JPWO2019092541A1 - 半導体装置、および半導体装置の作製方法 - Google Patents

半導体装置、および半導体装置の作製方法 Download PDF

Info

Publication number
JPWO2019092541A1
JPWO2019092541A1 JP2019551771A JP2019551771A JPWO2019092541A1 JP WO2019092541 A1 JPWO2019092541 A1 JP WO2019092541A1 JP 2019551771 A JP2019551771 A JP 2019551771A JP 2019551771 A JP2019551771 A JP 2019551771A JP WO2019092541 A1 JPWO2019092541 A1 JP WO2019092541A1
Authority
JP
Japan
Prior art keywords
oxide
insulator
conductor
transistor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019551771A
Other languages
English (en)
Other versions
JP7200121B2 (ja
Inventor
山崎 舜平
舜平 山崎
智記 平松
智記 平松
野中 裕介
裕介 野中
典隆 石原
典隆 石原
正太 三本菅
正太 三本菅
靖正 山根
靖正 山根
佑太 遠藤
佑太 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JPWO2019092541A1 publication Critical patent/JPWO2019092541A1/ja
Application granted granted Critical
Publication of JP7200121B2 publication Critical patent/JP7200121B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

信頼性が良好な半導体装置を提供する。第1の絶縁体と、第1の絶縁体の上に配置された、第1の酸化物と、第1の酸化物の上に配置された、第2の酸化物と、第2の酸化物上に、互いに離して配置された、第1の導電体、および第2の導電体と、第2の酸化物、第1の導電体、および第2の導電体の上に配置された、第3の酸化物と、第3の酸化物の上に配置された第2の絶縁膜と、第3の酸化物、および第2の絶縁膜を間に挟み、第2の酸化物上に配置された第3の導電体と、を有し、第3の酸化物は、金属元素と、窒素を含み、金属元素は窒素と結合している。

Description

本発明の一態様は、半導体装置、ならびに半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、モジュール、および電子機器に関する。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、および電子機器などは、半導体装置を有すると言える場合がある。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
近年、半導体装置の開発が進められ、LSI、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)などのプロセッサ、およびメモリの開発が進められている。プロセッサは、半導体ウエハから切り離された半導体集積回路(少なくともトランジスタおよびメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
LSI、CPUやGPUなどのプロセッサ、およびメモリなどの半導体回路(ICチップ)は、回路基板、例えば、プリント配線板に実装され、様々な電子機器の部品の一つとして用いられる。
また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。当該トランジスタは集積回路(IC)や画像表示装置(単に表示装置とも表記する。)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。
また、近年では電子機器の小型化、軽量化に伴い、トランジスタなどを高密度に集積した集積回路の要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。
特開2012−257187号公報
本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。本発明の一態様は、信頼性が良好な半導体装置を提供することを課題の一つとする。本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。
本発明の一態様は、情報の書き込み速度が速い半導体装置を提供することを課題の一つとする。本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。本発明の一態様は、生産性の高い半導体装置を提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、チャネル形成領域を有する半導体層と、半導体層と接するように設けられた、固定電荷を保持する層を有する半導体装置である。半導体装置は、固定電荷を保持する層により閾値が制御される。
また、半導体層は酸化物を含むことが好ましい。
本発明の一態様は、第1の絶縁体と、第1の絶縁体の上に配置された、第1の酸化物と、第1の酸化物の上に配置された、第2の酸化物と、第2の酸化物上に、互いに離して配置された、第1の導電体、および第2の導電体と、第2の酸化物、第1の導電体、および第2の導電体の上に配置された、第3の酸化物と、第3の酸化物の上に配置された第2の絶縁膜と、第3の酸化物、および第2の絶縁膜を間に挟み、第2の酸化物上に配置された第3の導電体と、を有し、第3の酸化物は、金属元素と、窒素を含み、金属元素は窒素と結合している半導体装置である。
上記において、第3の酸化物は、固定電荷を保持する層であることが好ましい。
上記において、第3の酸化物において、窒素の原子数比率が、0.1atomic%未満であることが好ましい。
本発明の一態様は、第1の絶縁体と、第1の絶縁体の上に配置された、第1の酸化物と、第1の酸化物の上に配置された、第2の酸化物と、第2の酸化物上に、互いに離して配置された、第1の導電体、および第2の導電体と、第2の酸化物、第1の導電体、および第2の導電体の上に配置された、第3の酸化物と、第3の酸化物の上に配置された第2の絶縁膜と、第3の酸化物、および第2の絶縁膜を間に挟み、第2の酸化物上に配置された第3の導電体と、を有し、第1の酸化物は、第1の層と、第2の層を有し、第2の層は、金属元素と、窒素を含み、金属元素は窒素と結合している半導体装置である。
上記において、第2の層は、固定電荷を保持する層であることが好ましい。
上記において、第2の層において、窒素の原子数比率が、0.1atomic%未満であることが好ましい。
上記において、第1の層は、第2の層より酸素濃度が高く、第2の層は、第1の層より窒素濃度が高いことが好ましい。
上記において、第1の酸化物、第2の酸化物、および第3の酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を有する、ことが好ましい。
上記において、金属元素は、In、元素M(MはAl、Ga、Y、またはSn)、およびZnから選ばれた一つであることが好ましい。
上記において、第1の導電体、および第2の導電体は、ルテニウムを含むことが好ましい。
本発明の一態様により、消費電力を抑えることができる半導体装置を提供することができる。本発明の一態様により、信頼性が良好な半導体装置を提供することができる。本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。本発明の一態様により、長期間においてデータの保持が可能な半導体装置を提供することができる。
本発明の一態様により、情報の書き込み速度が速い半導体装置を提供することができる。本発明の一態様により、設計自由度が高い半導体装置を提供することができる。本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。本発明の一態様により、新規な半導体装置を提供することができる。本発明の一態様により、生産性の高い半導体装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の上面図および断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成例を示すブロック図。 本発明の一態様に係る記憶装置の構成例を示す回路図。 本発明の一態様に係る半導体装置を示す図。 本発明の一態様に係る記憶装置の模式図。 本発明の一態様に係る電子機器を示す図。 本発明の実施例に係る半導体装置の断面図。 本発明の実施例に係る計算結果を示す図。 本発明の実施例に係る半導体装置の断面図。 本発明の実施例に係る計算結果を示す図。
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするため、図に反映しないことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接的に接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に開示されているものとする。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
本明細書において、酸化物、金属酸化物、化合物などを構成する元素の原子数比を示す場合、特段断りが無い限りは、その原子数比の近傍も含まれる場合がある。ここで、原子数比の近傍とは、各原子数を示す値の50%以上150%以下の値を含めるものとする。例えば、[A]:[B]=2:1の原子数比の場合、[A]の近傍として、1以上3以下を含み、[B]の近傍として、0.5以上1.5以下を含むものとする。また、原子数比の近傍とは、各原子数を示す値の80%以上120%以下の値を含めるものとする。例えば、[A]:[B]=2:1の原子数比の場合、[A]の近傍として、1.6以上2.4以下を含み、[B]の近傍として、0.8以上1.2以下を含むものとする。また、原子数比の近傍とは、各原子数を示す値の90%以上110%以下の値を含めるものとする。例えば、[A]:[B]=2:1の原子数比の場合、[A]の近傍として、1.8以上2.2以下を含み、[B]の近傍として、0.9以上1.1以下を含むものとする。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。
なお、本明細書などにおいて、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、ゲート電極が半導体の側面を覆う微細トランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
また、本明細書では、単にチャネル幅と記載した場合には、見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、などは、断面TEM像などを解析することなどによって、値を決定することができる。
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
なお、本明細書等において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものである。
また、本明細書等において、「平行」とは、二つの直線が−10度以上10度以下の角度で配置されている状態をいう。したがって、−5度以上5度以下の場合も含まれる。また、「略平行」とは、二つの直線が−30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。
なお、本明細書において、バリア膜とは、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、当該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。
本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む。)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう。)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETあるいはOSトランジスタと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。
また、本明細書等において、ノーマリーオフとは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりの電流が、室温において1×10−20A以下、85℃において1×10−18A以下、または125℃において1×10−16A以下であることをいう。
(実施の形態1)
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。
<半導体装置の構成例>
図1(A)、図1(B)、図1(C)、および図1(D)は、本発明の一態様に係るトランジスタ200、およびトランジスタ200周辺の上面図および断面図である。
図1(A)は、トランジスタ200を有する半導体装置の上面図である。また、図1(B)、図1(C)、および図1(D)は、当該半導体装置の断面図である。ここで、図1(B)は、図1(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図1(C)は、図1(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図1(D)は、図1(A)にA5−A6の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
本発明の一態様の半導体装置は、トランジスタ200と、層間膜として機能する絶縁体210、絶縁体212、および絶縁体281を有する。また、トランジスタ200と電気的に接続し、配線として機能する導電体203、導電体256、およびプラグとして機能する導電体240(導電体240a、導電体240b、および導電体240c)とを有する。
なお、導電体203は、絶縁体212の開口の内壁に接して形成されている。ここで、導電体203の上面の高さと、絶縁体212の上面の高さは同程度にできる。なお、トランジスタ200では、導電体203が単層構造となる構成について示しているが、本発明はこれに限られるものではない。例えば、導電体203を2層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
また、導電体240は、絶縁体273、絶縁体280、絶縁体282、および絶縁体281の開口の内壁、および絶縁体274、絶縁体280、絶縁体282、および絶縁体281の開口の内側に接して導電体240の第1の導電体が形成され、さらに内側に導電体240の第2の導電体が形成されている。ここで、導電体240の上面の高さと、絶縁体281の上面の高さは同程度にできる。なお、トランジスタ200では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。また、絶縁体280、絶縁体282、および絶縁体281の開口の内壁と導電体240の間に、水素や水などの不純物や、酸素などの透過を抑制する絶縁性バリア、または導電性バリアを設けることが好ましい。本実施の形態では、絶縁性バリアとして絶縁体276を設ける例を示す。絶縁体276は、少なくとも絶縁体280の側面と、絶縁体282の側面の一部に設けられていればよく、絶縁体280に含まれる水素や水などの不純物や、酸素などの導電体240への拡散を抑制することが好ましい。
トランジスタ200では、導電体256が、単層構造となる構成について示しているが、本発明はこれに限られるものではない。例えば、導電体203を2層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
[トランジスタ200]
図1に示すように、トランジスタ200は、基板(図示しない。)の上に配置された 絶縁体222と、絶縁体222の上に配置された絶縁体224と、絶縁体224の上に配置された酸化物230(酸化物230a1、および酸化物230a2)、および酸化物230bと、酸化物230b上に、互いに離して配置された導電体242a、および導電体242bと、導電体242a、および導電体242bの上にそれぞれ設けられた絶縁体273a、および絶縁体273bと、酸化物230、導電体242a、導電体242b、絶縁体273a、および絶縁体273bの上に配置された酸化物230cと、酸化物230cの上に配置された絶縁体250と、絶縁体250の上に配置され、少なくとも一部が導電体242aと導電体242bの間に重なるように配置された導電体260と、絶縁体250の上に設けられ、かつ導電体260を覆って配置された絶縁体274と、絶縁体274の上に配置された絶縁体280と、絶縁体280の上に配置された絶縁体282と、を有する。
ここで、絶縁体222、絶縁体273、および絶縁体274は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体222、絶縁体273、および絶縁体274は、絶縁体224または絶縁体280より酸素透過性が低いことが好ましい。
また、酸化物230a1、酸化物230a2、酸化物230b、および酸化物230cの少なくとも一は、窒素を含む酸化物であることが好ましい。例えば、酸化物230bと接する酸化物230a2、および酸化物230cの一方、または両方が窒素を含む酸化物であることが好ましい。
また、酸化物230a2として、窒素を含む酸化物を用いる場合、酸化物230a1は、窒素を含まない酸化物、酸化物230a2に比べて窒素の含有量が少ない酸化物、または酸化物230a2に比べて酸素の含有量が多い酸化物であることが好ましい。酸化物230a1は、その形成時、あるいは形成後に絶縁体224に酸素を供給できることが好ましい。例えば、酸素を含む雰囲気で酸化物230a1を形成することで、酸化物230a1の形成時において絶縁体224への酸素の供給や、酸素の含有量の多い酸化物を形成が可能となる。また、酸化物230a1として、酸素の含有量の多い酸化物を用いることで、加熱処理により絶縁体224に酸素を放出することが可能となる。
なお、トランジスタ200では、チャネルが形成される領域(以下、チャネル形成領域ともいう。)と、その近傍において、酸化物230a、酸化物230b、および酸化物230cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bの単層、酸化物230bと酸化物230aの2層構造、酸化物230bと酸化物230cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、酸化物230aが、酸化物230a1、および酸化物230a2の2層を有する例を示しているが、本発明はこれに限られるものではない。例えば、単層構造でも、3層以上の積層構造でもよい。また、トランジスタ200では、導電体260を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体260が、単層構造であってもよいし、3層以上の積層構造であってもよい。
窒素を含む酸化物は、固定電荷を保持する層として機能する。窒素を含む酸化物は、その形成時、あるいは形成後に、酸化物に含まれる酸素の一部が窒素に置換される、あるいは酸化物中の酸素欠損(Voと表記する場合がある)に窒素が入ることで形成される。この構造は、ミッドギャップ、およびその近傍に状態を形成することが、第一原理計算の結果より示唆されている。このミッドギャップ、およびその近傍に状態が形成されると、同時に窒素を含む酸化物中に負の電荷が存在することになり、その電荷は窒素を含む酸化物内で固定される。すなわち、窒素を含む酸化物は、負の固定電荷を保持する。
負の固定電荷を保持する窒素を含む酸化物が、チャネル形成領域を有する酸化物と接するように設けられたトランジスタは、窒素を含む酸化物が設けられていないトランジスタと比較して、閾値がプラス側にシフトする。これは、チャネル形成領域が、固定電荷による電界の影響を受けているためと考えられる。
なお、酸化物中の酸素欠損(Vo)に窒素(N)が入ることをVoNが形成されると表記する場合がある。
窒素を含む酸化物内において、VoNが増加すれば、その分負の固定電荷は増加する。つまり、窒素を含む酸化物中のVoN密度の増加により、固定電荷密度は増加する。窒素を含む酸化物中の固定電荷密度は、2.0×10+17atoms/cm以上1.0×10+19atoms/cm以下、好ましくは1.0×10+18atoms/cm以上1.0×10+19atoms/cm以下とするのが好ましい。窒素を含む酸化物中の負の固定電荷密度の増加に伴い、該トランジスタの閾値は、プラス側にシフトする。
トランジスタの閾値は、バックゲートとして機能する第2のゲートに電位を印加することでも制御可能である。一方、該トランジスタを所望の閾値に制御するため第2のゲートに印加する電位は、該トランジスタを有する半導体装置、あるいは電子機器の消費電力を増加させる。本実施の形態のように、チャネル形成領域を有する酸化物と接するように窒素を含む酸化物を設けることで、第2のゲートに印加する電位の絶対値を小さくできるため好ましい。あるいは、チャネル形成領域を有する酸化物と接するように窒素を含む酸化物を設けることで、所望の閾値を有するトランジスタを得ることができる場合は、第2のゲートへの電位の印加、あるいは第2のゲート自体が不要になるため好ましい。これにより、消費電力が低減されたトランジスタ、半導体装置、および電子機器を得ることができる。
また、第2のゲートに電位を印加することによるトランジスタの劣化が懸念される場合、チャネル形成領域を有する酸化物と接するように窒素を含む酸化物を設け、第2のゲートに印加する電位を低減することで、トランジスタの劣化が抑制、あるいは劣化の程度が低減されるため好ましい。これにより、信頼性の向上したトランジスタ、半導体装置、および電子機器を得ることができる。
ここで、導電体260は、トランジスタのゲート電極として機能し、導電体242aおよび導電体242bは、それぞれソース電極またはドレイン電極として機能する。導電体260は、絶縁体250を介して導電体242aと重なる領域と、絶縁体250を介して導電体242bと重なる領域を有することが好ましい。導電体260をこのような形状にすることにより、導電体260に位置合わせのマージンを持たせることができるので、酸化物230の導電体242aと導電体242bの間の領域に、導電体260を確実に重畳させることができる。
なお、図1に示すように、導電体260は、導電体260aと、導電体260aの上に配置された導電体260bと、を有することが好ましい。また、本明細書において、導電体242aおよび導電体242bをまとめて導電体242という場合がある。
また、トランジスタ200は、基板(図示しない。)の上に配置された絶縁体214と、絶縁体214の上に配置された絶縁体216と、絶縁体214および絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216と導電体205の上に配置された絶縁体220と、を有することが好ましい。さらに、絶縁体220の上に絶縁体222が配置されることが好ましい。
また、トランジスタ200は、チャネル形成領域を含む酸化物230(酸化物230a、酸化物230b、および酸化物230c)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。
チャネル形成領域に酸化物半導体を用いたトランジスタ200は、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタ200に用いることができる。
例えば、酸化物230として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。また、酸化物230として、In−Ga酸化物、In−Zn酸化物を用いてもよい。また、酸化物230として、窒素を含む金属酸化物を用いることができる。酸化物230の一部に、窒素を含む金属酸化物を用いることで、トランジスタの閾値をプラス側にシフトさせ、トランジスタ特性のノーマリーオン化を抑制することができる。
酸化物230が窒素を有する場合、その窒素濃度は、2.0×10+17atoms/cm以上1×1022atoms/cm以下が好ましい。さらには、1×1018atoms/cm以上4×1021atoms/cm以下が好ましい。さらには、1×1019atoms/cm以上2×1021atoms/cm以下が好ましい。さらには、2×1019atoms/cm以上1×1020atoms/cm未満が好ましい。
または、酸化物230中の窒素の原子数比率は、0.001atomic%以上10atomic%以下が好ましい。さらには、0.005atomic%以上5atomic%以下が好ましい。さらには、0.01atomic%以上3atomic%以下が好ましい。さらには、0.02atomic%以上0.1atomic%未満が好ましい。本明細書等において、窒素の原子数比率(atomic%)は、インジウム、元素M、亜鉛、酸素、窒素それぞれの原子数の合計に対する、窒素の原子数比率を示す。なお、本明細書等において、窒素の原子数比率を窒素濃度と記す場合がある。
窒素濃度(atoms/cm)、金属酸化物層の組成、及び密度(g/cm)から、窒素の原子数比率(atomic%)を算出できる。金属酸化物層の密度は、X線反射率法(XRR:X−ray Reflectivity)により評価できる。
酸化物230中の窒素濃度又は窒素の原子数比率を前述の範囲とすることで、酸化物230は固定電荷を保持する層として機能し、ノーマリーオフの電気特性を有し、かつオン電流が高いトランジスタを得ることができる。また、これにより消費電力が低減されたトランジスタ、半導体装置、および電子機器を得ることができる。
本明細書等において、例えば、AはBより窒素濃度が高いと記す場合、Aの窒素濃度(atoms/cm)又は窒素の原子数比率(atomic%)がBのそれより高いことを示す。
ここで、酸化物230は、水素、窒素、または金属元素などの不純物が存在すると、キャリア密度が増大し、低抵抗化する場合がある。また、酸化物230に含まれる酸素濃度が低下すると、キャリア密度が増大し、低抵抗化する場合がある。
酸化物230上に接するように設けられ、ソース電極やドレイン電極として機能する導電体242(導電体242a、および導電体242b)が、酸化物230の酸素を吸収する機能を有する場合、または酸化物230に水素、窒素、または金属元素などの不純物を供給する機能を有する場合、酸化物230には、部分的に低抵抗領域が形成される場合がある。
ここで、図1(B)に示すように、酸化物230b上に接するように導電体242が設けられ、酸化物230bの、導電体242との界面とその近傍には、低抵抗領域として、領域243(領域243a、および領域243b)が形成されている。領域243aはソース領域およびドレイン領域の一方として機能し、領域243bはソース領域およびドレイン領域の他方として機能する。領域243aおよび領域243bの間には、チャネル形成領域として機能する領域234が設けられる。
ソース領域またはドレイン領域として機能する領域243は、酸素濃度が低い、または水素や、窒素や、金属元素などの不純物を含む、ことでキャリア濃度が増加し、低抵抗化した領域である。すなわち、領域243は、領域234と比較して、キャリア密度が高く、低抵抗な領域である。また、チャネル形成領域として機能する領域234は、領域243よりも、酸素濃度が高い、または不純物濃度が低いため、キャリア密度が低い高抵抗領域である。
ここで、酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となりやすい。したがって、チャネルが形成される領域234中の酸素欠損はできる限り低減されていることが好ましい。
トランジスタのノーマリーオン化を抑制するには、酸化物230に接して、加熱により脱離する酸素を含む領域を有する絶縁体を設け、熱処理によって当該絶縁体が含む酸素を酸化物230へと拡散させればよい。例えば、絶縁体280に酸素を添加し、絶縁体280に含まれる酸素を、熱処理によって拡散させればよい。これにより、酸化物230に酸素が供給され、当該酸素により、酸化物230の酸素欠損を低減し、トランジスタのノーマリーオン化を抑制することができる。
また、低抵抗領域である領域243が金属元素を含む場合、領域243は、酸化物230の他に、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの金属元素の中から選ばれるいずれか一つまたは複数の金属元素を有することが好ましい。
また、図1(B)では、領域243が、酸化物230bの膜厚と概略同じ厚さを有しているが、これに限られない。例えば、図5(A)に示すように、領域243は、酸化物230bの膜厚方向において、酸化物230bの導電体242との界面近傍に形成されていてもよいし、酸化物230aにも、形成されていてもよい。また、図5(B)は、導電体242が積層構造を有している例を示している。導電体242は、酸化物230bと接する導電体242−1、および導電体242−1の上の導電体242−2を有している。導電体242−1が酸化物230bに含まれる酸素を吸収することで、酸化物230bに低抵抗領域として機能する領域243を形成する。なお、領域243を接合層、あるいはN型接合層と呼ぶ場合がある。
また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、ならびに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう。)していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、ならびに水素、および窒素などの不純物元素の濃度が減少していればよい。
酸化物230を、選択的に低抵抗化するには、導電体242として、例えば、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどの導電性を高める金属元素、および不純物の少なくとも一を含む材料を用いることが好ましい。または、導電体242の形成において、酸化物230に、酸素欠損を形成する元素、または酸素欠損に捕獲される元素などの不純物が注入される材料や成膜方法などを用いればよい。例えば、当該元素として、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、希ガス等が挙げられる。また、希ガスの代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、およびキセノン等がある。
例えば、導電体242−1として、アルミニウム、チタン、シリコン、タンタル、タングステン、およびこれらを含む化合物の少なくとも一を含む材料を用い、導電体242−2として、ルテニウムや、アルミニウムを含むルテニウムを用いることができる。
また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。また、チャネル形成領域に酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流(オフ電流)が小さいため、低消費電力の半導体装置を提供できる。
以上より、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。
導電体203は、図1(A)および図1(C)に示すように、チャネル幅方向に延伸されており、導電体205に電位を印加する配線として機能する。なお、導電体203は、絶縁体212に埋め込まれて設けることが好ましい。
導電体205は、酸化物230、および導電体260と、重なるように配置する。また、導電体205は、導電体203の上に接して設けるとよい。また、導電体205は、絶縁体214および絶縁体216に埋め込まれて設けることが好ましい。
ここで、導電体260は、第1のゲート(トップゲートともいう。)電極として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう。)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のVthを制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthを0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
また、導電体203上に導電体205を設けることで、第1のゲート電極、および配線としての機能を有する導電体260と、導電体203との距離を適宜設計することが可能となる。つまり、導電体203と導電体260の間に絶縁体214および絶縁体216などが設けられることで、導電体203と導電体260の間の寄生容量を低減し、導電体203と導電体260の間の絶縁耐圧を高めることができる。
また、導電体203と導電体260の間の寄生容量を低減することで、トランジスタ200のスイッチング速度を向上させ、高い周波数特性を有するトランジスタにすることができる。また、導電体203と導電体260の間の絶縁耐圧を高めることで、トランジスタ200の信頼性を向上させることができる。よって、絶縁体214および絶縁体216の膜厚を厚くすることが好ましい。なお、導電体203の延伸方向はこれに限られず、例えば、トランジスタ200のチャネル長方向に延伸されてもよい。
なお、導電体205は、図1(A)に示すように、酸化物230、および導電体260と重なるように配置する。また、導電体205は、酸化物230における領域234よりも、大きく設けるとよい。特に、図1(C)に示すように、導電体205は、酸化物230bの領域234のチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230bのチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。
上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながり、酸化物230に形成されるチャネル形成領域を覆うことができる。
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
また、導電体205は、絶縁体214および絶縁体216の開口の内壁に接して導電体205aが形成され、さらに内側に導電体205bが形成されている。ここで、導電体205aおよび導電体205bの上面の高さと、絶縁体216の上面の高さは同程度にできる。なお、トランジスタ200では、導電体205aおよび導電体205bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体205は、単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
ここで、導電体205aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一またはすべての拡散を抑制する機能とする。
導電体205aが酸素の拡散を抑制する機能を持つことにより、導電体205bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。したがって、導電体205aとしては、上記導電性材料を単層または積層とすればよい。これにより、水素、水などの不純物が、導電体205を通じて、トランジスタ200側に拡散するのを抑制することができる。
また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。なお、導電体205bを単層で図示したが、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
また、導電体203は、配線として機能するため、導電体205bより導電性が高い導電体を用いることが好ましい。例えば、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体203は積層構造としてもよく、例えば、タンタル、窒化タンタル、チタン、または窒化チタンと上記導電性材料との積層としてもよい。
特に、導電体203に、銅を用いることが好ましい。銅は抵抗が小さいため、配線等に用いることが好ましい。一方、銅は拡散しやすいため、酸化物230に拡散することで、トランジスタ200の電気特性を低下させる場合がある。そこで、例えば、絶縁体214には、銅の透過性が低い窒化シリコン、酸化アルミニウム、または酸化ハフニウムなどの材料を用いることで、銅の拡散を抑えることができる。
なお、導電体205、絶縁体214、および絶縁体216は必ずしも設けなくともよい。その場合、導電体203の一部が第2のゲート電極として機能することができる。
絶縁体210、および絶縁体214は、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体210、および絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料を用いることが好ましい。
例えば、絶縁体210として酸化アルミニウムなどを用い、絶縁体214として窒化シリコンなどを用いることが好ましい。これにより、水素、水などの不純物が絶縁体210および絶縁体214よりも基板側からトランジスタ200側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体210および絶縁体214よりも基板側に、拡散するのを抑制することができる。
また、導電体203の上に導電体205を積層して設ける構成にすることにより、導電体203と導電体205の間に絶縁体214を設けることができる。ここで、導電体203の第2の導電体に銅など拡散しやすい金属を用いても、絶縁体214として窒化シリコンなどを設けることにより、当該金属が絶縁体214より上の層に拡散するのを抑制することができる。
また、層間膜として機能する絶縁体212、絶縁体216、絶縁体280、および絶縁体281は、絶縁体210、または絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
例えば、絶縁体212、絶縁体216、絶縁体280、および絶縁体281として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン、または窒化シリコンを積層して用いてもよい。
絶縁体220、絶縁体222、絶縁体224、および絶縁体250は、ゲート絶縁体としての機能を有する。
絶縁体222は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体222は、絶縁体224より酸素透過性が低いことが好ましい。
絶縁体222が、酸素や不純物の拡散を抑制する機能を有することで、酸化物230が有する酸素は、絶縁体220側へ拡散することがなく、好ましい。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。
特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
また、絶縁体220は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体220を得ることができる。
なお、絶縁体220、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。また、絶縁体220を設けず、絶得ない222と絶縁体224だけを設ける構成にしてもよい。
酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。また、酸化物230aは、酸化物230a1、および酸化物230a2の積層構造を有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
酸化物230として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)で表すことができる金属酸化物、In−Ga酸化物、In−Zn酸化物などを用いることができる。
なお、酸化物230として、In−M−Zn酸化物を用いる場合、酸化物230は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。
また、詳細は後述するが、酸化物230に、弱いZn−O結合が存在すると、トランジスタの安定性が低下する場合がある。よって、酸化物230、特に酸化物230bに含まれるZnが少ない方が好ましい。例えば、酸化物230bに含まれるZnの原子数比は、酸化物230bに含まれるInの原子数比より小さくすればよい。
また、酸化物230bは、結晶性を有することが好ましい。例えば、後述するCAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。CAAC−OSなどの結晶性を有する酸化物は、不純物や欠陥(酸素欠損など)が少なく、結晶性の高い、緻密な構造を有している。よって、ソース電極またはドレイン電極による、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるので、トランジスタ200は、製造工程における熱履歴(所謂サーマルバジェット)に対して安定である。
また、酸化物230の少なくとも一部が窒素を含む場合、酸化物230の形成時、あるいは形成後に酸化物230から酸素が引き抜かれることにより生じる酸素欠損(Voと表記する場合がある)に窒素が入ることでVoNを形成し、酸素欠損を補完する場合がある。金属酸化物中の酸素が窒素に置き換わることで、金属酸化物は、金属(M)と窒素(N)の結合(MN結合と表記する場合がある)を有する。ここで、MはIn、Ga、またはZnであることが好ましい。金属酸化物中のVoN、およびMN結合は極めて安定であると考えられる。よって、酸化物230からZn、Ga、Inなどの金属元素の脱離を抑制することができる。このような金属酸化物を用いた半導体装置は、安定した電気特性を有するとともに、信頼性が向上する。
また、酸化物230a1、酸化物230a2、酸化物230b、および酸化物230cのいずれか一、または複数に窒素を含む金属酸化物を用いることで、該酸化物は負の固定電荷を保持し、トランジスタ200の閾値をプラス側にシフトさせることができるため好ましい。
また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。
ここで、酸化物230a、酸化物230b、および酸化物230cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物230a、酸化物230b、および酸化物230cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物230aと酸化物230b、酸化物230bと酸化物230cが、酸素以外に共通の元素を有する(主成分とする。)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn−Ga−Zn酸化物の場合、酸化物230aおよび酸化物230cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
酸化物230aとして、[In]:[Ga]:[Zn]=1:3:4またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=1:3:2またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=1:1:0.5またはその近傍の原子数比の金属酸化物、および窒素を含む上記金属酸化物などを用いることができる。ここで、本明細書において、ある原子数比の近傍とは、各原子数を示す値の50%以上150%以下、好ましくは80%以上120%以下、より好ましくは90%以上110%以下を含めるものとする。また、酸化物230aが酸化物230a1、および酸化物230a2を含む積層構造を有する場合、酸化物230a1が有する金属元素の原子数比は、酸化物230a2が有する金属元素の原子数比と同じでもよいし、異なっていてもよい。また、酸化物230a1、および酸化物230a2の一方、または両方が窒素を含んでいることが好ましい。また、酸化物230a1、および酸化物230a2の両方が窒素を含んでいる場合、酸化物230a1の窒素濃度と、酸化物230a2の窒素濃度は同じでもよいし、異なっていてもよい。例えば、酸化物230a1、および酸化物230a2として、[In]:[Ga]:[Zn]=1:3:4の原子数比の金属酸化物を用い、酸化物230a1は、酸化物230a2に比べて酸素濃度が高く、酸化物230a2は、酸化物230a1に比べて窒素濃度が高いことが好ましい。
酸化物230bとして、[In]:[Ga]:[Zn]=4:2:3またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=1:1:0.5またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=5:1:7またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=1:1:1またはその近傍の原子数比の金属酸化物、および窒素を含む上記金属酸化物などを用いることができる。
酸化物230cとして、[In]:[Ga]:[Zn]=4:2:3またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=1:1:0.5またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=5:1:7またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=1:1:1またはその近傍の原子数比の金属酸化物、および窒素を含む上記金属酸化物などを用いることができる。また、酸化物230cとして、シリコンを含むインジウム錫酸化物を用いることができる。
このとき、キャリアの主たる経路は酸化物230bとなる。酸化物230a、酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は高いオン電流を得られる。一方、酸化物230c、または酸化物230aがキャリアの主たる経路となる場合もある。
また、酸化物230は、領域243および領域234を有する。なお、領域243の少なくとも一部は、導電体242と接する領域を有する。
なお、トランジスタ200をオンさせると、領域243a、または領域243bは、ソース領域、またはドレイン領域として機能する。一方、領域234は、チャネルが形成される領域として機能する。また、領域243と領域234との間に、接合領域として機能する領域を有していてもよい。
また、酸化物230a1、酸化物230a2、酸化物230b、および酸化物230cの少なくとも一は、固定電荷を保持する層であることが好ましく、固定電荷を保持する層として、窒素を含む酸化物であることが好ましい。
つまり、各領域の範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。
酸化物230は、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、領域234となる金属酸化物としては、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。
酸化物230b上には、ソース電極、およびドレイン電極として機能する導電体242(導電体242a、および導電体242b)が設けられる。導電体242としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、アルミニウムを含むルテニウム合金、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、アルミニウムを含むルテニウム合金、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
酸化物230と接するように上記導電体242を設けることで、領域243の酸素濃度が低減する場合がある。また、領域243に導電体242に含まれる金属と、酸化物230の成分とを含む金属化合物層が形成される場合がある。このような場合、領域243のキャリア密度が増加し、領域243は、低抵抗領域となる。
また、導電体242は積層構造としてもよい。例えば、図5(B)に示すように、導電体242として、酸化物230に含まれる酸素を吸収する導電体242−1と、導電体242−1に比べて酸素を吸収しにくい導電体242−2を積層してもよい。このような構造とすることで、酸化物230に含まれる酸素が導電体242−1に吸収され、酸化物230において導電体242−1の近傍には、酸素濃度が低減することで低抵抗化した領域243が形成される場合がある。
例えば、導電体242−1として、アルミニウム、チタン、シリコン、タンタル、タングステン、およびこれらを含む化合物の少なくとも一を含む材料を用い、導電体242−2として、ルテニウムや、アルミニウムを含むルテニウムを用いることができる。
導電体242a、および導電体242bの上には、それぞれ絶縁体273a、および絶縁体273b(絶縁体273)が設けられることが好ましい。
絶縁体273は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体273は、絶縁体222と同様な材料を用いることができる。絶縁体273としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。
絶縁体273は、被覆性の良いALD法を用いて成膜することが好ましい。
このような絶縁体273を用いることで、導電体242の酸化を抑制することができ、導電体242は、酸化物230と良好なコンタクトを得ることができる。
絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、酸化物230cの上面に接して配置することが好ましい。絶縁体250は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
また、絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体250から導電体260への酸素の拡散が抑制される。つまり、絶縁体250の酸素による導電体260の酸化を抑制することができる。
また、当該金属酸化物は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、当該金属酸化物は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。ゲート絶縁体を、絶縁体250と当該金属酸化物との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、当該金属酸化物は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
第1のゲート電極として機能する導電体260は、図1では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
導電体260aは、導電体205aと同様に、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
また、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。
また、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層構造としてもよい。
また、図1(C)に示すように、導電体205が、酸化物230のチャネル幅方向と交わる端部よりも外側の領域において、延伸している場合、導電体260は、当該領域において、絶縁体250を介して、重畳していることが好ましい。つまり、酸化物230の側面の外側において、導電体205と、絶縁体250と、導電体260とは、積層構造を形成することが好ましい。
上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながり、酸化物230に形成されるチャネル形成領域を覆うことができる。
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。
絶縁体274は、絶縁体250の上面、および導電体260の上面と側面に接することが好ましい。
絶縁体274は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体274は、絶縁体222や、絶縁体273と同様な材料を用いることができる。絶縁体274としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。
絶縁体274は、ALD法を用いて成膜することが好ましい。ALD法は、被覆性の良好な成膜法なので、導電体260や、酸化物230により生じる凹凸に対して、段切れなどが形成されるのを防ぐことができる。
このような絶縁体274を用いることで、導電体260の酸化を抑制することができる。
絶縁体280は、絶縁体224、酸化物230、導電体242、絶縁体273、絶縁体250、導電体260、および絶縁体274上に設けられる。絶縁体280は、加熱により脱離する酸素を含む領域を有することが好ましい。例えば、絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
上述のように、絶縁体280は、加熱により脱離する酸素を含む領域を有することが好ましい。加熱により酸素が放出される絶縁体280を、絶縁体224と接して設けることで、絶縁体280中の酸素を、絶縁体224を通じて、酸化物230の領域234へと効率良く供給することができる。なお、絶縁体280中の水または水素などの不純物濃度が低減されていることが好ましい。
また、絶縁体280の上面は、図1(B)、図1(C)、および図1(D)に示すように、平坦化されていてもよい。あるいは、絶縁体280の上面は、酸化物230や導電体260により生じる凹凸に沿うように、凹凸面を有していてもよい。
絶縁体282は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体282は、絶縁体224や、絶縁体280より酸素透過性が低いことが好ましい。
絶縁体282は、絶縁体280の上面に接して設けられることが好ましい。絶縁体282を、酸素を含む雰囲気でスパッタリング法を用いて成膜することで、絶縁体280へ加熱により脱離する酸素を含む領域を設けることができる。これにより、当該領域から、絶縁体224や絶縁体250を介して酸化物230中に酸素を供給することができる。ここで、絶縁体282が、酸素の拡散を抑制する機能を有することで、絶縁体280が有する酸素が、絶縁体281側へ拡散することを防ぐことができるので、好ましい。
例えば、絶縁体282として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、水素などの不純物のバリア膜としての機能も有することができる。例えば、スパッタリング法で成膜した酸化アルミニウムを絶縁体282に用いることで、絶縁体282は、絶縁体280に酸素供給を行うとともに、絶縁体282の上方からの水素などの不純物が、絶縁体280側に混入するのを抑制することができる。
また、絶縁体282の上に、層間膜として機能する絶縁体281を設けることが好ましい。絶縁体281は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
また、絶縁体281、絶縁体282、絶縁体280、および絶縁体273に形成された開口に、導電体240aおよび導電体240bを配置する。また、絶縁体281、絶縁体282、絶縁体280、および絶縁体274に形成された開口に、導電体240cを配置する。導電体240aおよび導電体240bは、導電体260を挟んで対向して設ける。なお、導電体240a、導電体240b、および導電体240cの上面の高さは、絶縁体281の上面と、同一平面上としてもよい。
なお、絶縁体281、絶縁体282、絶縁体280、および絶縁体273aの開口の内壁に接して、導電体240aの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242aが位置しており、導電体240aが導電体242aと接する。同様に、絶縁体281、絶縁体282、絶縁体280、および絶縁体273bの開口の内壁に接して、導電体240bの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242bが位置しており、導電体240bが導電体242bと接する。同様に、絶縁体281、絶縁体282、絶縁体280、および絶縁体274の開口の内壁に接して、導電体240cの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体260が位置しており、導電体240cが導電体260と接する。
また、各開口の内壁と、導電体240の間には、水素や水などの不純物や、酸素などの透過を抑制する絶縁性バリア、または導電性バリアを設けることが好ましい。本実施の形態では、絶縁性バリアとして絶縁体276を設ける例を示す。絶縁体276は、少なくとも絶縁体280の側面と、絶縁体282の側面の一部に設けられていればよく、絶縁体280に含まれる水素や水などの不純物や、酸素などの導電体240への拡散を抑制することが好ましい。
導電体240は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240は積層構造としてもよい。
また、導電体240を積層構造とする場合、導電体242、絶縁体273、絶縁体280、絶縁体282、絶縁体281と接する導電体には、導電体205aなどと同様に、水または水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体280に添加された酸素が導電体240に吸収されるのを防ぐことができる。また、絶縁体281より上層から水素、水などの不純物が、導電体240を通じて酸化物230に混入するのを抑制することができる。
また、導電体240の上面に接して配線として機能する導電体256を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。なお、導電体256は、導電体203などと同様に、絶縁体に設けられた開口に埋め込むように形成してもよい。
<半導体装置の構成材料>
以下では、半導体装置に用いることができる構成材料について説明する。
<<基板>>
トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
また、基板として、可撓性基板を用いてもよい。なお、可撓性基板上にトランジスタを設ける方法としては、非可撓性の基板上にトランジスタを作製した後、トランジスタを剥離し、可撓性基板である基板に転置する方法もある。その場合には、非可撓性基板とトランジスタとの間に剥離層を設けるとよい。また、基板が伸縮性を有してもよい。また、基板は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板は、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下の厚さとなる領域を有する。基板を薄くすると、トランジスタを有する半導体装置を軽量化することができる。また、基板を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板上の半導体装置に加わる衝撃などを緩和することができる。すなわち、丈夫な半導体装置を提供することができる。
可撓性基板である基板としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。また、基板として、繊維を編み込んだシート、フィルムまたは箔などを用いてもよい。可撓性基板である基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。可撓性基板である基板としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可撓性基板である基板として好適である。
<<絶縁体>>
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
また、特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定である。そのため、例えば、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。また、例えば、酸化シリコン、および酸化窒化シリコンは、比誘電率の高い絶縁体と組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。
また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。
水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、または酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
例えば、ゲート絶縁体として機能する絶縁体224、および絶縁体250は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
また、例えば、ゲート絶縁体の一部として機能する絶縁体222において、アルミニウム、ハフニウム、およびガリウムの一種または複数種の酸化物を含む絶縁体を用いることができる。特に、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
例えば、絶縁体220には、熱に対して安定である酸化シリコンまたは酸化窒化シリコンを用いることが好ましい。ゲート絶縁体として、熱に対して安定な膜と、比誘電率が高い膜との積層構造とすることで、物理膜厚を保持したまま、ゲート絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
上記積層構造とすることで、ゲート電極からの電界の影響を弱めることなく、オン電流の向上を図ることができる。また、ゲート絶縁体の物理的な厚みにより、ゲート電極と、チャネルが形成される領域との間の距離を保つことで、ゲート電極とチャネル形成領域との間のリーク電流を抑制することができる。
絶縁体212、絶縁体216、絶縁体280、および絶縁体281は、比誘電率の低い絶縁体を有することが好ましい。例えば、絶縁体212、絶縁体216、絶縁体280、および絶縁体281は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。または、絶縁体212、絶縁体216、絶縁体280、および絶縁体281は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、またはアクリルなどがある。
絶縁体210、絶縁体214、絶縁体273、絶縁体274、および絶縁体281としては、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。絶縁体210、絶縁体214、絶縁体273、絶縁体274、および絶縁体281としては、例えば、酸化アルミニウム、酸化ハフニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、または酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いればよい。
<<導電体>>
導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
導電体260、導電体203、導電体205、導電体242、および導電体240としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、アルミニウムを含むルテニウム合金、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、アルミニウムを含むルテニウム合金、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
<<金属酸化物>>
酸化物230として、酸化物半導体として機能する金属酸化物を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたは錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、または錫などとする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
[金属酸化物の構造]
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、および非晶質酸化物半導体などがある。
なお、本明細書等において、CAAC(c−axis aligned crystal)、およびCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
がある。
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう。)など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
ここで、X線回折(XRD:X−Ray Diffraction)によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることを示す。
また、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、回折パターン(制限視野透過電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれる結晶がc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させると、リング状の回折パターンが確認される。したがって、電子回折によっても、CAAC−OSに含まれる結晶のa軸およびb軸は配向性を有さないことがわかる。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
[金属酸化物の構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの半導体層に用いる場合、導電性の機能は、キャリアとなる電子(または正孔)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC−OSまたはCAC−metal oxideは、導電性領域、および絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、および高い電界効果移動度を得ることができる。
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
[金属酸化物を有するトランジスタ]
続いて、上記金属酸化物をトランジスタのチャネル形成領域に用いる場合について説明する。
なお、上記金属酸化物をトランジスタのチャネル形成領域に用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
ここで、金属酸化物の電気伝導の仮説の一例について説明する。
固体中の電気伝導は、散乱中心と呼ばれる散乱源によって阻害される。例えば、単結晶シリコンの場合、格子散乱とイオン化不純物散乱が、主な散乱中心であることが知られている。換言すると、格子欠陥および不純物の少ない本質的な状態のとき、固体中の電気伝導の阻害要因がなく、キャリアの移動度は高い。
上記のことは、金属酸化物に対しても、あてはまると推測される。例えば、化学量論的組成よりも酸素の量が少ない金属酸化物では、酸素欠損が多く存在すると考えられる。この酸素欠損周りに存在する原子は、本質的な状態よりも、歪んだ場所に位置する。この酸素欠損による歪みが散乱中心となっている可能性がある。
また、例えば、化学量論的組成よりも酸素の量が少ない金属酸化物では、過剰酸素が存在する。金属酸化物中で遊離した状態で存在する過剰酸素は、電子を受け取ることで、OやO2−になる。OやO2−となった過剰酸素が散乱中心になる可能性がある。
以上のことから、金属酸化物が、化学量論的組成を満たす酸素を含む本質的な状態を有する場合、キャリアの移動度は高いと考えられる。
インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、とくに、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。これは、大きな結晶を形成するよりも、小さな結晶同士が連結する方が、歪みエネルギーが緩和されるためと考えられる。
なお、小さな結晶同士が連結する領域においては、該領域の歪みエネルギーを緩和するために、欠陥が形成される場合がある。したがって、該領域に欠陥を形成することなく、歪みエネルギーを緩和させることで、キャリアの移動度を高くすることができる。
また、トランジスタには、キャリア密度の低い金属酸化物を用いることが好ましい。金属酸化物膜のキャリア密度を低くする場合においては、金属酸化物膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。例えば、金属酸化物は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。
また、高純度真性または実質的に高純度真性である金属酸化物膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、金属酸化物のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い金属酸化物をチャネル形成領域に有するトランジスタは、電気特性が不安定となる場合がある。
したがって、トランジスタの電気特性を安定にするためには、金属酸化物中の不純物濃度を低減することが有効である。また、金属酸化物中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
[不純物]
ここで、金属酸化物中における各不純物の影響について説明する。
金属酸化物において、第14族元素の一つであるシリコンや炭素が含まれると、金属酸化物において欠陥準位が形成される。このため、金属酸化物におけるシリコンや炭素の濃度と、金属酸化物との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、金属酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、金属酸化物において、窒素が含まれると、キャリアである電子が生じる場合があり、キャリア密度が増加することで、n型化する場合がある。すなわち、金属酸化物中の窒素は、不純物になり得る。この結果、窒素が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。したがって、当該金属酸化物において、チャネル形成領域の窒素はできる限り低減されていることが好ましい。例えば、金属酸化物中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
また、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。当該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。
このため、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
[真空ベークの効果]
ここでは、金属酸化物に含まれる、弱いZn−O結合について説明し、該結合を構成する酸素原子および亜鉛原子を低減する方法の一例について示す。
金属酸化物を用いたトランジスタにおいて、トランジスタの電気特性の不良に繋がる欠陥の一例として酸素欠損がある。例えば、膜中に酸素欠損が含まれている金属酸化物を用いたトランジスタは、閾値電圧がマイナス方向に変動しやすく、ノーマリーオン特性となりやすい。これは、金属酸化物に含まれる酸素欠損に起因したドナーが生成され、キャリア濃度が増加するためである。トランジスタがノーマリーオン特性を有すると、動作時に動作不良が発生しやすくなる、または非動作時の消費電力が高くなるなどの、様々な問題が生じる。
また、モジュールを作製するための接続配線を形成する工程における熱履歴(サーマルバジェット)により、閾値電圧の変動、寄生抵抗の増大、などのトランジスタの電気特性の劣化、該電気特性の劣化に伴う電気特性のばらつきの増大、などの問題がある。これらの問題は、製造歩留りの低下に直結するため、対策の検討は重要である。また、長期間の使用によって起こるトランジスタの特性変化(経年変化)を短時間で評価することができるストレス試験でも電気特性の劣化が生じる。該電気特性の劣化は、製造過程で行われる高温処理、またはストレス試験時に与えられる電気的なストレスによって金属酸化物中の酸素が欠損することに起因すると推測される。
金属酸化物中には、金属原子との結合が弱く、酸素欠損となりやすい酸素原子が存在する。特に、金属酸化物がIn−Ga−Zn酸化物である場合は、亜鉛原子と酸素原子とが弱い結合(弱いZn−O結合、ともいう)を形成しやすい。ここで、弱いZn−O結合とは、製造過程で行われる高温処理、またはストレス試験時に与えられる電気的なストレスによって切断される程度の強さで結合した、亜鉛原子と酸素原子の間に生じる結合である。弱いZn−O結合が金属酸化物中に存在すると、熱処理または電流ストレスによって、該結合が切断され、酸素欠損が形成される。酸素欠損が形成されることにより、熱処理に対する耐性、ストレス試験における耐性などといった、トランジスタの安定性が低下する。
亜鉛原子と多く結合している酸素原子と、該亜鉛原子との間に生じる結合は、弱いZn−O結合である場合がある。ガリウム原子と比べて、亜鉛原子は、酸素原子との結合が弱い。したがって、亜鉛原子と多く結合している酸素原子は欠損しやすい。すなわち、亜鉛原子と酸素原子との間に生じる結合は、その他の金属との結合よりも弱いと推測される。
また、金属酸化物中に不純物が存在する場合、弱いZn−O結合が形成されやすいと推測される。金属酸化物中の不純物としては、例えば、水分子や水素がある。金属酸化物中に水分子や水素が存在することで、水素原子が、金属酸化物を構成する酸素原子と結合する(OH結合ともいう。)場合がある。金属酸化物を構成する酸素原子は、In−Ga−Zn酸化物が単結晶である場合、金属酸化物を構成する金属原子4つと結合している。しかしながら、水素原子と結合した酸素原子は、2つまたは3つの金属原子と結合している場合がある。酸素原子に結合している金属原子の数が減少することで、該酸素原子は欠損しやすくなる。なお、OH結合を形成している酸素原子に亜鉛原子が結合している場合、該酸素原子と該亜鉛原子との結合は弱いと推測される。
また、弱いZn−O結合は、複数のナノ結晶が連結する領域に存在する歪みに形成される場合がある。ナノ結晶は六角形を基本とするが、該歪みにおいて、五角形、および七角形などの格子配列を有する。該歪みでは、原子間の結合距離が一様でないため、弱いZn−O結合が形成されていると推測される。
また、弱いZn−O結合は、金属酸化物の結晶性が低い場合に形成されやすいと推測される。金属酸化物の結晶性が高い場合、金属酸化物を構成する亜鉛原子は、酸素原子4つまたは5つと結合している。しかし、金属酸化物の結晶性が低くなると、亜鉛原子と結合する酸素原子の数が減少する傾向がある。亜鉛原子に結合する酸素原子の数が減少すると、該亜鉛原子は欠損しやすくなる。すなわち、亜鉛原子と酸素原子との間に生じる結合は、単結晶で生じる結合よりも弱いと推測される。
上記の弱いZn−O結合を構成する酸素原子および亜鉛原子を低減することで、熱処理または電流ストレスによる酸素欠損の形成を抑制し、トランジスタの安定性を向上させることができる。なお、弱いZn−O結合を構成する酸素原子のみを低減し、弱いZn−O結合を構成する亜鉛原子が減少しない場合、該亜鉛原子近傍に酸素原子を供給すると、弱いZn−O結合が再形成される場合がある。したがって、弱いZn−O結合を構成する亜鉛原子および酸素原子を低減することが好ましい。
弱いZn−O結合を構成する酸素原子および亜鉛原子を低減する方法の一つとして、金属酸化物を成膜した後、真空ベークを実施する方法が挙げられる。真空ベークとは、真空雰囲気下で行う加熱処理のことである。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。なお、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。また、加熱処理時の基板の温度は、300℃以上、好ましくは400℃以上とすればよい。
真空ベークを実施することで、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減することができる。また、真空ベークによって金属酸化物に熱が与えられるため、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減した後、金属酸化物を構成する原子が再配列することで、4つの金属原子と結合している酸素原子が増える。したがって、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減するとともに、弱いZn−O結合が再形成されるのを抑制することができる。
また、金属酸化物中に不純物が存在する場合、真空ベークを実施することで、金属酸化物中の水分子または水素を放出し、OH結合を低減することができる。金属酸化物中のOH結合が減少することで、4つの金属原子と結合している酸素原子の割合が増える。また、水分子または水素が放出される際、金属酸化物を構成する原子が再配列することで、4つの金属原子と結合している酸素原子が増える。したがって、弱いZn−O結合が再形成されるのを抑制することができる。
以上のように、金属酸化物を成膜した後、真空ベークを実施することで、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減することができる。したがって、該工程により、トランジスタの安定性を向上することができる。また、トランジスタの安定性が向上することで、材料や形成方法の選択の自由度が高くなる。
<半導体装置の変形例>
以下では、図2乃至図4を用いて、先の<半導体装置の構成例>で示したものとは異なる、本発明の一態様に係るトランジスタを有する半導体装置の一例について説明する。
また、図2乃至図4において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、各図の(D)は、(A)にA5−A6の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
なお、図2乃至図4に示す半導体装置において、<半導体装置の構成例>に示した半導体装置(図1参照。)を構成する構造と同機能を有する構造には、同符号を付記する。なお、本項目において、各トランジスタの構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。
図2に示すトランジスタ200Aは、上面視において、絶縁体273は、導電体242、酸化物230b、酸化物230a、および絶縁体224を覆い、酸化物230c、絶縁体250、および導電体260の側面が概略一致し、絶縁体274が導電体260の上面、および側面、絶縁体250の側面、酸化物230cの側面、および絶縁体273の上面、および側面を覆っている点において、図1に示すトランジスタ200と異なる。また、絶縁体273は、導電体242の上面の一部、および酸化物230bの上面を露出する開口を有しており、図2(B)に示すように、導電体242の端部が、絶縁体273の端部より領域234側に位置している。これは、酸化物230a、酸化物230b、および導電体242を形成後、上記開口を有する絶縁体273を形成し、絶縁体273を形成後、酸化物230c、絶縁体250、および導電体260を形成し、酸化物230c、絶縁体250、および導電体260を形成後、絶縁体274を形成すればよい。
また図2(B)において、領域243の厚さは、酸化物230bの膜厚と一致する例を示しているが、本発明はこれに限らない。図5(A)、および図5(B)に示すように、領域243は、酸化物230bの導電体242近傍に形成されてもよい。また、領域243は、酸化物230bだけでなく、酸化物230aに形成されてもよい。
図2(B)、図2(C)、および図2(D)に示すように、トランジスタ200Aでは、酸化物230aの側面、酸化物230bの上面の一部、および側面、および導電体242の上面の一部、および側面が絶縁体273に覆われていることで、酸化物230a、および酸化物230bに含まれる酸素の外方への拡散を抑制することができる。また、酸化物230a、酸化物230b、および絶縁体224に水素や水などの不純物や、過剰な酸素など、意図しない物質の混入を抑制することができる。また、導電体242の酸化を抑制することができる。
また、導電体260の上面、および側面、絶縁体250の側面、酸化物230cの側面、および絶縁体273の上面、および側面が、絶縁体274に覆われていることで、導電体260の酸化や、絶縁体250への水素や水などの不純物や、過剰な酸素など、意図しない物質の混入を抑制することができる。
図3に示すトランジスタ200Bは、導電体242が、酸化物230b、および酸化物230aの側面の一部を覆い、絶縁体224の上面の一部を覆うように延伸している点において、図2に示すトランジスタ200Aと異なる。導電体242が、酸化物230bにおける領域243の上面、および側面を覆うことで、導電体242と領域243は良好なコンタクトを形成することができる。これは、酸化物230a、および酸化物230bを形成後、導電体242を形成し、導電体242を形成後、開口を有する絶縁体273を形成し、絶縁体273を形成後、酸化物230c、絶縁体250、および導電体260を形成し、酸化物230c、絶縁体250、および導電体260を形成後、絶縁体274を形成すればよい。
また図3(B)において、領域243の厚さは、酸化物230bの膜厚と一致する例を示しているが、本発明はこれに限らない。図5(A)、および図5(B)に示すように、領域243は、酸化物230bの導電体242近傍に形成されてもよい。また、領域243は、酸化物230bだけでなく、酸化物230aに形成されてもよい。
図4に示すトランジスタ200Cは、導電体242a、および導電体242bの下にそれぞれ酸化物230d、および酸化物230eが設けられており、絶縁体273が有する開口部は、図4(A)、および図4(C)に示すように、酸化物230bの領域234全体を露出し、かつ絶縁体224の一部、および絶縁体222の一部を露出し、図4(A)、および図4(B)に示すように、絶縁体273の向かい合う側端部は、導電体242、および酸化物230d、または酸化物230eの側端部と概略一致する点において、図3に示すトランジスタ200Bと異なる。酸化物230bと導電体242の間に酸化物230d、または酸化物230eを設けることで、酸化物230bと導電体242の間のコンタクト抵抗を低減することができ、トランジスタ200Cのオン電流を大きくすることができる。酸化物230d、および酸化物230eは、金属酸化物を用いることが好ましく、窒素を含む金属酸化物を用いることがより好ましい。また、酸化物230d、および酸化物230eとして、[In]:[Ga]:[Zn]=4:2:3またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=1:1:0.5またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=5:1:7またはその近傍の原子数比の金属酸化物、[In]:[Ga]:[Zn]=1:1:1またはその近傍の原子数比の金属酸化物、および窒素を含む上記金属酸化物などを用いることができる。また、酸化物230d、および酸化物230eとして、シリコンを含むインジウム錫酸化物を用いることができる。
また図4(B)において、領域243の厚さは、酸化物230bの膜厚、および酸化物230d、または酸化物230eの膜厚の合計と一致する例を示しているが、本発明はこれに限らない。図5(C)、および図5(D)に示すように、領域243は、酸化物230d、または酸化物230eの導電体242近傍に形成されてもよい。また、領域243は、酸化物230d、酸化物230e、または酸化物230bだけでなく、酸化物230aに形成されてもよい。
<半導体装置の作製方法>
次に、図1に示すトランジスタ200を有する半導体装置について、作製方法を図6乃至図10を用いて説明する。また、図6乃至図10において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、各図の(D)は、(A)にA5−A6の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
まず、基板(図示しない。)を準備し、当該基板上に絶縁体210を成膜する。絶縁体210の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、またはALD(Atomic Layer Deposition)法などを用いて行うことができる。
なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
また、ALD法も、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。また、ALD法は、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。
CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整にかかる時間を要さない分、成膜にかかる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
本実施の形態では、絶縁体210として、スパッタリング法によって酸化アルミニウムを成膜する。また、絶縁体210は、多層構造としてもよい。例えば、スパッタリング法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、ALD法によって酸化アルミニウムを成膜する構造としてもよい。または、ALD法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、スパッタリング法によって酸化アルミニウムを成膜する構造としてもよい。
次に絶縁体210上に絶縁体212を成膜する。絶縁体212の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体212として、CVD法によって酸化シリコンを成膜する。
次に、絶縁体212に、絶縁体210に達する開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成にはウエットエッチング法を用いてもよいが、ドライエッチング法を用いるほうが微細加工には好ましい。また、絶縁体210は、絶縁体212をエッチングして開口を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、開口を形成する絶縁体212に酸化シリコン膜を用いた場合は、絶縁体210は、エッチングストッパ膜として機能する絶縁膜として、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜を用いるとよい。
開口の形成後に、導電膜を成膜する。当該導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが好ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
本実施の形態では、当該導電膜として、スパッタリング法によって窒化タンタル、または、窒化タンタルの上に窒化チタンを積層した膜の上に、タングステン、アルミニウム、または銅を成膜する。当該導電膜の一部にこのような金属窒化物を用いることにより、当該導電膜の上層に銅など拡散しやすい金属を用いても、当該金属が導電体203から外に拡散するのを抑制することができる。
次に、CMP処理を行うことで、当該導電膜の一部を除去し、絶縁体212を露出する。その結果、開口部のみに、上面が平坦な導電体203を形成することができる(図6参照。)。なお、当該CMP処理により、絶縁体212の一部が除去される場合がある。
次に、絶縁体212、および導電体203上に絶縁体214を成膜する。絶縁体214の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体214として、CVD法によって窒化シリコンを成膜する。このように、絶縁体214として、窒化シリコンなどの銅が透過しにくい絶縁体を用いることにより、導電体203の一部に銅など拡散しやすい金属を用いても、当該金属が絶縁体214より上の層に拡散するのを抑制することができる。
次に、絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216として、CVD法によって酸化シリコンを成膜する。
次に、絶縁体214および絶縁体216に、導電体203に達する開口を形成する。開口の形成にはウエットエッチング法を用いてもよいが、ドライエッチング法を用いるほうが微細加工には好ましい。
開口の形成後に、導電体205aとなる導電膜を成膜する。該導電膜は、酸素の透過を抑制する機能を有する導電性材料を含むことが好ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
本実施の形態では、導電体205aとなる導電膜として、スパッタリング法によって窒化タンタルを成膜する。
次に、導電体205aとなる導電膜上に、導電体205bとなる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
本実施の形態では、導電体205bとなる導電膜として、CVD法によって窒化チタンを成膜し、当該窒化チタン上にCVD法によってタングステンを成膜する。
次に、CMP処理を行うことで、導電体205aとなる導電膜、ならびに導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する。その結果、開口部のみに、導電体205a、および導電体205bとなる導電膜が残存する。これにより、上面が平坦な、導電体205aおよび導電体205bを含む導電体205を形成することができる(図6参照。)。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
次に、絶縁体216、および導電体205上に絶縁体220を成膜する。絶縁体220の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体220として、CVD法によって酸化シリコンを成膜する。
次に、絶縁体220上に絶縁体222を成膜する。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制することができる。
絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体224として、CVD法によって酸化シリコンを成膜する。
続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
本実施の形態では、加熱処理として、絶縁体224の成膜後に窒素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体224に含まれる水素や水などの不純物を除去することなどができる。
また、加熱処理は、絶縁体220成膜後、および絶縁体222の成膜後のそれぞれのタイミングで行うこともできる。当該加熱処理は、上述した加熱処理条件を用いることができるが、絶縁体220成膜後の加熱処理は、窒素を含む雰囲気中で行うことが好ましい。
ここで、絶縁体224に加熱により脱離する酸素を含む領域を形成するために、イオン注入法、イオンドーピング法、プラズマ処理、およびプラズマイマージョンイオンインプランテーション法から選ばれた一、または複数の方法を用いて絶縁体224に酸素を供給してもよい。このとき、イオン化された原料ガスを質量分離して添加するイオン注入法を用いることで、絶縁体224に制御よく酸素を供給できるため、好ましい。
なお、上記の方法の代わりに、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えば、マイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率良く絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水素や水などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。
次に、絶縁体224上に、酸化物230a1となる酸化膜230A1と、酸化物230a2となる酸化膜230A2と、酸化物230bとなる酸化膜230Bを順に成膜する(図6参照。)。なお、上記酸化膜は、大気環境に晒さずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A1、酸化膜230A2、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230A1と酸化膜230A2、酸化膜230A2と酸化膜230Bとの界面近傍を清浄に保つことができる。
酸化膜230A1、酸化膜230A2、および酸化膜230Bの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
酸化膜230A1、酸化膜230A2、および酸化膜230Bの成膜は、スパッタリング法を用いることが好ましく、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の酸素を増やし、当該酸化膜の結晶性を向上させることができる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
また、酸化膜230A1、酸化膜230A2、および酸化膜230Bをスパッタリング法によって成膜する場合は、上記の金属酸化物のターゲットを用いることができる。ただし、例えば、金属酸化物をスパッタリング装置にて成膜する場合、ターゲットの原子数比からずれた原子数比の膜が形成される。特に、成膜時の基板温度によっては、ターゲットの[Zn]よりも、膜の[Zn]が小さくなる場合がある。
また、スパッタリングガスを高純度化することが好ましい。例えば、スパッタリングガスとして用いる酸素ガスや希ガスは、露点が−60℃以下、好ましくは−100℃以下にまで高純度化したガスを用いる。高純度化されたスパッタリングガスを用いて成膜することで、酸化物230に水分等が取り込まれることを可能な限り防ぐことができる。
また、スパッタリング法で酸化膜230A1、酸化膜230A2、および酸化膜230Bを成膜する場合、スパッタリング装置が有する成膜室内の水分を可能な限り除去することが好ましい。例えば、クライオポンプのような吸着式の真空排気ポンプを用いて、成膜室内を高真空(5×10−7Paから1×10−4Pa程度まで)に排気することが好ましい。特に、スパッタリング装置の待機時における、成膜室内のHOに相当するガス分子(m/z=18に相当するガス分子)の分圧を1×10−4Pa以下、好ましく5×10−5Pa以下とすることが好ましい。
特に、酸化膜230A1の成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、酸化膜230A1のスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
酸化膜230A2の成膜時に、窒素を含むスパッタリングガスを用いることで、酸化膜230A2は窒素を含む酸化膜とすることができる。酸化膜230A2のスパッタリングガスに含まれる窒素の割合は5%以上50%以下、好ましくは5%以上30%以下、より好ましくは10%以上20%以下とすればよい。
また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を10%以上、好ましくは30%以上として成膜すると、酸化膜230Bを上記のCAAC−OS膜にすることができる。
本実施の形態では、酸化膜230A1として、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲット、In:Ga:Zn=1:1:0.5[原子数比]のターゲット、またはIn:Ga:Zn=1:3:2[原子数比]のターゲットを用いて成膜する。また、酸化膜230A2として、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]のターゲット、In:Ga:Zn=1:1:0.5[原子数比]のターゲット、またはIn:Ga:Zn=1:3:2[原子数比]のターゲットを用いて、窒素を含む雰囲気にて成膜する。また、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。
次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A1、酸化膜230A2、および酸化膜230B中の水素や水などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。
次に、酸化膜230B上に導電膜242Aを成膜する。導電膜242Aは、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、アルミニウムを含むルテニウム、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、導電膜242Aは、2層以上の積層構造を有していてもよく、アルミニウムを含むルテニウム上にタンタル、チタン、タングステン、窒化タンタル、または窒化チタンを積層してもよいし、アルミニウム上にルテニウムやアルミニウムを含むルテニウムを積層してもよい。なお、導電膜242Aの形成は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
次に、導電膜242A上に絶縁膜273Aを形成する(図6参照。)。絶縁膜273Aとして、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁膜273Aが、水素および水に対するバリア性を有することで、導電膜242Aの酸化を抑制することができる。
絶縁膜273Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
次に、リソグラフィー法を用いて、酸化膜230A1、酸化膜230A2、酸化膜230B、導電膜242A、および絶縁膜273Aの一部を選択的に除去して、島状の酸化物230a1、酸化物230a2(酸化物230a)、および酸化物230bと、酸化物230b上に導電体242a、および導電体242bと、導電体242a、および導電体242b上にそれぞれ絶縁体273a、および絶縁体273bを形成する(図7参照)。当該処理において、酸化膜230A1、酸化膜230A2、酸化膜230B、導電膜242A、および絶縁膜273Aを島状に加工してから、導電体242a、および導電体242bの間に位置する導電体、および絶縁体273a、および絶縁体273bの間に位置する絶縁体を除去してもよいし、導電体242a、および導電体242bの間に位置する導電体、および絶縁体273a、および絶縁体273bの間に位置する絶縁体を除去してから、酸化膜230A1、酸化膜230A2、酸化膜230B、導電膜242A、および絶縁膜273Aを島状に加工してもよい。また、酸化膜230A1、酸化膜230A2、酸化膜230B、導電膜242A、および絶縁膜273Aの選択的除去は、ドライエッチング法やウエットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。なお、当該加工処理にて、絶縁体224の一部が除去される場合がある。
リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultra violet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、レジスト上に直接描画を行うため、上述のレジスト露光用のマスクは不要となる。なお、レジストマスクは、アッシングなどのドライエッチング処理を行う、ウエットエッチング処理を行う、ドライエッチング処理後にウエットエッチング処理を行う、またはウエットエッチング処理後にドライエッチング処理を行う、などで、除去することができる。
また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、当該構成材料上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。当該構成材料のエッチングは、レジストマスクを除去してから行ってもよいし、レジストマスクを残したまま行ってもよい。後者の場合、エッチング中にレジストマスクが消失することがある。当該構成材料のエッチング後にハードマスクをエッチングにより除去してもよい。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
ここで、酸化物230a(酸化物230a1、および酸化物230a2)、および酸化物230bは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230a、および酸化物230bの側面は、絶縁体222の上面に対し、略垂直であることが好ましい。酸化物230a、および酸化物230bの側面が、絶縁体222の上面に対し、略垂直であることで、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。なお、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角が鋭角になる構成にしてもよい。その場合、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角は大きいほど好ましい。
また、酸化物230a、酸化物230b、導電体242、および絶縁体273の側面と、絶縁体273の上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、絶縁体273の端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とする。端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。このとき、湾曲面は、導電体242、および酸化物230bの側面にまで形成されてもよい。
また、上記ドライエッチングなどの処理を行うことによって、エッチングガスなどに起因した不純物が、酸化物230a、酸化物230b、導電体242などの側面、上面または内部に付着または拡散することがある。不純物としては、例えば、フッ素または塩素などがある。
上記の不純物などを除去するために、洗浄を行うことが好ましい。洗浄方法としては、洗浄液など用いたウエット洗浄、プラズマを用いたプラズマ処理、または熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。
ウエット洗浄としては、シュウ酸、リン酸、過酸化水素水、またはフッ化水素酸などを炭酸水または純水で希釈した水溶液を用いて洗浄処理を行ってもよい。または、純水または炭酸水を用いた超音波洗浄を行ってもよい。本実施の形態では、純水または炭酸水を用いた超音波洗浄を行う。
続いて、加熱処理を行ってもよい。加熱処理の条件は、前述の加熱処理の条件を用いることができる。ただし、該加熱処理により、導電体242の酸化が懸念される場合、該加熱処理は、酸素を含まない雰囲気で行われることが好ましい。一方、導電体242が、耐酸化性材料を含む場合、該加熱処理を、酸素を含む雰囲気で行ってもよい。
該加熱処理により、酸化物230a、および酸化物230bに含まれる水素や水などの不純物を除去することができる。また、上記加工におけるドライエッチングにて酸化物230a、または酸化物230bに生じたダメージを回復することができる。また、酸素を含む雰囲気で加熱処理を行った場合、酸化物230a、および酸化物230bに酸素を添加することができる。
また、上記加熱処理により、導電体242から、上述した金属元素が酸化物230へ拡散し、酸化物230に金属元素を添加することができる。また、酸化物230の導電体242との界面近傍における酸素が導電体242に吸収される場合がある。その結果、酸化物230の導電体242との界面近傍が金属化合物となり、低抵抗化する。なお、その際、酸化物230の一部と、上述した金属元素とが、合金化してもよい。酸化物230の一部と金属元素が、合金化することで、酸化物230に添加された金属元素は、比較的安定な状態となるため、信頼性の高い半導体装置を提供することができる。なお、図7(B)では、酸化物230の上記低抵抗化領域の一例として、点線にて領域243a、および領域243bを示している。
領域243(領域243a、および領域243b)は、酸化物230bの深さ方向に拡散するように設けられる例を示しているが、本発明はこれに限らない。領域243は、深さ方向において、導電体242近傍のみに形成されていてもよいし、酸化物230aに形成されていてもよい。また、領域243は、水平方向において、導電体242と重なる領域のみに形成される例を示しているが、本発明はこれに限らない。領域243は、導電体242から水平方向に拡散した領域に形成されてもよい。
また、酸化物230中の水素は、領域243に拡散し、領域243に存在する酸素欠損の中に入った場合、比較的安定な状態となる。また、領域234に存在する酸素欠損中の水素は、250℃以上の熱処理によって、酸素欠損から抜け出し、領域243に拡散し、領域243に存在する酸素欠損の中に入り、比較的安定な状態となる。したがって、熱処理によって、領域243は、より低抵抗化し、領域234は、高純度化(水、水素などの不純物の低減)し、より高抵抗化する。
また、窒素または不活性ガス雰囲気で加熱処理した後に、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。
次に、絶縁体224、酸化物230a、酸化物230b、導電体242、および絶縁体273の上に、酸化膜230Cを成膜する(図8参照)。
酸化膜230Cの成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。酸化物230cに求める特性に合わせて、酸化膜230A、または酸化膜230Bと同様の成膜方法を用いて、酸化膜230Cを成膜すればよい。例えば、酸化膜230Aと同様に、酸化膜230Aのスパッタリングガスに含まれる酸素の割合を70%以上、好ましくは80%以上、より好ましくは100%とすればよい。また、本実施の形態では、酸化膜230Cとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲット、またはIn:Ga:Zn=5:1:7[原子数比]のターゲットを用いて成膜する。
続いて、酸化膜230C上に、絶縁膜250Aを成膜する(図8参照。)。
絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁膜250Aとして、CVD法により、酸化窒化シリコンを成膜することが好ましい。なお、絶縁膜250Aを成膜する際の成膜温度は、350℃以上450℃未満、特に400℃前後とすることが好ましい。絶縁膜250Aを、400℃で成膜することで、不純物が少ない絶縁体を成膜することができる。
また、絶縁膜250Aを成膜する前に、絶縁膜250Aの成膜装置において、加熱処理を行うことが好ましい。ここでの加熱処理は、上述の真空ベークを行うことが好ましい。このように熱処理を行うことで、酸化物230の弱いZn−O結合を構成する亜鉛原子および酸素原子を除去することができるので、トランジスタ200の信頼性を向上させることができる。さらに、当該加熱処理から外気に曝すことなく、同一成膜装置で連続して成膜を行うことによって、水などの不純物を混入させずに、絶縁膜250Aで酸化物230を覆うことができる。また、マルチチャンバー方式の成膜装置で加熱処理と成膜処理を異なるチャンバーで行うことにより、加熱処理で脱離した水、亜鉛などの不純物の影響を受けずに絶縁膜250Aの成膜を行うことができる。
また、絶縁膜250Aの成膜後に加熱処理を行ってもよい。加熱処理は、前述の加熱処理条件を用いることができる。当該加熱処理によって、絶縁膜250Aの水分濃度および水素濃度を低減させることができる。
続いて、導電膜260A、および導電膜260Bを順次成膜する(図8参照。)。導電膜260Aおよび導電膜260Bは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。例えば、導電膜260Aとして、窒化チタンを成膜し、導電膜260Bとして、タングステンを成膜してもよい。
導電膜260Aとして、CVD法、またはスパッタリング法により、金属窒化物を形成するとよい。導電膜260Aに金属窒化物を用いることにより、絶縁膜250Aが有する酸素により、導電膜260Bが酸化して導電率が低下することを防ぐことができる。
また、導電膜260Bとして、低抵抗の金属膜を積層することで、駆動電圧が小さなトランジスタを提供することができる。
続いて、加熱処理を行うことができる。加熱処理は、前述の加熱処理条件を用いることができる。なお、加熱処理は行わなくてもよい場合がある。本加熱処理によって、酸化物230bに低抵抗領域が形成される場合がある。
次に、フォトリソグラフィ法を用いて、導電膜260A、および導電膜260Bの一部を選択的に除去して、導電体260a、および導電体260bを形成する(図9参照。)。導電膜260A、および導電膜260Bのエッチングは、ドライエッチング法やウエットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
次に、絶縁体250、および導電体260(導電体260a、および導電体260b)を覆って、絶縁膜274Aを成膜する(図9参照。)。絶縁膜274Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。絶縁膜274Aは、ALD法を用いて成膜することが好ましい。ALD法は、被覆性の良好な成膜法なので、酸化物230、導電体260などにより生じる凹凸によって、段切れなどが形成されるのを防ぐことができる。
絶縁膜274Aは、絶縁性バリアとして機能することが好ましく、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。バリア性を有する絶縁膜274Aにより、絶縁膜274Aの上から酸素が導電体260に混入することを低減できる。
次に、フォトリソグラフィ法を用いて、絶縁膜274A、絶縁膜250A、および酸化膜230Cの一部を選択的に除去して、絶縁体274、絶縁体250、および酸化物230cを形成する(図10参照。)。絶縁膜274A、絶縁膜250A、および酸化膜230Cのエッチングは、ドライエッチング法やウエットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
次に、絶縁体224、酸化物230、導電体242、絶縁体273、絶縁体250、導電体260、および絶縁体274の上に、絶縁体280を成膜する(図10参照。)。絶縁体280は、比誘電率の低い絶縁体を有することが好ましい。例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、空孔を有する酸化シリコンを絶縁体280に用いると、後の工程で絶縁体280中に、加熱により脱離する酸素を含む領域を容易に形成できるため好ましい。また、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。絶縁体280の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。または、スピンコート法、ディップ法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)、ドクターナイフ法、ロールコーター法、またはカーテンコーター法などを用いて行うことができる。本実施の形態では、絶縁体280として、CVD法によって酸化窒化シリコンを成膜する。
なお、絶縁体280は、上面が平坦性を有するように形成することが好ましい。例えば、絶縁体280は、成膜した直後に上面が平坦性を有していてもよい。または、例えば、絶縁体280は、成膜後に基板裏面などの基準面と平行になるよう絶縁体などを上面から除去していくことで平坦性を有してもよい。このような処理を、平坦化処理と呼ぶ。平坦化処理としては、CMP処理、ドライエッチング処理などがある。本実施の形態では、平坦化処理として、CMP処理を用いる。ただし、絶縁体280の上面は必ずしも平坦性を有さなくてもよい。
次に、絶縁体280の上に絶縁体282を成膜する(図10参照。)。絶縁体282は、酸素を含む雰囲気でスパッタリング法を用いて成膜することが好ましい。また、絶縁体282は、水または水素などの不純物が透過しにくい絶縁性材料を用いることが好ましい。例えば、絶縁体282は、バリア性を有するアルミニウムおよびハフニウムの一方または双方の酸化物を用いることが好ましい。本実施の形態では、絶縁体282として、酸素を含む雰囲気でスパッタリング法を用いて酸化アルミニウム膜を成膜する。
スパッタリング法を用いて、酸素を含む雰囲気で絶縁体282の成膜を行うことで、成膜しながら、絶縁体280に酸素を導入することができる。ここで、酸素は、例えば、酸素ラジカルとして添加されるが、酸素が添加されるときの状態はこれに限定されない。酸素は、酸素原子、又は酸素イオンなどの状態で添加されてもよい。後の工程の熱処理によって、酸素を拡散させて酸化物230に効果的に酸素を供給することができる。
なお、絶縁体282を成膜する際に、基板加熱を行うことが好ましい。基板加熱は、100℃よりも高く、300℃以下であることが好ましい。より、好ましくは120℃以上250℃以下で行えばよい。基板温度を、100℃よりも高くすることで、酸化物230中の水を除去することができる。また、形成した膜上に、表面吸着水が付着することを防止することができる。また、このように基板加熱を行いながら絶縁体282を成膜することにより、成膜しながら酸素を絶縁体280から、絶縁体224、絶縁体250、および酸化物230に拡散させることができる。
また、トランジスタ200を、絶縁体282および絶縁体222で挟まれる構造とすることによって、酸素を外方拡散させず、絶縁体280、絶縁体224、絶縁体250、および酸化物230中に多くの酸素を含有させることができる。さらに、絶縁体282の上方および絶縁体222の下方から水または水素などの不純物が混入するのを防ぎ、絶縁体280、絶縁体224、および酸化物230中の不純物濃度を低減させることができる。
続いて、加熱処理を行う。当該加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下で行えばよい。当該加熱処理は、酸素雰囲気で行えばよい。または、不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上もしくは10%以上含む雰囲気で行えばよい。ここで不活性ガスとしては、例えば窒素ガスまたは希ガスなどを用いることができる。当該加熱処理は減圧状態で行ってもよい。または、当該加熱処理は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上または10%以上含む雰囲気で加熱処理を行ってもよい。本実施の形態では、酸素ガス雰囲気中で400℃、1時間の加熱処理を行う。
次に、絶縁体282の上に、絶縁体281を成膜する。絶縁体281の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。または、スピンコート法、ディップ法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)、ドクターナイフ法、ロールコーター法、またはカーテンコーター法などを用いて行うことができる。本実施の形態では、当該絶縁体281として、酸化窒化シリコンを用いる。
次に、絶縁体281、絶縁体282、絶縁体280、および絶縁体273に、導電体242に達する開口、および絶縁体281、絶縁体282、絶縁体280、および絶縁体274に、導電体260に達する開口を形成する。当該開口の形成は、リソグラフィー法を用いて行えばよい。
次に、該開口の内壁に、絶縁性バリアとして機能する絶縁体276を形成してもよい。絶縁体276は、該開口内部と絶縁体281の上面に絶縁膜を形成した後、異方性エッチングによるエッチバックを行い、開口底部の絶縁膜、および絶縁体281上の絶縁膜を除去することで形成することができる。次に、導電体240の第1の導電体、および導電体240の第2の導電体となる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
次に、CMP処理を行うことで、導電体240a、導電体240b、および導電体240cとなる導電膜の一部を除去し、絶縁体281を露出する。その結果、上記開口のみに、当該導電膜が残存することで上面が平坦な導電体240a、導電体240b、および導電体240cを形成することができる(図1参照)。なお、当該CMP処理により、絶縁体281の一部が除去する場合がある。
また、導電体240と電気的に接続し、配線として機能する導電体256を設けてもよい。
以上により、図1に示すトランジスタ200を有する半導体装置を作製することができる。図6乃至図10に示すように、本実施の形態に示す半導体装置の作製方法を用いることで、良好な電気特性および信頼性を有する、トランジスタ200を作成することができる。
本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オフ電流の小さい半導体装置を提供することができる。または、本発明の一態様により、オン電流の大きい半導体装置を提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。
以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態や実施例に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、記憶装置1として機能する半導体装置の一形態を、図11を用いて説明する。
<記憶装置1>
図11(A)に示す記憶装置は、トランジスタ300と、トランジスタ200、容量素子100を有している。図11(A)は、トランジスタ200、およびトランジスタ300のチャネル長方向の断面図である。図11(B)には、トランジスタ300近傍のトランジスタ300のチャネル幅方向の断面図を示す。なお、以降の説明において、トランジスタ300、トランジスタ200、および容量素子100を有する記憶装置について説明する。
トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
図11(A)に示す記憶装置において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200のトップゲートと電気的に接続され、配線1006はトランジスタ200のボトムゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。
図11(A)に示す記憶装置は、トランジスタ300のゲートの電位が保持可能という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能である。
情報の書き込みおよび保持について説明する。まず、配線1004の電位を、トランジスタ200が導通状態となる電位にして、トランジスタ200を導通状態とする。これにより、配線1003の電位が、トランジスタ300のゲート、および容量素子100の電極の一方と電気的に接続するノードSNに与えられる。すなわち、トランジスタ300のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下、Lowレベル電荷、Highレベル電荷という。)のどちらかが与えられるものとする。その後、配線1004の電位を、トランジスタ200が非導通状態となる電位にして、トランジスタ200を非導通状態とすることにより、ノードSNに電荷が保持される(保持)。
トランジスタ200のオフ電流が小さい場合、ノードSNの電荷は長期間にわたって保持される。
次に情報の読み出しについて説明する。配線1001に所定の電位(定電位)を与えた状態で、配線1005に適切な電位(読み出し電位)を与えると、配線1002は、ノードSNに保持された電荷量に応じた電位をとる。これは、トランジスタ300をnチャネル型とすると、トランジスタ300のゲートにHighレベル電荷が与えられている場合の見かけ上の閾値電圧Vth_Hは、トランジスタ300のゲートにLowレベル電荷が与えられている場合の見かけ上の閾値電圧Vth_Lより低くなるためである。ここで、見かけ上の閾値電圧とは、トランジスタ300を導通状態とするために必要な配線1005の電位をいうものとする。したがって、配線1005の電位をVth_HとVth_Lの間の電位Vとすることにより、ノードSNに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードSNにHighレベル電荷が与えられていた場合には、配線1005の電位がV(>Vth_H)となれば、トランジスタ300は導通状態となる。一方、ノードSNにLowレベル電荷が与えられていた場合には、配線1005の電位がV(<Vth_L)となっても、トランジスタ300は非導通状態のままである。このため、配線1002の電位を判別することで、ノードSNに保持されている情報を読み出すことができる。
なお、メモリセルをアレイ状に配置する場合、読み出し時には、所望のメモリセルの情報を読み出さなくてはならない。例えば、メモリセルアレイがNOR型の構成の場合、情報を読み出さないメモリセルのトランジスタ300を非導通状態にすることで、所望のメモリセルの情報のみを読み出すことができる。この場合、ノードSNに与えられた電荷によらずトランジスタ300が非導通状態となるような電位、つまり、Vth_Hより低い電位を、情報を読み出さないメモリセルと接続される配線1005に与えればよい。または、例えば、メモリセルアレイがNAND型の構成の場合、情報を読み出さないメモリセルのトランジスタ300を導通状態にすることで、所望のメモリセルの情報のみを読み出すことができる。この場合、ノードSNに与えられた電荷によらずトランジスタ300が導通状態となるような電位、つまり、Vth_Lより高い電位を、情報を読み出さないメモリセルと接続される配線1005に与えればよい。
<記憶装置1の構造>
本発明の一態様の記憶装置は、図11(A)に示すようにトランジスタ300、トランジスタ200、容量素子100を有する。トランジスタ200は、トランジスタ300の上方に設けられる。また、容量素子100は、トランジスタ300、およびトランジスタ200の上方に設けられている。
トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
トランジスタ300は、図11(B)に示すように、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料により、仕事関数が定まるため、導電体の材料を変更することでトランジスタのVthを調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
なお、図11に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
また、絶縁体324には、基板311、またはトランジスタ300などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ200と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
各プラグ、および配線(導電体328、および導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
絶縁体326、および導電体330上に、一または複数の配線層を設けてもよい。例えば、図11(A)において、絶縁体350(絶縁体350−1、絶縁体350−2、絶縁体350−3、絶縁体350−4)、絶縁体352(絶縁体352−1、絶縁体352−2、絶縁体352−3、絶縁体352−4)、および絶縁体354(絶縁体354−1、絶縁体354−2、絶縁体354−3、絶縁体354−4)が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356(導電体356−1、導電体356−2、導電体356−3、導電体356−4)が形成されている。導電体356は、プラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、絶縁体352、および絶縁体354は、絶縁体326と同様の材料を用いることができる。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ200とは、バリア層により分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
図11(A)において、導電体356を含む配線層を4層積層する例を示しているが、本実施の形態に係る記憶装置はこれに限られるものではない。導電体356を含む配線層を3層以下にしてもよいし、5層以上にしてもよい。
絶縁体354上には絶縁体210、絶縁体212、絶縁体214、および絶縁体216が、順に積層して設けられている。絶縁体210、絶縁体212、絶縁体214、および絶縁体216のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
また、絶縁体210、絶縁体212、絶縁体214、および絶縁体216には、導電体218、およびトランジスタ200を構成する導電体(導電体205)等が埋め込まれている。なお、導電体218は、容量素子100、およびトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体218は、導電体328、および導電体330と同様の材料を用いて設けることができる。
特に、絶縁体210、および絶縁体214と接する領域の導電体218は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ200とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ200への水素の拡散を抑制することができる。
絶縁体216の上方には、トランジスタ200が設けられている。なお、トランジスタ200の構造は、先の実施の形態で説明した半導体装置が有するトランジスタを用いればよい。また、図11(A)に示すトランジスタ200は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、図2に示すトランジスタ200A、図3に示すトランジスタ200B、図4に示すトランジスタ200Cなどを用いることができる。
トランジスタ200の上方には、絶縁体280、絶縁体282、および絶縁体281を設けられる。
また、絶縁体220、絶縁体222、絶縁体224、絶縁体280、絶縁体282、および絶縁体281には、導電体240等が埋め込まれている。
導電体240は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。導電体240は、導電体328、あるいは導電体330と同様の材料を用いて設けることができる。
続いて、トランジスタ200の上方には、容量素子100が設けられている。容量素子100は、導電体110と、導電体120、絶縁体130とを有する。
導電体110は、容量素子100の一方の電極としての機能を有する。
導電体110には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
図11(A)では、導電体110は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
絶縁体130を介して、導電体110と重畳するように、容量素子100の他方の電極として機能する導電体120を設ける。なお、導電体120は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
導電体120、および絶縁体130上には、絶縁体150が設けられている。絶縁体150は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体150は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
また、絶縁体150、および絶縁体130には、導電体240と電気的に接続する導電体112が埋め込まれている。また、導電体112、および絶縁体150上に導電体160を設けてもよい。
本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制するとともに、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。または、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態や実施例に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、上記実施の形態とは異なる、記憶装置として機能する半導体装置の一形態を、図12および図13を用いて説明する。図12および図13は、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ場合がある。)、および容量素子が適用されている記憶装置(以下、OSメモリ装置と呼ぶ場合がある。)を示している。OSメモリ装置は、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有する記憶装置である。OSトランジスタのオフ電流は極めて小さいので、OSメモリ装置は優れた保持特性をもち、不揮発性メモリとして機能させることができる。
<記憶装置2の構成例>
図12(A)にOSメモリ装置の構成の一例を示す。記憶装置1400は、周辺回路1411、およびメモリセルアレイ1470を有する。周辺回路1411は、行回路1420、列回路1430、出力回路1440、コントロールロジック回路1460を有する。
列回路1430は、例えば、列デコーダ、プリチャージ回路、センスアンプ、および書き込み回路等を有する。プリチャージ回路は、配線をプリチャージする機能を有する。センスアンプは、メモリセルから読み出されたデータ信号を増幅する機能を有する。なお、上記配線は、メモリセルアレイ1470が有するメモリセルに接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路1440を介して、データ信号RDATAとして記憶装置1400の外部に出力される。また、行回路1420は、例えば、行デコーダ、ワード線ドライバ回路等を有し、アクセスする行を選択することができる。
記憶装置1400には、外部から電源電圧として低電源電圧(VSS)、周辺回路1411用の高電源電圧(VDD)、メモリセルアレイ1470用の高電源電圧(VIL)が供給される。また、記憶装置1400には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、行デコーダおよび列デコーダに入力され、WDATAは書き込み回路に入力される。
コントロールロジック回路1460は、外部からの入力信号(CE、WE、RE)を処理して、行デコーダ、列デコーダの制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路1460が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
メモリセルアレイ1470は、行列状に配置された、複数個のメモリセルMCと、複数の配線を有する。なお、メモリセルアレイ1470と行回路1420とを接続している配線の数は、メモリセルMCの構成、一列に有するメモリセルMCの数などによって決まる。また、メモリセルアレイ1470と列回路1430とを接続している配線の数は、メモリセルMCの構成、一行に有するメモリセルMCの数などによって決まる。
なお、図12(A)において、周辺回路1411とメモリセルアレイ1470を同一平面上に形成する例について示したが、本実施の形態はこれに限られるものではない。例えば、図12(B)に示すように、周辺回路1411の一部の上に、メモリセルアレイ1470が重なるように設けられてもよい。例えば、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にしてもよい。
図13に上述のメモリセルMCに適用できるメモリセルの構成例について説明する。
[DOSRAM]
図13(A)乃至図13(C)に、DRAMのメモリセルの回路構成例を示す。本明細書等において、1OSトランジスタ1容量素子型のメモリセルを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ場合がある。図13(A)に示す、メモリセル1471は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、ゲート(フロントゲートと呼ぶ場合がある。)、及びバックゲートを有する。
トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BILと接続され、トランジスタM1のゲートは、配線WOLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。
配線BILは、ビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、及び読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。
また、メモリセルMCは、メモリセル1471に限定されず、回路構成の変更を行うことができる。例えば、メモリセルMCは、図13(B)に示すメモリセル1472のように、トランジスタM1のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図13(C)に示すメモリセル1473ように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1で構成されたメモリセルとしてもよい。
上記実施の形態に示す半導体装置をメモリセル1471等に用いる場合、トランジスタM1としてトランジスタ200を用い、容量素子CAとして容量素子100を用いることができる。トランジスタM1としてOSトランジスタを用いることによって、トランジスタM1のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1471、メモリセル1472、メモリセル1473に対して多値データ、又はアナログデータを保持することができる。
また、DOSRAMにおいて、上記のように、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にすると、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。
[NOSRAM]
図13(D)乃至図13(H)に、2トランジスタ1容量素子のゲインセル型のメモリセルの回路構成例を示す。図13(D)に示す、メモリセル1474は、トランジスタM2と、トランジスタM3と、容量素子CBと、を有する。なお、トランジスタM2は、フロントゲート(単にゲートと呼ぶ場合がある。)、及びバックゲートを有する。本明細書等において、トランジスタM2にOSトランジスタを用いたゲインセル型のメモリセルを有する記憶装置を、NOSRAM(Nonvolatile Oxide Semiconductor RAM)と呼ぶ場合がある。
トランジスタM2の第1端子は、容量素子CBの第1端子と接続され、トランジスタM2の第2端子は、配線WBLと接続され、トランジスタM2のゲートは、配線WOLと接続され、トランジスタM2のバックゲートは、配線BGLと接続されている。容量素子CBの第2端子は、配線CALと接続されている。トランジスタM3の第1端子は、配線RBLと接続され、トランジスタM3の第2端子は、配線SLと接続され、トランジスタM3のゲートは、容量素子CBの第1端子と接続されている。
配線WBLは、書き込みビット線として機能し、配線RBLは、読み出しビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CBの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、データ保持の最中、データの読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM2のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM2のしきい値電圧を増減することができる。
また、メモリセルMCは、メモリセル1474に限定されず、回路の構成を適宜変更することができる。例えば、メモリセルMCは、図13(E)に示すメモリセル1475のように、トランジスタM2のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図13(F)に示すメモリセル1476のように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM2で構成されたメモリセルとしてもよい。また、例えば、メモリセルMCは、図13(G)に示すメモリセル1477のように、配線WBLと配線RBLを一本の配線BILとしてまとめた構成であってもよい。
上記実施の形態に示す半導体装置をメモリセル1474等に用いる場合、トランジスタM2としてトランジスタ200を用い、トランジスタM3としてトランジスタ300を用い、容量素子CBとして容量素子100を用いることができる。トランジスタM2としてOSトランジスタを用いることによって、トランジスタM2のリーク電流を非常に低くすることができる。これにより、書き込んだデータをトランジスタM2によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1474に多値データ、又はアナログデータを保持することができる。メモリセル1475乃至1477も同様である。
なお、トランジスタM3は、チャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタと呼ぶ場合がある)であってもよい。Siトランジスタの導電型は、nチャネル型としてもよいし、pチャネル型としてもよい。Siトランジスタは、OSトランジスタよりも電界効果移動度が高くなる場合がある。よって、読み出しトランジスタとして機能するトランジスタM3として、Siトランジスタを用いてもよい。また、トランジスタM3にSiトランジスタを用いることで、トランジスタM3の上に積層してトランジスタM2を設けることができるので、メモリセルの占有面積を低減し、記憶装置の高集積化を図ることができる。
また、トランジスタM3はOSトランジスタであってもよい。トランジスタM2、M3にOSトランジスタを用いた場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
また、図13(H)に3トランジスタ1容量素子のゲインセル型のメモリセルの一例を示す。図13(H)に示すメモリセル1478は、トランジスタM4乃至M6、および容量素子CCを有する。容量素子CCは適宜設けられる。メモリセル1478は、配線BIL、RWL、WWL、BGL、およびGNDLに電気的に接続されている。配線GNDLは低レベル電位を与える配線である。なお、メモリセル1478を、配線BILに代えて、配線RBL、WBLに電気的に接続してもよい。
トランジスタM4は、バックゲートを有するOSトランジスタであり、バックゲートは配線BGLに電気的に接続されている。なお、トランジスタM4のバックゲートとゲートとを互いに電気的に接続してもよい。あるいは、トランジスタM4はバックゲートを有さなくてもよい。
なお、トランジスタM5、M6はそれぞれ、nチャネル型Siトランジスタまたはpチャネル型Siトランジスタでもよい。或いは、トランジスタM4乃至M6がOSトランジスタでもよい、この場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
上記実施の形態に示す半導体装置をメモリセル1478に用いる場合、トランジスタM4としてトランジスタ200を用い、トランジスタM5、M6としてトランジスタ300を用い、容量素子CCとして容量素子100を用いることができる。トランジスタM4としてOSトランジスタを用いることによって、トランジスタM4のリーク電流を非常に低くすることができる。
なお、本実施の形態に示す、周辺回路1411、およびメモリセルアレイ1470等の構成は、上記に限定されるものではない。これらの回路、および当該回路に接続される配線、回路素子等の、配置または機能は、必要に応じて、変更、削除、または追加してもよい。
本実施の形態に示す構成は、他の実施の形態や実施例に示す構成と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、図14を用いて、本発明の半導体装置が実装されたチップ1200の一例を示す。チップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
図14(A)に示すように、チップ1200は、CPU(Central Processing Unit)1211、GPU(Graphics Processing Unit)1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
チップ1200には、バンプ(図示しない)が設けられ、図14(B)に示すように、プリント基板(Printed Circuit Board:PCB)1201の第1の面と接続する。また、PCB1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。また、例えば、フラッシュメモリ1222に先の実施の形態に示すNOSRAMを用いることができる。
CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、およびGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、およびGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したNOSRAMや、DOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理や積和演算に用いることができる。GPU1212に、本発明の酸化物半導体を用いた画像処理回路や、積和演算回路を設けることで、画像処理、および積和演算を低消費電力で実行することが可能になる。
また、CPU1211、およびGPU1212が同一チップに設けられていることで、CPU1211およびGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、およびGPU1212が有するメモリ間のデータ転送、およびGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
アナログ演算部1213はA/D(アナログ/デジタル)変換回路、およびD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、およびフラッシュメモリ1222のインターフェースとして機能する回路を有する。
インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
ネットワーク回路1216は、LAN(Local Area Network)などのネットワーク回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。
チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
GPU1212を有するチップ1200が設けられたPCB1201、DRAM1221、およびフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの演算を実行することができるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
本実施の形態は、他の実施の形態や実施例などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態では、先の実施の形態に示す半導体装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す半導体装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。なお、ここで、コンピュータとは、タブレット型のコンピュータや、ノート型のコンピュータや、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す半導体装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用される。図15にリムーバブル記憶装置の幾つかの構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
図15(A)はUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。基板1104のメモリチップ1105などに先の実施の形態に示す半導体装置を組み込むことができる。
図15(B)はSDカードの外観の模式図であり、図15(C)は、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。基板1113のメモリチップ1114などに先の実施の形態に示す半導体装置を組み込むことができる。
図15(D)はSSDの外観の模式図であり、図15(E)は、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。基板1153のメモリチップ1154などに先の実施の形態に示す半導体装置を組み込むことができる。
本実施の形態は、他の実施の形態や実施例などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態6)
本発明の一態様に係る半導体装置は、CPUやGPUなどのプロセッサ、またはチップに用いることができる。図16に、本発明の一態様に係るCPUやGPUなどのプロセッサ、またはチップを備えた電子機器の具体例を示す。
<電子機器・システム>
本発明の一態様に係るGPU又はチップは、様々な電子機器に搭載することができる。電子機器の例としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。また、本発明の一態様に係る集積回路又はチップを電子機器に設けることにより、電子機器に人工知能を搭載することができる。
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。図16に、電子機器の例を示す。
[携帯電話]
図16(A)には、情報端末の一種である携帯電話(スマートフォン)が図示されている。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
情報端末5500は、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5511に表示するアプリケーション、表示部5511に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5511に表示するアプリケーション、指紋や声紋などの生体認証を行うアプリケーションなどが挙げられる。
[情報端末1]
図16(B)には、デスクトップ型情報端末5300が図示されている。デスクトップ型情報端末5300は、情報端末の本体5301と、ディスプレイ5302と、キーボード5303と、を有する。
デスクトップ型情報端末5300は、先述した情報端末5500と同様に、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、デスクトップ型情報端末5300を用いることで、新規の人工知能の開発を行うことができる。
なお、上述では、電子機器としてスマートフォン、及びデスクトップ用情報端末を例として、それぞれ図16(A)、(B)に図示したが、スマートフォン、及びデスクトップ用情報端末以外の情報端末を適用することができる。スマートフォン、及びデスクトップ用情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、ワークステーションなどが挙げられる。
[電化製品]
図16(C)は、電化製品の一例である電気冷凍冷蔵庫5800を示している。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
電気冷凍冷蔵庫5800に本発明の一態様のチップを適用することによって、人工知能を有する電気冷凍冷蔵庫5800を実現することができる。人工知能を利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能や、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。
本一例では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電子オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
[ゲーム機]
図16(D)は、ゲーム機の一例である携帯ゲーム機5200を示している。携帯ゲーム機は、筐体5201、表示部5202、ボタン5203等を有する。
携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、低消費電力の携帯ゲーム機5200を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
更に、携帯ゲーム機5200に本発明の一態様のGPU又はチップを適用することによって、人工知能を有する携帯ゲーム機5200を実現することができる。
本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5200に人工知能を適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。
また、携帯ゲーム機5200で複数のプレイヤーが必要なゲームを行う場合、人工知能によって擬人的にゲームプレイヤーを構成することができるため、対戦相手を人工知能によるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。
図16(D)では、ゲーム機の一例として携帯ゲーム機を図示しているが、本発明の一態様のGPU又はチップを適用するゲーム機はこれに限定されない。本発明の一態様のGPU又はチップを適用するゲーム機としては、例えば、家庭用の据え置き型ゲーム機、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[移動体]
本発明の一態様のGPU又はチップは、移動体である自動車、及び自動車の運転席周辺に適用することができる。
図16(E1)は移動体の一例である自動車5700を示し、図16(E2)は、自動車の室内におけるフロントガラス周辺を示す図である。図16(E1)では、ダッシュボードに取り付けられた表示パネル5701、表示パネル5702、表示パネル5703の他、ピラーに取り付けられた表示パネル5704を図示している。
表示パネル5701乃至表示パネル5703は、スピードメーターやタコメーター、走行距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供することができる。また、表示パネルに表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示パネル5701乃至表示パネル5703は、照明装置として用いることも可能である。
表示パネル5704には、自動車5700に設けられた撮像装置(図示しない。)からの映像を映し出すことによって、ピラーで遮られた視界(死角)を補完することができる。すなわち、自動車5700の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示パネル5704は、照明装置として用いることもできる。
本発明の一態様のGPU又はチップは人工知能の構成要素として適用できるため、例えば、当該チップを自動車5700の自動運転システムに用いることができる。また、当該チップを道路案内、危険予測などを行うシステムに用いることができる。表示パネル5701乃至表示パネル5704には、道路案内、危険予測などの情報を表示する構成としてもよい。
なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のチップを適用して、人工知能を利用したシステムを付与することができる。
[放送システム]
本発明の一態様のGPU又はチップは、放送システムに適用することができる。
図16(F)は、放送システムにおけるデータ伝送を模式的に示している。具体的には、図16(F)は、放送局5680から送信された電波(放送信号)が、各家庭のテレビジョン受信装置(TV)5600に届くまでの経路を示している。TV5600は、受信装置を備え(図示しない。)、アンテナ5650で受信された放送信号は、当該受信装置を介して、TV5600に送信される。
図16(F)では、アンテナ5650は、UHF(Ultra High Frequency)アンテナを図示しているが、アンテナ5650としては、BS・110°CSアンテナ、CSアンテナなども適用できる。
電波5675A、電波5675Bは地上波放送用の放送信号であり、電波塔5670は受信した電波5675Aを増幅して、電波5675Bの送信を行う。各家庭では、アンテナ5650で電波5675Bを受信することで、TV5600で地上波TV放送を視聴することができる。なお、放送システムは、図16(F)に示す地上波放送に限定せず、人工衛星を用いた衛星放送、光回線によるデータ放送などとしてもよい。
上述した放送システムは、本発明の一態様のチップを適用して、人工知能を利用した放送システムとしてもよい。放送局5680から各家庭のTV5600に放送データを送信するとき、エンコーダによって放送データの圧縮が行われ、アンテナ5650が当該放送データを受信したとき、TV5600に含まれる受信装置のデコーダによって当該放送データの復元が行われる。人工知能を利用することによって、例えば、エンコーダの圧縮方法の一である動き補償予測において、表示画像に含まれる表示パターンの認識を行うことができる。また、人工知能を利用したフレーム内予測などを行うこともできる。また、例えば、解像度の低い放送データを受信して、解像度の高いTV5600で当該放送データの表示を行うとき、デコーダによる放送データの復元において、アップコンバートなどの画像の補間処理を行うことができる。
上述した人工知能を利用した放送システムは、放送データの量が増大する超高精細度テレビジョン(UHDTV:4K、8K)放送に対して好適である。
また、TV5600側における人工知能の応用として、例えば、TV5600に人工知能を有する録画装置を設けてもよい。このような構成にすることによって、当該録画装置にユーザの好みを人工知能に学習させることで、ユーザの好みにあった番組を自動的に録画することができる。
本実施の形態で説明した電子機器、その電子機器の機能、人工知能の応用例、その効果などは、他の電子機器の記載と適宜組み合わせることができる。
本実施の形態は、他の実施の形態や実施例などに記載した構成と適宜組み合わせて実施することが可能である。
<デバイスシミュレータを用いた計算によるId−Vg特性の評価1>
以下では、金属酸化物中に負の固定電荷が存在する場合の、トランジスタの電気特性について評価した。
デバイスシミュレータを用いた計算で仮定したトランジスタ構造の断面図を図17に示す。図17において、導電体BGEはバックゲート電極であり、図1に示すトランジスタ200の導電体205に相当する。絶縁体BGI1、絶縁体BGI2、および絶縁体BGI3はバックゲート絶縁膜であり、図1に示すトランジスタ200の絶縁体220、絶縁体222、および絶縁体224にそれぞれ相当する。図17(A)において、半導体SEM1_1、半導体SEM1_2、半導体SEM2、および半導体SEM3は活性層であり、図1に示すトランジスタ200の酸化物230a1、酸化物230a2、酸化物230b、および酸化物230cにそれぞれ相当する。また、図17(B)において、半導体SEM1、半導体SEM2、および半導体SEM3は活性層であり、図17(A)における半導体SEM1_1を設けない場合を示している。すなわち、図1に示すトランジスタ200の酸化物230aが単層である場合に相当する。導電体SEはソース電極であり、図1に示すトランジスタ200の導電体242aまたは導電体242bの一方に相当する。導電体DEはドレイン電極であり、図1に示すトランジスタ200の導電体242aまたは導電体242bの他方に相当する。絶縁体CAPはバリア膜であり、図1に示すトランジスタ200の絶縁体273に相当する。絶縁体TGIはトップゲート絶縁膜であり、図1に示すトランジスタ200の絶縁体250に相当する。導電体TGEはトップゲート電極であり、図1に示すトランジスタ200の導電体260に相当する。
図17に示すトランジスタ構造を仮定して、デバイスシミュレータを用いた計算を行うことで、Id−Vg特性を算出した。デバイスシミュレータとして、シルバコ社製デバイスシミュレータAtlasを使用した。図17(A)、および図17(B)に示したトランジスタに関し、デバイスシミュレータを用いた計算で仮定した各パラメータの値をそれぞれ表1、および表2に示す。
Figure 2019092541
Figure 2019092541
表1、および表2に示すIGZO(134)は、In:Ga:Zn=1:3:4の組成から成るIn−Ga−Zn酸化物を想定している。また、表1、および表2に示すIGZO(423)は、In:Ga:Zn=4:2:3の組成から成るIn−Ga−Zn酸化物を想定している。また、表1の示すSEMに記載しているパラメータは、半導体SEM1_1、半導体SEM1_2、半導体SEM2、および半導体SEM3に共通のパラメータである。また、表2の示すSEMに記載しているパラメータは、半導体SEM1、半導体SEM2、および半導体SEM3に共通のパラメータである。
半導体SEM1_2中の負の固定電荷密度を変えて、計算を行った。本計算で想定した、半導体SEM1_2中の負の固定電荷密度を、表3に示す。ここでは、8つの条件(条件1乃至条件8)を想定した。なお、本計算では、負の固定電荷密度が、半導体SEM1_2に一様に分布するよう設定した。
Figure 2019092541
図17(A)に示すトランジスタにおいて、半導体SEM1_2中の負の固定電荷密度を変えた場合の、ドレイン電圧Vd=0.1V、バックゲート電圧Vbg=0VにおけるId−Vg特性を図18(A)に示す。図18(A)の凡例は、表3に示す条件1乃至条件8で算出されたId−Vg特性を表す。
図18(A)に示すように、半導体SEM1_2に負の固定電荷が存在すると、Id−Vg特性がプラス方向へシフトすることが分かった。さらに、半導体SEM1_2中の負の固定電荷密度が高くなると、Id−Vg特性がプラス方向へよりシフトすることが分かった。
次に、図17(B)に示すトランジスタにおいて、半導体SEM1中の負の固定電荷密度を変えて、計算を行った。本計算で想定した、半導体SEM1中の負の固定電荷密度を、表4に示す。ここでは、8つの条件(条件1乃至条件8)を想定した。なお、本計算では、負の固定電荷密度が、半導体SEM1に一様に分布するよう設定した。
Figure 2019092541
半導体SEM1中の負の固定電荷密度を変えた場合の、ドレイン電圧Vd=0.1V、バックゲート電圧Vbg=0VにおけるId−Vg特性を図18(B)に示す。図18(B)の凡例は、表4に示す条件1乃至条件8で算出されたId−Vg特性を表す。
図18(B)に示すように、半導体SEM1に負の固定電荷が存在すると、Id−Vg特性がプラス方向へシフトすることが分かった。さらに、半導体SEM1中の負の固定電荷密度が高くなると、Id−Vg特性がプラス方向へよりシフトすることが分かった。
<デバイスシミュレータを用いた計算によるId−Vg特性の評価2>
以下では、上記実施例1とは異なる金属酸化物中に負の固定電荷が存在する場合の、トランジスタの電気特性について評価した。
デバイスシミュレータを用いた計算で仮定したトランジスタ構造の断面図を図19に示す。図19において、導電体BGEはバックゲート電極であり、図1に示すトランジスタ200の導電体205に相当する。絶縁体BGI1、絶縁体BGI2、および絶縁体BGI3はバックゲート絶縁膜であり、図1に示すトランジスタ200の絶縁体220、絶縁体222、および絶縁体224にそれぞれ相当する。半導体SEM1、半導体SEM2、および半導体SEM3は活性層であり、図1に示すトランジスタ200の酸化物230a、酸化物230b、および酸化物230cにそれぞれ相当する。導電体SEはソース電極であり、図1に示すトランジスタ200の導電体242aまたは導電体242bの一方に相当する。導電体DEはドレイン電極であり、図1に示すトランジスタ200の導電体242aまたは導電体242bの他方に相当する。絶縁体CAPはバリア膜であり、図1に示すトランジスタ200の絶縁体273に相当する。絶縁体TGIはトップゲート絶縁膜であり、図1に示すトランジスタ200の絶縁体250に相当する。導電体TGEはトップゲート電極であり、図1に示すトランジスタ200の導電体260に相当する。
図19に示すトランジスタ構造を仮定して、デバイスシミュレータを用いた計算を行うことで、Id−Vg特性を算出した。デバイスシミュレータとして、シルバコ社製デバイスシミュレータAtlasを使用した。デバイスシミュレータを用いた計算で仮定した各パラメータの値を表5に示す。
Figure 2019092541
表5に示すIGZO(134)は、In:Ga:Zn=1:3:4の組成から成るIn−Ga−Zn酸化物を想定している。また、表5に示すIGZO(423)は、In:Ga:Zn=4:2:3の組成から成るIn−Ga−Zn酸化物を想定している。また、表5のSEMに記載しているパラメータは、半導体SEM1、半導体SEM2、および半導体SEM3に共通のパラメータである。
半導体SEM2および半導体SEM3中の負の固定電荷密度を変えて、計算を行った。本計算で想定した、半導体SEM2および半導体SEM3中の負の固定電荷密度を、表6に示す。ここでは、8つの条件(条件1乃至条件8)を想定した。なお、本計算では、負の固定電荷密度が、半導体SEM2および半導体SEM3に一様に分布するよう設定した。
Figure 2019092541
半導体SEM2および半導体SEM3中の負の固定電荷密度を変えた場合の、ドレイン電圧Vd=0.1V、バックゲート電圧Vbg=0VにおけるId−Vg特性を図20に示す。図20の凡例は、表6に示す条件1乃至条件8で算出されたId−Vg特性を表す。
図20に示すように、半導体SEM2および半導体SEM3に負の固定電荷が存在すると、Id−Vg特性がプラス方向へシフトすることが分かった。さらに、半導体SEM2および半導体SEM3中の負の固定電荷密度が高くなると、Id−Vg特性がプラス方向へよりシフトすることが分かった。
200、200A、200B、200C:トランジスタ、203、205、205a、205b、218、240、240a、240b、240c、242、242−1、242−2、242a、242b、256、260、260a、260b:導電体、242A、260A、260B:導電膜、210、212、214、216、220、222、224、250、273、273a、273b、274、276、280、281、282:絶縁体、250A、273A、274A:絶縁膜、230、230a、230a1、230a2、230b、230c、230d、230e:酸化物、230A、230A1、230A2、230B、230C:酸化膜、234、243、243a、243b:領域

Claims (10)

  1. 第1の絶縁体と、
    前記第1の絶縁体の上に配置された、第1の酸化物と、
    前記第1の酸化物の上に配置された、第2の酸化物と、
    前記第2の酸化物上に、互いに離して配置された、第1の導電体、および第2の導電体と、
    前記第2の酸化物、前記第1の導電体、および前記第2の導電体の上に配置された、第3の酸化物と、
    前記第3の酸化物の上に配置された第2の絶縁膜と、
    前記第3の酸化物、および前記第2の絶縁膜を間に挟み、前記第2の酸化物上に配置された第3の導電体と、を有し、
    前記第3の酸化物は、金属元素と、窒素を含み、
    前記金属元素は窒素と結合していることを特徴とする半導体装置。
  2. 請求項1において、
    前記第3の酸化物は、固定電荷を保持する層である、
    ことを特徴とする半導体装置。
  3. 請求項1、または請求項2において、
    前記第3の酸化物において、窒素の原子数比率が、0.1atomic%未満であることを特徴とする半導体装置。
  4. 第1の絶縁体と、
    前記第1の絶縁体の上に配置された、第1の酸化物と、
    前記第1の酸化物の上に配置された、第2の酸化物と、
    前記第2の酸化物上に、互いに離して配置された、第1の導電体、および第2の導電体と、
    前記第2の酸化物、前記第1の導電体、および前記第2の導電体の上に配置された、第3の酸化物と、
    前記第3の酸化物の上に配置された第2の絶縁膜と、
    前記第3の酸化物、および前記第2の絶縁膜を間に挟み、前記第2の酸化物上に配置された第3の導電体と、を有し、
    前記第1の酸化物は、第1の層と、第2の層を有し、
    前記第2の層は、金属元素と、窒素を含み、
    前記金属元素は窒素と結合していることを特徴とする半導体装置。
  5. 請求項4において、
    前記第2の層は、固定電荷を保持する層である、
    ことを特徴とする半導体装置。
  6. 請求項4、または請求項5において、
    前記第2の層において、窒素の原子数比率が、0.1atomic%未満であることを特徴とする半導体装置。
  7. 請求項4乃至請求項6のいずれか一項において、
    前記第1の層は、前記第2の層より酸素濃度が高く、
    前記第2の層は、前記第1の層より窒素濃度が高いことを特徴とする半導体装置。
  8. 請求項1乃至請求項7のいずれか一項において、
    前記第1の酸化物、前記第2の酸化物、および前記第3の酸化物は、Inと、元素M(MはAl、Ga、Y、またはSn)と、Znと、を有する、
    ことを特徴とする半導体装置。
  9. 請求項1乃至請求項8のいずれか一項において、
    前記金属元素は、In、元素M(MはAl、Ga、Y、またはSn)、およびZnから選ばれた一つである、
    ことを特徴とする半導体装置。
  10. 請求項6において、
    前記第2の層において、窒素の原子数比率が0.02atomic%以上であることを特徴とする半導体装置。
JP2019551771A 2017-11-09 2018-10-29 半導体装置 Active JP7200121B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017216669 2017-11-09
JP2017216669 2017-11-09
PCT/IB2018/058425 WO2019092541A1 (ja) 2017-11-09 2018-10-29 半導体装置、および半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JPWO2019092541A1 true JPWO2019092541A1 (ja) 2020-11-19
JP7200121B2 JP7200121B2 (ja) 2023-01-06

Family

ID=66438804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019551771A Active JP7200121B2 (ja) 2017-11-09 2018-10-29 半導体装置

Country Status (5)

Country Link
US (1) US11211467B2 (ja)
JP (1) JP7200121B2 (ja)
KR (1) KR102649488B1 (ja)
CN (1) CN111316448A (ja)
WO (1) WO2019092541A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11610997B2 (en) * 2017-11-24 2023-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and semiconductor device having a metal element and nitrogen
WO2019166906A1 (ja) 2018-02-28 2019-09-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US11211461B2 (en) * 2018-12-28 2021-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
CN115983738B (zh) * 2023-03-21 2023-06-27 广东仁懋电子有限公司 一种用于提升氮化镓制备效率的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056945A (ja) * 2012-09-12 2014-03-27 Idemitsu Kosan Co Ltd アモルファス酸化物薄膜及びその製造方法、並びにそれを用いた薄膜トランジスタ
JP2017143239A (ja) * 2015-08-04 2017-08-17 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作成方法
JP2017168839A (ja) * 2016-03-11 2017-09-21 株式会社半導体エネルギー研究所 半導体装置、半導体ウエハ、モジュールおよび電子機器とその作製方法
JP2017199901A (ja) * 2016-04-22 2017-11-02 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP2018032839A (ja) * 2015-12-11 2018-03-01 株式会社半導体エネルギー研究所 トランジスタ、回路、半導体装置、表示装置および電子機器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489368B2 (ja) * 2003-03-24 2010-06-23 株式会社日立製作所 半導体装置およびその製造方法
JP5671789B2 (ja) * 2009-08-10 2015-02-18 ソニー株式会社 固体撮像装置とその製造方法および撮像装置
CN107947763B (zh) 2010-08-06 2021-12-28 株式会社半导体能源研究所 半导体集成电路
US8957462B2 (en) 2010-12-09 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an N-type transistor with an N-type semiconductor containing nitrogen as a gate
US8956944B2 (en) 2011-03-25 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9012904B2 (en) 2011-03-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8999773B2 (en) 2012-04-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Processing method of stacked-layer film and manufacturing method of semiconductor device
JP2013236068A (ja) 2012-04-12 2013-11-21 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6220597B2 (ja) 2012-08-10 2017-10-25 株式会社半導体エネルギー研究所 半導体装置
JP6059501B2 (ja) 2012-10-17 2017-01-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6402017B2 (ja) * 2013-12-26 2018-10-10 株式会社半導体エネルギー研究所 半導体装置
JPWO2015151337A1 (ja) 2014-03-31 2017-04-13 株式会社東芝 薄膜トランジスタ、半導体装置及び薄膜トランジスタの製造方法
TWI686899B (zh) 2014-05-02 2020-03-01 日商半導體能源研究所股份有限公司 半導體裝置、觸控感測器、顯示裝置
US10096715B2 (en) 2015-03-26 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
CN115799342A (zh) * 2016-07-26 2023-03-14 株式会社半导体能源研究所 半导体装置
US10276794B1 (en) * 2017-10-31 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and fabrication method thereof
WO2019207429A1 (ja) * 2018-04-27 2019-10-31 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056945A (ja) * 2012-09-12 2014-03-27 Idemitsu Kosan Co Ltd アモルファス酸化物薄膜及びその製造方法、並びにそれを用いた薄膜トランジスタ
JP2017143239A (ja) * 2015-08-04 2017-08-17 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作成方法
JP2018032839A (ja) * 2015-12-11 2018-03-01 株式会社半導体エネルギー研究所 トランジスタ、回路、半導体装置、表示装置および電子機器
JP2017168839A (ja) * 2016-03-11 2017-09-21 株式会社半導体エネルギー研究所 半導体装置、半導体ウエハ、モジュールおよび電子機器とその作製方法
JP2017199901A (ja) * 2016-04-22 2017-11-02 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法

Also Published As

Publication number Publication date
US11211467B2 (en) 2021-12-28
JP7200121B2 (ja) 2023-01-06
US20200266281A1 (en) 2020-08-20
KR20200085741A (ko) 2020-07-15
CN111316448A (zh) 2020-06-19
KR102649488B1 (ko) 2024-03-21
WO2019092541A1 (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
JPWO2019111096A1 (ja) 半導体装置、および半導体装置の作製方法
JP7229669B2 (ja) 半導体装置、および半導体装置の作製方法
JP2022183298A (ja) 半導体装置
JP7200121B2 (ja) 半導体装置
JP7142081B2 (ja) 積層体、及び半導体装置
JP7170671B2 (ja) 半導体装置
JPWO2020008296A1 (ja) 半導体装置、および半導体装置の作製方法
JPWO2019171196A1 (ja) 半導体装置、および半導体装置の作製方法
JP2023040194A (ja) 半導体装置
JP7420999B2 (ja) 半導体装置
JPWO2019197946A1 (ja) 半導体装置、および半導体装置の作製方法
JPWO2019186331A1 (ja) 半導体装置
JP7287970B2 (ja) 半導体装置、および半導体装置の作製方法
JP7221216B2 (ja) 半導体装置
JP7132318B2 (ja) 半導体装置
JP7254462B2 (ja) 半導体装置の作製方法
JPWO2019166914A1 (ja) 半導体装置、および半導体装置の作製方法
JP2022164743A (ja) 半導体装置
JP2022105184A (ja) 半導体装置及びその作製方法
WO2020115604A1 (ja) 半導体装置、および半導体装置の作製方法
JPWO2019145807A1 (ja) 半導体装置、および半導体装置の作製方法
JPWO2019111091A1 (ja) 半導体装置、および半導体装置の作製方法
JPWO2019155329A1 (ja) 半導体装置、及び半導体装置の作製方法
TWI856966B (zh) 半導體裝置
JP7237944B2 (ja) 半導体装置、および半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221221

R150 Certificate of patent or registration of utility model

Ref document number: 7200121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150