発生の調節因子に対して、高度にバランスのとれたエピゲノムを有すると結論づける。
雌性PGCLC及び雌性ESCにおけるX染色体の動態は、2つの活性化したX染色体(XaXa)を有し、雄性ESCと比較して低いゲノムワイドな5mCレベルを示す(Zvetkova et al,2005;Shirane et al,2016)。雌性EpiLCの大部分はXaXaを有し、浮遊凝集体形成の際に、Xの不活性化を受け、雌性mPGCLCは1つのXaと1つの不活性なX染色体(XaXi)を示す(Hayashi et al,2012;Shirane et al,2016)。次に、培養での雌性PGCLC増殖中のX染色体動態を評価した。雌性ESCは1つのX染色体を失ってXOになることがあるので(Robertson et al,1983;Zvetkova et al,2005)、最初に、X連鎖遺伝子のHuwe1のDNA蛍光in situハイブリダイゼーション(FISH)分析によって2系統(BVSC H14及びH18(129sv/C57BL/6バックグラウンド)のメスのESCからのPGCLC誘導及び増殖中において、2つのX染色体の維持の程度を調べた。図8Aに示すように、2つのXは、ESCからEpiLCへの分化中に比較的良好に維持されたが、PGCLCの誘導時には、1つのXが失われる傾向があり(XO:H14 d4 PGCLC及びH18 d4 PGCLCに関して、それぞれ〜60%及び〜40%)、培養でのPGCLCの増殖中では、XX/XO比は良好に保存されていた(XO:H14 d4c7 PGCLC及びH18 d4c7 PGCLCに関して、それぞれ〜60%及び〜40%)。
次に、本発明者らは、X染色体上のH3K27me3陽性度を評価することにより、PGCLCの増幅中のXa/Xi状態を調べた。図8Bに示すとおり、雌性マウス胎仔フィーダー(MEF)の約95%が2つのXsを有しており、当該細胞の約90%が1つのX上に単一のH3K27me3スポットを示し、それらがXaXi状態であることが示された。本発明者らは、XX d4 PGCLCの約50%がXaXi状態を示すのに対し、XX d4 PGCLCの約30%はX染色体上にH3K27me3スポットを示さないことを見出した(図8B)。意外なことに、少数(<5%)のXX d4c3及びd4c7 PGCLのみがXaXi状態を示し、それらの約70%はX染色体上にH3K27me3スポットを示さなかった(図8B)。このことは、PGCLCの増幅培養の間に1つのXiが再活性化するか、あるいは、再活性化のプロセスにあることを示しており、d4c7 PGCLCがエピジェネティックな「白紙状態」を獲得するという見解とよく一致している。
[II]PGC/PGCLCからの卵母細胞様細胞の誘導
以下に引用する文献の詳細情報については、Miyauchi,H.et al.,EMBO J.,36(21):3100−3119(2017)を参照のこと。
<材料と方法>
動物
すべての動物実験は、京都大学の倫理ガイドラインの下で行った。BVSC(Acc.No.BV、CDB0460T;SC CDB0465T:http://www.cdb.riken.jp/arg/TG%20mutant%20mice%20list.html)、Stella−EGFP(SG)およびmVH−RFP(VR)トランスジェニックマウスは、以前(Payer et al,2006;Seki et al,2007;Ohinata et al,2008;Imamura et al,2010)報告されたように樹立し、主にC57BL/6のバックグラウンドで維持した。BVSCDT ESC(XY)を胚盤胞(ICR)に注入し、その後仮親に移入することによりDazl−tdTomato(DT)マウスを作製した。ICRマウスは、SLC(Shizuoka、Japan)から購入した。膣栓が同定された日の正午を胎生期(E)0.5日とした。
妊娠した雌(ICR)にLDN−193189を投与するために、LDN−193189(sm10559;Sigma−Aldrich)を滅菌水に溶解し、2.5mgのLDN−193189を体重1kgあたりE11からE14まで12時間ごとに腹腔内注射した。
ESC培養/誘導およびPGCLC誘導/培養
H8 BVSC ESC(XX)(Hayashi et al,2012)、R8 BVSC ESC(XY)(Hayashi et al,2011)、L9 BVSCVR ESC(XX)、L5 BVSCVR ESC(XY)、BVSCDT ESC(XY;R8のサブライン)、BDF1−2−1 BVSC ESC(XY)(Ohta et al,2017)、およびStra8ノックアウトBVSC ESC(SK1,2,3;XY;BDF1−2−1のサブライン)を本研究に使用した。L5およびL9BVSCVR ESCは、VR雌(Imamura et al,2010)と、BVSC雄(Ohinata et al,2008)との交配によって得られた胚盤胞から、以前に記載された手順に従って樹立され、フィーダーフリー条件に適合させた(Hayashi et al,2011)。BVSCDTおよびStra8ノックアウトESCの樹立手順は、それぞれ、以下の「BVSCDT ESCの確立」および「Stra8ノックアウトESCの確立」の節に記載されている。
ESC培養およびPGCLC誘導は、いくつかの変更を加えて、以前(Hayashi et al、2011;Hayashi&Saitou、2013)に記載されたように行った。ESCは、ポリ−L−オルニチン(0.01%;Sigma)およびラミニン(300ng/ml;BD Biosciences)でコーティングしたディッシュ上またはマウス胚線維芽細胞(MEF)上で、2i+LIF条件下で維持した。アクチビンA(20ng/ml;PeproTech)、bFGF(12ng/ml;Life Technology)およびKSR(1%;Thermo Fisherを含有するN2B27培地中、ヒト血漿フィブロネクチン(16.7μg/ml;Millipore)でコーティングした12ウェルプレートのウェル上に1.0×10個のESCをプレーティングすることにより、EpiLCを誘導した。EpiLC誘導の42〜46時間後、PGCLCを、低細胞結合性96ウェルリピジュア−コーティングプレート(Thermo Fisher)のウェル中、BMP4(500ng/ml;R&D Systems)、LIF(1,000U/ml;Merck Millipore)、SCF(100ng/ml;R&D Systems)およびEGF(50ng/ml;R&D Systems)を含む200μlのGK15培地中に、2.0×10個のEpiLCをプレーティングすることにより、浮遊条件下で誘導した。GK15培地は、15%KSR、0.1mM NEAA、1mMピルビン酸ナトリウム、0.1mM 2−メルカプトエタノール、100U/mlペニシリン、0.1mg/mlストレプトマイシンおよび2mM L−グルタミンを含むGMEM(Thermo Fisher)で構成した。PGC/PGCLC培養は以前(Ohta et al,2017)に記載されたように行った。簡単に述べると、d4 PGCLC凝集体を回収し、PBSで洗浄し、TrypLE Express(Thermo Fisher)で解離させた。次いで、それらをDMEM/F12+0.1%BSA(Gibco)で洗浄し、細胞ストレーナー(BD Bioscience)で濾過して大きな細胞塊を除去した。次に、サンプルを遠心分離し、0.1%BSA−PBSに再懸濁し、FACS(Aria III;BD Bioscience)で選別した。BV(+)細胞を、PGC/PGCLC増幅培地中のマイトマイシンC(MMC)処理m220フィーダー細胞上に播種した。
PGC/PGCLC増幅培地は、10%KSR、2.5%FBS、0.1mM NEAA、1mMピルビン酸ナトリウム、2mM L−グルタミン、0.1mM 2−メルカプトエタノール、100U/mlペニシリン、0.1mg/mlのGMEMストレプトマイシン、10μMフォルスコリン、および10μMロリプラムで構成した。培地全体をc3から2日ごとに交換した。雌の運命の誘導のためのサイトカイン/化合物は、c3から培養の最後まで提供した。別段の指定がない限り、用いたRAおよびBMPの濃度はそれぞれ100nMおよび300ng/mlであった。IX73倒立顕微鏡(Olympus)を用いて、明視野および蛍光画像を取り込んだ。
BVSCDT ESCの樹立
Dazl−tdTomato(DT)ノックインESCの作製のためのドナーベクターを構築するために、Dazlの相同性アーム(それぞれ終止コドンの上流1,048bpから及び下流1,247bpまでの断片)を、PCR(Primers)によるR8 BVSC ESCのゲノムDNAから増幅し、pCR2.1ベクター(TOPO TA Cloning;Life Technologies)にサブクローニングした。LoxP部位に隣接するPgk−Puroカセットを有するP2A−tdTomato断片を、以前報告されたベクター(Sasaki et al,2015)からPCRによって増幅し、相同性アームを含有する、サブクローニングしたベクターのDazlコード配列の3’末端に、GeneArt Seamless Cloning&Assembly Kit(Life Technologies)を用いて、インフレームで挿入した。ストップコドンは、インフレーム融合タンパク質の発現のために除去した。
Dazlの終止コドンに隣接する配列を標的とするTALENコンストラクトは、以前に記載されたようにGoldenGate TALEN and TAL Effector kit(Addgene#1000000016)を用いて作製した(Sakuma et al,2013;Sasaki et al,2015)。TALENの活性は、一本鎖アニーリング(SSA)アッセイによって評価した。
ドナーベクター(5μg)およびTALENプラスミド(それぞれ10μg)を、NEPA21 type II electroporator(Nepagene)を用いたエレクトロポレーションによってR8 BVSC ESCに導入した。ピューロマイシン選択後に単一のコロニーを拾い、ランダムまたは標的化された組み込みをPCR(Primers)によって評価し、続いてサザンブロット解析によって検証した。正確なターゲティングを有する株を、Creリコンビナーゼを発現するプラスミドでトランスフェクションして、Pgk−Puroカセットを除去した。
Stra8ノックアウトESCの確立
レポーター遺伝子GSG−p2A−mCherryとインフレームで融合したCas9ニッカーゼ(Addgene#42335)を発現させるベクターを作製した(用いたmCherryはサイレント変異、432G>Aを含んでいた)。報告されたプロトコル(Ran et al,2013a,b)に従って、Stra8のエキソン6を標的化するための2対のオリゴヌクレオチド(Primers)をアニールし、リン酸化し、Bbs1(NEB)で消化した上記ベクターに別々に連結した。ニッカーゼ活性をSSAアッセイによって評価した。1対のニッカーゼプラスミド(各200ng)を、NEPA21 type II electroporatorを用いたエレクトロポレーションによってBDF1−2−1 BVSC ESCに導入した。ESCをトランスフェクションの2日後に解離させ、高レベルのCas9ニッカーゼも発現することが予想される高レベルのmCherryを発現する単一細胞をFACSで選別し、各ウェルが単一クローンを含有するように、96ウェルプレートの単一ウェル中のMEF上に播種した。クローンを培養し、増殖させ、クローン中のStra8遺伝子座の破壊を、関連領域のPCR産物のサンガー配列決定(Primers)によって評価した。Stra8ノックアウトは、ウェスタンブロットおよびIF解析によって確認した。
PGCまたは胎児性腺のEx vivo培養
PGC培養のために、E11.5でのSGマウスの胎児性腺(性の識別なし)を切断しおよび解離させた。SG(+)PGCをFACSで選別し、m220フィーダー細胞上にプレーティングし、PGC/PGCLC増幅培地で培養した。雌の運命の誘導のための試薬はc0から提供した。胎児性腺の培養のために、E11.5[PCR(Primers)により性が識別された]の中腎を含む胚期の卵巣を摘出し、培養液インサート(353095;BD Falcon)上の気液界面条件下で培養した。使用した培地は、10%FBS、100U/mlペニシリン、0.1mg/mlストレプトマイシンおよび2mM L−グルタミンを含むDMEMであった。低分子阻害薬は、c0からの培地とともに提供した。
蛍光活性化細胞選別、細胞周期解析、および細胞計数
FACSのためのd4/c0 PGCLCの調製は、「ESC培養/誘導およびPGCLC誘導/培養」に記載されている。in vivoで生殖細胞を単離するために、BVSC、VRまたはSGマウスの胎児性腺を切断し、d4/c0 PGCLCについて記載した手順に従ってFACS用に処理した。解離後、それらを100μg/mlのDNアーゼ(Sigma−Aldrich)を含有する0.1%BSA−DMEMで洗浄して、死細胞から溶解したDNAを消化し、細胞/残渣の塊の形成を防止した以外は同様の方法で培養PGCLCも調製した。BV/SG、SC、またはDT/VRの蛍光活性は、それぞれFITC、Horizon V500またはPE−Texas Redチャネルで検出した。FACSデータは、FlowJoまたはFACS Divaソフトウェアパッケージを用いて解析した。
細胞周期解析は、Click−iT EdU Flow Cytometry Assay Kit(C10424;Thermo Fischer Scientific)を製造者の指示に従って使用して行った。培養したPGCLCを10μg/mlのEdUで30分〜2時間処理し、FACSにより分析した。
培養したPGCLCをニワトリ抗GFP抗体、続いてAlexa Fluor 633−ヤギ抗ニワトリ抗体で染色し、Cellavista instrument(SynenTec)(Ohta et al,2017)を用いて解析した。
サイトカイン/化合物
雌の運命の誘導に関与する活性をスクリーニングするために使用されたサイトカイン/化合物は以下の通りであった(図9):100nMオールトランスレチノイン酸、500ng/ml WNT4(R&D Systems)、500ng/mlのRSPO1(R&D Systems)、100ng/ml FGF9(R&D Systems),500ng/ml PgD2(Cayman),25ng/ml アクチビンA,100ng/ml NODAL(R&D Systems),500ng/ml SDF1(R&D Systems),50ng/ml bFGF,500ng/ml BMP2(R&D Systems),500ng/ml BMP4(R&D Systems),500ng/ml BMP5(R&D Systems),500ng/ml BMP7(R&D Systems),250ng/ml WNT5a(R&D Systems)及び1,000U/ml LIF。シグナル阻害実験においては、DMSOに溶解したLDN193189(#04−0074;Stemgent)およびBMS493(B6688;Sigma−Aldrich)をALK2/3阻害薬およびRAR阻害薬としてそれぞれ使用した。
免疫蛍光(IF)分析
Immunofluorescence(IF)分析は以前に記載されているように行った(Hayashi et al、2012)。以下の一次抗体を用いた:ニワトリ抗GFP(ab13970;Abcam)、ウサギ抗DDX4(ab13840;Abcam)、マウス抗DDX4(ab27591;Abcam)、ウサギ抗DAZL(ab34129;Abcam)、ヤギ抗DAZL(sc−27333;Santa Cruz)、ウサギ抗STRA8(ab49602;Abcam)、マウス抗SYCP3(ab97672;Abcam)およびウサギ抗TEX14(ab41733;Abcam)IgG。以下の二次抗体を使用した:Alexa Fluor 488−ヤギ抗マウスまたはニワトリIgG;Alexa Fluor 568−ヤギ抗ウサギIgGおよびAlexa Fluor 633−ヤギ抗マウス、抗ニワトリIgG;Alexa Fluor 488−ロバ抗マウスIgG;Alexa Fluor 568−ロバ抗ウサギIgGおよびAlexa Fluor 633−ロバ抗ヤギIgG。IF画像を共焦点顕微鏡[FV1000(オリンパス)またはLSM780(Zeiss)]を用いて取り込んだ。
胎児卵母細胞様細胞における減数分裂染色体のスプレッド解析
スプレッド調製およびIF分析は、わずかな改変を伴い、以前に記載されたように、(Yamashiro et al、2016)行った。c9 RAB2細胞をFACSで選別し、選別した細胞をPBSで洗浄し、低張抽出溶液で25℃で1時間処理した。使用した一次抗体は、以下の通りである:ヤギ抗SCP3(1:250;sc−20845;Santa Cruz)、マウス抗γH2AX(1:1,000;05−636;Millipore)およびウサギ抗SCP1抗体(1:250;NB300−229;Novus)。使用した二次抗体は、以下の通りであった:Alexa Fluor 488−ロバ抗ヤギIgG(A11055;Thermo Fisher)、Alexa Fluor 568−ロバ抗ウサギIgG(A10042;Thermo Fisher)、およびAlexa 647−ロバ抗マウスIgG(A31571;Thermoフィッシャー)。本発明者らは、SYCP3(+)細胞を計数した。減数分裂段階の定義は以下の通りであった:染色体の少なくとも80%で、細糸期:−γH2AX(+)およびSYCP1(−);接合期:−γH2AX(+)およびSYCP1(+)。太糸期:SYCP1(++)。
サザンブロット解析
サザンブロット解析は以前に記載されたように行った(Nakaki et al,2013)。簡単に述べると、10μgのゲノムDNAを制限酵素で消化し、得られたDNA断片を0.9%アガロースゲルで電気泳動し、Hybond N+膜(RPN303B;GE Healthcare)に転写し、架橋のためにベーキングした。tdTomato用のDIG標識プローブ、およびDazlの関連領域の5つおよび3つのプライムサイド(prime side)を、PCR(PCR DIG Labeling Mix;Sigma−Aldrich)(Primers)によって生成した。画像はLAS4000(Fujifilm)を用いて取り込んだ。
ウエスタンブロット分析
ウエスタンブロット分析のために、90℃で5分間、SDSサンプル緩衝液[62.5mM Tris−HCl(pH6.8)、2%SDS、10%グリセロール、0.025%ブロモフェノールブルーおよび0.14M−メルカプトエタノール]で5×10個の細胞を溶解した。リン酸化された(p)SMAD1/5/8の検出のために、細胞を溶解前にPhosSTOP(Roche)および完全プロテアーゼ阻害薬カクテル(Roche)で処理した。抽出したタンパク質をSuperSep Ace 10−20%ゲル(Wako)で分離し、iBlot2 dry blotting system(Thermo Fisher)によりiBlot2 PVDF transfer membrane(Thermo Fisher)上にブロットし、一次抗体:ウサギ抗STRA8 IgG(ab49405;Abcam)、マウス抗αチューブリン(T9026;Sigma−Aldrich)、ウサギ抗−pSMAD1/5/8 IgG(#9511;CST)、またはウサギ抗SMAD1 IgG(#9743S CST)とインキュベーションした。一次抗体は、HRP(A0545、M8642;Sigma−Aldrich)と結合したヤギ抗ウサギIgGまたはヒツジ抗マウスIgGで検出し、続いてChemi−Lumi One Super(Nacalai)を用いて検出した。化学発光画像の取り込みおよび分析は、Fusion Solo systemおよびFusion−Capt software(M&S Instruments)を用いて行った。
トランスクリプトーム解析
E14.5およびE15.5の雄性及び雌性の生殖細胞をVR(+)細胞として、培養PGCLCをSC(+)細胞として、FACSにより採取し、試料の全RNAを、RNeasy Micro Kit(74004;QIAGEN)を用いて、製造者の指示に従って抽出及び精製した。cDNA合成、ライブラリー構築、および各試料からの1ngの全RNAからのNextseq500(Illumina)による解析を、以前に記載された方法(Nakamura et al,2015;Ishikura et al,2016)に従って行った。以前の研究(Kagiwada et al,2013;Ohta et al,2017)で調製したE9.5からE13.5までの生殖細胞のcDNAを、Nextseq500シーケンサーシステムによっても解析した。以前に記載されたように(Nakamura et al,2015)、すべての読み取りデータを発現レベルに変換した。簡単に述べると、すべての読み取りをcutadapt−1.3(Martin、2011)で処理して、V1およびV3アダプター配列およびポリA配列を除去した。その結果得られた30bp以上の読み取りは、「−no−coverage−search」オプション(Kim et al、2013)を用いて、TopHat1.4.1/Bowtie1.0.1を用いてmm10ゲノムにマッピングした。マップした読み取りは、次いで、cufflinks−2.2.0を、「−compatible−hits−norm」、「no−length−correction」、「−max−mle−iterations 50000」、および「library″−type fr−secondstrand」オプション、並びに30エンドでの最大10−kbのmm1−参照遺伝子アノテーションと共に使用して、発現レベル(RPM)に変換した。解析された全遺伝子セットは、以前の研究(Ishikura et al、2016)と同じであった(Ishikura et al,2016)。トランスクリプトーム解析は、Rソフトウェアパッケージバージョン3.2.1をgplotsパッケージとMicrosoft Excelと共に用いて行った。最初に、未処理の発現データをlog(RPM+1)値に変換し、特記しない限り、少なくとも1つのサンプルにおいて発現値>2を有する遺伝子を発現と定義した。ヒートマップ、クラスタリングおよびPCAの構築を除いて、生物学的複製の平均値を用いることにより、データ処理(例えば、DEGの同定)を行った。ヒートマップを作成するために、gplotsパッケージ(heatmap.2)を用いた。Gene Ontology(GO)解析は、DAVID 6.7ウェブサイト(https://david.ncifcrf.gov)を用いて行った(Huang da et al,2009)。
定量的(q)PCR
qPCRは、CFX384(Bio−Rad)およびPower SYBR Green(ABI、Foster City、CA)を製造者の指示に従って用いて行った。鋳型cDNAは「トランスクリプトーム解析」の節に記載されているように調製し、使用したプライマーはPrimersに列記した。
プロモーターのDNAメチル化の解析
ESC、EpiLC、およびPGCLCの全ゲノム重亜硫酸塩配列決定(WGBS)データは、本発明者らの以前の研究(Shirane et al,2016;Ohta et al,2017)から得られ、KIT(−)およびKIT(+)精原細胞のそれらは、以前の研究(Kubo et al,2015)から得られた。ここでは、本発明者らは転写開始点(TSS)の900bp上流から400bp下流の領域としてプロモーターを定義し、CpGの平均値からすべてのパーセント5メチルシトシン値(%5mC)を算出した。読み深度(read depth)は、以前(Ishikura et al、2016)に記載されているように、4〜200であった。この研究における解析では、本発明者らは少なくとも1つのCpG部位を有するプロモーターを用いた。
プライマー
この研究で使用されたプライマー配列は以下の通りであった:
性タイピング:
アクセッション番号
本研究で用いたデータのアクセッション番号は、以下の通りである:図12のE10.5およびE11.5PGCおよびE13.5雌性生殖細胞のRNA−seqデータ(GEO:GSE74094)(Yamashiro et al,2016)、図12のE9.5 PGCおよびE12.5雌生殖細胞のRNAseqデータ(GEO:GSE87644)(Ohta et al,2017)、図12のd4PGCLCのRNA−seqデータ(GEO:GSE67259)(Sasaki et al,2015)、RNAseqデータ、E11.5、E12.5およびE13.5の雄性及び雌性支持細胞のマイクロアレイデータ(GEO:GSE27715)(Jameson et al,2012)、ESC、EpiLCおよびd4 PGCLCのWGBSデータ(DDBJ:DRA003471)(Shirane et al、2016)、c7 PGCLC(DDBJ:DRA005166)のWGBSデータ(Ohta et al,2017)およびP7 KIT SGおよびKIT SG(DDBJ:DRA002477)のWGBSデータ(Kubo et al,2015)。E9.5、E10.5およびE11.5のPGC、E12.5、E13.5、E14.5およびE15.5の雌性および雌性生殖細胞並びに記載された条件下で培養したPGCLCのRNA−seqデータのアクセッション番号はGSE94136(GEOデータベース)である。
<結果>
生殖細胞の性決定機構を解析するシステム
上記[I]にて詳述したとおり、本発明者ら幹細胞因子(SCF)およびcAMPシグナリングのフォルスコリンおよびロリプラムの刺激因子の存在下で、m220フィーダー細胞上で7日間の培養中に最大50倍までPGCLCを増殖させる系を開発した(図9A)。この条件下で、PGCLCは、性にコミットしていない移動期/早期性腺PGCのトランスクリプトームを維持しながらDNAメチロームを徐々に消去し、雄または雌の運命のいずれかにコミットしている、E13.5の生殖細胞のパターンと同等の、ゲノム全般のDNAメチル化レベル(約5%)/パターンを獲得する(Spiller&Bowles、2015)。したがって、生殖細胞におけるDNAメチル化の再プログラミングおよび性分化は遺伝的に分離可能であり、この条件下で培養したPGCLCは、性分化のメカニズムを探索するためのシステムとして役立つ可能性がある。
本発明者らは、減数分裂前期への進入を特徴とする雌経路への分化に焦点を当てて、この可能性を検討した。雌経路へのPGCLCの分化の1つの前提条件は、DazlおよびDdx4[マウスvasaホモログ(mVH)としても知られている]のような遺伝子の発現を特徴とする後期PGC特性の獲得であり、両方とも、PGCLC/移動期PGC中で低レベルで発現し、E13.5までの生殖細胞において進行性の上方制御を示す(図9A右)(Fujiwara et al,1994;Cooke et al,1996;Ohta et al,2017)。さらに、Dazlは生殖細胞の性分化のための「ライセンス供与」因子として機能することが提案されている(Lin et al、2008;Gill et al、2011)。したがって、本発明者らは、Blimp1(Prdm1としても知られる)、Stella(Dppa3としても知られる)、およびDazlもしくはDdx4(mVH)の制御下で、それぞれmVenus、ECFP、およびtdTomatoもしくはRFPを発現する(Blimp1−mVenusをBV、Stella−ECFPをSC、dazl−tdTomatoをDT、mVH−RFPをVRとそれぞれ略記する場合がある)ESC株(BVSCDT ESCおよびBVSCVR ESC)をそれぞれ生成した(材料および方法)。Blimp1はPGCの運命決定(Ohinata et al、2005)を表し、Stellaは確立したPGCにおける発現を示す(Saitou et al、2002)一方、BVおよびSCはそれぞれBlimp1およびStellaの発現を反復する(Ohinata et al、2008)。本発明者らはまた、DTおよびVRが、PGC後期からDazlおよびDdx4の発現をそれぞれ反復することを確認した(Imamura et al、2010)。本発明者らは、培養したPGCLCにおけるDTまたはVRの発現(雌の運命への進入およびBVSC発現の下方制御が続く/組み合わされる)を引き起こす条件を確立しようと試みた。XY生殖細胞とXX生殖細胞の両方が雌の運命をとることができるので(Evans et al、1977;Taketo、2015)、同様の結果(以下を参照されたい)を示す出発材料として、XY ESCとXX ESCの両方を使用した。
本発明者らは、最初に、BVSCDT ESC(XY)をPGCLCに誘導し、増殖培養のために蛍光活性化細胞選別(FACS)によりBV陽性(+)の4日目(d4)PGCLCを単離した。PGCLCが指数関数的に増殖していた培養3日目(c3)において、培養物にRAの存在下もしくは非存在下で性決定に影響を及ぼす可能性のあるサイトカインパネルを与え、c7に、FACSによりBVもしくはDT発現に及ぼすそれらの効果を評価した(培養を通してフォルスコリン、ロリプラム及びSCFを与えた)(図9AおよびB)。コントロール条件(サイトカイン及びRA非添加)下で、BV(+)c7 PGCLCは平均して、比較的低いDT発現を示した(図9B)。興味深いことに、RAの添加は、BV(+)細胞集団におけるDTレベルを上昇させた(図9B)。特に、RAとBMP(BMP2,4,5、または7)の1つを組み合わせが、他のサイトカインは試験しなかったが、DTを強く活性化し、同時にBVを下方制御した(図9B)。このことは、RAおよびBMPはPGCLCを後期生殖細胞表現型に誘導することを示唆した。
Bmp2は、雌の生殖細胞の運命を導き得る前顆粒膜細胞において重要な雌化因子Wnt4に応答して強く発現する(Yao et al、2004;Jamesonet al、2012)。従って、本発明者らは次に、BVSCVR ESC(XX)から誘導された培養PGCLCにおいても、RAおよびBMP2がVRを上昇させるか否かを調べた。本発明者らは、c3でRAおよびBMP2の濃度を変化させて、BV(+)d4 PGCLCを培養し、c9でのBVSCVR発現に対するそれらの効果を調べた(図9CおよびD)。RA単独ではBVSC発現を有意に変化させず、VRを活性化しなかった(図9C)。これは、DazlおよびDdx4発現が異なって調節されることを示唆している。注目すべきことに、RAとBMP2の組み合わせ添加は、BVSC下方制御および確固としたVR上方制御を誘導し、VR(+)細胞誘導の割合は、BMP用量依存的に増加した(図9C)。興味深いことに、BMP2単独ではBVが下方制御されてVRが活性化され、BVSC下方制御およびVR活性化の程度はRA用量依存的に増加した(図9D)(下記参照)。
免疫蛍光(IF)分析により、本発明者らは、RAおよびBMP2を有する培養PGCLCにおいて、c9で、シナプトネム複合体の重要な成分および減数分裂前期のマーカーであるDDX4およびSCP3(SYCP3としても知られる)(Yuan et al、2000)の発現を解析した[BVSC ESC(XX)から誘導して1つの蛍光チャネルを確保した]。BVもしくはSC陽性(本明細書において「BV/SC(+)」と略記する場合がある)細胞は、E15.5原卵母細胞と非常によく似た様式でDDX4およびSCP3を発現した:DDX4は細胞質に特異的に局在し、SCP3はシナプトネム複合体形成を示す局在化の明確なパターンを示した。さらに、DDX4/SCP3(+)細胞は、卵母細胞嚢胞の形成を連想させるように相互連結しているようであった(図9E)(Pepling&Spradling、1998)。実際、嚢胞様構造は、細胞間接触部位(図9F)において特異的に、細胞質架橋マーカーであるTEX14(Greenbaumら、2009;Lei&Spradling、2016)の発現および局在を示した。RAと組み合わせた場合、BMP4,5および7はまた、VR/DDX4およびSCP3(+)細胞を誘導することができた。従って、RAおよびBMPシグナル伝達の組み合わせ作用は、培養PGCLCを雌の運命に導く可能性がある。
BMPとRAがPGCLCを雌の運命にコミットさせる
本発明者らはさらに、VRがRAおよびBMPに対してより特異的な応答を示すので(図9CおよびD)、BVSCVR ESC(XX)から誘導されたPGCLCに対するRAおよびBMPシグナル伝達の影響を調べた。c3以降のRAおよびBMP2を用いた培養は、c7でのBVSCの下方制御をもたらし、c9でBVSCを有意に低下させたが、RA単独ではそうならなかった(図10A)。逆に、この条件下では、VRはc7までに活性化され始め、SC(+)細胞の大部分(約70%)はc9でVRを示した(図10A)。本発明者らは、RAおよびBMP2で刺激されたPGCLCが、BMPシグナリングの直接的な下流標的である、リン酸化(p)SMAD1/5/8を上昇させ、およびId1およびId2の発現を上昇させることを確認した(Hollnagelet al、1999;Korchynskyi&ten Dijke、2002;Lopez−Rovira et al、2002)。そしてALK2/3受容体の選択的阻害薬であるLDN193189(Cuny et al、2008)の投与がかかる効果をブロックした。このことは、PGCLCがBMPシグナル伝達経路を活性化する能力があることを示す(下記も参照)。
IF解析により、RAおよびBMP2と培養されたPGCLCは、重要な減数分裂誘導因子であるSTRA8(Baltus at al、2006;Anderson et al、2008;Dokshin et al、2013;Soh et al、2015)の発現を、c5の早期に開始[〜40.7%/SC(+)細胞]し、c7ではSC(+)細胞の大部分(〜91.7%)がSTRA8の発現を示し、そのうちいくつか(〜27.1%)はSCP3(+)であった(図10BおよびC)。注目すべきことに、c9では、90%以上のSC(+)細胞がSCP3をシナプトネーム複合体様構造形成を伴って発現し、STRA8は減弱し始めた(図10BおよびC)。興味深いことに、SCP3は、培養中の所定の時間に異なるコロニーを含むすべてのSC(+)細胞において同調した様態で上方制御された(図10BおよびD)。c5からc9まで、SC(+)細胞はDAZLに関して明確な陽性を示した(図10B)。
減数分裂の進入は、前減数分裂期DNA複製および4倍染色体(4C)状態での停止を特徴とする(Baltusら、2006)。RAおよびBMP2の存在下では、BV/SC(+)細胞はc5までの増殖の増強を示し、c7までに増殖を停止させ、c9までにそのピーク数の約半分に減少した(図10E)。細胞周期解析により、c7において、BV/SC(+)細胞の相当部分(〜46.0%)がそれらのDNAを複製している(約23.6%)か、または4C状態(〜23.6%)かのいずれかであることを明らかになった(図10F)。c9では、意外なことに、BV/SC(+)細胞の大多数(約58.7%)が4C状態にあった(図10F)。PGCLCを対照条件またはRA単独で培養した場合はそうではなかった(図10F)。まとめると、これらの知見は、RAおよびBMP2と培養されたPGCLCが雌の運命をとり、減数分裂前期に進入することを示している。実際、拡散解析により、減数分裂前期のSC(+)細胞が太糸期(細糸期:約50.4%;接合期:約47.8%;太糸期:約1.8%)まで進行したことを明らかになった(図10G)。
本発明者らが採用した条件下では、RA単独では雌の生殖細胞運命を誘導するには不十分であった。RAと培養したPGCLCは、DT/DAZLをある程度活性化し、STRA8を上方制御した[BV/SC(+)細胞の〜77.7%がSTRA8を発現していた]が、RAはVR/DDX4やSCP3を活性化せず(図9BおよびC、10A)、RA添加BV/SC(+)細胞はc9でも減数分裂に移行せず細胞周期が回っているようであった(図10F)。予期せぬことには、BMP2単独では、RAおよびBMP2よりも効果的ではないが、c9においてVRおよびSCP3(+)減数分裂細胞が誘導された(図9D)。本発明者らの培養物には、10%のKSRおよび2.5%のウシ胎児血清(FCS)(図9A)が含まれていたので、かかる成分中のBMP活性の存在は無視し得る一方、RA活性の存在(Hore et al、2016)は、外因性BMPシグナル伝達に応答して雌の運命をとる能力をPGCLCに与え得る。したがって、PGCLCの、BMP2およびRA受容体(RAR)に対する阻害薬(BMS493)との培養(Koubova et al、2006)は、VR/DDX4の上方制御ならびにSCP3の誘導を無効にした。同様に、LDN193189によるBMPシグナル伝達の阻害は、RAおよびBMP2によって誘発されるVR活性化および減数分裂進入を用量依存的様式で遮断した。本発明者らは、PGCLCを雌経路に誘導するのに、RAおよびBMPシグナル伝達が必要であり、かつ十分である可能性が高く、RAまたはSTRA8単独ではかかる誘導ができないと結論付ける。
BMPとRAがPGCを雌の運命にコミットさせる
本発明者らは次に、PGCにおける雌の性決定におけるRAおよびBMPシグナル伝達の役割を調べた。本発明者らは、FACSによってStella−EGFP(SG)トランスジェニック胚(Payer et al、2006;Seki et al、2007)からE11.5でPGCを単離し、RA、BMP2、またはその両方と4日間培養した(図11A)。対照培養もRA単独の培養もSCP3を誘導せず、SGおよびDDX4発現にも有意に影響しなかったが、RAおよびBMP2との培養は、SCP3−陽性(+)/DDX4−強陽性(+)/SG−陰性(−)の誘導を相当増加させた(〜65.6%)(図11BおよびC)。BMP2単独との培養も、SCP3−陽性(+)/DDX4−強陽性(+)/SG−陰性(−)細胞を誘導(〜22.9%)した(図11BおよびC)。
本発明者らは、E11.5で全胚卵巣の培養を行い、RAまたはBMPシグナル伝達の阻害薬が雌の生殖細胞運命の誘導に及ぼす影響を調べた。結果は、いずれのタイプの阻害薬も、SCP3の発現によって表されるように、雌の生殖細胞運命への進行を抑制したことを示した(図11D−F)。同様に、E11.5からE14.0まで12時間ごとにLDN193189を妊娠した雌に投与することによるインビボ条件下でのBMPシグナル伝達の阻害は、E14.5での雌性生殖細胞運命への進行の重大な障害を引き起こした(図11G−I)。本発明者らは、E14.5でFACSによりLDN投与胚から雌または雄のVR(+)細胞を単離し、定量的(q)PCRによって雌性または雄性生殖細胞発生の重要な遺伝子の発現を、それぞれ調べた。この解析により、LDN処理された雌性細胞が、Ddx4、Dazl、Sycp3、Prdm9、およびSpo11等の後期PGC/雌性生殖細胞発生の重要な遺伝子の上方制御が示されたが、興味深いことに、出現した雄性生殖細胞発生は影響を受けなかった(図11JおよびK)。本発明者らは、PGCおよびPGCLCの両方が、雌の生殖細胞の運命を獲得するためにRAおよびBMPシグナル伝達を必要とすると結論する。
PGCLC/PGCの雌性別判定における転写の動態
次に、本発明者らは、PGC/PGCLCの雌の性決定中の転写の動態を分析した。この目的のために、本発明者らは、PGC[E9.5、E10.5、E11.5、E12.5(雌)、E12.5(雄)でのStella−EGFP(+)細胞](Kagiwada et al、2013)、胎児一次卵母細胞[E13.5でのStella−EGFP(+)、E14.5、E15.5でのDDX4−RFP(+)]、PSG[E13.5でのStella−EGFP(+)(Kagiwada et al,2013)、E14.5、E15.5でのDDX4−RFP(+)]、コントロール条件(d4/c0、c3、c5、c7、c9)の下で培養したPGCLC、c3以降(c5 RB2、c7 RA2、c9 RA2)RAとともに培養したPGCLC、c3以降(c5 RAB2、c7 RAB2、c9 RAB2)RAおよびBMP2とともに培養したPGCLCから全RNAを単離し、RNAシーケンシング(RNA−seq)(Nakamura et al、2015)により、そのトランスクリプトームを解析した。
教師なし階層的クラスタリング(UHC)は、E11.5までの性未分化PGCがd4 PGCLCと、次いでc3−c9 PGCLCとおよびc5でのRAまたはRAB2刺激PGCLC(c5 RA、c5 RAB2)と近くにクラスタリングしていることを明らかにした(図12A)。胎児一次卵母細胞(E14.5、E15.5)およびPSG(E14.5、E15.5)はそれぞれ明確なクラスターを形成し、意外なことに、c9におけるRAB2刺激PGCLC(R9c9)は胎児一次卵母細胞と堅固なクラスターを形成した(図12A)。性分化を開始した生殖細胞(E12.5、E13.5での雄および雌の生殖細胞)及びc7におけるRAB2刺激PGCLC(c7 RAB2)およびc7/c9におけるRA刺激PGCLC(c7/c9RA)は、性未分化のPGC/PGCLCと胎児一次卵母細胞/c9 RAB2細胞との間の性質を示す明確なクラスターを形成した(図12A)。一貫して、主成分分析(PCA)は、性未分化のPGCおよびd4/c3−c9 PGCLCを近接してクラスター化し、雌性および雄性の生殖細胞特性の発生に沿って進行する移行を強調し、雌経路に沿ってRAB2と培養したPGCLCと、E14.5/E15.5において胎児の一次卵母細胞とクラスター化されたc9 RAB2細胞との、並行的な進行を明らかにした(図12B)。対照的に、RAで培養したPGCLCは、胎児卵母細胞の特性を部分的にしか獲得しなかった(図12B)。したがって、RA およびBMP2で刺激された培養PGCLCは、雌性経路のトランスクリプトームの進行を反復して、胎児一次卵母細胞を形成する。
生殖細胞/PGCLCの性分化過程における遺伝子発現のダイナミクスの理解を促進するために、本発明者らは、これらの細胞の発生段階段階を特徴づける、4クラスの遺伝子セット、初期PGC遺伝子(318遺伝子)、後期生殖細胞遺伝子(254遺伝子)、胎児卵母細胞遺伝子(476遺伝子)及びPSG遺伝子(323遺伝子)を定義した(図12C)。初期のPGC遺伝子は、「細胞分化の負の調節/細胞周期の調節」(Prdm1、Prdm14、Tfap2c、Nanog、Sox2等)のような遺伝子オントロジー(GO)の機能的用語を有する遺伝子を多くした;後期の生殖細胞遺伝子は、「有性生殖/配偶子生成」の遺伝子(Dazl、Ddx4、Piwil2、Mael、Mov1011等)を多くした;胎児卵母細胞遺伝子は、「減数分裂/雌配偶子生成」の遺伝子(Stra8、Rec8、Sycp3、Dmc1、Sycp1等)を多くした;そしてPSG遺伝子は「piRNA代謝プロセス/雄性配偶子生成」の遺伝子(Nanos2、Dnmt3l、Tdrd9、Tdrd5、Piwil1など)を多くした(図12C)。
図12CおよびDに示されるように、RAB2と培養したPGCLCは、遅い生殖細胞および胎児卵母細胞遺伝子を徐々に獲得する一方、初期PGC遺伝子を下方制御した。対照的に、RAと培養されたPGCLCは、かかる進行を部分的にしか示さなかった(図12CおよびD):例えばc9 RAB2細胞は減数分裂(Stra8、Rec8、Sycp3、Sycp1、Spo11、Dmc1、Hormad1、Prdm9)(全て胎児卵母細胞中に含まれる)及び卵母細胞発生(Figla,Ybx2,Nobox,Cpeb1)の主要遺伝子を、E14.5/E15.5胎児卵母細胞と同様のレベルまで上方制御した(図12E)。対照的に、c9 RA細胞は、異種細胞の状況においてもRAイベントに応答するStra8およびRec8遺伝子を上方制御したにもかかわらず、かかる遺伝子の十分な獲得を示さなかった(Oulad−Abdelghani et al、1996;Mahony et al、2011)(図12E)。雌の生殖細胞の運命決定におけるBMPシグナル伝達の役割と一致して、RAB2と培養されたPGCLCおよび発生中の雌の生殖細胞は、同様の様態でBMPシグナル伝達の受容体および重要な標的を発現した。
本発明者らは、c9 RAB2細胞(323遺伝子:RA遺伝子)と比較して、c9 RA細胞において上方制御された遺伝子を同定した。かかる遺伝子はまた、E14.5/E15.5での胎児一次卵母細胞と比較して上方制御され、「細胞接着/血管系発生/胚器官発生」のためのもの(Hoxa5、Hesx1、Pax6、Lmx1b、Pitx2、Dnmt3b、等)に富んでいた。したがって、BMPシグナリングは、雌の経路を強く駆動するだけでなく、RAによって誘発される不適切な発生プログラムを抑制するためにも重要である。
胎児一次卵母細胞の発生におけるSTRA8の役割
本発明者らは次に、PGCLCからの胎児一次卵母細胞分化中のStra8の喪失の影響を評価した。本発明者らは、CRISPR/Cas9システム(Ran et al、2013a、b)を用いていくつかの株のStra8−Knockout BVSC ESC(XY)を作製し、これらの株における標的エクソン内のフレームシフト欠失およびSTRA8発現の喪失を確認した。3つの独立した株(Stra8−knockout(SK)1,2,3)は、本質的に同一の表現型を示したので、代表的な株SK1を用いて結果を提示する。野生型PGCLCとは異なり、RAB2と培養したSK1細胞は、c7まで確固としたBVSC発現を保持し続け、c9においてのみBVSCの軽度の下方制御を示した(図13A)。野生型細胞と比較して、SK1細胞は、RAB2に応答してそれほど効果的に増殖しなかったが、c9(図13BおよびC)でも周期プロファイルを示し続けた。このことは、それらが減数分裂前期に進むことができなかったことを示す。この知見は、Stra8ノックアウト生殖細胞が減数分裂前のDNA複製を起こさず、その後除去されるという事実とよく一致している(Baltus et al、2006;Dokshin et al、2013)。
本発明者らは、SK1細胞のトランスクリプトームを決定した。PCAは、SK1 RAB2細胞が雌経路に沿って長期間に進行し、c9において、E13.5の胎児一次卵母細胞により近い野生型c7細胞と同様の性質を獲得したことを明らかにした(図13D)。野生型細胞と比較して、SK1細胞は、c7以降数多くの異なる発現遺伝子(DEG)を示し(図13E)、c9 SK1細胞において完全に上方制御されなかった遺伝子(178遺伝子)は、「減数分裂/細胞周期プロセス」のためのもの(Prdm9、Sycp3、Spo11、Smc1b、Msh4、Msh5、Dmc1、Ccdc111、Polnなど)に富んでおり(図13F)、Stra8に依存することが報告されている12個の遺伝子(Soh et al、2015)すべてが、c9 SK1細胞において下方制御されていた。
しかし、c9 SK1細胞は、Ybx2およびSohlh2等の卵母細胞発生に関連するものを含め、比較的正常な様式で32.1%の胎児卵母細胞遺伝子(153/476遺伝子)を上方制御したことが注目される(図13F−H)。興味深いことに、c9 SK1細胞において異常に上方制御された遺伝子は、「胚性器官発達/胎児胚発生」のものに富んでおり、c9 RA細胞において異常に上方制御されたRA遺伝子とオーバーラップした(図13FおよびG)。一方、c9 SK1細胞は比較的正常な様式で後期生殖細胞遺伝子を獲得した[164/254遺伝子(64.6%)](図13F−H)。したがって、STRA8は、BMPシグナル伝達のエフェクター(複数可)と協力して、RAによって誘発される不必要な発生経路を抑制することに加えて、減数分裂に関与するいくつかの遺伝子の十分な発現レベルを保証する。
RA及びBMPに応答して雌の運命を誘導するための細胞のコンピテンス
骨形成タンパク質のシグナル伝達は、外胚葉/EpiLCをPGC/PGCLCへ運命決定するが、それらを雌の運命に直接的に誘導しない(Hayashi et al、2011)。したがって、本発明者らは、RAおよびBMPシグナル伝達に応答して雌の運命をもたらす細胞の状況を明確にしようと試みた。本発明者らは、d4/c0またはc7のPGCLCを、RAおよびBMP2と2日間培養し、それらのトランスクリプトームを調査することによってそれらの応答を評価した(図14AおよびB)。対照と比較して、RAB2を伴うc7 PGCLCは、相当数のDEGを示し(上昇:218遺伝子、低下:56遺伝子)、減数分裂のためのものに富む遺伝子群を上方制御し、雌経路に沿って進行した(図14CおよびD)。対照的に、RAB2を伴うd4/c0 PGCLCは、遺伝子発現において僅かな変化しか示さず(上昇:7遺伝子;低下:2遺伝子)、そして雌の運命に向かって進行しなかった(図14BおよびC)。
本発明者らは、増幅培養の間の減数分裂のための重要な遺伝子のDNA脱メチル化が、RAおよびBMP2に応答するための、PGCLCによるコンピテンス獲得の基礎となる可能性があると推論した。本発明者らは、プロモーターの5−メチルシトシン(5mC)レベルと、「減数分裂」に関与するものとして分類された遺伝子[GO用語:減数核分裂GO:0007126]の発現レベルとの関係を解析した。かかる152遺伝子のうち、Stra8、Spo11、Sycp3、Dpep3、Dazl、Ddx4およびPiwil2を含む42遺伝子は、d4/c0とc7の間で>20%のプロモーター脱メチル化を示した。一方、110遺伝子は、培養の間に有意なプロモーター5mCレベル変化を示さず(<20%)、「DNA修復」および「DNA損傷刺激に対する応答」等の一般的な過程に関与するするもの(Mlh1、Brca2、Fanca、Cdc20、Plk1など)から成っていた(図14E)。d4/c0 PGCLCにおいて、42遺伝子は、プロモーターの5mCレベルが高く、無発現/低発現を示したが、110遺伝子はほとんどメチル化されておらず、様々な発現レベルを示した、その分布は、プロモーター5mCレベルが低い全遺伝子の分布に類似していた(図14EおよびF)。c7 PGCLCにおいては、42遺伝子は、他のほぼすべての遺伝子と同様に脱メチル化され、DazlおよびHormad1等の、42遺伝子のいくつかが部分的に上方制御されたが、110遺伝子はメチル化されないままであり、d4/c0 PGCLCにおける発現レベル分布と同様の発現レベル分布を維持した(図14EおよびF)。注目すべきことに、c7において、RAおよびBMP2に応答して、42遺伝子が特異的かつ確固とした活性化を示したが、110遺伝子は軽度の上方制御しか示さなかった(図14EおよびF)。まとめると、これらの知見は、PGCLC増幅の間の、関連遺伝子のプロモーターDNA脱メチル化の進行が、かかる遺伝子の基底的な活性化または活性化に対する許容状態を誘導し、ひいては、RAおよびBMPのシグナル伝達に応答して完全に活性化された状態を獲得し、雌の生殖細胞の運命を形成することを示す。
この概念の、インビボでの生殖細胞発生への関連性を検証するために、本発明者らは、E9.5とE11.5との間のPGCの152遺伝子の発現における差異を、d4/c0とc7との間のPGCLCのこれらの遺伝子の発現における差異と比較した;本発明者らは次に、E11.5のPGCとE13.5の胎児一次卵母細胞との間の152遺伝子の差次的発現、および、BMP2およびRAにより2日間刺激されたc7 PGCLCとc7 PGCLCとの間の差次的発現を比較した。図14Gに示す通り、生殖細胞およびPGCLC発生の連続段階の間の42遺伝子の発現の差異(上方制御)は、非常に相関した。152遺伝子を用いたPCAは、一貫して、d4/c0 PGCLCを、E9.5PGCと近接して、c7 PGCをE11.5 PGCと近接して、およびRAB2と48時間培養したc7 PGCLCをE13.5雌性生殖細胞と近接してクラスタリングした(図14H)。本発明者らは、PGCLCベースのインビトロ系がin vivoでの雌性生殖細胞運命の獲得のためのメカニズムを正確に再現すると結論する。
[III]シクロスポリンA並びに該薬剤とPDE4阻害薬及びフォルスコリンとの併用によるPGC/PGCLCの維持増幅
<材料及び方法>
マウス、フィーダー細胞は、実施例[I]に記載のものを使用した。ESCの作製からPGCLCへの分化誘導まで、PGC/PGCLCの精製、免疫染色、PGCLCのマウス精巣への移植及びその解析、並びにRNA−seq及びその解析は、実施例[I]と同様にして行った。
シクロスポリンA(CsA)の併用効果を調べるPGC/PGCLCの維持増幅培養は、10μMフォルスコリン及び10μMロリプラム(FR10)に加えて、5μM CsAを培地に添加する以外は、実施例[I]と同様にして行った。
PGCLCの維持増幅に及ぼすCsA単独の促進効果、及び該促進効果のメカニズムを調べる実験では、FR10に代えて、種々の濃度(10、5、1及び0μM)のCsA又はFK506(タクロリムス)を培地に添加する以外は、実施例[I]と同様にしてPGCLCを維持培養した。
細胞周期分析
BrdUに代えて、EdU(10μM)を用い、EdUの取り込みの検出に、Click−iTTM Plus EdU Alexa FluorTM 647 Flow Cytometry Assay Kit(Thermo Fisher Scientific)を使用した以外は、実施例[I]と同様にして行った。
アポトーシス細胞の検出
FR10もしくはFR10+CsAで培養したd4c7 PGCLCをTrypLE処理により単一細胞に分散させ、メーカーの説明書に従い、Annexin V Apoptosis Detection Kit APC(eBioscience)を用いて染色した。染色されたサンプルを、FACSDiva(BD)softwareと共にBD FACSAriaIII(BD)を用いて分析し、PGCLCはBVの蛍光により同定した。3つの生物学的複製物を各サンプルについて分析した。
顕微授精(ICSI)
実施例[I]に記載の方法によりPGCLCを移植したマウス精巣から精子を回収し、PMSG及びhCGを注入することにより過排卵させたBDF1のメスから回収した卵子に、マイクロマニピュレーターを用いて直接注入した。得られた2細胞胚を、妊娠後(dpc)0.5日目に偽妊娠ICRメスの卵管に移した。仔を18.5dpcで帝王切開により分娩させた。
<結果>
PGCLCの培養系におけるCsAの効果
フォルスコリン及びPDE4阻害薬以外に、PGCLCの増殖を支持する化合物を探索するため、実施例[I]にて行った化合物ライブラリースクリーニングの結果を詳細に解析した。その結果、CsAがスクリーニングデータ中に3つ含まれており、その内2つが+3SDを超えていた(図16A)。CsAの効果を確認するため、異なる濃度のCsAをPGCLCに作用させたところ、5μMのCsAが最もPGCLCを増殖させることのできる至適濃度であることが明らかとなった(図16B)。次に、CsAがフォルスコリン及びPDE4阻害薬(FR10)の存在下においても、PGCLCの増殖をさらに支持できるのかを調べたところ(図16C)、CsAの添加により、平均して約50倍程度にまで、PGCLCをより増幅させ得ることが明らかとなった(図16D)。また、CsAにより増幅されたPGCLCは平らなコロニーを形成し、BVSCを強く発現していることを確認した(図16E)。
PGCLCの培養系においてCsAがどのような影響を及ぼすのかを調べるため、細胞周期解析(図16F)及びアポトーシス細胞の検出(図16G)を行った。その結果、CsAを作用させたPGCLCは、FR10のみを作用せたPGCLCに比べて、S期の割合が増加し((図16F、右図)、アポトーシス細胞の割合の低下が認められた(図16G、右図)。以上の結果から、CsAはPGCLCの細胞周期を促進し、さらに、アポトーシスを抑制することにより、PGCLCの増殖を支持していると考えられた。
CsAは免疫抑制作用を有する化合物として知られているが、ミトコンドリアに作用してアポトーシスを抑制する効果も有することが知られている。そこで、CsAのPGCLC増殖効果がどちらによるものなのかを調べるため、FK506のPGCLCへの影響を解析した。
FK506はCsAと同様の作用機序で免疫抑制効果を示すが、ミトコンドリアへの影響は無い化合物であることが知られている。その結果、FK506はPGCLCの増殖効果を有しないことが明らかとなった(図16H)。以上の結果から、CsAはPGCLCのミトコンドリアへ作用し、アポトーシスを抑制することにより、その増殖を支持することが示唆された。
CsAによる増幅培養中のPGCLCの転写・エピジェネティック特性とin vivo PGCにおけるCsAの効果
次に、CsAによる増幅培養中のPGCLCの詳細な転写特性(transcriptional properties)を、実施例[I](図4B)と同様の方法を用いて決定した(図17A)。主成分分析(PCA)の結果、FR10にCsAを添加して増幅したPGCLCは、FR10で増幅したPGCLCと同様の遺伝子発現パターンを示すことが明らかとなった(図17A)。また、エピジェネティック特性をIFにより解析したところ、FR10にCsAを添加して増幅したPGCLCは、FR10で増幅したPGCLCと同様のエピジェネティック特性を有することが明らかとなった(図17B、C)。以上の結果から、FR10にCsAを添加して増幅したPGCLCは、FR10で増幅したPGCLCと同様の特性を持つことが示唆された。
また、CsAがin vivo PGCの増殖を支持可能かどうかを調べるため、E9.5のPGCを回収し、試験管内で培養した。その結果、FR10にCsAを添加することにより、in vivo PGCを約16倍程度にまで増幅可能であることが明らかとなった(図17D)。以上の結果から、CsAはPGCLCのみならず、in vivoのPGCの増幅も支持し得ることが明らかとなった。
CsAにより増幅培養されたPGCLCの精子形成能
次に、FR10+CsAにより増幅されたPGCLCが、PGCLCとしての機能を維持するかどうかを評価した。この目的のために、FR10+CsAで増幅したd4c7 PGCLCを内因性生殖細胞を欠く新生児W/Wマウスの精巣に移植した。移植後10週の精巣を解析したところ、精子形成の証拠を伴う多数の精細管を含み、実際に豊富な精子を産生した(図18A−E)。さらに、得られた精子を用いて顕微授精(ICSI)を行ったところ、正常な産仔が得られ(図18F−I)、正常な成長を示した(図18J)。これらの結果から、CsAで増幅したPGCLCは、機能的な精子へと分化可能であることが明らかとなった。
本発明によれば、PGC/PGCLCから試験管内において卵子を作製できる可能性がある。
従って、本発明は、不妊症に関する基礎研究への展開、生殖補助医療への応用が期待され、きわめて有用である。
本出願は、日本で出願された特願2017−231294(出願日:2017年11月30日)を基礎としており、ここで言及することにより、その内容は全て本明細書に包含されるものである。
[配列表]

Claims (9)

  1. 始原生殖細胞(PGC)又は単離された多能性幹細胞由来の始原生殖細胞様細胞(PGCLC)の維持増幅方法であって、PGC又はPGCLCをホスホジエステラーゼ4(PDE4)阻害薬及び/又はシクロスポリンAの存在下で培養することを含む、方法。
  2. PGC又はPGCLCを、フォルスコリンをさらに含む条件下で培養することを含む、請求項1に記載の方法。
  3. PDE4阻害薬及び/又はシクロスポリンAを含有してなる、PGC又はPGCLCの維持増幅用試薬。
  4. フォルスコリンを組み合わせてなる、請求項3に記載の試薬。
  5. PGC又はPGCLCから卵母細胞を誘導する方法であって、PGC又はPGCLCを、骨形成タンパク質(BMP)及びレチノイン酸(RA)の存在下で培養することを含む、方法。
  6. BMPがBMP2、BMP5及びBMP7から選ばれる1以上である、請求項5に記載の方法。
  7. BMP及びRAを組み合わせてなる、PGC又はPGCLCから卵母細胞を誘導するための試薬。
  8. BMPがBMP2、BMP5及びBMP7から選ばれる1以上である、請求項7に記載の試薬。
  9. PGC又はPGCLCから卵母細胞を誘導する方法であって、
    (a)PGC又はPGCLCをPDE4阻害薬及び/又はシクロスポリンAの存在下で培養し、PGC又はPGCLCを維持増幅すること、並びに
    (b)工程(a)で得られたPGC又はPGCLCを、BMP及びRAの存在下で培養するBMP及びRAの存在下で培養することを含む、方法。
JP2019556772A 2017-11-30 2018-11-30 始原生殖細胞/始原生殖細胞様細胞の維持増幅及び分化誘導方法 Active JP7307481B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017231294 2017-11-30
JP2017231294 2017-11-30
PCT/JP2018/045011 WO2019107576A1 (ja) 2017-11-30 2018-11-30 始原生殖細胞/始原生殖細胞様細胞の維持増幅及び分化誘導方法

Publications (2)

Publication Number Publication Date
JPWO2019107576A1 true JPWO2019107576A1 (ja) 2020-11-26
JP7307481B2 JP7307481B2 (ja) 2023-07-12

Family

ID=66665620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019556772A Active JP7307481B2 (ja) 2017-11-30 2018-11-30 始原生殖細胞/始原生殖細胞様細胞の維持増幅及び分化誘導方法

Country Status (3)

Country Link
US (1) US20200362303A1 (ja)
JP (1) JP7307481B2 (ja)
WO (1) WO2019107576A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039279A1 (ja) 2020-08-18 2022-02-24 国立大学法人京都大学 ヒト始原生殖細胞/ヒト始原生殖細胞様細胞の維持増幅方法
CN113186153B (zh) * 2021-04-15 2023-09-08 南方医科大学 Prmt5抑制剂在促进精原干细胞损伤再生和增殖中的应用
CN113215088B (zh) * 2021-05-31 2023-03-10 华中科技大学 体外诱导人多能干细胞分化为精原干细胞样细胞的方法
WO2023027148A1 (ja) * 2021-08-26 2023-03-02 国立大学法人京都大学 精子幹細胞様細胞の製造方法及び精子幹細胞様細胞株
CN113774015B (zh) * 2021-08-31 2023-06-09 青岛农业大学 一种体外诱导卵原细胞向卵母细胞分化的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049300A1 (en) * 2011-09-30 2013-04-04 Dana-Farber Cancer Institute, Inc. Method of treating mucoepidermoid carcinoma

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049300A1 (en) * 2011-09-30 2013-04-04 Dana-Farber Cancer Institute, Inc. Method of treating mucoepidermoid carcinoma

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AM. J. PHYSIOL. CELL PHYSIOL., vol. 307, no. 5, JPN6019006784, 1 September 2014 (2014-09-01), pages 479 - 492, ISSN: 0004909881 *
DEV. BIOL., vol. 285, no. 1, JPN6019006785, 1 September 2005 (2005-09-01), pages 49 - 56, ISSN: 0005070330 *
DEVELOPMENT, vol. 138, no. 24, JPN6019006788, December 2011 (2011-12-01), pages 5393 - 5402, ISSN: 0005070331 *
宮内英孝、外: "[3PW22-4]BMPとレチノイン酸は協調してマウス生殖細胞の雌性決定を行う", 2017年度生命科学系学会合同年次大会(CONBIO2017), vol. オンライン要旨, JPN6019006782, 15 November 2017 (2017-11-15), pages 3 - 22, ISSN: 0004909880 *

Also Published As

Publication number Publication date
WO2019107576A1 (ja) 2019-06-06
US20200362303A1 (en) 2020-11-19
JP7307481B2 (ja) 2023-07-12

Similar Documents

Publication Publication Date Title
US10865381B2 (en) Multi-lineage hematopoietic precursor cell production by genetic programming
Zhang et al. Long-term propagation of porcine undifferentiated spermatogonia
JP7307481B2 (ja) 始原生殖細胞/始原生殖細胞様細胞の維持増幅及び分化誘導方法
JP7089298B2 (ja) 多能性幹細胞から生殖細胞への分化誘導方法
JP5892661B2 (ja) 多能性幹細胞から生殖細胞への分化誘導方法
US8709805B2 (en) Canine iPS cells and method of producing same
JP6460482B2 (ja) 多能性幹細胞から生殖細胞への分化誘導方法
JP7079017B2 (ja) 多能性幹細胞から生殖系列幹細胞様細胞への分化誘導方法
Moraveji et al. Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis
JP2011182720A (ja) 生殖系幹細胞の分化誘導および増幅方法、並びにそのための培地
EP2501803B1 (en) Methods of enhancing pluripotentcy
Chuykin et al. Spermatogonial stem cells
KR102669318B1 (ko) 유전자 프로그래밍에 의한 다중-계통 조혈 전구 세포 생산
Chou et al. A novel blastocyst-derived stem cell line reveals an active role for growth factor signaling in the induction of stem cell pluripotency
Beteramia Pluripotent Adult Stem Cells from the Mouse Testis
Lim et al. Fetal Cell Reprogramming and Transformation
Miura et al. Molecular Biomarkers of Embryonic Stem Cells
Rasmussen et al. Embryonic stem cells in the pig: characterization and differentiation into neural cells
Yeh Involvement of Wnt signalling pathways in the cell fate regulation of mouse spermatogonial stem cells

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230623

R150 Certificate of patent or registration of utility model

Ref document number: 7307481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150