JPWO2019088206A1 - H-section steel and manufacturing method thereof - Google Patents

H-section steel and manufacturing method thereof Download PDF

Info

Publication number
JPWO2019088206A1
JPWO2019088206A1 JP2019515548A JP2019515548A JPWO2019088206A1 JP WO2019088206 A1 JPWO2019088206 A1 JP WO2019088206A1 JP 2019515548 A JP2019515548 A JP 2019515548A JP 2019515548 A JP2019515548 A JP 2019515548A JP WO2019088206 A1 JPWO2019088206 A1 JP WO2019088206A1
Authority
JP
Japan
Prior art keywords
less
toughness
section steel
rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019515548A
Other languages
Japanese (ja)
Other versions
JP6856119B2 (en
Inventor
浩文 大坪
達己 木村
克行 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019088206A1 publication Critical patent/JPWO2019088206A1/en
Application granted granted Critical
Publication of JP6856119B2 publication Critical patent/JP6856119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

製造コストを増大することなしに、H形鋼のフランジ部においてYP355MPa以上の高強度、並びに−40℃での低温靱性を確保するための方途について提案する。C:0.08〜0.16%、Si:0.05〜0.60%、Mn:0.10〜1.80%、Nb:0.005〜0.060%、Ti:0.001〜0.020%、Al:0.080%以下、N:0.0010〜0.0060%、P:0.030%以下およびS:0.030%以下を、Ceqが0.44%以下となる範囲で含有し、残部はFeおよび不可避的不純物の成分組成と、粒径が15μm以下のフェライトを主相とするミクロ組織とを有し、該ミクロ組織は、第2相がパーライトおよび/またはベイナイトであり、かつ島状マルテンサイトが3%以下であるものとする。We propose a way to ensure high strength over YP355MPa and low temperature toughness at -40 ℃ at the flange part of H-section steel without increasing the manufacturing cost. C: 0.08 to 0.16%, Si: 0.05 to 0.60%, Mn: 0.10 to 1.80%, Nb: 0.005 to 0.060%, Ti: 0.001 to 0.020%, Al: 0.080% or less, N: 0.0010 to 0.0060%, P: Containing 0.030% or less and S: 0.030% or less in a range where Ceq is 0.44% or less, the balance is the component composition of Fe and inevitable impurities, and the microstructure is mainly composed of ferrite with a particle size of 15 μm or less The microstructure is such that the second phase is pearlite and / or bainite and the island martensite is 3% or less.

Description

本発明は、海洋構造物、建築・土木および橋梁などの溶接鋼構造物の素材として広く用いられているH形鋼、特に寒冷地の海洋構造物で用いられる、−40℃での低温靱性に優れた高強度H形鋼とその製造方法に関するものである。   The present invention has a low temperature toughness at −40 ° C., which is used in marine structures, H-shape steels that are widely used as welded steel structures such as buildings, civil engineering, and bridges, especially in marine structures in cold regions. The present invention relates to an excellent high-strength H-section steel and a method for producing the same.

原油や天然ガス等の採掘を行う海洋構造物では、寒冷地で操業される場合も多く、使用されるH形鋼には母材および溶接継手部ともに優れた低温靱性が求められる。高強度と低温靱性を両立させるためには、厚鋼板では制御圧延と加速冷却を組み合わせたTMCPが広く用いられており、H形鋼においても有効な技術である。しかしながら、H形鋼の製造においては、造形性を考慮して、素材の高温加熱および変形抵抗が小さい高温での圧延が必要であり、組織が粗大になりやすい。さらに、組織微細化のためにはオーステナイト低温域での制御圧延が重要であるが、低温での圧延は圧延荷重の増大や形状安定性の観点で課題がある。   Offshore structures that mine crude oil, natural gas, and the like are often operated in cold regions, and the H-shaped steel used requires excellent low-temperature toughness for both the base metal and the welded joint. In order to achieve both high strength and low temperature toughness, TMCP, which is a combination of controlled rolling and accelerated cooling, is widely used for thick steel plates, and is an effective technology for H-section steel. However, in manufacturing H-section steel, considering the formability, high-temperature heating of the material and rolling at a high temperature with low deformation resistance are necessary, and the structure tends to be coarse. Furthermore, controlled rolling in the low temperature range of austenite is important for refining the structure, but rolling at low temperature has problems in terms of increased rolling load and shape stability.

これまでに、靱性に優れたH形鋼として、特許文献1では、析出脆化元素を無添加とすることに加えて、固溶N量を低減し、圧延後に加速冷却を適用することにより、制御圧延を行うこと無く−40℃靱性を確保する圧延H形鋼の製造方法に関する技術が開示されている。
また、海洋構造物等に用いられる低温靱性に優れたH形鋼として、特許文献2では極低炭素でNbやBを添加した成分を用いた技術が提案されている。さらに、特許文献3および4では、生産性を阻害するNbを添加せずに空冷ままで−40℃において優れた低温靱性を達成する技術が開示されている。
Until now, as H-shaped steel with excellent toughness, in Patent Document 1, in addition to adding no precipitation embrittlement element, by reducing the amount of solute N and applying accelerated cooling after rolling, A technique relating to a method for producing a rolled H-section steel that secures −40 ° C. toughness without performing controlled rolling is disclosed.
Further, as H-shaped steel having excellent low-temperature toughness used for offshore structures and the like, Patent Document 2 proposes a technique using an extremely low carbon component added with Nb or B. Furthermore, Patent Documents 3 and 4 disclose techniques for achieving excellent low temperature toughness at −40 ° C. with air cooling without adding Nb that inhibits productivity.

特開2006-180584号公報JP 2006-180584 A 国際公開2013/089156号公報International Publication 2013/089156 特開2016-84524号公報JP 2016-84524 特開2016-156032号公報JP2016-156032

特許文献1に記載の技術は、製造方法として加速冷却の適用が必要であるため、材質制御と形状安定化との両立に課題がある。   Since the technique described in Patent Document 1 requires the application of accelerated cooling as a manufacturing method, there is a problem in achieving both material control and shape stabilization.

また、特許文献2には、−40℃でのシャルピー吸収エネルギーと−10℃のCTOD特性を達成するために、C量が0.040%以下でNbおよびBを複合添加した成分を用いた低温靱性に優れたH形鋼に関する技術が開示されている。しかしながら、実質的に0.020%程度までCを低減させるためには、製鋼段階での精錬時間が長くなる上に、強度を確保するためには合金元素を比較的多量に添加する必要もあり高コストとなる。   Patent Document 2 discloses low-temperature toughness using a component in which N is combined with Nb and B in an amount of 0.040% or less in order to achieve Charpy absorbed energy at −40 ° C. and CTOD characteristics at −10 ° C. A technique related to an excellent H-section steel is disclosed. However, in order to reduce C substantially to about 0.020%, the refining time in the steelmaking stage becomes long, and in order to ensure strength, it is necessary to add a relatively large amount of alloy elements, which is expensive. It becomes.

一方、特許文献3および4は、熱間圧延での変形抵抗を増大して生産性を阻害する原因となる、Nbを添加せずに、VやNの量を適正に制御することによって、−40℃や−60℃での低温靱性を向上させた技術である。しかしながら、VN析出物を制御してより安定的に靱性を確保するには、N含有量0.004%以上を確保する必要があるため、連続鋳造時の割れやフリーNの残存による靱性低下などが懸念される。   On the other hand, Patent Documents 3 and 4 increase the deformation resistance in hot rolling and inhibit productivity, and by appropriately controlling the amounts of V and N without adding Nb, This is a technology that has improved low-temperature toughness at 40 ° C and -60 ° C. However, in order to secure toughness more stably by controlling VN precipitates, it is necessary to secure an N content of 0.004% or more, so there is concern about cracks during continuous casting and toughness reduction due to residual free N. Is done.

本発明は、上記の課題を解決するものであり、特に製造コストを増大することなしに、H形鋼のフランジ部においてYP355MPa以上の高強度、並びに−40℃での低温靱性を確保するための方途について、提案することを目的とする。   The present invention solves the above-mentioned problems, and in particular, to ensure high strength of YP355 MPa or more and low temperature toughness at −40 ° C. in the flange portion of the H-section steel without increasing the manufacturing cost. The purpose is to propose a way.

さて、高強度で低温靱性に優れた圧延H形鋼を製造するには、熱間圧延に制御圧延を適用することが重要である。特に、オーステナイト未再結晶温度域での制御圧延を効果的に実施するには、Nb添加による未再結晶温度域の高温化が有効である。このNbを添加しない場合に制御圧延効果を発揮させるには、オーステナイト低温度域での圧延が必要であり、圧延荷重の増大と温度調整のための圧延時間増大、H形鋼の寸法精度の悪化が問題となる。従って、Nbは変形抵抗を増加させる原因になるものの、制御圧延効果を高温域で発揮させる元素であるため、材質制御の観点からは非常に有用な元素である。一方で、Nbを添加した場合、熱間圧延後の冷却過程で焼入性が向上し、未変態オーステナイトの一部が島状マルテンサイトとなるため、低温靱性の劣化が問題となる。   Now, in order to produce a rolled H-section steel having high strength and excellent low-temperature toughness, it is important to apply controlled rolling to hot rolling. In particular, in order to effectively carry out controlled rolling in the austenite non-recrystallization temperature range, it is effective to increase the non-recrystallization temperature range by adding Nb. In order to exert the controlled rolling effect when Nb is not added, rolling in the low temperature range of austenite is necessary, the rolling load is increased, the rolling time is increased for temperature adjustment, and the dimensional accuracy of the H-section steel is deteriorated. Is a problem. Therefore, although Nb causes an increase in deformation resistance, it is an element that exhibits a controlled rolling effect in a high temperature range, and is therefore an extremely useful element from the viewpoint of material control. On the other hand, when Nb is added, the hardenability is improved in the cooling process after hot rolling, and a part of untransformed austenite becomes island martensite, which causes a problem of low temperature toughness deterioration.

そこで、発明者らは、微量のNb添加で制御圧延効果を最大活用し、H形鋼の特にフランジ部においてYP355MPa以上の強度、並びに−40℃での低温靱性を確保するための方途について、鋭意検討を行ったところ、Nbを添加してオーステナイト未再結晶温度域の高温化による制御圧延効果を最大限活用し、比較的高温での制御圧延によりフェライト粒径を微細化するとともに、圧延条件の適正化により島状マルテンサイト生成量を低減することによって、高強度と低温靱性を両立し得ることを見出し、本発明を完成するに到った。すなわち、本発明の要旨は次のとおりである。   Therefore, the inventors have made utmost efforts to maximize the effect of controlled rolling with the addition of a small amount of Nb, and to ensure strength of YP355 MPa or more and low temperature toughness at −40 ° C. especially in the flange part of H-section steel. As a result of the study, Nb was added to make the most of the controlled rolling effect by increasing the temperature of the austenite non-recrystallization temperature, and the ferrite grain size was refined by controlled rolling at a relatively high temperature. By reducing the amount of island-like martensite produced by optimization, it was found that both high strength and low temperature toughness can be achieved, and the present invention has been completed. That is, the gist of the present invention is as follows.

[1]質量%で、
C:0.08〜0.16%、
Si:0.05〜0.60%、
Mn:0.10〜1.80%、
Nb:0.005〜0.060%、
Ti:0.0010〜0.0200%、
Al:0.080%以下、
N:0.0010〜0.0060%、
P:0.030%以下および
S:0.030%以下
を、下記式(1)に従うCeqが0.44%以下となる範囲で含有し、残部はFeおよび不可避的不純物の成分組成と、平均粒径が15μm以下のフェライトを主相とするミクロ組織とを有し、該ミクロ組織は、第2相がパーライトおよび/またはベイナイトであり、かつ島状マルテンサイトが3.0%以下であるH形鋼。

Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
但し、式中の元素表示は該元素の含有量を示し、含まれない元素はゼロとする。
[1] By mass%
C: 0.08 to 0.16%,
Si: 0.05-0.60%
Mn: 0.10 to 1.80%
Nb: 0.005-0.060%,
Ti: 0.0010-0.0200%,
Al: 0.080% or less,
N: 0.0010 to 0.0060%,
P: 0.030% or less and S: 0.030% or less in a range where Ceq according to the following formula (1) is 0.44% or less, the balance is the component composition of Fe and unavoidable impurities, and the average particle size is 15 μm or less H-shaped steel having a microstructure with ferrite as a main phase, wherein the second phase is pearlite and / or bainite, and island martensite is 3.0% or less.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
However, the element display in the formula indicates the content of the element, and the elements not included are zero.

[2]前記成分組成は、さらに質量%で、
V:0.050%以下、
Cu:1.0%以下、
Ni:1.0%以下、
Cr:1.0%以下および
Mo:1.0%以下
のうちの1種または2種以上を含有する前記[1]に記載のH形鋼。
[2] The component composition is further mass%,
V: 0.050% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
Cr: 1.0% or less and
Mo: H-section steel according to the above [1], containing one or more of 1.0% or less.

[3]前記[1]または[2]に記載の成分組成を有する鋼素材を、1150℃以上1300℃未満で加熱後、少なくともフランジ相当部分の表面温度が下記式(2)で算出されるTR℃以下での累積圧下率が20%以上の熱間圧延を行うH形鋼の製造方法。

TR=174 log[Nb×(C+12/14N)]+1344 ・・・(2)
[3] TR in which the steel material having the composition described in [1] or [2] is heated at 1150 ° C. or higher and lower than 1300 ° C., and at least the surface temperature of the flange-corresponding portion is calculated by the following formula (2) A method for manufacturing H-section steel, which performs hot rolling at a cumulative reduction of 20% or less at a temperature of ℃ or less.
Record
TR = 174 log [Nb × (C + 12 / 14N)] + 1344 (2)

本発明によれば、Nbを適量で添加してオーステナイト未再結晶温度域を高温化し、制御圧延効果を最大限活用することができる。その結果、熱間圧延後に加速冷却を必要とすることなしに、換言すると、熱間圧延後は空冷であっても、フランジ部の強度がYP355MPa以上で、かつフランジ部の靱性として−40℃でのシャルピー吸収エネルギーが50J以上を有する低温靱性に優れたH形鋼を提供することができる。   According to the present invention, an appropriate amount of Nb can be added to increase the temperature range of austenite non-recrystallization, and the controlled rolling effect can be utilized to the maximum. As a result, without requiring accelerated cooling after hot rolling, in other words, the strength of the flange portion is YP355 MPa or more and the toughness of the flange portion is −40 ° C. even if air cooling is performed after hot rolling. It is possible to provide an H-section steel having excellent low-temperature toughness having a Charpy absorbed energy of 50 J or more.

以下、本発明のH形鋼について、詳しく説明する。まず、本発明のH形鋼の成分組成の限定理由を述べる。なお、成分に関する「%」表示は特に断らない限り、「質量%」を意味するものとする。   Hereinafter, the H-section steel of the present invention will be described in detail. First, the reasons for limiting the component composition of the H-section steel of the present invention will be described. In addition, unless otherwise indicated, the "%" display regarding a component shall mean "mass%".

C:0.08〜0.16%
Cは、鋼の強度向上に必要な元素であり、熱間圧延後に加速冷却することなしに強度を確保するためには、C含有量の下限を0.08%とする。C含有量は、0.10%以上であることが好ましい。一方で、C含有量が過度に多い場合は、パーライトやベイナイトなどの第二相の生成量が増加し、母材靱性および溶接部靱性が低下するため、C量の上限を0.16%とする。好ましくは、0.08〜0.14%である。
C: 0.08-0.16%
C is an element necessary for improving the strength of steel, and in order to ensure strength without accelerated cooling after hot rolling, the lower limit of the C content is 0.08%. The C content is preferably 0.10% or more. On the other hand, when the C content is excessively large, the amount of the second phase such as pearlite and bainite increases, and the base metal toughness and weld zone toughness are lowered. Therefore, the upper limit of the C content is set to 0.16%. Preferably, it is 0.08 to 0.14%.

Si:0.05〜0.60%
Siは、脱酸元素や固溶強化元素として有効であり、その効果を得るためには、少なくとも0.05%を必要とする。一方、0.60%を超えると母材の靱性および溶接部靱性を劣化させるので、Si は0.05〜0.60%の範囲とする。好ましくは、0.05〜0.50%である。
Si: 0.05-0.60%
Si is effective as a deoxidizing element or a solid solution strengthening element, and at least 0.05% is required to obtain the effect. On the other hand, if it exceeds 0.60%, the toughness of the base metal and the toughness of the welded portion are deteriorated. Preferably, it is 0.05 to 0.50%.

Mn:0.10〜1.80%
Mnは、母材の強度を確保するために0.10%以上は必要である。一方、1.80%を超えて添加すると、低温割れ感受性が増大するため、Mnは0.10〜1.80%の範囲に限定した。なお、溶接部靱性の観点からは、上限を1.60%とすることが望ましい。より好ましくは、0.30〜1.60%である。
Mn: 0.10 to 1.80%
Mn needs to be 0.10% or more in order to ensure the strength of the base material. On the other hand, if added over 1.80%, the cold cracking susceptibility increases, so Mn was limited to the range of 0.10 to 1.80%. From the viewpoint of weld zone toughness, the upper limit is preferably 1.60%. More preferably, it is 0.30 to 1.60%.

P:0.030%以下
Pは、含有量が0.030%を超えると溶接部の靱性が低下するため、0.030%以下に抑制する。好ましくは、0.020%以下である。なお、Pを0.005%未満に抑制するには、その処理に多大なコストを要するため、製造コストの観点からは0.005%を下限とすることが好ましい。
P: 0.030% or less P is suppressed to 0.030% or less because the toughness of the welded portion decreases when the content exceeds 0.030%. Preferably, it is 0.020% or less. In order to suppress P to less than 0.005%, a large cost is required for the processing. Therefore, from the viewpoint of manufacturing cost, it is preferable to set 0.005% as the lower limit.

S:0.030%以下
Sは、Pと同様に、0.030%を超えて含有されると母材および溶接部の靱性が低下するため、0.030%以下に抑制する。好ましくは、0.005%以下である。なお、Sを0.001%未満に抑制するには、その処理に多大なコストを要するため、製造コストの観点からは0.001%を下限とすることが好ましい。
S: 0.030% or less S, like P, if contained in excess of 0.030%, the toughness of the base metal and the welded portion is reduced, so it is suppressed to 0.030% or less. Preferably, it is 0.005% or less. In order to suppress S to less than 0.001%, a large cost is required for the processing, and therefore 0.001% is preferably set as the lower limit from the viewpoint of manufacturing cost.

Nb:0.005〜0.060%
Nbは、Nb炭窒化物を形成し、鋼素材加熱時のオーステナイト粒の粗大化を抑制することによる、圧延−冷却後のフェライト組織の微細化に有効であるとともに、オーステナイト未再結晶温度での制御圧延を効果的に実施するためには非常に重要な元素である。また、析出強化による高強度化にも有効な元素である。その効果を発現し、YP355MPa以上の強度を確保するためには、0.005%以上の含有が必要である。さらに、YP420MPa以上の高強度が要請される場合は、0.015%以上で含有させることが好ましい。一方で、0.060%を超えて添加する場合には、島状マルテンサイト生成による母材および溶接部の靱性低下が顕著となるため、0.060%を上限とした。島状マルテンサイト生成をさらに抑制するには、0.050%以下とすることが好ましい。より好ましくは0.040%以下、さらに好ましくは0.035%以下である。
Nb: 0.005-0.060%
Nb is effective in refining the ferrite structure after rolling and cooling by forming Nb carbonitride and suppressing the coarsening of austenite grains during heating of the steel material, and at the austenite non-recrystallization temperature. It is a very important element for effective controlled rolling. It is also an effective element for increasing the strength by precipitation strengthening. In order to exhibit the effect and secure a strength of YP355 MPa or more, it is necessary to contain 0.005% or more. Furthermore, when high strength of YP420 MPa or more is required, it is preferable to contain it at 0.015% or more. On the other hand, if added over 0.060%, the toughness of the base metal and welded part due to the formation of island martensite becomes significant, so 0.060% was made the upper limit. In order to further suppress the formation of island martensite, the content is preferably 0.050% or less. More preferably, it is 0.040% or less, More preferably, it is 0.035% or less.

Ti:0.0010〜0.0200%
Tiは、TiNを形成し、鋼素材加熱時のオーステナイト粒粗大化を抑制し、圧延−冷却後のフェライト組織の微細化に有効な元素である。そのため、0.0010%以上で含有させる。一方で、析出強化元素でもあり、0.0200%を超えて添加すると析出脆化を引き起こすため、上限を0.0200%とする。好ましくは、0.0050〜0.0200%である。
Ti: 0.0010-0.0200%
Ti is an element that forms TiN, suppresses austenite grain coarsening during heating of the steel material, and is effective for refining the ferrite structure after rolling and cooling. Therefore, it is contained at 0.0010% or more. On the other hand, it is also a precipitation strengthening element, and if added over 0.0200%, it causes precipitation embrittlement, so the upper limit is made 0.0200%. Preferably, it is 0.0050 to 0.0200%.

Al:0.080%以下
Alは、脱酸剤として鋼に添加され、その効果は、0.080%を超えると飽和することから、Alの上限を0.080%とした。下限については特に特定しないが、脱酸効果を十分に得るためには0.003%以上とすることが望ましい。好ましくは、0.015〜0.040%である。
Al: 0.080% or less
Al is added to steel as a deoxidizer, and its effect is saturated when it exceeds 0.080%, so the upper limit of Al was made 0.080%. The lower limit is not particularly specified, but is preferably 0.003% or more in order to obtain a sufficient deoxidation effect. Preferably, it is 0.015 to 0.040%.

N:0.0010〜0.0060%
Nは、NbやTiなどの窒化物を形成する元素であり、組織微細化に有用であるため、0.0010%以上は必要である。一方で、過剰に添加したNが窒化物を形成せずに固溶Nとして残ると、靱性低下を招くため、上限を0.0060%とする。好ましくは、0.0020〜0.0050%である。
N: 0.0010-0.0060%
N is an element that forms nitrides such as Nb and Ti, and is useful for refining the structure, so 0.0010% or more is necessary. On the other hand, if excessively added N remains as solute N without forming a nitride, the toughness is reduced, so the upper limit is made 0.0060%. Preferably, it is 0.0020 to 0.0050%.

以上の各成分を含有し、残部はFeおよび不可避不純物である。この基本成分に加えて、さらに必要に応じて、V:0.050%以下、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下およびMo:1.0%以下の1種または2種以上を含有することができる。
すなわち、Vは、析出強化元素であり、そのためには0.005%以上で含有することが好ましい。しかし、0.050%以上含まれると、析出脆化を引き起こすため、上限を0.050%とすることが好ましい。より好ましくは、0.010〜0.050%である。
Each of the above components is contained, and the balance is Fe and inevitable impurities. In addition to this basic component, one or more of V: 0.050% or less, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, and Mo: 1.0% or less are added as necessary. Can be contained.
That is, V is a precipitation strengthening element, and for that purpose, V is preferably contained in an amount of 0.005% or more. However, when 0.050% or more is contained, precipitation embrittlement is caused, so the upper limit is preferably made 0.050%. More preferably, it is 0.010 to 0.050%.

また、Cu、Ni、CrおよびMoは、強度向上に寄与する元素であり、溶接性の観点から後述のCeqの上限を超えない範囲で必要に応じて添加することができる。そのためには、各元素とも、0.01%以上で添加することが好ましい。一方、各元素とも、1.0%を超えると、靭性および溶接性の低下やコストの上昇に繋がるため、それぞれ1.0%以下とすることが好ましい。   Cu, Ni, Cr, and Mo are elements that contribute to strength improvement, and can be added as necessary within a range that does not exceed the upper limit of Ceq described later from the viewpoint of weldability. For that purpose, it is preferable to add each element at 0.01% or more. On the other hand, if each element exceeds 1.0%, it leads to a decrease in toughness and weldability and an increase in cost.

Ceq:0.44%以下
下記した式(1)に従うCeqを高くすることにより、母材強度を高めることが可能であるが、Ceqが高すぎると母材靱性や溶接部靱性の低下を招くため、上限を0.44%とする。より好ましくは、0.43%以下である。尚、式(1)中の元素表示は、該元素の含有量を示し、含まれない元素はゼロとする。

Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
Ceq: 0.44% or less It is possible to increase the strength of the base metal by increasing the Ceq according to the following formula (1). However, if Ceq is too high, the base material toughness and weld toughness will be reduced. Is 0.44%. More preferably, it is 0.43% or less. In addition, the element display in Formula (1) shows content of this element, and the element which is not contained is set to zero.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)

ここで、化学成分組成を(0.10〜0.13)%C−0.3%Si−1.5%MnにNb量を変化させた鋼素材を用いて、フランジ厚12mm〜40mmのH形鋼の製造に相当する熱間圧延を行い、種々の強度および靱性を評価するとともに、ミクロ組織の解析を行った。その結果を踏まえて、本発明におけるミクロ組織および製造条件を限定した。以下に、ミクロ組織および製造条件に関する限定理由を述べる。   Here, heat corresponding to the manufacture of H-section steel with a flange thickness of 12 mm to 40 mm using a steel material whose chemical composition is changed from (0.10 to 0.13)% C-0.3% Si-1.5% Mn to the Nb content. Hot rolling was performed to evaluate various strengths and toughnesses and to analyze the microstructure. Based on the results, the microstructure and manufacturing conditions in the present invention were limited. The reasons for limitation concerning the microstructure and manufacturing conditions will be described below.

[ミクロ組織]
フェライト平均粒径:15μm以下
上記組成の素材を熱間圧延後に空冷した場合のミクロ組織は、フェライトを主相として、第2相がパーライトおよび/またはベイナイトである。本発明で所期する降伏強度YP:355MPa以上かつ−40℃のシャルピー吸収エネルギー:50J以上を達成するためには、フェライト粒を微細化することが重要である。すなわち、フェライト平均粒径が15μmを超えると−40℃での靱性が低下するため、フェライト平均粒径は15μm以下にする必要がある。
[Microstructure]
Ferrite average particle size: 15 μm or less The microstructure of the material having the above composition when air-cooled after hot rolling has ferrite as the main phase and the second phase is pearlite and / or bainite. In order to achieve the desired yield strength YP: 355 MPa or more and Charpy absorbed energy of −40 ° C .: 50 J or more, it is important to refine the ferrite grains. That is, if the ferrite average particle size exceeds 15 μm, the toughness at −40 ° C. is lowered, so the ferrite average particle size needs to be 15 μm or less.

島状マルテンサイトの分率:3.0%以下
ミクロ組織におけるフェライト以外の部分、すなわち第二相は、パーライトおよび/またはベイナイトである。該ベイナイトには、一部島状マルテンサイトが含まれることがあるが、島状マルテンサイトは硬質相であり破壊の起点となるため、この島状マルテンサイトが生成すると−40℃の靱性が低下するため、その面積率は3.0%以下にする必要がある。好ましくは、2.5%以下である。
なお、ここで言う島状マルテンサイトの面積率は、全組織の面積に対する島状マルテンサイトの面積率である。また、主相となるフェライトは、面積率で70%以上、好ましくは80%以上である。一方、第二相であるパーライトおよび/またはベイナイトは、面積率で25%以下であることが好ましい。なぜなら、硬質なパーライトおよび/またはベイナイトの面積率が25%を超えると母材靱性が低下するためである。
Island-like martensite fraction: 3.0% or less The portion other than ferrite in the microstructure, that is, the second phase is pearlite and / or bainite. The bainite may contain some island-like martensite, but the island-like martensite is a hard phase and serves as a starting point for fracture. Therefore, when this island-like martensite is formed, the toughness at −40 ° C. decreases. Therefore, the area ratio needs to be 3.0% or less. Preferably, it is 2.5% or less.
In addition, the area ratio of island-shaped martensite here is an area ratio of island-shaped martensite with respect to the area of the whole structure. Further, the ferrite as the main phase has an area ratio of 70% or more, preferably 80% or more. On the other hand, the second phase, pearlite and / or bainite, is preferably 25% or less in terms of area ratio. This is because when the area ratio of hard pearlite and / or bainite exceeds 25%, the base material toughness decreases.

[製造条件]
上記した成分組成を有する鋼素材を、1150℃以上1300℃未満で加熱後、少なくともフランジ相当部分の表面温度が下記式(2)で算出されるTR℃以下での累積圧下率が20%以上の熱間圧延を行うことが肝要である。

TR=174 log[Nb× (C+12/14N)]+1344 ・・・(2)
[Production conditions]
After heating the steel material having the above composition at 1150 ° C or higher and lower than 1300 ° C, at least the surface temperature of the portion corresponding to the flange is less than TR ° C calculated by the following formula (2). It is important to perform hot rolling.
Record
TR = 174 log [Nb × (C + 12 / 14N)] + 1344 (2)

加熱温度:1150℃以上1300℃未満
H形鋼の製造では、熱間圧延にて形状制御することが重要であり、変形抵抗が小さい高温域で加工するために1150℃以上に加熱する必要がある。さらに、Nb(C,N)を十分に固溶させるためには、1200℃以上で加熱することが好ましい。一方で、加熱温度が高すぎると、TiN析出物が固溶し、オーステナイト粒の粗大化を抑制する効果が小さくなる結果、組織が粗大になって靱性低下を招くため、加熱温度は1300℃未満とする。好ましくは、1290℃以下である。
Heating temperature: 1150 ° C or more and less than 1300 ° C In the production of H-section steel, it is important to control the shape by hot rolling, and it is necessary to heat to 1150 ° C or higher in order to work in a high temperature range with low deformation resistance . Furthermore, in order to sufficiently dissolve Nb (C, N), it is preferable to heat at 1200 ° C. or higher. On the other hand, if the heating temperature is too high, the TiN precipitate is dissolved, and the effect of suppressing the coarsening of the austenite grains is reduced. As a result, the structure becomes coarse and the toughness is reduced, so the heating temperature is less than 1300 ° C. And Preferably, it is 1290 ° C. or lower.

熱間圧延:少なくともフランジ相当部分の表面温度が上記式(2)で算出されるTR℃以下での累積圧下率が20%以上
ここで、上記式(2)は、上記した成分系において、Nb添加を行った場合のオーステナイトの未再結晶温度域を実験的に求めた結果である。すなわち、C、NおよびNbの量に応じて上記式(2)で計算される温度以下にて、累積圧下率20%以上の圧延を行うことにより、制御圧延効果を最大限に活用することが可能である。その結果、YP355MPa以上の強度と−40℃での靱性を安定的に確保できる。なお、累積圧下率は高いほどフェライト粒径が微細化し、強度並びに靱性の向上に寄与するため、さらにYP420MPa以上の高強度が要請される場合は、累積圧下率を30%以上とすることが好ましい。一方、過度に累積圧下を加えると、圧延時の荷重増大や形状確保が困難となることから、50%を上限とすることが好ましい。なお、上記式(2)で算出されるTR℃超での圧下率は、特に規定する必要はなく、TR℃以下での累積圧下率の規定により所望の強度および靱性を確保できる。
Hot rolling: At least the surface temperature of the portion corresponding to the flange is 20% or more when the cumulative temperature reduction is less than or equal to TR ° C calculated by the above formula (2). Here, the above formula (2) It is the result of having calculated | required experimentally the non-recrystallization temperature range of austenite at the time of adding. That is, it is possible to make maximum use of the controlled rolling effect by rolling at a cumulative reduction ratio of 20% or more at a temperature equal to or lower than the temperature calculated by the above formula (2) according to the amounts of C, N and Nb. Is possible. As a result, a strength of YP355 MPa or more and toughness at −40 ° C. can be secured stably. In addition, since the ferrite grain size becomes finer as the cumulative rolling reduction is higher and contributes to the improvement of strength and toughness, when a higher strength of YP420 MPa or more is required, the cumulative rolling reduction is preferably 30% or more. . On the other hand, if the cumulative reduction is applied excessively, it becomes difficult to increase the load during rolling and to ensure the shape. Therefore, the upper limit is preferably 50%. In addition, it is not necessary to prescribe | regulate especially the rolling reduction | decrease exceeding TR degreeC calculated by the said Formula (2), and desired intensity | strength and toughness can be ensured by prescription | regulation of the cumulative rolling reduction | decrease below TR degreeC.

ここで、少なくともフランジ相当部分の表面温度で規定するのは、材質評価位置であるフランジ部の表面温度を放射温度計等で測温管理して制御圧延を行うためである。   Here, the reason why the surface temperature of at least the portion corresponding to the flange is defined is that the surface temperature of the flange portion, which is the material evaluation position, is temperature-controlled with a radiation thermometer or the like and controlled rolling is performed.

以上の製造条件に従うことによって、熱間圧延後は(加速冷却することなく単なる)空冷を経て所望の強度および靱性を確保出来る上に、形状安定化も図られる。また、空冷程度の冷却速度で冷却することにより、靭性低下の要因である島状マルテンサイトの分解を促進し、低温靭性を向上することが可能となる。   By following the above manufacturing conditions, after hot rolling, desired strength and toughness can be secured through air cooling (without accelerating cooling) and shape stabilization can be achieved. Moreover, by cooling at a cooling rate of about air cooling, it is possible to promote the decomposition of island martensite, which is a cause of toughness reduction, and improve low temperature toughness.

表1に示す種々の成分組成に調整した鋼素材を、表2に示す条件に従って熱間圧延し、フランジ厚が種々に異なる圧延H形鋼を製造した。得られたH形鋼の表面からフランジ幅1/6位置から圧延方向に平行にJIS 1A号引張試験片を採取し、引張試験を行って降伏強さ(YP)および引張強さ(TS)を求めた。また、前記フランジ幅1/6位置の表面下1/4t(t:フランジ厚さ)部から圧延方向に平行にシャルピー衝撃試験片を採取し、0℃での吸収エネルギー、−40℃での吸収エネルギーおよび−60℃での吸収エネルギーをそれぞれ評価した。その評価結果を表2に併記する。   Steel materials adjusted to various component compositions shown in Table 1 were hot-rolled according to the conditions shown in Table 2 to produce rolled H-section steels having different flange thicknesses. JIS No. 1A tensile test specimen was taken from the surface of the obtained H-shaped steel in parallel with the rolling direction from the 1/6 position of the flange width, and the tensile strength test was performed to determine the yield strength (YP) and tensile strength (TS). Asked. In addition, a Charpy impact test piece was taken in parallel to the rolling direction from a 1 / 4t (t: flange thickness) part below the surface at the flange width 1/6 position, and absorbed energy at 0 ° C. and absorbed at −40 ° C. The energy and the absorbed energy at −60 ° C. were evaluated. The evaluation results are also shown in Table 2.

さらに、フランジ幅1/6位置よりミクロ組織観察用試料を切り出し、圧延方向およびフランジ厚方向に平行な面を観察面として、この観察面を研磨、エッチング後に光学顕微鏡により倍率100〜400倍でミクロ組織観察を行った。そして、主相および第2相のミクロ組織の同定を行うとともに、画像解析によりフェライト分率(面積率)とフェライト粒径(平均粒径)とを求めた。また、前記ミクロ組織観察用試料を走査型電子顕微鏡(SEM)により、倍率1000倍で観察し、画像解析により島状マルテンサイトの面積率(MA分率)を求めた。これらの結果についても、表2に併記する。   Further, a sample for microstructural observation is cut out from the flange width 1/6 position, the surface parallel to the rolling direction and the flange thickness direction is taken as the observation surface, this observation surface is polished, and after etching, microscopically at a magnification of 100 to 400 times using an optical microscope. Tissue observation was performed. Then, the microstructures of the main phase and the second phase were identified, and the ferrite fraction (area ratio) and the ferrite particle size (average particle size) were determined by image analysis. The microstructure observation sample was observed with a scanning electron microscope (SEM) at a magnification of 1000 times, and the area ratio (MA fraction) of island martensite was determined by image analysis. These results are also shown in Table 2.

Figure 2019088206
Figure 2019088206

Figure 2019088206
Figure 2019088206

発明例では、降伏強度YP355MPa以上、引張強さTS460〜690MPaおよび−40℃でのシャルピー吸収エネルギー50J以上を満足しているが、成分や製造条件が外れた場合には、いずれかの特性が目標を満足していない。   In the invention example, the yield strength is YP355MPa or more, the tensile strength is TS460 ~ 690MPa and Charpy absorbed energy at -40 ℃ is 50J or more. Not satisfied.

Claims (3)

質量%で、
C:0.08〜0.16%、
Si:0.05〜0.60%、
Mn:0.10〜1.80%、
Nb:0.005〜0.060%、
Ti:0.0010〜0.0200%、
Al:0.080%以下、
N:0.0010〜0.0060%、
P:0.030%以下および
S:0.030%以下
を、下記式(1)に従うCeqが0.44%以下となる範囲で含有し、残部はFeおよび不可避的不純物の成分組成と、平均粒径が15μm以下のフェライトを主相とするミクロ組織とを有し、該ミクロ組織は、第2相がパーライトおよび/またはベイナイトであり、かつ島状マルテンサイトが3.0%以下であるH形鋼。

Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
但し、式中の元素表示は該元素の含有量を示し、含まれない元素はゼロとする。
% By mass
C: 0.08 to 0.16%,
Si: 0.05-0.60%
Mn: 0.10 to 1.80%
Nb: 0.005-0.060%,
Ti: 0.0010-0.0200%,
Al: 0.080% or less,
N: 0.0010 to 0.0060%,
P: 0.030% or less and S: 0.030% or less in a range where Ceq according to the following formula (1) is 0.44% or less, the balance is the component composition of Fe and unavoidable impurities, and the average particle size is 15 μm or less H-shaped steel having a microstructure with ferrite as a main phase, wherein the second phase is pearlite and / or bainite, and island martensite is 3.0% or less.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
However, the element display in the formula indicates the content of the element, and the elements not included are zero.
前記成分組成は、さらに質量%で、
V:0.050%以下、
Cu:1.0%以下、
Ni:1.0%以下、
Cr:1.0%以下および
Mo:1.0%以下
のうちの1種または2種以上を含有する請求項1に記載のH形鋼。
The component composition is further mass%,
V: 0.050% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
Cr: 1.0% or less and
Mo: H-section steel according to claim 1, containing one or more of 1.0% or less.
請求項1または2に記載の成分組成を有する鋼素材を、1150℃以上1300℃未満で加熱後、少なくともフランジ相当部分の表面温度が下記式(2)で算出されるTR℃以下での累積圧下率が20%以上の熱間圧延を行うH形鋼の製造方法。

TR=174 log[Nb× (C+12/14N)]+1344 ・・・(2)
After heating the steel material having the component composition according to claim 1 at 1150 ° C or higher and lower than 1300 ° C, at least the surface temperature of the portion corresponding to the flange is cumulatively reduced below TR ° C calculated by the following formula (2) A method for manufacturing H-section steel that performs hot rolling at a rate of 20% or more.
Record
TR = 174 log [Nb × (C + 12 / 14N)] + 1344 (2)
JP2019515548A 2017-10-31 2018-10-31 H-section steel and its manufacturing method Active JP6856119B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017210217 2017-10-31
JP2017210217 2017-10-31
PCT/JP2018/040599 WO2019088206A1 (en) 2017-10-31 2018-10-31 H-shaped steel and method for producing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020118981A Division JP7010339B2 (en) 2017-10-31 2020-07-10 H-section steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2019088206A1 true JPWO2019088206A1 (en) 2019-11-21
JP6856119B2 JP6856119B2 (en) 2021-04-07

Family

ID=66332678

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019515548A Active JP6856119B2 (en) 2017-10-31 2018-10-31 H-section steel and its manufacturing method
JP2020118981A Active JP7010339B2 (en) 2017-10-31 2020-07-10 H-section steel and its manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020118981A Active JP7010339B2 (en) 2017-10-31 2020-07-10 H-section steel and its manufacturing method

Country Status (5)

Country Link
JP (2) JP6856119B2 (en)
KR (2) KR102419241B1 (en)
CN (1) CN111356779A (en)
SG (1) SG11202003218UA (en)
WO (1) WO2019088206A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022074057A (en) * 2020-10-29 2022-05-17 Jfeスチール株式会社 Projecting h-beam and method for producing the same
CN112410665B (en) * 2020-11-10 2021-10-29 马鞍山钢铁股份有限公司 Thick hot-rolled H-shaped steel for inhibiting grain growth and production method thereof
CN115821154B (en) * 2022-09-07 2023-12-01 马鞍山钢铁股份有限公司 Super-thick hot-rolled H-shaped steel with good Z-direction performance and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158543A (en) * 1997-12-01 1999-06-15 Sumitomo Metal Ind Ltd Production of rolled shape steel excellent in toughness in weld zone
JP2001003136A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Rolled shape steel with high strength and high toughness, and its manufacture
JP2016084524A (en) * 2014-10-27 2016-05-19 新日鐵住金株式会社 H shape steel for low temperature and manufacturing method therefor
JP2016156032A (en) * 2015-02-23 2016-09-01 新日鐵住金株式会社 H-shaped steel for low temperature and method for producing the same
CN107227430A (en) * 2017-06-24 2017-10-03 马鞍山钢铁股份有限公司 A kind of hot rolled H-shaped and its production method with 60 DEG C of good low-temperature toughness

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194113C (en) * 2003-04-30 2005-03-23 清华大学 Mn-Si-Cr air-cooled granular bainite/ferrite polyphase Steel
JP2006180584A (en) 2004-12-21 2006-07-06 Japan Servo Co Ltd Rotary drive mechanism
JP4874435B2 (en) * 2010-02-08 2012-02-15 新日本製鐵株式会社 Thick steel plate manufacturing method
US9644372B2 (en) 2011-12-15 2017-05-09 Nippon Steel & Sumitomo Metal Corporation High-strength H-beam steel exhibiting excellent low-temperature toughness and method of manufacturing same
KR20140056765A (en) * 2012-10-31 2014-05-12 현대제철 주식회사 Shape steel and method of manufacturing the same
JP6146358B2 (en) * 2014-03-28 2017-06-14 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
JP6763141B2 (en) * 2015-02-10 2020-09-30 日本製鉄株式会社 Manufacturing method of steel plate for LPG tank
WO2017150665A1 (en) * 2016-03-02 2017-09-08 新日鐵住金株式会社 H-shaped steel for low temperatures and method for manufacturing same
JP6610520B2 (en) * 2016-11-30 2019-11-27 Jfeスチール株式会社 Steel sheet pile and manufacturing method thereof
CN107012392B (en) * 2017-05-15 2019-03-12 河钢股份有限公司邯郸分公司 A kind of 600MPa grade high-strength low-alloy cold-strip steel and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158543A (en) * 1997-12-01 1999-06-15 Sumitomo Metal Ind Ltd Production of rolled shape steel excellent in toughness in weld zone
JP2001003136A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Rolled shape steel with high strength and high toughness, and its manufacture
JP2016084524A (en) * 2014-10-27 2016-05-19 新日鐵住金株式会社 H shape steel for low temperature and manufacturing method therefor
JP2016156032A (en) * 2015-02-23 2016-09-01 新日鐵住金株式会社 H-shaped steel for low temperature and method for producing the same
CN107227430A (en) * 2017-06-24 2017-10-03 马鞍山钢铁股份有限公司 A kind of hot rolled H-shaped and its production method with 60 DEG C of good low-temperature toughness

Also Published As

Publication number Publication date
JP2020172707A (en) 2020-10-22
JP6856119B2 (en) 2021-04-07
KR102419241B1 (en) 2022-07-11
SG11202003218UA (en) 2020-05-28
CN111356779A (en) 2020-06-30
KR102419239B1 (en) 2022-07-08
KR20220060560A (en) 2022-05-11
KR20200058524A (en) 2020-05-27
JP7010339B2 (en) 2022-02-10
WO2019088206A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
CN108368594B (en) High-strength steel material having excellent low-temperature strain aging impact characteristics and weld heat-affected zone impact characteristics, and method for producing same
JP5910219B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP2009270194A (en) PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
JP6645107B2 (en) H-section steel and manufacturing method thereof
JP7010339B2 (en) H-section steel and its manufacturing method
JP2008163446A (en) Steel member for high heat input welding
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP2014218707A (en) Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same
JPWO2014175122A1 (en) H-section steel and its manufacturing method
JP2022510216A (en) Steel material with excellent toughness of weld heat affected zone and its manufacturing method
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2007131925A (en) STEEL SHEET FOR HIGH STRENGTH LINE PIPE HAVING LOW TEMPERATURE TOUGHNESS AND HAVING TENSILE STRENGTH IN CLASS OF >=900 MPa, LINE PIPE USING THE SAME AND METHOD FOR PRODUCING THEM
JP2017057483A (en) H-shaped steel and production method therefor
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP6327186B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JP5903907B2 (en) High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof
JP7266673B2 (en) Steel plate of low yield ratio steel material excellent in toughness of weld heat affected zone and manufacturing method thereof
JP6579135B2 (en) Low yield ratio steel sheet for construction and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6856119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250