JPWO2019058912A1 - Allophane membrane composite, sheet using the same, and method for producing allophane membrane composite - Google Patents

Allophane membrane composite, sheet using the same, and method for producing allophane membrane composite Download PDF

Info

Publication number
JPWO2019058912A1
JPWO2019058912A1 JP2019543512A JP2019543512A JPWO2019058912A1 JP WO2019058912 A1 JPWO2019058912 A1 JP WO2019058912A1 JP 2019543512 A JP2019543512 A JP 2019543512A JP 2019543512 A JP2019543512 A JP 2019543512A JP WO2019058912 A1 JPWO2019058912 A1 JP WO2019058912A1
Authority
JP
Japan
Prior art keywords
allophane
film
base material
composite
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019543512A
Other languages
Japanese (ja)
Other versions
JP6778863B2 (en
Inventor
松本 泰治
泰治 松本
鈴木 宗
宗 鈴木
一智 飯塚
一智 飯塚
佐伯 和彦
和彦 佐伯
明渡 純
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Prefecture
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tochigi Prefecture
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Prefecture, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tochigi Prefecture
Publication of JPWO2019058912A1 publication Critical patent/JPWO2019058912A1/en
Application granted granted Critical
Publication of JP6778863B2 publication Critical patent/JP6778863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Abstract

アルミ基材、不織布等の基材にアロフェン単味の膜を形成したアロフェン膜複合体を提供するとともに、その密着強度や剥離強度を高めることを目的とする。また、アロフェン膜複合体の製造方法を提供する。さらに、アルミ基材、不織布等の基材にアロフェン単味の膜を形成したアロフェン膜複合体を用いたシートを提供する。本発明の一実施形態に係るアロフェン膜複合体は、基材と、前記基材上に堆積された平均直径が3.5nm以上10nm以下を備えるアロフェン膜と、を備え、前記基材と前記アロフェン膜との密着力が4N/10mm以上、90度の曲げ試験を繰り返して前記アロフェン膜が前記基材から剥離する回数が1回以上である。An object is to provide an allophane film composite in which an allophane plain film is formed on a base material such as an aluminum base material and a non-woven fabric, and to increase the adhesion strength and peel strength thereof. Also provided is a method for producing an allophane membrane complex. Further, the present invention provides a sheet using an allophane film composite in which a film of allophane is formed on a substrate such as an aluminum substrate or a non-woven fabric. An allophane film composite according to an embodiment of the present invention includes a substrate and an allophane film having an average diameter of 3.5 nm or more and 10 nm or less deposited on the substrate, the substrate and the allophane. The adhesive force with the film is 4 N/10 mm or more, and the number of times the allophane film is peeled off from the substrate by repeating the bending test at 90 degrees is 1 or more.

Description

本発明は、エアロゾルデポジション法により形成させた粘土鉱物アロフェン膜が基材との密着性を備えるアロフェン膜複合体に関する。The present invention relates to an allophane film composite in which a clay mineral allophane film formed by an aerosol deposition method has adhesion to a substrate.

アロフェンは、軽石や火山灰など火山噴出物に由来する土壌に多く賦存する低結晶性アルミニウムケイ酸塩および非晶質アルミニウムケイ酸塩である。アロフェンはケイ素(Si)、アルミニウム(Al)、酸素(O)および水素(H)(水酸基(OH))からなる。その形態は直径3.5nm〜5nmの中空球で、比表面積(〜900m2/g)を有し、1層のギブサイト八面体シートを球壁とし、SiO4四面体がその内側に結合した構造を有し、球壁に0.3nm〜0.5nmの貫通孔が多く存在する。このような特徴的構造のためアロフェンは大きな表面積を持ち、表面に水酸基を持つことから、水、有機物質、各種ガス成分等を吸着できる。これらの特性から、アロフェンは、天然ガス等の燃料貯蔵媒体や生活環境の湿度を自律的に制御する湿度調整材等の様々な分野で応用されている。Allophane is a low-crystalline aluminum silicate and amorphous aluminum silicate that are mainly present in soil derived from volcanic products such as pumice and ash. Allophane is composed of silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) (hydroxyl group (OH)). Its form is a hollow sphere with a diameter of 3.5 nm to 5 nm, a specific surface area (~900 m 2 /g), a single layer of gibbsite octahedral sheet as a spherical wall, and a structure in which SiO 4 tetrahedra are bonded to the inside. And there are many through holes of 0.3 nm to 0.5 nm in the spherical wall. Due to such a characteristic structure, allophane has a large surface area and has a hydroxyl group on the surface, so that it can adsorb water, organic substances, various gas components and the like. Due to these characteristics, allophane is applied in various fields such as a fuel storage medium such as natural gas and a humidity adjusting material that autonomously controls the humidity of the living environment.

しかしながら、アロフェンはナノ粒子であるため、工業的な利用にあたってはハンドリングを容易にするため、様々な形状に成形されて使用されている。アロフェン製品の主な形状には、粉末状、顆粒状、タブレット状、膜状がある。このうち、粉末状、顆粒状、タブレット状のアロフェン製品は、使用の際に小分けに包装するか、専用のケースに充填する必要がある。そのため、それぞれの使用空間に余分な容積が必要となり、使用できる領域が限られる。However, since allophane is nanoparticles, it is molded into various shapes and used in order to facilitate handling in industrial use. The main shapes of allophane products are powder, granules, tablets and films. Of these, powder, granule, and tablet allophane products must be packaged in small portions or filled in a dedicated case before use. Therefore, an extra volume is required for each used space, and the usable area is limited.

一方、そのような制限がない膜状のアロフェンは、より広い領域で使用でき、これまで無かった応用も期待できる。例えば、包装資材にアロフェンをコーティングすれば、包装資材自体に乾燥特性を付加できるため、別途の乾燥剤を同封する必要がなくなるなど、自由な形状の乾燥剤、吸着剤として様々な産業分野に応用できる。On the other hand, the membranous allophane that does not have such a limitation can be used in a wider area and can be expected to have an application which has not been available until now. For example, by coating allophane on the packaging material, it is possible to add drying characteristics to the packaging material itself, eliminating the need to enclose a separate desiccant. it can.

膜状にアロフェンを成形する方法として、以下のような結合材を用いた塗料・コーティング材が提案されている。例えば、特許文献1には、アロフェンの付着した固相被覆体の表面に常温硬化性ガラスを塗布して、アロフェンの空隙をガラスで結合した複合体を形成して被覆する方法が記載されている。また、特許文献2には、白色顔料、シラン化合物および溶媒を含有する塗布液が記載されている。As a method for molding allophane in a film form, paints and coating materials using the following binders have been proposed. For example, Patent Document 1 describes a method in which room temperature curable glass is applied to the surface of a solid-phase coating body to which allophane is attached to form a composite body in which voids of allophane are bonded with glass to coat the composite material. .. Patent Document 2 describes a coating liquid containing a white pigment, a silane compound and a solvent.

特許文献3及び4には、アロフェンがコーティングされたアロフェン−酸化チタン複合粒子と樹脂成分とを含む耐候性・耐汚染性エマルション塗料を製造する方法が記載されている。また、特許文献5には、調湿・ガス吸着性を有する多孔質の連続皮膜を形成するためのアロフェンと樹脂からなるコーティング剤が記載されている。また、特許文献6には、合成樹脂が配合された水性エマルジョンにアロフェン粒子が配合された透明塗材の塗膜が記載されている。また、特許文献7には、無機調湿材を5〜95重量%と、樹脂バインダー(固形分)を1〜25重量%と、透湿性付与剤(固形分)を0.1〜15重量%と含む塗壁材が記載されている。特許文献8には、アロフェンとスラグ、セメント等の水硬性物質ならびに有機質補強繊維および無機質繊維の何れか一方または双方を含む吸放湿性基材の表面に、吸放湿性材料粒粉が添加された塗料による塗膜層を形成してなる吸放湿性防火建材が記載されている。また、特許文献9には、アロフェンをラテックス等の水性結合媒体や膜形成性のある塗料等と混合し、薄片又は処理基材上に均一に形成されたアロフェン膜が記載されている。Patent Documents 3 and 4 describe a method for producing a weather-resistant and stain-resistant emulsion paint containing allophane-coated titanium oxide composite particles and a resin component. Further, Patent Document 5 describes a coating agent composed of an allophane and a resin for forming a porous continuous film having humidity control and gas adsorption properties. Further, Patent Document 6 describes a coating film of a transparent coating material in which allophane particles are mixed in an aqueous emulsion in which a synthetic resin is mixed. Further, in Patent Document 7, the inorganic humidity control material is 5 to 95% by weight, the resin binder (solid content) is 1 to 25% by weight, and the moisture permeability imparting agent (solid content) is 0.1 to 15% by weight. The coated wall material including is described. In Patent Document 8, a moisture absorbing/releasing material granular powder is added to the surface of a moisture absorbing/releasing base material containing a hydraulic substance such as allophane, slag, and cement, and either one or both of an organic reinforcing fiber and an inorganic fiber. A moisture absorptive and desorptive fireproof building material formed by forming a coating film layer with a paint is described. Further, Patent Document 9 describes an allophane film formed by mixing allophane with an aqueous binding medium such as latex or a paint having film-forming property and uniformly formed on a thin piece or a treated substrate.

アロフェンを練り込んだ繊維を布上に加工する、以下のような方法も提案されている。例えば、特許文献10及び11には、アロフェンを合成繊維中に練り込まれ、繊維構造体として膜体の形態で利用することが記載されている。また、特許文献12には、合成繊維からなる構造体の表面に、アロフェンを含有するコーティング剤を付与することが記載されている。The following methods have also been proposed for processing a fabric on which fibers are kneaded with allophane. For example, Patent Documents 10 and 11 describe that allophane is kneaded into a synthetic fiber and used as a fiber structure in the form of a film. Further, Patent Document 12 describes that a coating agent containing allophane is applied to the surface of a structure made of synthetic fibers.

また、特許文献13には、アロフェンを紙への透き込む方法が提案されている。Further, Patent Document 13 proposes a method of allowing allophane to penetrate into paper.

特開2014−226632号公報JP, 2014-226632, A 特開2014−141626号公報JP, 2014-141626, A 特開2010−150434号公報JP, 2010-150434, A 特開2010−058994号公報JP, 2010-058994, A 特開2008−138167号公報JP, 2008-138167, A 特開2007−063779号公報JP, 2007-063779, A 特開2006−002407号公報JP 2006-002407 A 特開2003−155786号公報JP, 2003-155786, A 特開2001−047493号公報JP 2001-047493 A 特開2006−218403号公報JP, 2006-218403, A 特開2005−105447号公報JP, 2005-105447, A 特開2005−105448号公報JP, 2005-105448, A 特開2003−073997号公報JP, 2003-073997, A

これら膜状アロフェンを提供する先行技術は、結合材や繊維・紙の内部にアロフェンが埋没し、その細孔が少なからず閉塞することで、吸着等の特性低下が避けられない。本発明は、従来の欠点を鑑みてなされたもので、アルミ基材、不織布等の基材にアロフェン単味の膜を形成したアロフェン膜複合体を提供するとともに、その密着強度を高めることを目的とする。また、アロフェン膜複合体の製造方法を提供する。さらに、アルミ基材、不織布等の基材にアロフェン単味の膜を形成したアロフェン膜複合体を用いたシートを提供する。In the prior arts that provide these film-like allophane, the allophane is buried inside the binder, the fiber, and the paper, and the pores of the allophane are blocked to some extent. The present invention has been made in view of the conventional drawbacks, and an object thereof is to provide an allophane film composite in which an allophane simple film is formed on a substrate such as an aluminum substrate and a non-woven fabric, and to increase the adhesion strength thereof. And Also provided is a method for producing an allophane membrane complex. Furthermore, a sheet using an allophane film composite in which an allophane plain film is formed on a substrate such as an aluminum substrate or a non-woven fabric is provided.

本発明の一実施形態に係るアロフェン膜複合体は、基材と、平均直径が3.5nm以上10nm以下を備えるアロフェンが前記基材上に堆積したアロフェン膜と、を備え、前記基材と前記アロフェン膜との密着力が4N/10mm以上、90度の曲げ試験を繰り返して前記アロフェン膜が前記基材から剥離する回数が1回以上である。An allophane film composite according to an embodiment of the present invention includes a substrate, and an allophane film having an average diameter of 3.5 nm or more and 10 nm or less and on which the allophane is deposited on the substrate. The adhesion with the allophane film is 4 N/10 mm or more, and the number of times the allophane film is peeled from the base material by repeating the 90-degree bending test is once or more.

前記アロフェン膜は、厚さが5μm以上70μm以下、吸湿率が10%以上30%以下、表面硬度がH以上を備える。The allophane film has a thickness of 5 μm or more and 70 μm or less, a moisture absorption rate of 10% or more and 30% or less, and a surface hardness of H or more.

前記基材は、ガラス、アルミニウム、アルミナ、不織布、ポリエチレンフィルムでコーティングされた不織布又はアルミナシート、シリカ含有ポリエチレンフィルムでコーティングされたアルミナシート、及びPETシートの群から選ばれる1つである。The substrate is one selected from the group of glass, aluminum, alumina, non-woven fabric, non-woven fabric or alumina sheet coated with polyethylene film, alumina sheet coated with silica-containing polyethylene film, and PET sheet.

前記不織布は、24時間での透湿度が9500g/m2以上1100g/m2以下、通気度が10ml/cm2以上25cc/cm2以下、密度が65g/m2以上80g/m2以下、厚さが0.14mm以上0.25mm以下を備える。The nonwoven fabric is 24 hours of moisture permeability 9500 g / m 2 or more 1100 g / m 2 or less, air permeability 10 ml / cm 2 or more 25 cc / cm 2 or less, a density of 65 g / m 2 or more 80 g / m 2 or less, the thickness Is 0.14 mm or more and 0.25 mm or less.

本発明の一実施形態に係るアロフェン膜複合体の製造方法は、前記何れか1項に記載のアロフェン膜複合体の製造方法において、アロフェン原料微粒子を搬送ガスと混合してエアロゾル化し、エアロゾル化した原料微粒子を、該搬送ガスと共に、ノズルを通して加速して前記基材の表面に向けて噴射せしめることにより、減圧チャンバ内で前記基材にアロフェン膜を形成する。The method for producing an allophane membrane composite according to one embodiment of the present invention is the method for producing an allophane membrane composite according to any one of the above items, wherein the allophane raw material fine particles are mixed with a carrier gas to form an aerosol, which is then aerosolized. The raw material fine particles are accelerated together with the carrier gas through a nozzle and jetted toward the surface of the base material to form an allophane film on the base material in the decompression chamber.

本発明の一実施形態において、吸水シートは、前記基材が不織布であるアロフェン膜複合体を備える。In one embodiment of the present invention, the water absorbent sheet includes an allophane membrane composite in which the base material is a nonwoven fabric.

本発明の一実施形態において、吸着シートは、前記基材が不織布であるアロフェン膜複合体を備える。In one embodiment of the present invention, the adsorption sheet includes an allophane membrane composite in which the base material is a nonwoven fabric.

本発明の一実施形態において、調湿シートは、前記基材が不織布であるアロフェン膜複合体を備える。In one embodiment of the present invention, the humidity control sheet includes an allophane film composite in which the base material is a non-woven fabric.

本発明のアロフェン膜は、結合材を含まないアロフェン単味からなることに特徴がある。結合材によるアロフェン細孔の閉塞がないことから吸着能の低下がない。アロフェン粉末と比較して、アロフェン膜の吸着能の低下がない。また、膜状であるためアロフェン単味のバルク体と比較して、吸着速度が速いという優位点も発現した。The allophane film of the present invention is characterized in that it is made of allophane alone containing no binder. Since the allophane pores are not blocked by the binder, the adsorptivity does not decrease. Compared with the allophane powder, there is no decrease in the adsorption ability of the allophane film. In addition, since it is in the form of a film, it has an advantage that the adsorption rate is faster than that of a bulk material containing only allophane.

本発明の一実施形態に係るアロフェン膜複合体10を示す模式図であり、(a)はアロフェン膜複合体10の斜視図を示し、(b)はアロフェン膜複合体10の断面図を示す。It is a schematic diagram which shows the allophane membrane composite 10 which concerns on one Embodiment of this invention, (a) shows the perspective view of the allophane membrane composite 10, (b) shows the cross section of the allophane membrane composite 10. FIG. 本発明の一実施形態に係るアロフェン原料微粒子17を示し、(a)はアロフェン原料微粒子17の模式図であり、(b)はアロフェン原料微粒子17のSEM像である。The allophane raw material fine particle 17 which concerns on one Embodiment of this invention is shown, (a) is a schematic diagram of the allophane raw material fine particle 17, (b) is a SEM image of the allophane raw material fine particle 17. FIG. 本発明の一実施形態に係るアロフェン膜複合体の製造方法に用いるAD法による製造装置1の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus 1 by AD method used for the manufacturing method of the allophane film composite which concerns on one Embodiment of this invention. 本発明の一実施例に係るアロフェン膜複合体10を示し、(a)はアロフェン膜複合体10の断面の電界放射型電子顕微鏡像を示し、(b)はFIBを用いたアロフェン膜複合体20の断面像を示す。1 shows an allophane film composite 10 according to an embodiment of the present invention, (a) shows a field emission electron microscope image of a cross section of the allophane film composite 10, and (b) shows an allophane film composite 20 using FIB. The cross-sectional image of is shown. 本発明の一実施例に係るアロフェン膜複合体10のアロフェン膜13の透過型電子顕微鏡像である。3 is a transmission electron microscope image of the allophane film 13 of the allophane film composite 10 according to one example of the present invention. 本発明の一実施例に係るアロフェン膜の相対湿度と吸湿率との相関曲線である。4 is a correlation curve between relative humidity and moisture absorption rate of the allophane film according to one example of the present invention. 本発明の一実施例に係るアロフェン膜の重量に対して吸湿量をプロットした図である。It is the figure which plotted the moisture absorption amount with respect to the weight of the allophane film which concerns on one Example of this invention. 本発明の一実施例に係るアロフェン膜複合体の脂肪酸吸着試験の結果を示す。The result of the fatty acid adsorption test of the allophane membrane complex which concerns on one Example of this invention is shown. 本発明の一実施例に係るアロフェン膜複合体の油分吸着試験の結果を示す。The result of the oil adsorption test of the allophane membrane composite concerning one example of the present invention is shown. 本発明の一実施例に係るアロフェン膜複合体のリン酸イオンの吸着試験結果を示す。5 shows the results of a phosphate ion adsorption test of an allophane membrane composite according to an example of the present invention. 本発明の一実施例に係るアロフェン膜複合体の調湿試験の結果を示す。The result of the humidity control test of the allophane membrane composite concerning one example of the present invention is shown. 本発明の一実施例に係るアロフェン膜複合体の吸湿時間に対して吸湿率をプロットした図である。It is the figure which plotted the moisture absorption rate with respect to the moisture absorption time of the allophane membrane composite which concerns on one Example of this invention.

以下、図面を参照して本発明に係るアロフェン膜複合体、それを用いたシート、及びアロフェン膜複合体の製造方法について説明する。なお、本発明のアロフェン膜複合体、それを用いたシート、及びアロフェン膜複合体の製造方法は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び後述する実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, an allophane membrane composite according to the present invention, a sheet using the same, and a method for producing the allophane membrane composite will be described with reference to the drawings. The allophane membrane composite of the present invention, the sheet using the same, and the method for producing the allophane membrane composite are not construed as being limited to the description of the embodiments and examples below. In the drawings referred to in the present embodiment and examples described later, the same portions or portions having similar functions are denoted by the same reference numerals, and repeated description thereof will be omitted.

図1は、本発明の一実施形態に係るアロフェン膜複合体10を示す模式図である。図1(a)はアロフェン膜複合体10の斜視図を示し、図1(b)はアロフェン膜複合体10の断面図を示す。アロフェン膜複合体10は、基材11と、基材11上にアロフェン微粒子15が堆積されたアロフェン膜13と、を備える。アロフェン膜複合体10は、結合材を含まないアロフェン単味(アロフェン微粒子15のみ)からなるアロフェン膜13を備える。このため、アロフェン単味のバルク体に匹敵する従来にない吸着能の有する。また、アロフェン膜13は、アロフェン単味のバルク体と比較して、吸着速度が速い。FIG. 1 is a schematic diagram showing an allophane film composite 10 according to one embodiment of the present invention. FIG. 1A shows a perspective view of the allophane membrane composite 10, and FIG. 1B shows a sectional view of the allophane membrane composite 10. The allophane film composite 10 includes a base material 11 and an allophane film 13 in which the allophane fine particles 15 are deposited on the base material 11. The allophane film composite 10 includes an allophane film 13 which is made of allophane alone (only the allophane fine particles 15) containing no binder. Therefore, it has an unprecedented adsorption capacity comparable to that of a bulk material containing allophane alone. In addition, the allophane film 13 has a higher adsorption rate than the bulk body containing only allophane.

アロフェン(粘土鉱物アロフェンとも称する。)は、国内外から天然に産するものを採用することができる。また、アロフェンはケイ酸とアルミニウムイオンの共存溶液を水酸化ナトリウムなどのアルカリを用いた中和反応により合成することもできる。本発明に係るアロフェン膜複合体には、この合成アロフェンを採用してもよい。天然のアロフェンをそのまま使用することもできるが、好ましくは、含まれる石英や火山ガラスなどの不純物を水ヒ等の分離方法をもってアロフェン純度を高めた原料を用いることで、形成されるアロフェン膜の純度を高めることができる。As allophane (also referred to as clay mineral allophane), one naturally produced in Japan and overseas can be adopted. Allophane can also be synthesized by a neutralization reaction of a coexisting solution of silicic acid and aluminum ions with an alkali such as sodium hydroxide. This synthetic allophane may be adopted in the allophane membrane composite according to the present invention. Although it is possible to use natural allophane as it is, preferably, the purity of the allophene film formed by using a raw material whose allophane purity is increased by a method of separating impurities such as quartz and volcanic glass contained therein by a method such as hydrangea separation. Can be increased.

図2にアロフェン原料微粒子17を示す。図2(a)はアロフェン原料微粒子17の模式図であり、図2(b)はアロフェン原料微粒子17の走査型電子顕微鏡(SEM)像である。アロフェン原料微粒子17は、複数のアロフェン微粒子15が凝集した構造を有する。アロフェン原料微粒子17は数μm〜数十μmの粒径を有する不定形の粒子である。FIG. 2 shows the allophane raw material fine particles 17. FIG. 2A is a schematic view of the allophane raw material fine particles 17, and FIG. 2B is a scanning electron microscope (SEM) image of the allophane raw material fine particles 17. The allophane raw material fine particles 17 have a structure in which a plurality of allophane fine particles 15 are aggregated. The allophane raw material fine particles 17 are amorphous particles having a particle diameter of several μm to several tens of μm.

アロフェン膜13は、空孔を備え、基材11側からアロフェン膜13の表面に向けてアロフェン微粒子15が密から疎の堆積状態を備え、かつ基材11とアロフェン膜13との密な状態である。アロフェン膜13は、厚さが5μm以上70μm以下、吸湿率が10%以上30%以下、表面硬度がH以上を備える。一実施形態において、アロフェン膜13は、基材11側では数十nmの空隙が存在するアロフェン微粒子15が密な状態であり、表面近傍では1μm以下の比較的大きな空隙が存在するアロフェン微粒子15が疎となる状態である。The allophane film 13 has pores, and the allophane fine particles 15 have a dense to sparse deposition state from the side of the base material 11 toward the surface of the allophane film 13, and in the dense state of the base material 11 and the allophane film 13. is there. The allophane film 13 has a thickness of 5 μm or more and 70 μm or less, a moisture absorption rate of 10% or more and 30% or less, and a surface hardness of H or more. In one embodiment, in the allophane film 13, the allophane fine particles 15 having voids of several tens of nm on the base material 11 side are in a dense state, and the allophane fine particles 15 having relatively large voids of 1 μm or less exist near the surface. It is in a sparse state.

アロフェン膜13は、中空状のアルミニウムシリケート(SiO2/Al23)であるアロフェンを備える。アロフェンは、平均直径が3.5nm以上10nm以下である。アロフェン膜13は、吸湿性があり、アロフェン膜13の重量が増えると吸湿量も増える。アロフェン膜13は、水中においても、その形態を保持することができる。The allophane film 13 comprises allophane which is a hollow aluminum silicate (SiO 2 /Al 2 O 3 ). Allophane has an average diameter of 3.5 nm or more and 10 nm or less. The allophane film 13 has hygroscopicity, and as the weight of the allophane film 13 increases, the amount of moisture absorption also increases. The allophane film 13 can retain its shape even in water.

基材11は、ガラス、アルミニウム、アルミナ、不織布、ポリエチレンフィルムでコーティングしてなる不織布又はアルミナシート、シリカ含有ポリエチレンフィルムでコーティングしてなるアルミナシート及びPETシートの群から選ばれる1つである。The substrate 11 is one selected from the group consisting of glass, aluminum, alumina, a non-woven fabric, a non-woven fabric or an alumina sheet coated with a polyethylene film, an alumina sheet coated with a silica-containing polyethylene film, and a PET sheet.

基材11として不織布を選択する場合、不織布は、24時間での透湿度が9500g/m 2以上1100g/m2以下、通気度が10ml/cm2以上25ml/cm2以下、質量が65g/m2以上80g/m2以下、厚さが0.14mm以上0.25mm以下を備える。When a non-woven fabric is selected as the base material 11, the non-woven fabric has a moisture permeability of 9500 g/m in 24 hours. 21100g/m or more2Below, air permeability is 10ml/cm225 ml/cm or more2Below, mass is 65g/m280g/m or more2Hereinafter, the thickness is not less than 0.14 mm and not more than 0.25 mm.

[製造方法]
本発明の一実施形態に係るアロフェン膜複合体10の形成には、エアロゾルデポジション法(AD法)を使用することが好ましい。図3は、本発明の一実施形態に係るアロフェン膜複合体の製造方法に用いるAD法による製造装置1の一例を示す模式図である。AD法については、例えば、特許第3265481号を参照することができる。製造装置1は、例えば、減圧チャンバ2内に基材11と、ノズル4とを配設している。基材11は形成されたアロフェン膜13を支持する。
[Production method]
It is preferable to use the aerosol deposition method (AD method) to form the allophane film composite 10 according to the embodiment of the present invention. FIG. 3 is a schematic diagram showing an example of the manufacturing apparatus 1 by the AD method used in the method for manufacturing an allophane film composite according to one embodiment of the present invention. Regarding the AD method, for example, Japanese Patent No. 3265481 can be referred to. In the manufacturing apparatus 1, for example, the base material 11 and the nozzle 4 are arranged in the decompression chamber 2. The base material 11 supports the formed allophane film 13.

ノズル4はアロフェン原料微粒子17を基材11上に供給し、アロフェン微粒子圧粉体12を形成するものである。アロフェン微粒子圧粉体12はノズル4からアロフェン微粒子15が基材11上に吹き付けられ、この吹き付けによってアロフェン微粒子15に機械的衝撃力が作用してアロフェン微粒子15の間に接合状態が生じた状態である。基材11は基板駆動装置6に取り付けられ、基板駆動装置6に駆動されてチャンバ2内で変位可能である。ノズル4もチャンバ内で変位可能に構成してもよい。The nozzle 4 supplies the allophane raw material fine particles 17 onto the base material 11 to form the allophane fine particle green compact 12. The allophane fine particles 12 are sprayed with the allophane fine particles 15 from the nozzle 4 onto the base material 11, and the mechanical impact force acts on the allophane fine particles 15 by the spraying so that the joined state occurs between the allophane fine particles 15. is there. The substrate 11 is attached to the substrate driving device 6 and is displaceable in the chamber 2 by being driven by the substrate driving device 6. The nozzle 4 may also be displaceable in the chamber.

アロフェン原料微粒子17を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、アロフェン微粒子15を、ノズル4を通して加速して被堆積基材11の表面に向けて噴射せしめることにより、減圧チャンバ2内で基材11にアロフェン膜13を形成させる。このとき、搬送ガスの流量は、2L/min〜7L/min程度とすることが好ましく、基板駆動装置6のスピードは4mm/sec〜10mm/secとすることが好ましい。また、チャンバ2内の圧力を100Pa〜90Paであることが好ましい。搬送ガスとしては、例えば、窒素やアルゴン等の不活性ガスや乾燥した空気等を用いることができる。The allophane raw material fine particles 17 are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the allophane fine particles 15 are accelerated through the nozzle 4 and jetted toward the surface of the deposition target substrate 11, whereby the decompression chamber 2 is evacuated. The allophane film 13 is formed on the base material 11. At this time, the flow rate of the carrier gas is preferably about 2 L/min to 7 L/min, and the speed of the substrate driving device 6 is preferably 4 mm/sec to 10 mm/sec. Further, the pressure inside the chamber 2 is preferably 100 Pa to 90 Pa. As the carrier gas, for example, an inert gas such as nitrogen or argon, dry air, or the like can be used.

また、一実施形態において、ノズル4からの吹き付けによる衝撃力に応じて、使用するアロフェン微粒子材料の機械的強度(脆性破壊強度)などの破壊強度を上述の衝撃力で粉砕が容易に起こるように、長時間ボールミルやジェットミルなどの粉砕機にかけ、クラックなどを予め形成しておいてもよい。Further, in one embodiment, the breaking strength such as mechanical strength (brittle breaking strength) of the allophane fine particle material to be used is easily crushed by the above-mentioned shocking force in accordance with the shocking force caused by spraying from the nozzle 4. Alternatively, it may be subjected to a crushing machine such as a ball mill or a jet mill for a long time to form cracks in advance.

この様なアロフェン粒子材料を使用することで、アロフェン原料微粒子17を少なくとも100nm以下に粉砕し、清浄な新生表面を形成し、低温接合を生じさせ、室温で微粒子同士の接合を実現することができる。この時、使用する元のアロフェン原料微粒子17の粒子径が、50nm以下の場合は、上述した衝撃粉砕は生じにくいと考えられる。また、基板に吹き付ける方法の場合、粒子径が大きすぎると、粉砕に必要な衝撃力を与えることが困難になる。従って、上述したそれぞれの成形方法に対して、適切な粒径範囲(おおよそ、50nm〜5μm)が存在するものと考えられる。By using such an allophane particle material, it is possible to crush the allophane raw material fine particles 17 to at least 100 nm or less, form a clean new surface, cause low temperature bonding, and realize bonding of the particles to each other at room temperature. .. At this time, when the particle size of the original allophane raw material fine particles 17 to be used is 50 nm or less, it is considered that the above impact pulverization is unlikely to occur. Further, in the case of the method of spraying onto the substrate, if the particle size is too large, it becomes difficult to apply the impact force necessary for crushing. Therefore, it is considered that an appropriate particle size range (approximately 50 nm to 5 μm) exists for each of the above-mentioned molding methods.

粘土鉱物としては、ゼオライト、カオリナイト、タルク等が知られているが、アロフェンは、これらの粘土鉱物とはその構造が大きく異なる。ゼオライト、カオリナイト、タルク等の一般的な粘土鉱物は原子配列の長距離秩序を持つ結晶構造を有する。一方、アロフェンは、上述した中空状の球形の構造を有し、球形粒子内の原子配列における短距離秩序を持つものの、一般的な結晶のように原子配列に長距離秩序は有していない。上述したAD法は、従来、結晶性の高い原料微粒子を用いる成膜方法であり、その成膜機構には結晶の塑性変形が寄与していると考えられているため、アロフェンのような結晶性が低い(非晶質)材料に適用することがなかった。Zeolite, kaolinite, talc, etc. are known as clay minerals, but the structure of allophane differs greatly from these clay minerals. Common clay minerals such as zeolite, kaolinite and talc have a long-range ordered crystal structure of atomic arrangement. On the other hand, allophane has the above-mentioned hollow spherical structure and has a short-range order in the atomic arrangement within the spherical particles, but does not have a long-range order in the atomic arrangement like a general crystal. The above-mentioned AD method is a film forming method using raw material fine particles having high crystallinity, and it is considered that plastic deformation of crystals contributes to the film forming mechanism. It was never applied to low (amorphous) materials.

本発明者らは、本発明に係るアロフェン膜複合体の製造方法に類似した成膜方法を用いて、結晶性の多孔質材料であるゼオライトを原料微粒子とする成膜を行ったが、結晶性が低い中空状の球形の構造を有するアロフェンを原料微粒子とする成膜が可能であることは、これまでに予期することはできず、仮に成膜出来たとしても中空構造が潰れ、吸湿特性等が失われると予期された。本発明により吸湿特性等を保持したままの成膜を実現し、初めて報告するものである。The present inventors performed film formation using zeolite, which is a crystalline porous material, as raw material fine particles by using a film formation method similar to the method for producing an allophane film composite according to the present invention. It is unpredictable that it is possible to form a film by using allophane having a low hollow spherical structure as a raw material fine particle, and even if a film can be formed, the hollow structure collapses and the hygroscopic property etc. Was expected to be lost. This is the first report to realize a film formation while maintaining the hygroscopic property according to the present invention.

また、ゼオライトが低湿度条件下での吸湿特性を有するのに対して、アロフェンは中湿度条件下での吸湿特性を有する点で、アロフェン膜複合体は有意な効果を奏する。さらに、アロフェンは、リン酸や有機酸の吸着能を有することから、アロフェン膜複合体を脱臭剤等に利用することができる。Further, the allophane membrane composite has a significant effect in that zeolite has hygroscopicity under low humidity conditions, whereas allophane has hygroscopicity under medium humidity conditions. Furthermore, since allophane has the ability to adsorb phosphoric acid and organic acids, the allophane membrane complex can be used as a deodorant and the like.

以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to these Examples.

(実施例1)
実施例1として、不織布(表面をポリエチレンフィルムでコートした不織布)基材にアロフェン原料微粒子17を噴射してアロフェン膜をAD法で形成した。整粒したアロフェン粉末を流量2.5L/minの窒素ガスでエアロゾル化し、開口幅30mm×0.2mmのノズルを通して、20Paの真空雰囲気のチャンバ内に置いた不織布(表面をポリエチレンフィルムでコートした不織布)基材に噴射してアロフェン膜を形成し、アロフェン膜−不織布複合体を作製した。基材はノズルに対して4mm/sのスピードで変位させながら往復させ、成膜時間500秒、成膜面積は30×100mm2とした。
(Example 1)
As Example 1, the allophane raw material fine particles 17 were sprayed onto a non-woven fabric (non-woven fabric whose surface was coated with a polyethylene film) substrate to form an allophane film by the AD method. A sized allophane powder is aerosolized with nitrogen gas at a flow rate of 2.5 L/min, and is placed in a chamber with a vacuum atmosphere of 20 Pa through a nozzle having an opening width of 30 mm×0.2 mm (a nonwoven fabric whose surface is coated with a polyethylene film). ) An allophane film was formed by spraying on a substrate to prepare an allophane film-nonwoven fabric composite. The substrate was reciprocated while being displaced at a speed of 4 mm/s with respect to the nozzle, and the film formation time was 500 seconds and the film formation area was 30×100 mm 2 .

アロフェン膜−不織布複合体の重さを測定し、成膜前の不織布の重さとの差からアロフェン膜の重さを算出した。その結果、アロフェン膜の重さは0.09gであった。The weight of the allophane film-nonwoven fabric composite was measured, and the weight of the allophane film was calculated from the difference from the weight of the non-woven fabric before film formation. As a result, the weight of the allophane film was 0.09 g.

アロフェン膜−不織布複合体の断面をクロスセクションポリッシャで作製し、電界放射型電子顕微鏡で観察した。図4(a)は、実施例1に係るアロフェン膜複合体10の断面の電界放射型電子顕微鏡像を示す。図4(a)において、不織布基材11上にアロフェン膜13が形成されていることが確認できた。アロフェン膜13の厚みは22μm程度であった。
装置:
クロスセクションポリッシャ:SM−09010
電界放射型電子顕微鏡:JSM−7400F
A cross section of the allophane film-nonwoven fabric composite was prepared with a cross section polisher and observed with a field emission electron microscope. FIG. 4A shows a field emission electron microscope image of a cross section of the allophane film composite 10 according to Example 1. In FIG. 4A, it was confirmed that the allophane film 13 was formed on the non-woven fabric substrate 11. The thickness of the allophane film 13 was about 22 μm.
apparatus:
Cross section polisher: SM-09010
Field Emission Electron Microscope: JSM-7400F

アロフェン膜−不織布複合体を透過型電子顕微鏡で観察した。図5は、実施例1に係るアロフェン複合体10のアロフェン膜13の透過型電子顕微鏡像を示す。図5において、アロフェン膜は、直径5〜10nmの球状粒子が緻密化しており、アロフェンの中空構造が潰れることなく膜化していることが確認できた。
装置:
透過型電子顕微鏡:JEM−2010
The allophane film-nonwoven fabric composite was observed with a transmission electron microscope. FIG. 5 shows a transmission electron microscope image of the allophane film 13 of the allophane composite 10 according to Example 1. In FIG. 5, it was confirmed that the allophane film had spherical particles with a diameter of 5 to 10 nm that were densified, and that the hollow structure of allophane was not collapsed but formed into a film.
apparatus:
Transmission electron microscope: JEM-2010

アロフェン膜−不織布複合体のアロフェン膜の表面硬度を引っかき硬度試験(手掻き鉛筆法)で評価した。その結果、アロフェン膜はH以上の表面硬度を有していた。The surface hardness of the allophane film of the allophane film-nonwoven fabric composite was evaluated by a scratch hardness test (hand scratching pencil method). As a result, the allophane film had a surface hardness of H or higher.

アロフェン膜−不織布複合体を折り曲げ、アロフェン膜の不織布基材に対する密着性を評価した。90°に一回折り曲げたときアロフェン膜は剥離しなかった。The allophane film-nonwoven fabric composite was folded and the adhesion of the allophane film to the nonwoven fabric substrate was evaluated. The allophane film did not peel off when bent once at 90°.

アロフェン膜−不織布複合体に粘着力4.01N/10mmのセロハン粘着テープを貼り付けて剥がし、膜の密着性を評価した。その結果、アロフェン膜はセロハン粘着テープを剥がしても剥離せず、4.0N/10mm以上の密着力があることが分かった。A cellophane adhesive tape having an adhesive force of 4.01 N/10 mm was attached to the allophane film-nonwoven fabric composite and peeled off, and the adhesion of the film was evaluated. As a result, it was found that the allophane film did not peel off even if the cellophane adhesive tape was peeled off, and had an adhesive force of 4.0 N/10 mm or more.

アロフェン膜−不織布複合体について、相対湿度と吸湿率の関係を検証した。130℃で乾燥後、40℃において、相対湿度を変更して、アロフェン膜−不織布複合体及びアロフェン原料微粒子について相関曲線を得た(図6)。本実施例のアロフェン膜−不織布複合体は、アロフェン原料微粒子と同等の吸湿性能を有している。また、130℃で乾燥後のアロフェン膜−不織布複合体を温度40℃、相対湿度80%の雰囲気に48時間静置し、吸湿特性を評価した。アロフェン膜−不織布複合体の重量増加分を吸湿量、アロフェン膜−不織布複合体のアロフェン1gあたりの吸湿量を吸湿率として評価した結果、吸湿量は0.023g、吸湿率は25.3%であった。The relationship between the relative humidity and the moisture absorption rate was verified for the allophane film-nonwoven fabric composite. After drying at 130° C., the relative humidity was changed at 40° C. to obtain a correlation curve for the allophane film-nonwoven fabric composite and the allophane raw material fine particles (FIG. 6). The allophane film-nonwoven fabric composite of this example has a moisture absorption performance equivalent to that of the allophane raw material fine particles. Further, the allophane film-nonwoven fabric composite after drying at 130° C. was allowed to stand in an atmosphere having a temperature of 40° C. and a relative humidity of 80% for 48 hours to evaluate the hygroscopic property. The weight increase of the allophane film-nonwoven fabric complex was evaluated as the moisture absorption amount, and the moisture absorption amount per 1 g of allophane film-nonwoven fabric complex was evaluated as the moisture absorption rate. As a result, the moisture absorption amount was 0.023 g and the moisture absorption rate was 25.3%. there were.

アロフェン膜−不織布複合体を水中に投入したところ、アロフェン膜は崩壊することなく形態を保持していた。When the allophane film-nonwoven fabric composite was put into water, the allophane film retained its morphology without collapsing.

(実施例2)
基材へのエアロゾル噴射時間を100秒程度とした以外は実施例1と同様にアロフェン膜−不織布複合体を作製した。
(Example 2)
An allophane film-nonwoven fabric composite was prepared in the same manner as in Example 1 except that the time for spraying the aerosol onto the substrate was set to about 100 seconds.

実施例1と同様にアロフェン膜の重さを算出した結果、0.16gであった。実施例1と同様にアロフェン膜の厚みを測定した結果、38μm程度であった。実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜はH以上の表面硬度を有していた。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離しなかった。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、4.0N/10mm以上の密着力があることが分かった。実施例1と同様にアロフェン膜−不織布複合体の吸湿特性を評価した結果、吸湿量は0.033g、吸湿率は20.6%であった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊することなく形態を保持していた。As a result of calculating the weight of the allophane film in the same manner as in Example 1, it was 0.16 g. As a result of measuring the thickness of the allophane film in the same manner as in Example 1, it was about 38 μm. As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the allophane film had a surface hardness of H or higher. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was not peeled off when bent once at 90°. As in Example 1, the cellophane adhesive tape was used to evaluate the adhesion of the allophane film to the substrate. As a result, it was found that the adhesion was 4.0 N/10 mm or more. As a result of evaluating the hygroscopic property of the allophane film-nonwoven fabric composite in the same manner as in Example 1, the hygroscopic amount was 0.033 g and the hygroscopic rate was 20.6%. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane maintained its morphology without collapsing.

(実施例3)
基材へのエアロゾル噴射時間を1250秒程度とした以外は実施例1と同様に成膜試料を作製した。
(Example 3)
A film-forming sample was prepared in the same manner as in Example 1 except that the aerosol injection time on the substrate was set to about 1250 seconds.

実施例1と同様にアロフェン膜の重さを算出した結果、0.21gであった。実施例1と同様にアロフェン膜の厚みを測定した結果、50μm程度であった。実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜はH以上の表面硬度を有していた。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離しなかった。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、4.0N/10mm以上の密着力があることが分かった。実施例1と同様にアロフェン膜−不織布複合体の吸湿特性を評価した結果、吸湿量は0.041g、吸湿率は19.5%であった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊することなく形態を保持していた。As a result of calculating the weight of the allophane film in the same manner as in Example 1, it was 0.21 g. As a result of measuring the thickness of the allophane film in the same manner as in Example 1, it was about 50 μm. As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the allophane film had a surface hardness of H or higher. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was not peeled off when bent once at 90°. As in Example 1, the cellophane adhesive tape was used to evaluate the adhesion of the allophane film to the substrate. As a result, it was found that the adhesion was 4.0 N/10 mm or more. As a result of evaluating the hygroscopic property of the allophane membrane-nonwoven fabric composite in the same manner as in Example 1, the hygroscopic amount was 0.041 g and the hygroscopic rate was 19.5%. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane maintained its morphology without collapsing.

(実施例4)
基材へのエアロゾル噴射時間を1500秒程度とした以外は実施例1と同様に成膜試料を作製した。
(Example 4)
A film-forming sample was prepared in the same manner as in Example 1 except that the aerosol injection time on the base material was set to about 1500 seconds.

実施例1と同様にアロフェン膜の重さを算出した結果、0.26gであった。実施例1と同様にアロフェン膜の厚みを測定した結果、62μm程度であった。実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜はH以上の表面硬度を有していた。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離しなかった。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、4.0N/10mm以上の密着力があることが分かった。実施例1と同様にアロフェン膜−不織布複合体の吸湿特性を評価した結果、吸湿量は0.053g、吸湿率は20.4%であった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊することなく形態を保持していた。As a result of calculating the weight of the allophane film in the same manner as in Example 1, it was 0.26 g. As a result of measuring the thickness of the allophane film in the same manner as in Example 1, it was about 62 μm. As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the allophane film had a surface hardness of H or higher. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was not peeled off when bent once at 90°. As in Example 1, the cellophane adhesive tape was used to evaluate the adhesion of the allophane film to the substrate. As a result, it was found that the adhesion was 4.0 N/10 mm or more. As a result of evaluating the hygroscopic property of the allophane film-nonwoven fabric composite in the same manner as in Example 1, the hygroscopic amount was 0.053 g, and the hygroscopic rate was 20.4%. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane maintained its morphology without collapsing.

実施例1〜5のアロフェン膜複合体の吸湿量を評価した。図7は、アロフェン膜の重量に対して吸湿量をプロットした図である。図7より、アロフェン膜の重量が増加するとともに、吸湿量も増加することが確認された。The moisture absorption of the allophane membrane composites of Examples 1-5 was evaluated. FIG. 7 is a diagram in which the amount of moisture absorption is plotted against the weight of the allophane film. From FIG. 7, it was confirmed that as the weight of the allophane film increases, the moisture absorption amount also increases.

(実施例5)
整粒したアロフェン粉末を流量2.1L/minの圧縮空気でエアロゾル化し、開口幅7mm×0.4mmのノズルを通して、15Paの真空雰囲気のチャンバ内に置いた不織布(表面をポリエチレンフィルムでコートした不織布)基材に噴射してアロフェン膜を形成し、アロフェン膜−不織布複合体を作製した。基材をXYステージにより10mm/sのスピードで変位させ、成膜面積は350×350mm2の大面積化した複合体を得た。
(Example 5)
A non-woven fabric which has been sized into aerosol by compressed air with a flow rate of 2.1 L/min and passed through a nozzle with an opening width of 7 mm x 0.4 mm and placed in a chamber of a vacuum atmosphere of 15 Pa (a non-woven fabric whose surface is coated with a polyethylene film). ) An allophane film was formed by spraying on a substrate to prepare an allophane film-nonwoven fabric composite. The substrate was displaced by an XY stage at a speed of 10 mm/s to obtain a complex having a large film formation area of 350×350 mm 2 .

実施例1と同様にアロフェン膜の重さを算出した結果、3.27gであった。実施例1と同様にアロフェン膜の厚みを測定した結果、19μm程度であった。実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜はH以上の表面硬度を有していた。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離しなかった。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、4.0N/10mm以上の密着力があることが分かった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊することなく形態を保持していた。The weight of the allophane film was calculated in the same manner as in Example 1 and was found to be 3.27 g. As a result of measuring the thickness of the allophane film in the same manner as in Example 1, it was about 19 μm. As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the allophane film had a surface hardness of H or higher. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was not peeled off when bent once at 90°. As in Example 1, the cellophane adhesive tape was used to evaluate the adhesion of the allophane film to the substrate. As a result, it was found that the adhesion was 4.0 N/10 mm or more. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane maintained its morphology without collapsing.

(実施例6)
基材をガラス板、成膜面積を30×20mm2とした以外は実施例1と同様にアロフェン膜を成膜し、アロフェン膜−ガラス複合体を作製した。
(Example 6)
An allophane film was formed in the same manner as in Example 1 except that the substrate was a glass plate and the film formation area was 30×20 mm 2. Thus , an allophane film-glass composite was prepared.

実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜はH以上の表面硬度を有していた。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、4.0N/10mm以上の密着力があることが分かった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊することなく形態を保持していた。As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the allophane film had a surface hardness of H or higher. As in Example 1, the cellophane adhesive tape was used to evaluate the adhesion of the allophane film to the substrate. As a result, it was found that the adhesion was 4.0 N/10 mm or more. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane maintained its morphology without collapsing.

(実施例7)
基材をフレキシブルアルミニウムシートとし、アロフェン粉末を流量3.5L/minの窒素ガスでエアロゾル化し、開口幅30mm×0.2mmのノズルを通して、20Paの真空雰囲気のチャンバ内に置いた基材に噴射してアロフェン膜を形成し、アロフェン膜−アルミニウム複合体を作製した。基材はノズルに対して往復に変位させ、成膜時間50秒、成膜面積は30×100mm2とした。
(Example 7)
The base material is a flexible aluminum sheet, and allophane powder is aerosolized with nitrogen gas at a flow rate of 3.5 L/min, and is sprayed through a nozzle with an opening width of 30 mm x 0.2 mm onto a base material placed in a chamber of a vacuum atmosphere of 20 Pa. Then, an allophane film was formed to produce an allophane film-aluminum composite. The base material was displaced back and forth with respect to the nozzle, and the film formation time was 50 seconds and the film formation area was 30×100 mm 2 .

図4(b)に、実施例7のフレキシブルアルミニウムシート基材21上にアロフェン膜13を成膜したアロフェン膜−アルミニウム複合体20のFIBを用いた断面像を示す。図4(b)から、アロフェン膜13が、基材21側からアロフェン膜13の表面に向けてアロフェン微粒子が密から疎の堆積状態を備えることが明らかとなった。FIG. 4B shows a cross-sectional image of the allophane film-aluminum composite 20 in which the allophane film 13 is formed on the flexible aluminum sheet base material 21 of Example 7 using FIB. From FIG. 4B, it has been clarified that the allophane film 13 has a dense to sparse deposition state of the allophane particles from the base material 21 side toward the surface of the allophane film 13.

実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜はH以上の表面硬度を有していた。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離しなかった。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、4.0N/10mm以上の密着力があることが分かった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊することなく形態を保持していた。As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the allophane film had a surface hardness of H or higher. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was not peeled off when bent once at 90°. As in Example 1, the cellophane adhesive tape was used to evaluate the adhesiveness of the allophane film to the substrate, and it was found that the adhesive strength was 4.0 N/10 mm or more. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane maintained its morphology without collapsing.

(実施例8)
基材をシリカ含有ポリエチレンフィルムでコートされたフレキシブルアルミニウムシート、成膜面積を11×22mm2とした以外は実施例1と同様にフィルム面にアロフェン膜を成膜し、アロフェン膜−アルミニウム複合体を作製した。
(Example 8)
An allophane film was formed on the film surface in the same manner as in Example 1 except that the substrate was a flexible aluminum sheet coated with a silica-containing polyethylene film, and the film formation area was 11×22 mm 2. It was made.

実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜はH以上の表面硬度を有していた。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離しなかった。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、4.0N/10mm以上の密着力があることが分かった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊することなく形態を保持していた。As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the allophane film had a surface hardness of H or higher. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was not peeled off when bent once at 90°. As in Example 1, the cellophane adhesive tape was used to evaluate the adhesion of the allophane film to the substrate. As a result, it was found that the adhesion was 4.0 N/10 mm or more. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane maintained its morphology without collapsing.

(実施例9)
基材をポリエチレンテレフタレート(PET)シート、成膜面積を9×28mm2とした以外は実施例1と同様にアロフェン膜を成膜し、アロフェン膜−PET複合体を作製した。
(Example 9)
An allophane film was formed in the same manner as in Example 1 except that the substrate was a polyethylene terephthalate (PET) sheet and the film formation area was 9×28 mm 2 , to prepare an allophane film-PET composite.

実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜はH以上の表面硬度を有していた。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離しなかった。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、4.0N/10mm以上の密着力があることが分かった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊することなく形態を保持していた。As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the allophane film had a surface hardness of H or higher. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was not peeled off when bent once at 90°. As in Example 1, the cellophane adhesive tape was used to evaluate the adhesion of the allophane film to the substrate. As a result, it was found that the adhesion was 4.0 N/10 mm or more. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane maintained its morphology without collapsing.

(比較例1)
整粒したアロフェン粉末30gに、水70mlを加えて調製した30%スラリーを、ガラス板上にアプリケーターを用いて厚さ50μm塗布した後、130℃で1時間乾燥することで、アロフェン膜−ガラス複合体を作製した。
(Comparative Example 1)
A 30% slurry prepared by adding 70 ml of water to 30 g of the sized allophane powder is applied on a glass plate with a thickness of 50 μm using an applicator, and then dried at 130° C. for 1 hour to give an allophane film-glass composite. The body was made.

実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜の表面硬度は4Bであった。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、アロフェン膜はセロハン粘着テープに付着し基材から剥離したことから、4.0N/10mm未満の密着力であった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊した。As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the surface hardness of the allophane film was 4B. As a result of evaluating the adhesion of the allophane film to the base material with the cellophane adhesive tape in the same manner as in Example 1, it was found that the allophane film adhered to the cellophane adhesive tape and was peeled from the base material, so that the adhesion force of 4.0 N/10 mm or less. Met. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane collapsed.

(比較例2)
整粒したアロフェン粉末30gに、水70mlを加えて調製した30%スラリーを、不織布(表面をポリエチレンフィルムでコートした不織布)上にアプリケーターを用いて厚さ50μm塗布した後、130℃で1時間乾燥することで、アロフェン膜−不織布複合体を作製した。
(Comparative example 2)
A 30% slurry prepared by adding 70 ml of water to 30 g of sized allophane powder was applied on a non-woven fabric (non-woven fabric whose surface was coated with a polyethylene film) with a thickness of 50 μm, and then dried at 130° C. for 1 hour. By doing so, an allophane film-nonwoven fabric composite was produced.

実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜の表面硬度は4Bであった。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離した。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、アロフェン膜はセロハン粘着テープに付着し基材から剥離したことから、4.0N/10mm未満の密着力であった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊した。As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the surface hardness of the allophane film was 4B. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was peeled off when bent once at 90°. As a result of evaluating the adhesion of the allophane film to the base material with the cellophane adhesive tape in the same manner as in Example 1, it was found that the allophane film adhered to the cellophane adhesive tape and was peeled from the base material, so that the adhesion force of 4.0 N/10 mm or less. Met. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane collapsed.

(比較例3)
整粒したアロフェン粉末30gに、エチルアルコール70mlを加えて調製した30%スラリーを、不織布(表面をポリエチレンフィルムでコートした不織布)上にアプリケーターを用いて厚さ50μm塗布した後、130℃で1時間乾燥することで、アロフェン膜−不織布複合体を作製した。
(Comparative example 3)
A 30% slurry prepared by adding 70 ml of ethyl alcohol to 30 g of sized allophane powder was applied on a non-woven fabric (non-woven fabric whose surface was coated with a polyethylene film) with a thickness of 50 μm, and then at 130° C. for 1 hour. An allophane film-nonwoven fabric composite was produced by drying.

実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜の表面硬度は4Bであった。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離した。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、アロフェン膜はセロハン粘着テープに付着し基材から剥離したことから、4.0N/10mm未満の密着力であった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊した。As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the surface hardness of the allophane film was 4B. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was peeled off when bent once at 90°. As a result of evaluating the adhesion of the allophane film to the base material with the cellophane adhesive tape in the same manner as in Example 1, it was found that the allophane film adhered to the cellophane adhesive tape and was peeled from the base material, so that the adhesion force of 4.0 N/10 mm or less. Met. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane collapsed.

(比較例4)
整粒したアロフェン粉末30gに、2−プロピルアルコール70mlを加えて調製した30%スラリーを、不織布(表面をポリエチレンフィルムでコートした不織布)上にアプリケーターを用いて厚さ50μm塗布した後、130℃で1時間乾燥することで、アロフェン膜−不織布複合体を作製した。
(Comparative Example 4)
A 30% slurry prepared by adding 70 ml of 2-propyl alcohol to 30 g of sized allophane powder was applied on a non-woven fabric (non-woven fabric whose surface was coated with a polyethylene film) with a thickness of 50 μm, and then at 130° C. The allophane film-nonwoven fabric composite was produced by drying for 1 hour.

実施例1と同様にアロフェン膜の表面硬度を評価した結果、アロフェン膜の表面硬度は4Bであった。実施例1と同様にアロフェン膜の密着性を評価した結果、90°に一回折り曲げたときアロフェン膜は剥離した。実施例1と同様にセロハン粘着テープでアロフェン膜の基材への密着性を評価した結果、アロフェン膜はセロハン粘着テープに付着し基材から剥離したことから、4.0N/10mm未満の密着力であった。実施例1と同様にアロフェン膜複合体を水中に投入したところ、アロフェン膜は崩壊した。As a result of evaluating the surface hardness of the allophane film in the same manner as in Example 1, the surface hardness of the allophane film was 4B. As a result of evaluating the adhesiveness of the allophane film in the same manner as in Example 1, the allophane film was peeled off when bent once at 90°. As a result of evaluating the adhesion of the allophane film to the base material with the cellophane adhesive tape in the same manner as in Example 1, the allophane film adhered to the cellophane adhesive tape and was peeled from the base material. Therefore, the adhesion force of less than 4.0 N/10 mm. Met. When the allophane membrane composite was put into water in the same manner as in Example 1, the allophane membrane collapsed.

(実施例10)
アロフェン膜複合体について人工汚染液(ソルベントナフサ、アスファルト、オレイン酸の混合溶液)の吸着能の評価を行った。流量2.1L/minの窒素ガスでエアロゾル化し、開口幅7mm×0.4mmのノズルを通して、15Paの真空雰囲気のチャンバ内で不織布基材に噴射してアロフェン膜を形成した。アロフェン膜の重さは0.4g、100×80mm2のアロフェン膜複合体を作成した。
(Example 10)
The adsorbability of artificial pollutants (mixed solution of solvent naphtha, asphalt and oleic acid) was evaluated for the allophane membrane complex. An allophane film was formed by aerosolizing with a nitrogen gas at a flow rate of 2.1 L/min, and spraying it onto a non-woven fabric substrate through a nozzle having an opening width of 7 mm×0.4 mm in a vacuum atmosphere chamber of 15 Pa. The weight of the allophane film was 0.4 g, and an allophane film composite of 100×80 mm 2 was prepared.

[脂肪酸吸着能]
汚染物の脂肪酸としてオレイン酸を用いて脂肪酸吸着能を評価した。110℃で3時間乾燥したアロフェン膜複合体を人工汚染液100mlに含浸させ1分間攪拌後、25℃に保持したインキュベータ内で72時間放置・吸着させ、定量濾紙で濾過することで測定試料を得た。次に、水酸化カリウムのエタノール溶液(0.02mol/L)により中和滴定を行い、脱脂肪酸率を算出した。また、比較には成膜に用いた原料のアロフェン粉体を使用した。
[Fatty acid adsorption capacity]
The fatty acid adsorption capacity was evaluated using oleic acid as the contaminant fatty acid. An allophane membrane complex dried at 110° C. for 3 hours was impregnated with 100 ml of an artificial pollutant, stirred for 1 minute, allowed to stand for 72 hours in an incubator kept at 25° C., adsorbed, and filtered with a quantitative filter paper to obtain a measurement sample. It was Next, neutralization titration was performed with an ethanol solution of potassium hydroxide (0.02 mol/L) to calculate the defatty acid ratio. For comparison, the raw material allophane powder used for film formation was used.

[油分吸着能]
汚染物の油分としてアスファルトを用いて油分吸着能を評価した。脂肪酸吸着能の試験と同様に吸着後に試験液を得て、透過率測定を行った。吸着試験前の試験液の透過率は0%で、吸着試験後の透過率によって吸着能の程度を評価した。
測定波長:420nm
[Oil adsorption capacity]
The oil adsorption capacity was evaluated using asphalt as the oil component of the pollutants. Similar to the fatty acid adsorption capacity test, a test solution was obtained after adsorption and the transmittance was measured. The transmittance of the test solution before the adsorption test was 0%, and the degree of adsorption ability was evaluated by the transmittance after the adsorption test.
Measurement wavelength: 420nm

脂肪酸吸着試験の結果を図8に示す。また、油分吸着試験の結果を図9に示す。これらの結果から、実施例10のアロフェン膜複合体が人体や自然環境から出る汚れ成分を吸着する能力がアロフェン粉体以上であることがわかった。また、実施例10のアロフェン膜複合体は石油系溶媒中でも膜の剥離がなく基板と密着性が高いことも確認できた。更に、成膜することで吸着性能が向上することが判明した。The results of the fatty acid adsorption test are shown in FIG. The results of the oil adsorption test are shown in FIG. From these results, it was found that the allophane film composite of Example 10 has an ability of adsorbing the dirt component generated from the human body or the natural environment to be more than that of the allophane powder. It was also confirmed that the allophane film composite of Example 10 had high adhesion to the substrate without peeling of the film even in a petroleum solvent. Further, it was found that the film formation improves the adsorption performance.

(実施例11)
アロフェン膜複合体の臭い成分の吸着能について評価した。臭い成分は、アンモニア、トリメチルアミン、および酢酸とした。実施例11と同様に作成したアロフェン膜複合体(アロフェン膜のみの重量として1g)をポリ袋に入れ、シールを施した後、9Lの空気を封入し、設定したガス濃度になるように試験対象ガスを添加し、3時間静置後のガス濃度を測定した。この結果を表1に示す。試験後の濃度はいすれも検出定量下限以下となり、いずれの臭い成分においてもアロフェン膜複合体は吸着能が高いことを確認できた。
(Example 11)
The ability of the allophane membrane composite to adsorb odorous components was evaluated. The odor components were ammonia, trimethylamine, and acetic acid. The allophane membrane composite prepared in the same manner as in Example 11 (1 g as the weight of the allophane membrane only) was put in a polybag, sealed, and sealed with 9 L of air so that the gas concentration was set to be a test object. Gas was added, and the gas concentration after standing for 3 hours was measured. The results are shown in Table 1. After the test, any concentration was below the lower limit of quantification of detection, and it was confirmed that the allophane membrane complex has high adsorption ability for any odorous component.

(実施例12)
整粒したアロフェン粉末を流量2.5L/minの窒素ガスでエアロゾル化し、開口幅30mm×0.2mmのノズルを通して、20Paの真空雰囲気のチャンバ内に置いたアルミ基材に噴射して、成膜面積30mm×100mmのアロフェン膜複合体を得た。所定濃度に調整したリン酸イオン水溶液中に、アロフェン膜複合体を23℃で6時間浸漬して調べた結果を図10に示す。リン酸吸着量は、基材上に成膜したアロフェン膜の重量に対して算出した。また比較として、アロフェン粉末0.2gを用いて同様に試験した結果も図10に示す。図10の結果のとおり、アロフェン膜複合体は、アロフェン粉末と同等のリン酸イオン吸着能を有する。
(Example 12)
The sized allophane powder is aerosolized with nitrogen gas at a flow rate of 2.5 L/min, and is sprayed through an nozzle with an opening width of 30 mm x 0.2 mm onto an aluminum base material placed in a chamber of a vacuum atmosphere of 20 Pa to form a film. An allophane membrane composite having an area of 30 mm×100 mm was obtained. FIG. 10 shows the results of the examination by immersing the allophane membrane complex in a phosphate ion aqueous solution adjusted to a predetermined concentration at 23° C. for 6 hours. The phosphate adsorption amount was calculated with respect to the weight of the allophane film formed on the substrate. For comparison, the results of the same test using 0.2 g of allophane powder are also shown in FIG. As shown in the results of FIG. 10, the allophane film composite has the same phosphate ion adsorption capacity as the allophane powder.

(実施例13)
実施例1と同様に作成したアロフェン膜複合体の調湿性能について、調湿試験を行うことにより評価した。図11は、調湿試験の結果を示す図である。130℃で乾燥後に、40℃、相対湿度80%で吸湿した後、40℃、相対湿度20%で放湿を行った結果、アロフェン膜複合体は、調湿作用を有していることが分かった。
(Example 13)
The humidity control performance of the allophane film composite prepared in the same manner as in Example 1 was evaluated by performing a humidity control test. FIG. 11: is a figure which shows the result of a humidity control test. After drying at 130° C., after absorbing moisture at 40° C. and relative humidity of 80%, and then releasing moisture at 40° C. and 20% of relative humidity, it was found that the allophane membrane composite has a humidity control effect. It was

(実施例14)
実施例1と同様に作製したアロフェン膜複合体を130℃で乾燥した後、温度40℃、相対湿度40%における吸湿試験において、吸湿時間に対する吸湿率の変化を評価した。
(Example 14)
After drying the allophane film composite produced in the same manner as in Example 1, the change in moisture absorption rate with respect to moisture absorption time was evaluated in a moisture absorption test at a temperature of 40° C. and a relative humidity of 40%.

(比較例5)
また、比較例5として、アロフェン粉体を成形したアロフェン錠剤を作製した。成形機(株式会社菊水製作所、No.8−F−3)を用い、アロフェン粉体を0.6MPa〜0.8MPaで一軸加圧し、直径:15mm、高さ:5.5mm、重量:1.0gのアロフェン錠剤を作製した。比較例5のアロフェン錠剤についても、実施例14のアロフェン膜複合体と同様の評価を行った。
(Comparative example 5)
Further, as Comparative Example 5, an allophane tablet formed by molding allophane powder was produced. Using a molding machine (Kikusui Seisakusho, No. 8-F-3), uniaxially pressurizing the allophane powder at 0.6 MPa to 0.8 MPa, diameter: 15 mm, height: 5.5 mm, weight: 1. 0 g allophane tablets were made. The allophane tablet of Comparative Example 5 was also evaluated in the same manner as the allophane film composite of Example 14.

吸湿時間に対して吸湿率をプロットした結果を図12に示す。実施例14のアロフェン膜複合体は、比較例5のアロフェン錠剤と比較して、吸湿速度が速い特性を有することが確認できた。The result of plotting the moisture absorption rate against the moisture absorption time is shown in FIG. It was confirmed that the allophane film composite of Example 14 had a property of having a higher moisture absorption rate than the allophane tablet of Comparative Example 5.

アロフェン膜複合体は、強い基板との密着力と高い自由度(変形性)を持つことに加え、極薄で手軽に鋏やカッターナイフで切断ができるので形状(袋状なども含む)、大きさを自由に選択加工、必要量、枚数なども自由に選ぶことができることから、狭い空間、隙間などを含めたあらゆる空間での使用、及び梱包形状に合わせた形状で使用できる包装材、吸水剤であり、薬、食品、機械装置、ガス体、有機溶媒などの乾燥に用いる。また、吸着及び調湿の特性を活かした利用分野では、皮脂や油を吸着する衛生紙、室内の有害化学分子を吸着し調湿機能も有する壁紙、マスクの内張りに成膜した菌吸着マスク、窓の結露防止膜、曇り防止膜、自動車室内の調湿及び有害成分を吸着する自動車室内用内貼りシート、カーエアコンの内部又は外部又はその両方に装着し、エアーを通過させて不快な臭いを取る吸着フィルター、室内の空調設備に用いる空気清浄膜、液相において魚類から排出されるアンモニアや生臭物質を吸着する魚類飼育用吸着膜、野菜保存シート・袋、成膜時のマスキングにより文字や絵を表現した機能性インテリア、透明なビニールに塗布することで適度な透過性を得られることから機能性プライベートシート及び機能性防犯シート、機能性テープ、機能性保護シート、可燃物質を膜分子内や膜の空隙に貯蔵させた積層型燃料貯蔵膜、更にはイオン及び配位子交換膜、放射能元素除去膜、吸水シート、吸着シート、調湿シートなどが上げられる。The allophane film composite has a strong adhesion to the substrate and a high degree of freedom (deformability). In addition, it is extremely thin and can be easily cut with scissors or a cutter knife. Since it can be freely selected and processed, the required amount, the number of sheets, etc. can be freely selected, it can be used in all spaces including narrow spaces and gaps, and packaging materials and water-absorbing agents that can be used in a shape that matches the packing shape. It is used for drying medicines, foods, machinery, gas bodies, organic solvents, etc. In addition, in fields of application that utilize the characteristics of adsorption and humidity control, hygiene paper that adsorbs sebum and oil, wallpaper that also has a humidity control function by adsorbing harmful chemical molecules in the room, bacteria adsorption mask formed on the mask lining, window Anti-condensation film, anti-fog film, humidity control inside the car interior and a sheet for the interior of the car that adsorbs harmful components, inside or outside the car air conditioner or both, and let air pass to remove unpleasant odor Adsorption filter, air purification film used for indoor air conditioning equipment, adsorption film for fish breeding that adsorbs ammonia and fishy odor substances discharged from fish in liquid phase, vegetable preservation sheet/bag, masking during film formation Expressed functional interior, because it can obtain appropriate permeability by applying it to transparent vinyl, it is functional private sheet and functional crime prevention sheet, functional tape, functional protective sheet, flammable substance inside film or film Examples of the laminated fuel storage film stored in the voids, ion- and ligand-exchange membranes, radioactive element removal membranes, water absorption sheets, adsorption sheets, humidity control sheets, and the like.

1 製造装置、2 チャンバ、4 ノズル、6 基板駆動装置、10 アロフェン膜複合体、11 基材、12 アロフェン微粒子圧粉体、13 アロフェン膜、15 アロフェン微粒子、17 アロフェン原料微粒子、19 観察用保護膜、20 アロフェン膜複合体、21 基材1 Manufacturing Equipment, 2 Chambers, 4 Nozzles, 6 Substrate Driving Device, 10 Allophane Film Complex, 11 Base Material, 12 Allophane Fine Particle Compact, 13 Allophane Film, 15 Allophane Fine Particles, 17 Allophane Raw Material Fine Particles, 19 Protective Film for Observation , 20 Allophane membrane composite, 21 Substrate

Claims (8)

基材と、平均直径が3.5nm以上10nm以下を備えるアロフェンが前記基材上に堆積したアロフェン膜と、を備え、
前記基材と前記アロフェン膜との密着力が4N/10mm以上、90度の曲げ試験を繰り返して前記アロフェン膜が前記基材から剥離する回数が1回以上であることを特徴とするアロフェン膜複合体。
A base material, and an allophane film having an average diameter of 3.5 nm or more and 10 nm or less and allophane deposited on the base material,
An allophane film composite, wherein the adhesive force between the base material and the allophane film is 4 N/10 mm or more, and the allophane film is peeled from the base material at least once after repeating a 90-degree bending test. body.
前記アロフェン膜は、厚さが50μm以上70μm以下、吸湿率が10%以上30%以下、表面硬度がH以上を備えることを特徴とする請求項1記載のアロフェン膜複合体。The allophane film composite according to claim 1, wherein the allophane film has a thickness of 50 μm or more and 70 μm or less, a moisture absorption rate of 10% or more and 30% or less, and a surface hardness of H or more. 前記基材は、ガラス、アルミニウム、アルミナ、不織布、ポリエチレンフィルムでコーティングされた不織布又はアルミナシート、シリカ含有ポリエチレンフィルムでコーティングされたアルミナシート、及びPETシートの群から選ばれる1つであることを特徴とする請求項1に記載のアロフェン膜複合体。The substrate is one selected from the group consisting of glass, aluminum, alumina, non-woven fabric, non-woven fabric or alumina sheet coated with polyethylene film, alumina sheet coated with silica-containing polyethylene film, and PET sheet. The allophane membrane composite according to claim 1. 前記基材は、不織布であり、前記不織布は、24時間での透湿度が9500g/m2以上1100g/m2以下、通気度が10ml/cm2以上25ml/cm2以下、密度が65g/m2以上80g/m2以下、厚さが0.14mm以上0.25mm以下を備えることを特徴とする請求項3に記載のアロフェン膜複合体。It said substrate is a nonwoven, the nonwoven fabric is 24 hours of moisture permeability 9500 g / m 2 or more 1100 g / m 2 or less, air permeability 10 ml / cm 2 or more 25 ml / cm 2 or less, a density of 65 g / m 2 or 80 g / m 2 or less, allophane film composite according to claim 3 having a thickness, characterized in that it comprises the following 0.25mm or 0.14 mm. 請求項1乃至4のいずれか1項に記載のアロフェン膜複合体の製造方法において、
アロフェン原料微粒子を搬送ガスと混合してエアロゾル化し、
エアロゾル化した原料微粒子を、該搬送ガスと共に、ノズルを通して加速して前記基材の表面に向けて噴射せしめることにより、減圧チャンバ内で前記基材にアロフェン膜を形成することを特徴とするアロフェン膜複合体の製造方法。
The method for producing an allophane membrane composite according to any one of claims 1 to 4,
Allophane raw material fine particles are mixed with a carrier gas to form an aerosol,
An allophane film is formed on the base material in a decompression chamber by accelerating the aerosolized raw material fine particles together with the carrier gas through a nozzle to jet them toward the surface of the base material. Method for producing composite.
前記基材が不織布である請求項4に記載のアロフェン膜複合体を備えることを特徴とする吸水シート。A water absorbent sheet comprising the allophane film composite according to claim 4, wherein the base material is a non-woven fabric. 前記基材が不織布である請求項4に記載のアロフェン膜複合体を備えることを特徴とする吸着シート。An adsorption sheet comprising the allophane film composite according to claim 4, wherein the base material is a non-woven fabric. 前記基材が不織布である請求項4に記載のアロフェン膜複合体を備えることを特徴とする調湿シート。A humidity control sheet comprising the allophane film composite according to claim 4, wherein the base material is a non-woven fabric.
JP2019543512A 2017-09-21 2018-08-29 Allophane membrane complex, sheet using it, and method for producing allophane membrane complex Active JP6778863B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017181696 2017-09-21
JP2017181696 2017-09-21
PCT/JP2018/031994 WO2019058912A1 (en) 2017-09-21 2018-08-29 Allophane film complex, sheet using same, and method for producing allophane film complex

Publications (2)

Publication Number Publication Date
JPWO2019058912A1 true JPWO2019058912A1 (en) 2020-07-27
JP6778863B2 JP6778863B2 (en) 2020-11-04

Family

ID=65811152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019543512A Active JP6778863B2 (en) 2017-09-21 2018-08-29 Allophane membrane complex, sheet using it, and method for producing allophane membrane complex

Country Status (3)

Country Link
JP (1) JP6778863B2 (en)
CN (1) CN111093966B (en)
WO (1) WO2019058912A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001047493A (en) * 1999-08-06 2001-02-20 Seiji Sakurai Adsorption/flocculation treatment material having coating layer of allophane type clay mineral
WO2003100131A1 (en) * 2002-05-28 2003-12-04 National Institute Of Advanced Industrial Science And Technology Method for forming ultrafine particle brittle material at low temperature and ultrafine particle brittle material for use therein
JP2008138167A (en) * 2006-11-09 2008-06-19 Shizen Sozai Kenkyusho:Kk Coating agent, humidity-controllable building material, wallpaper, and adhesive agent
JP2010121203A (en) * 2008-07-14 2010-06-03 Toto Ltd Composite structure and method for producing the same
JP2013534506A (en) * 2010-06-16 2013-09-05 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Use of nanoparticles for long-term "dry" storage of peroxide radicals

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734941B2 (en) * 2004-12-06 2014-05-27 Yu Qiao Use of chemical admixtures as promotors, recovery agents
CA2608740C (en) * 2005-05-16 2015-09-08 The University Of Akron Mechanically strong absorbent non-woven fibrous mats
KR20090091294A (en) * 2006-12-21 2009-08-27 니폰 가세이 가부시키가이샤 Humidity-regulating sheet
JP2011241132A (en) * 2010-05-20 2011-12-01 National Institute Of Advanced Industrial Science & Technology Manganese oxide composite covered with silicate inorganic polymer, and method for producing the same
JP2014141626A (en) * 2012-12-28 2014-08-07 Konica Minolta Inc Application liquid, reflection coating, reflection sheet, solar cell module, led illumination device and packaging substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001047493A (en) * 1999-08-06 2001-02-20 Seiji Sakurai Adsorption/flocculation treatment material having coating layer of allophane type clay mineral
WO2003100131A1 (en) * 2002-05-28 2003-12-04 National Institute Of Advanced Industrial Science And Technology Method for forming ultrafine particle brittle material at low temperature and ultrafine particle brittle material for use therein
JP2008138167A (en) * 2006-11-09 2008-06-19 Shizen Sozai Kenkyusho:Kk Coating agent, humidity-controllable building material, wallpaper, and adhesive agent
JP2010121203A (en) * 2008-07-14 2010-06-03 Toto Ltd Composite structure and method for producing the same
JP2013534506A (en) * 2010-06-16 2013-09-05 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Use of nanoparticles for long-term "dry" storage of peroxide radicals

Also Published As

Publication number Publication date
CN111093966A (en) 2020-05-01
CN111093966B (en) 2021-12-17
JP6778863B2 (en) 2020-11-04
WO2019058912A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
EP2095943B1 (en) Humidity-regulating sheet
WO2001097965A1 (en) Adsorbent, process for producing the same, and applications thereof
Dinari et al. Fabrication of poly (methyl methacrylate)/silica KIT-6 nanocomposites via in situ polymerization approach and their application for removal of Cu 2+ from aqueous solution
KR101768910B1 (en) Method for Manufacturing Food Package Material
CN111491991A (en) Method for preparing polymer matrix composites
WO2009108483A1 (en) Filtration media for the removal of basic molecular contaminants for use in a clean environment
JP2007167495A (en) Aldehyde-containing air purifying agent and its manufacturing method
Azmi et al. Fabrication of MIL-101-polydimethylsiloxane composites for environmental toluene abatement from humid air
WO2016067992A1 (en) Plastering material composition
JP4018284B2 (en) Composition containing inorganic porous crystal-hydrophilic polymer composite and molded product thereof
JP6778863B2 (en) Allophane membrane complex, sheet using it, and method for producing allophane membrane complex
JP4562557B2 (en) Moisture-absorbing and building material construction method and moisture-permeable structure
JP2009291781A (en) Humidity conditioning container
JP2006341411A (en) Laminate
JP2010174172A (en) Coating agent
JP5570648B1 (en) Wallpaper paint
KR102232482B1 (en) Manufacturing method of food package and food package manufactured thereby
JP5259251B2 (en) Plate-like ventilation body and laminate
KR20140142066A (en) Method for preparing filter foam or melamine foam for deodorization and dehumidification using red clay or charcoal and filter foam or melamine foam prepared by the same
JP6653382B2 (en) Use of composite materials in building materials, building materials and methods of air purification
WO2016185780A1 (en) Composite building material panel and method for producing same, and dispersion system and application apparatus
CN110144134A (en) A kind of material for air purification, preparation method and coating
KR100656457B1 (en) A coating manufacture method for absorber of Volatile organic compounds
JP2004209960A (en) Functional member, coating agent and its manufacturing method
JP2864687B2 (en) Double package and its packaging method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200415

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6778863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250