JPWO2019044588A1 - Manufacturing method of thin plate-shaped member and manufacturing equipment of thin plate-shaped member - Google Patents

Manufacturing method of thin plate-shaped member and manufacturing equipment of thin plate-shaped member Download PDF

Info

Publication number
JPWO2019044588A1
JPWO2019044588A1 JP2019539392A JP2019539392A JPWO2019044588A1 JP WO2019044588 A1 JPWO2019044588 A1 JP WO2019044588A1 JP 2019539392 A JP2019539392 A JP 2019539392A JP 2019539392 A JP2019539392 A JP 2019539392A JP WO2019044588 A1 JPWO2019044588 A1 JP WO2019044588A1
Authority
JP
Japan
Prior art keywords
shaped member
plate
manufacturing
thin plate
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019539392A
Other languages
Japanese (ja)
Other versions
JP7267923B2 (en
Inventor
直史 泉
直史 泉
茂之 山下
茂之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Publication of JPWO2019044588A1 publication Critical patent/JPWO2019044588A1/en
Application granted granted Critical
Publication of JP7267923B2 publication Critical patent/JP7267923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices

Abstract

板状部材(WF)にレーザ(LB)を照射するレーザ照射工程と、板状部材(WF)を分割面(DP)に沿って分割して、少なくとも第1薄型化板状部材及び第2薄型化板状部材を形成する分割工程と、を備え、板状部材(WF)にレーザを照射する工程においては、板状部材(WF)の内部に複数の改質部を分割面(DP)に沿って形成し、前記第1薄型化板状部材の厚みは、板状部材(WF)の厚みよりも小さく、前記第2薄型化板状部材の厚みは、板状部材(WF)の厚みよりも小さいことを特徴とする薄型化板状部材の製造方法。A laser irradiation step of irradiating a plate-shaped member (WF) with a laser (LB) and a plate-shaped member (WF) divided along a dividing surface (DP) to at least make the first thin plate-shaped member and the second thin plate. In the step of irradiating the plate-shaped member (WF) with a laser, which comprises a dividing step of forming a plate-shaped member, a plurality of modified portions are formed on the divided surface (DP) inside the plate-shaped member (WF). The thickness of the first thinned plate-shaped member is smaller than the thickness of the plate-shaped member (WF), and the thickness of the second thinned plate-shaped member is smaller than the thickness of the plate-shaped member (WF). A method for manufacturing a thin plate-shaped member, which is characterized by being small in size.

Description

本発明は、薄型化板状部材の製造方法、及び薄型化板状部材の製造装置に関する。 The present invention relates to a method for manufacturing a thin plate-shaped member and an apparatus for manufacturing a thin plate-shaped member.

従来、板状部材の薄型化を行うための方法として、板状部材を研磨する方法が知られている(例えば、特許文献1参照)。 Conventionally, as a method for thinning a plate-shaped member, a method of polishing the plate-shaped member is known (see, for example, Patent Document 1).

特開2004−66376号公報Japanese Unexamined Patent Publication No. 2004-666376

しかしながら、特許文献1に記載されたような従来の方法では、板状部材としての半導体ウエハの冷却及び洗浄等に純水が必要である。純水の使用は、薄型化板状部材の製造コストが上昇する要因の一つである。また、特許文献1に記載されたような研磨による薄型化方法は、薄型化に時間がかかる。また、特許文献1に記載されたような研磨による薄型化方法は、砥石を板状部材に当てながら物理的圧力を加えるため、板状部材が割れるおそれ及び研削跡が残ってしまう可能性がある。また、特許文献1に記載されたような研磨による薄型化方法においては、薄型化板状部材の厚み精度の向上が要望されている。 However, in the conventional method as described in Patent Document 1, pure water is required for cooling and cleaning of the semiconductor wafer as a plate-shaped member. The use of pure water is one of the factors that increase the manufacturing cost of thin plate-shaped members. Further, the method of thinning by polishing as described in Patent Document 1 takes time to thin. Further, in the thinning method by polishing as described in Patent Document 1, physical pressure is applied while applying the grindstone to the plate-shaped member, so that the plate-shaped member may be cracked and grinding marks may remain. .. Further, in the thinning method by polishing as described in Patent Document 1, it is required to improve the thickness accuracy of the thinned plate-shaped member.

本発明の目的は、純水を用いず、薄型化の時間を短縮し、板状部材の割れを抑制でき、厚み精度を向上させることのできる薄型化板状部材の製造方法、及び薄型化板状部材の製造装置を提供することにある。 An object of the present invention is a method for manufacturing a thinned plate-shaped member, which can shorten the time for thinning, suppress cracking of the plate-shaped member, and improve the thickness accuracy without using pure water, and a thinned plate. It is an object of the present invention to provide the manufacturing apparatus of the shape member.

本発明の一態様に係る薄型化板状部材の製造方法は、板状部材にレーザを照射するレーザ照射工程と、前記板状部材を分割面に沿って分割して、少なくとも第1薄型化板状部材及び第2薄型化板状部材を形成する分割工程と、を備え、前記板状部材にレーザを照射する工程においては、前記板状部材の内部に複数の改質部を前記分割面に沿って形成し、前記第1薄型化板状部材の厚みは、前記板状部材の厚みよりも小さく、前記第2薄型化板状部材の厚みは、前記板状部材の厚みよりも小さい。 The method for manufacturing a thin plate-shaped member according to one aspect of the present invention includes a laser irradiation step of irradiating the plate-shaped member with a laser, and dividing the plate-shaped member along a dividing surface to at least a first thinned plate. In the step of irradiating the plate-shaped member with a laser, which comprises a dividing step of forming the shaped member and the second thinned plate-shaped member, a plurality of modified portions are formed on the divided surface inside the plate-shaped member. The thickness of the first thinned plate-shaped member is smaller than the thickness of the plate-shaped member, and the thickness of the second thinned plate-shaped member is smaller than the thickness of the plate-shaped member.

本発明の一態様に係る薄型化板状部材の製造方法において、前記レーザ照射工程では、前記板状部材の外周部側から前記板状部材の中心部側に亘って前記レーザの照射点の位置を移動させながら、前記板状部材に複数の前記改質部を一定の間隔で形成することが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, in the laser irradiation step, the position of the laser irradiation point extends from the outer peripheral side of the plate-shaped member to the central portion side of the plate-shaped member. It is preferable to form a plurality of the modified portions on the plate-shaped member at regular intervals while moving the above.

本発明の一態様に係る薄型化板状部材の製造方法において、前記レーザ照射工程では、前記レーザの照射点の位置を移動させながら前記板状部材に複数の前記改質部を形成し、前記板状部材の外周部側における前記照射点同士の間隔と、前記板状部材の中心部側における前記照射点同士の間隔とが、異なることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, in the laser irradiation step, a plurality of the modified portions are formed on the plate-shaped member while moving the position of the irradiation point of the laser. It is preferable that the distance between the irradiation points on the outer peripheral side of the plate-shaped member and the distance between the irradiation points on the central portion side of the plate-shaped member are different.

本発明の一態様に係る薄型化板状部材の製造方法において、前記板状部材の外周部側における前記照射点同士の間隔が、前記板状部材の中心部側における前記照射点同士の間隔よりも小さいことが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the distance between the irradiation points on the outer peripheral side of the plate-shaped member is larger than the distance between the irradiation points on the central portion side of the plate-shaped member. Is also preferably small.

本発明の一態様に係る薄型化板状部材の製造方法において、前記照射点同士の間隔が、前記板状部材の外周部側から前記板状部材の中心部側に向かうにつれて大きくなることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, it is preferable that the distance between the irradiation points increases from the outer peripheral side of the plate-shaped member toward the central portion side of the plate-shaped member. ..

本発明の一態様に係る薄型化板状部材の製造方法において、前記板状部材は、前記板状部材の外周部側の第1領域と、前記板状部材の中心部側の第2領域と、前記第1領域と前記第2領域との間の第3領域と、を有し、前記第1領域に対して、第1の間隔で前記レーザを複数個所に照射し、前記第3領域に対して、第3の間隔で前記レーザを複数個所に照射し、前記第2領域に対して、第2の間隔で前記レーザを複数個所に照射し、前記第1の間隔は、前記第3の間隔よりも小さく、前記第3の間隔は、前記第2の間隔よりも小さいことが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the plate-shaped member includes a first region on the outer peripheral side of the plate-shaped member and a second region on the central portion side of the plate-shaped member. A third region between the first region and the second region, and the first region is irradiated with the laser at a plurality of locations at a first interval to reach the third region. On the other hand, the laser is irradiated to a plurality of places at a third interval, and the laser is irradiated to a plurality of places at a second interval with respect to the second region, and the first interval is the third interval. It is preferably smaller than the interval, and the third interval is preferably smaller than the second interval.

本発明の一態様に係る薄型化板状部材の製造方法において、前記レーザを照射するレーザ照射器、及び前記板状部材の少なくともいずれかを移動させることにより、前記レーザ照射工程における前記レーザの照射点の位置を移動させることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, by moving at least one of the laser irradiator that irradiates the laser and the plate-shaped member, the laser irradiation in the laser irradiation step is performed. It is preferable to move the position of the point.

本発明の一態様に係る薄型化板状部材の製造方法において、前記レーザ照射器、及び前記板状部材の少なくともいずれかを回転させることにより、前記レーザ照射工程における前記レーザの照射点の位置を移動させることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, by rotating at least one of the laser irradiator and the plate-shaped member, the position of the laser irradiation point in the laser irradiation step can be determined. It is preferable to move it.

本発明の一態様に係る薄型化板状部材の製造方法において、前記レーザ照射器から、複数の前記レーザを同時に照射することが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, it is preferable to simultaneously irradiate a plurality of the lasers from the laser irradiator.

本発明の一態様に係る薄型化板状部材の製造方法において、前記板状部材の厚みは、3mm以下であることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the thickness of the plate-shaped member is preferably 3 mm or less.

本発明の一態様に係る薄型化板状部材の製造方法において、前記第1薄型化板状部材の厚み及び前記第2薄型化板状部材の厚みの少なくともいずれかが、500μm以下であることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, at least one of the thickness of the first thin plate-shaped member and the thickness of the second thin plate-shaped member is 500 μm or less. preferable.

本発明の一態様に係る薄型化板状部材の製造方法において、前記レーザを前記分割面に沿って1μm以上350μm以下の間隔で照射することが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, it is preferable to irradiate the laser along the divided surface at intervals of 1 μm or more and 350 μm or less.

本発明の一態様に係る薄型化板状部材の製造方法において、複数の前記改質部は、互いに重なっていることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, it is preferable that the plurality of modified portions overlap each other.

本発明の一態様に係る薄型化板状部材の製造方法において、複数の前記改質部は、互いに離れていてもよい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the plurality of modified portions may be separated from each other.

本発明の一態様に係る薄型化板状部材の製造方法において、前記板状部材は、第1表面、及び前記第1表面とは反対側の第2表面を有し、前記レーザを、前記第1表面及び前記第2表面の少なくともいずれかの表面側から照射することが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the plate-shaped member has a first surface and a second surface opposite to the first surface, and the laser is used. It is preferable to irradiate from at least one surface side of one surface and the second surface.

本発明の一態様に係る薄型化板状部材の製造方法において、前記板状部材は、第1表面、及び前記第1表面とは反対側の第2表面を有し、前記第1表面及び前記第2表面の少なくともいずれかの表面には保護シートが積層されていることが好ましい。
また、本発明の一態様に係る薄型化板状部材の製造方法において、前記板状部材は、第1表面、及び前記第1表面とは反対側の第2表面を有し、前記板状部材は、前記第1表面及び前記第2表面の少なくともいずれかの表面側で吸着保持されていることが好ましい。前記板状部材を吸着保持する場合、吸着保持される前記板状部材の面には保護シートが積層され、前記板状部材が前記保護シートを介して吸着保持されていることがより好ましい。レーザ照射工程及び分割工程の少なくともいずれかの工程において前記板状部材が吸着保持されていることが好ましい。前記板状部材は、吸着テーブルによって吸着保持されていることが好ましい。
In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the plate-shaped member has a first surface and a second surface opposite to the first surface, and the first surface and the said first surface. It is preferable that a protective sheet is laminated on at least one surface of the second surface.
Further, in the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the plate-shaped member has a first surface and a second surface opposite to the first surface, and the plate-shaped member has a surface opposite to the first surface. Is preferably adsorbed and held on at least one surface side of the first surface and the second surface. When the plate-shaped member is sucked and held, it is more preferable that a protective sheet is laminated on the surface of the plate-shaped member to be sucked and held, and the plate-shaped member is sucked and held via the protective sheet. It is preferable that the plate-shaped member is adsorbed and held in at least one of the laser irradiation step and the dividing step. It is preferable that the plate-shaped member is suction-held by a suction table.

本発明の一態様に係る薄型化板状部材の製造方法において、前記保護シートが積層された前記板状部材の表面側から前記レーザを照射して、前記板状部材の内部に複数の前記改質部を形成することが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the laser is irradiated from the surface side of the plate-shaped member on which the protective sheet is laminated, and a plurality of the modifications are made inside the plate-shaped member. It is preferable to form a quality part.

本発明の一態様に係る薄型化板状部材の製造方法において、前記分割工程は、前記板状部材の厚み方向に前記板状部材を離間させることにより、複数の前記改質部が形成された前記分割面を境界にして前記第1薄型化板状部材及び前記第2薄型化板状部材に分割する工程であることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, in the dividing step, a plurality of the modified portions are formed by separating the plate-shaped members in the thickness direction of the plate-shaped members. It is preferable that the step is to divide the first thin plate-shaped member and the second thin plate-shaped member with the dividing surface as a boundary.

本発明の一態様に係る薄型化板状部材の製造方法において、前記板状部材の表面は、回路を有することが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, it is preferable that the surface of the plate-shaped member has a circuit.

本発明の一態様に係る薄型化板状部材の製造方法において、前記第1薄型化板状部材は、前記分割工程における前記板状部材の分割によって現れた第1露出面を有し、前記第2薄型化板状部材は、前記分割工程における前記板状部材の分割によって現れた第2露出面を有し、前記第1露出面及び前記第2露出面の少なくともいずれかを研磨する研磨工程を有することが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the first thin plate-shaped member has a first exposed surface that appears due to the division of the plate-shaped member in the dividing step, and the first thinned plate-shaped member. 2 The thin plate-shaped member has a second exposed surface that appears as a result of the division of the plate-shaped member in the dividing step, and a polishing step of polishing at least one of the first exposed surface and the second exposed surface is performed. It is preferable to have.

本発明の一態様に係る薄型化板状部材の製造方法において、前記第1薄型化板状部材及び前記第2薄型化板状部材の少なくともいずれかの表面に回路を形成する回路形成工程をさらに備えることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, a circuit forming step of forming a circuit on at least one surface of the first thin plate-shaped member and the second thin plate-shaped member is further added. It is preferable to prepare.

本発明の一態様に係る薄型化板状部材の製造方法において、前記板状部材の材質は、シリコン、窒化ケイ素、窒化ガリウム、シリコンカーバイド、サファイア、ガリウム砒素、及びガラスからなる群から選択されることが好ましい。 In the method for producing a thin plate-shaped member according to one aspect of the present invention, the material of the plate-shaped member is selected from the group consisting of silicon, silicon nitride, gallium nitride, silicon carbide, sapphire, gallium arsenide, and glass. Is preferable.

本発明の一態様に係る薄型化板状部材の製造方法において、前記板状部材は、ウエハであることが好ましい。 In the method for manufacturing a thin plate-shaped member according to one aspect of the present invention, the plate-shaped member is preferably a wafer.

本発明の一態様に係る薄型化板状部材の製造装置は、板状部材の内部に複数の改質部を形成する改質部形成手段と、改質後の前記板状部材を少なくとも第1薄型化板状部材及び第2薄型化板状部材に分割する分割手段と、を備え、前記改質部形成手段は、アーム部と、レーザを照射するレーザ照射器と、前記アーム部を回転可能に支持する駆動部と、を有し、前記レーザ照射器は、前記アーム部にスライド移動可能に支持されていることを特徴とする。 In the apparatus for manufacturing a thin plate-shaped member according to one aspect of the present invention, at least the first modified portion forming means for forming a plurality of modified portions inside the plate-shaped member and the modified plate-shaped member are first. A thinning plate-shaped member and a dividing means for dividing into a second thinned plate-shaped member are provided, and the modified portion forming means can rotate an arm portion, a laser irradiator that irradiates a laser, and the arm portion. The laser irradiator is supported by a drive unit that is slidably supported by the arm unit.

本発明の一態様に係る薄型化板状部材の製造装置において、前記改質部形成手段は、前記レーザ照射器を複数有することが好ましい。 In the apparatus for manufacturing a thin plate-shaped member according to one aspect of the present invention, it is preferable that the modified portion forming means has a plurality of the laser irradiators.

本発明の一態様に係る薄型化板状部材の製造装置において、前記レーザ照射器は、複数のレーザを同時に照射可能であることが好ましい。 In the apparatus for manufacturing a thin plate-shaped member according to one aspect of the present invention, it is preferable that the laser irradiator can irradiate a plurality of lasers at the same time.

本発明の一態様に係る薄型化板状部材の製造装置において、前記レーザ照射器は、複数の前記レーザ同士の照射間隔を拡大及び縮小できることが好ましい。 In the apparatus for manufacturing a thin plate-shaped member according to one aspect of the present invention, it is preferable that the laser irradiator can increase or decrease the irradiation interval between a plurality of the lasers.

本発明の一態様に係る薄型化板状部材の製造装置において、前記板状部材を回転可能に支持する保持手段をさらに有することが好ましい。 In the apparatus for manufacturing a thin plate-shaped member according to one aspect of the present invention, it is preferable to further have a holding means for rotatably supporting the plate-shaped member.

本発明の一態様によれば、純水を用いず、薄型化の時間を短縮し、板状部材の割れを抑制でき、厚み精度を向上させることのできる薄型化板状部材の製造方法を提供できる。 According to one aspect of the present invention, there is provided a method for manufacturing a thin plate-shaped member which can shorten the time for thinning, suppress cracking of the plate-shaped member, and improve the thickness accuracy without using pure water. it can.

本発明の一実施形態に係る薄型化ウエハの製造装置の平面図である。It is a top view of the thinning wafer manufacturing apparatus which concerns on one Embodiment of this invention. 第1貼付手段の側面図である。It is a side view of the 1st sticking means. 第2貼付手段の側面図である。It is a side view of the 2nd sticking means. ウエハの内部の分割面を示すウエハの縦断面概略図である。It is a schematic of the vertical sectional view of the wafer which shows the division surface inside the wafer. 複数の改質部を形成した後のウエハの縦断面概略図である。It is a schematic of the vertical cross section of a wafer after forming a plurality of modified parts. 複数の改質部を形成した後のウエハの横断面概略図である。It is the cross-sectional schematic diagram of the wafer after forming a plurality of modified parts. 分割手段の動作説明図である。It is operation explanatory drawing of the division means. 分割手段の動作説明図である。It is operation explanatory drawing of the division means. 分割手段の動作説明図である。It is operation explanatory drawing of the division means. 第2実施形態にて複数の改質部を形成した後のウエハの縦断面概略図である。It is a schematic vertical cross-sectional view of the wafer after forming a plurality of modified parts in 2nd Embodiment. 第2実施形態にて複数の改質部を形成した後のウエハの横断面概略図である。It is sectional drawing of the cross section of the wafer after forming a plurality of modified parts in 2nd Embodiment. 第3実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in 3rd Embodiment. 第3実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in 3rd Embodiment. 第3実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in 3rd Embodiment. 第3実施形態のレーザ照射工程を実施した後のウエハの縦断面概略図である。It is a schematic of the vertical sectional view of the wafer after carrying out the laser irradiation process of 3rd Embodiment. 第4実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in 4th Embodiment. 第4実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in 4th Embodiment. 第4実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in 4th Embodiment. 第5実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in 5th Embodiment. 第5実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in 5th Embodiment. 第5実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in 5th Embodiment. 本発明の別の一実施形態におけるレーザ照射工程を説明する概略図である。It is the schematic explaining the laser irradiation process in another embodiment of this invention. 本発明の別の一実施形態に係る薄型化ウエハの製造装置の動作説明図である。It is operation | movement explanatory drawing of the thinning wafer manufacturing apparatus which concerns on another Embodiment of this invention. 本発明の別の一実施形態に係る薄型化ウエハの製造装置の動作説明図である。It is operation | movement explanatory drawing of the thinning wafer manufacturing apparatus which concerns on another Embodiment of this invention. 本発明の別の一実施形態に係る薄型化ウエハの製造装置の動作説明図である。It is operation | movement explanatory drawing of the thinning wafer manufacturing apparatus which concerns on another Embodiment of this invention. 本発明の別の一実施形態に係る薄型化ウエハの製造装置の動作説明図である。It is operation | movement explanatory drawing of the thinning wafer manufacturing apparatus which concerns on another Embodiment of this invention. 本発明の別の一実施形態に係る薄型化ウエハの製造装置の動作説明図である。It is operation | movement explanatory drawing of the thinning wafer manufacturing apparatus which concerns on another Embodiment of this invention.

[第1実施形態]
以下、本発明の一実施形態を図面に基づいて説明する。
なお、本実施形態におけるX軸、Y軸、Z軸は、それぞれが直交する関係にあり、X軸、及びY軸は、所定平面内の軸とし、Z軸は、前記所定平面に直交する軸とする。さらに、本実施形態では、Y軸と平行な矢印AR方向から観た場合を基準とし、方向を示した場合、「上」がZ軸と平行な図1中手前方向で「下」がその逆方向、「左」がX軸の矢印方向で「右」がその逆方向、「前」がY軸の矢印方向で「後」がその逆方向とする。第1実施形態以降の第2実施形態等及び実施形態の変形においても同様である。
[First Embodiment]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The X-axis, Y-axis, and Z-axis in the present embodiment are orthogonal to each other, the X-axis and the Y-axis are axes in a predetermined plane, and the Z-axis is an axis orthogonal to the predetermined plane. And. Further, in the present embodiment, the case of viewing from the direction of the arrow AR parallel to the Y axis is used as a reference, and when the direction is indicated, "upper" is parallel to the Z axis in the front direction in FIG. 1, and "lower" is the opposite. The direction, "left" is the X-axis arrow direction, "right" is the opposite direction, "front" is the Y-axis arrow direction, and "rear" is the opposite direction. The same applies to the second embodiment and the like after the first embodiment and modifications of the embodiment.

薄型化板状部材は、薄型化板状部材の製造装置を用いて製造される。
図1、2、3、及び7には、薄型化板状部材の一例である薄型化ウエハを製造するための薄型化ウエハの製造装置10が示されている。
薄型化ウエハの製造装置10は、第1貼付手段20と、改質部形成手段30と、第2貼付手段40と、分割手段50とを備えている。
第1貼付手段20は、板状部材としての半導体ウエハ(以下、単に「ウエハ」という場合がある)WFの第1表面WF1に第1接着シートAS1を貼付して一次加工品WK1を形成する。ウエハWFは、第1表面WF1と、第1表面WF1とは反対側の第2表面WF2と、を有する。
改質部形成手段30は、ウエハWFの内部に複数の改質部RP(図5参照)を形成する。複数の改質部RPは、後述する分割面DP(図4参照)に沿って形成される。
第2貼付手段40は、ウエハWFの第2表面WF2に第2接着シートAS2を貼付して二次加工品WK2を形成する。
分割手段50は、分割面DP(図4参照)に沿ってウエハWFを分割して、第1薄型化板状部材としての第1薄型化ウエハWT1、及び第2薄型化板状部材としての第2薄型化ウエハWT2を形成する。
The thin plate-shaped member is manufactured by using a manufacturing apparatus for the thin plate-shaped member.
FIGS. 1, 2, 3, and 7 show a thin wafer manufacturing apparatus 10 for manufacturing a thin wafer, which is an example of a thin plate-shaped member.
The thinning wafer manufacturing apparatus 10 includes a first sticking means 20, a modified portion forming means 30, a second sticking means 40, and a dividing means 50.
The first attaching means 20 attaches the first adhesive sheet AS1 to the first surface WF1 of the semiconductor wafer (hereinafter, may be simply referred to as “wafer”) WF as a plate-shaped member to form the primary processed product WK1. The wafer WF has a first surface WF1 and a second surface WF2 on the opposite side of the first surface WF1.
The modified portion forming means 30 forms a plurality of modified portion RPs (see FIG. 5) inside the wafer WF. The plurality of modified portion RPs are formed along the division surface DP (see FIG. 4) described later.
The second sticking means 40 sticks the second adhesive sheet AS2 to the second surface WF2 of the wafer WF to form the secondary processed product WK2.
The dividing means 50 divides the wafer WF along the dividing surface DP (see FIG. 4) to form the first thinned wafer WT1 as the first thinned plate-shaped member and the second thinned plate-shaped member. 2 The thinned wafer WT2 is formed.

以下、薄型化板状部材の製造方法の一例として、薄型化ウエハの製造装置10を用いて、第1薄型化ウエハWT1及び第2薄型化ウエハWT2を製造する方法を説明する。 Hereinafter, as an example of the method for manufacturing the thinned plate-shaped member, a method for manufacturing the first thinned wafer WT1 and the second thinned wafer WT2 by using the thinned wafer manufacturing apparatus 10 will be described.

ウエハWFは、レーザ照射によって改質される材質からなるウエハであれば特に限定されない。レーザは、ステルスダイシング法において照射するレーザであることが好ましい。ウエハWFの材質は、例えば、シリコン、窒化ケイ素、窒化ガリウム、シリコンカーバイド(SiC)、サファイア、ガリウム砒素、及びガラスからなる群から選択されることが好ましい。ウエハWFの材質は、シリコンであることがより好ましく、単結晶シリコンであることがさらに好ましい。また、ウエハWFは、結晶方位を有する材質で形成されていることも好ましい。 The wafer WF is not particularly limited as long as it is a wafer made of a material modified by laser irradiation. The laser is preferably a laser that irradiates in the stealth dicing method. The material of the wafer WF is preferably selected from the group consisting of, for example, silicon, silicon nitride, gallium nitride, silicon carbide (SiC), sapphire, gallium arsenide, and glass. The material of the wafer WF is more preferably silicon, and even more preferably single crystal silicon. It is also preferable that the wafer WF is made of a material having a crystal orientation.

本実施形態に係るウエハの製造方法によれば、インゴットのように厚みの大きい処理対象物ではなく、厚みが小さい板状部材(ウエハ)をさらに薄型化できる。ウエハWFの厚みは、3mm以下であることが好ましい。
ウエハWFを分割して形成される第1薄型化ウエハWT1、及び第2薄型化ウエハWT2の厚みの少なくともいずれかが、500μm以下であることが好ましく、300μm以下であることがより好ましい。ウエハWFを分割して形成される第1薄型化ウエハWT1、及び第2薄型化ウエハWT2の厚みの少なくともいずれかが、10μm以上であることが好ましく、30μm以上であることがより好ましい。
According to the wafer manufacturing method according to the present embodiment, it is possible to further reduce the thickness of a plate-shaped member (wafer) having a small thickness, instead of a processing object having a large thickness such as an ingot. The thickness of the wafer WF is preferably 3 mm or less.
At least one of the thicknesses of the first thinning wafer WT1 and the second thinning wafer WT2 formed by dividing the wafer WF is preferably 500 μm or less, and more preferably 300 μm or less. At least one of the thicknesses of the first thinning wafer WT1 and the second thinning wafer WT2 formed by dividing the wafer WF is preferably 10 μm or more, and more preferably 30 μm or more.

第1貼付手段20は、第1剥離シートRL1の一方の面に第1接着シートAS1が仮着された第1原反RS1を支持する支持ローラ21と、第1原反RS1を案内するガイドローラ22と、第1剥離シートRL1を折り曲げて当該第1剥離シートRL1から第1接着シートAS1を剥離する剥離部材としての剥離板23と、駆動機器としての回動モータ24Aによって駆動され、ピンチローラ24Bとで第1剥離シートRL1を挟み込む駆動ローラ24と、第1剥離シートRL1を回収する回収ローラ25と、剥離板23で剥離された第1接着シートAS1をウエハWFの第1表面WF1、及び第1フレーム部材としての第1リングフレームRF1に押圧して貼付する押圧手段としての押圧ローラ26と、駆動機器としてのリニアモータ27のスライダ27Aに支持され、減圧ポンプや真空エジェクタ等の図示しない減圧手段によって、ウエハWF、及び第1リングフレームRF1を吸着保持可能な保持テーブル28とを備える。第1貼付手段20は、ウエハWF、及び第1リングフレームRF1に第1接着シートAS1を貼付して一次加工品WK1を形成する。 The first sticking means 20 includes a support roller 21 for supporting the first raw fabric RS1 in which the first adhesive sheet AS1 is temporarily attached to one surface of the first peeling sheet RL1 and a guide roller for guiding the first raw fabric RS1. 22 and a peeling plate 23 as a peeling member for bending the first peeling sheet RL1 to peel the first adhesive sheet AS1 from the first peeling sheet RL1, and a pinch roller 24B driven by a rotating motor 24A as a driving device. The drive roller 24 that sandwiches the first release sheet RL1, the recovery roller 25 that collects the first release sheet RL1, and the first adhesive sheet AS1 that has been peeled off by the release plate 23 are combined with the first surface WF1 of the wafer WF and the first. A decompression means (not shown) supported by a pressing roller 26 as a pressing means to be pressed and attached to the first ring frame RF1 as a frame member and a slider 27A of a linear motor 27 as a driving device, such as a decompression pump and a vacuum ejector. The wafer WF and the holding table 28 capable of sucking and holding the first ring frame RF1 are provided. The first sticking means 20 sticks the first adhesive sheet AS1 to the wafer WF and the first ring frame RF1 to form the primary processed product WK1.

改質部形成手段30は、レーザ照射器32を備えている。レーザ照射器32は、駆動機器としてのリニアモータ31のスライダ31Aに支持されている。 The reforming portion forming means 30 includes a laser irradiator 32. The laser irradiator 32 is supported by a slider 31A of a linear motor 31 as a drive device.

第2貼付手段40は、第2剥離シートRL2の一方の面に第2接着シートAS2が仮着された第2原反RS2から当該第2接着シートAS2を剥離し、当該第2接着シートAS2をウエハWFの第2表面WF2、及び第2フレーム部材としての第2リングフレームRF2に貼付して二次加工品WK2を形成する。第2貼付手段40は、実質的に第1貼付手段20と同様の構成であり、第1貼付手段20における付番号の先頭2の記号を4に置き換えることで説明ができるので、その説明を省略する。なお、第2貼付手段40は、保持テーブル48で一次加工品WK1、及び第2リングフレームRF2を吸着保持する構成になっている。 The second sticking means 40 peels the second adhesive sheet AS2 from the second raw fabric RS2 in which the second adhesive sheet AS2 is temporarily attached to one surface of the second release sheet RL2, and attaches the second adhesive sheet AS2. The secondary processed product WK2 is formed by being attached to the second surface WF2 of the wafer WF and the second ring frame RF2 as the second frame member. The second sticking means 40 has substantially the same configuration as the first sticking means 20, and can be explained by replacing the symbol of the first 2 of the numbering in the first sticking means 20 with 4, so the description thereof is omitted. To do. The second sticking means 40 is configured to suck and hold the primary processed product WK1 and the second ring frame RF2 on the holding table 48.

分割手段50は、減圧ポンプや真空エジェクタ等の図示しない減圧手段によって第1接着シートAS1を介してウエハWF、及び第1リングフレームRF1を吸着保持可能な保持面51Aを有する下テーブル51と、駆動機器としての回動モータ52の出力軸52Aに右端部が支持され、減圧ポンプや真空エジェクタ等の図示しない減圧手段によって第2接着シートAS2を介してウエハWF、及び第2リングフレームRF2を吸着保持可能な保持面53Aを有する上テーブル53とを備える。分割手段50は、下テーブル51と上テーブル53とをX−Z平面内の回転方向に相対移動させ、ウエハWFの厚み方向に当該ウエハWFを離間させる構成になっている。 The dividing means 50 is driven by a lower table 51 having a holding surface 51A capable of adsorbing and holding the wafer WF and the first ring frame RF1 via the first adhesive sheet AS1 by a decompression means (not shown) such as a decompression pump or a vacuum ejector. The right end is supported by the output shaft 52A of the rotary motor 52 as a device, and the wafer WF and the second ring frame RF2 are attracted and held via the second adhesive sheet AS2 by a decompression means (not shown) such as a decompression pump or a vacuum ejector. It comprises an upper table 53 having a possible holding surface 53A. The dividing means 50 has a configuration in which the lower table 51 and the upper table 53 are relatively moved in the rotation direction in the XZ plane, and the wafer WF is separated in the thickness direction of the wafer WF.

以上の薄型化ウエハの製造装置10において、ウエハWFから第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を形成する手順を説明する。
先ず、各部材が初期位置に配置された図2、図3、図7A、図7B、及び図7C中の実線で示す薄型化ウエハの製造装置10に対し、作業者が第1原反RS1、及び第2原反RS2を図2、及び図3に示すようにセットした後、図示しない操作パネルやパーソナルコンピュータ等の入力手段を介して自動運転開始の信号を入力する。そして、作業者又は多関節ロボットやベルトコンベア等の図示しない搬送手段が、図2中の実線で示すように第1リングフレームRF1、及びウエハWFを保持テーブル28上に載置すると、第1貼付手段20が図示しない減圧手段を駆動し、第1リングフレームRF1、及びウエハWFを保持テーブル28の上面で吸着保持する。
The procedure for forming the first thinning wafer WT1 and the second thinning wafer WT2 from the wafer WF in the above-mentioned thinning wafer manufacturing apparatus 10 will be described.
First, with respect to the thin wafer manufacturing apparatus 10 shown by the solid lines in FIGS. 2, 7, 7A, 7B, and 7C in which each member is arranged at the initial position, the operator sets the first raw fabric RS1. After setting the second wafer RS2 as shown in FIGS. 2 and 3, a signal for starting automatic operation is input via an input means such as an operation panel or a personal computer (not shown). Then, when a worker or a transport means (not shown) such as an articulated robot or a belt conveyor places the first ring frame RF1 and the wafer WF on the holding table 28 as shown by the solid line in FIG. 2, the first sticking is performed. The means 20 drives a decompression means (not shown) to suck and hold the first ring frame RF1 and the wafer WF on the upper surface of the holding table 28.

その後、第1貼付手段20がリニアモータ27を駆動し、保持テーブル28を左方向に移動させ、第1リングフレームRF1、及びウエハWFが所定位置に到達したことが光学センサや撮像手段等の図示しない検知手段に検知されると、回動モータ24Aを駆動し、保持テーブル28の移動速度に合わせて第1原反RS1を繰り出す。これにより、第1接着シートAS1が剥離板23で第1剥離シートRL1から剥離され、押圧ローラ26によって第1リングフレームRF1、及びウエハWFの第1表面WF1に貼付されて一次加工品WK1が形成される(第1貼付工程)。一次加工品WK1が図2中の二点鎖線で示す所定の位置に到達すると、第1貼付手段20がリニアモータ27、及び図示しない減圧手段の駆動を停止する。次いで、作業者又は図示しない搬送手段が、図3中の実線で示すように、第1接着シートAS1が下方となる状態で一次加工品WK1を保持テーブル48の上面に載置する。その後、作業者又は図示しない搬送手段が一次加工品WK1を囲むように第2リングフレームRF2を保持テーブル48の上面に載置すると、第2貼付手段40が図示しない減圧手段を駆動し、第2リングフレームRF2、及び一次加工品WK1を保持テーブル48の上面で吸着保持する。 After that, the first sticking means 20 drives the linear motor 27 to move the holding table 28 to the left, and the optical sensor, the imaging means, and the like show that the first ring frame RF1 and the wafer WF have reached a predetermined position. When detected by the detecting means, the rotation motor 24A is driven and the first raw fabric RS1 is fed out according to the moving speed of the holding table 28. As a result, the first adhesive sheet AS1 is peeled from the first peeling sheet RL1 by the peeling plate 23, and is attached to the first ring frame RF1 and the first surface WF1 of the wafer WF by the pressing roller 26 to form the primary processed product WK1. (First pasting step). When the primary processed product WK1 reaches a predetermined position indicated by the alternate long and short dash line in FIG. 2, the first attaching means 20 stops driving the linear motor 27 and the decompression means (not shown). Next, an operator or a transport means (not shown) places the primary processed product WK1 on the upper surface of the holding table 48 with the first adhesive sheet AS1 facing down, as shown by the solid line in FIG. After that, when the operator or the transport means (not shown) places the second ring frame RF2 on the upper surface of the holding table 48 so as to surround the primary processed product WK1, the second sticking means 40 drives the decompression means (not shown), and the second ring frame RF2 is driven. The ring frame RF2 and the primary processed product WK1 are sucked and held on the upper surface of the holding table 48.

次に、改質部形成手段30がレーザLBをウエハWFに照射するレーザ照射工程を実施する(図3参照)。
レーザ照射工程においては、第2貼付手段40がリニアモータ47を駆動し、保持テーブル48を右方向に移動させると、当該保持テーブル48の移動に同期させて改質部形成手段30がレーザ照射器32、及びリニアモータ31を駆動し、当該レーザ照射器32を前後方向に移動させる。改質部形成手段30は、半導体ウエハを改質できるレーザLBを照射する手段であれば特に限定されない。改質部形成手段30としては、例えば、ステルスダイシング法に採用される装置を用いることもできる。
Next, the reforming portion forming means 30 carries out a laser irradiation step of irradiating the wafer WF with the laser LB (see FIG. 3).
In the laser irradiation step, when the second sticking means 40 drives the linear motor 47 and moves the holding table 48 to the right, the reforming portion forming means 30 moves the laser irradiator in synchronization with the movement of the holding table 48. 32 and the linear motor 31 are driven to move the laser irradiator 32 in the front-rear direction. The modified portion forming means 30 is not particularly limited as long as it is a means for irradiating a laser LB capable of modifying a semiconductor wafer. As the reforming portion forming means 30, for example, an apparatus adopted in the stealth dicing method can be used.

また、レーザ照射工程においては、レーザ照射器32を前後方向に移動させながらレーザLBをウエハWFに照射する。本実施形態では、ウエハWFの第2表面WF2側からレーザLBを照射する。第2表面WF2は、レーザLBがウエハWFの内部へ入射されやすいように、研磨されていることが好ましい。
レーザ照射器32は、ウエハWFの内部に、改質された部分(改質部という。)を形成できるようにレーザ照射条件が設定されている。レーザ照射条件としては、例えば、レーザ出力、レーザ周波数、パルス幅、レーザ照射点の位置、及びレーザ波長などが挙げられるが、これらに限定されない。
Further, in the laser irradiation step, the laser LB is irradiated to the wafer WF while moving the laser irradiator 32 in the front-rear direction. In the present embodiment, the laser LB is irradiated from the second surface WF2 side of the wafer WF. The second surface WF2 is preferably polished so that the laser LB is easily incident on the inside of the wafer WF.
In the laser irradiator 32, the laser irradiation conditions are set so that a modified portion (referred to as a modified portion) can be formed inside the wafer WF. Examples of the laser irradiation conditions include, but are not limited to, laser output, laser frequency, pulse width, position of laser irradiation point, and laser wavelength.

図4は、ウエハWFの内部の分割面DPを示すウエハWFの縦断面概略図である。
図5は、ウエハWFの内部の分割面DPに沿って複数の改質部RPを形成した後のウエハWFの縦断面概略図である。
図6は、ウエハWFの内部の分割面DPに沿って複数の改質部RPを形成した後のウエハWFの横断面概略図である。
なお、図4、図5、及び図6において、図の視認性の観点からハッチは省略してある。
レーザ照射工程においては、レーザLBを照射し、複数の改質部RPを、ウエハWFの内部の分割面DPに沿って形成する。すなわち、複数の改質部RPが存在しているウエハ内部の面状の領域が分割面DPに相当する。なお、分割面DPは、ウエハWFを分割する予定の仮想的な面である。
改質部RPを起点として、後の分割工程において、ウエハWFが分割される。
FIG. 4 is a schematic vertical cross-sectional view of the wafer WF showing the divided surface DP inside the wafer WF.
FIG. 5 is a schematic vertical cross-sectional view of the wafer WF after forming a plurality of modified portion RPs along the divided surface DP inside the wafer WF.
FIG. 6 is a schematic cross-sectional view of the wafer WF after forming a plurality of modified portion RPs along the divided surface DP inside the wafer WF.
In addition, in FIG. 4, FIG. 5, and FIG. 6, the hatch is omitted from the viewpoint of the visibility of the figure.
In the laser irradiation step, the laser LB is irradiated to form a plurality of modified portion RPs along the divided surface DP inside the wafer WF. That is, the planar region inside the wafer in which the plurality of modified RPs are present corresponds to the divided surface DP. The dividing surface DP is a virtual surface on which the wafer WF is planned to be divided.
The wafer WF is divided in a later division step starting from the reforming portion RP.

ウエハWFが結晶方位を有する材質で形成されている場合、分割面DPと結晶方位とが一致していることが好ましい。分割面DPと結晶方位とが一致していれば、ウエハWFの分割によって現れる第1薄型化ウエハWT1の表面、及び第2薄型化ウエハWT2の表面(分割面DPと対応する面)を、より滑らかにすることができる。分割によって現れる第1薄型化ウエハWT1の表面を第1露出面とWF3する(図7C参照)。分割によって現れる第2薄型化ウエハWT2の表面を第2露出面WF4(図7C参照)とする。 When the wafer WF is made of a material having a crystal orientation, it is preferable that the split plane DP and the crystal orientation match. If the split plane DP and the crystal orientation match, the surface of the first thinned wafer WT1 and the surface of the second thinned wafer WT2 (the plane corresponding to the split plane DP) appearing due to the splitting of the wafer WF can be seen. Can be smoothed. The surface of the first thinning wafer WT1 that appears by division is WF3 with the first exposed surface (see FIG. 7C). The surface of the second thinned wafer WT2 that appears by division is designated as the second exposed surface WF4 (see FIG. 7C).

本明細書において、改質部は、ウエハの性質や強度を変化させて脆弱化又は軟化した部位である。本明細書において、改質部は、ウエハの内部のレーザが照射されたレーザ照射点と、このレーザ照射点を中心部とし、この中心部の周辺に形成された周辺部と、を含んだ領域をいう。ウエハの内部における改質強度は、レーザ照射点において最大である。周辺部の改質強度は、レーザ照射点から離れるほど低減する。 In the present specification, the modified portion is a portion that is weakened or softened by changing the properties and strength of the wafer. In the present specification, the modified portion includes a laser irradiation point irradiated with a laser inside the wafer, a peripheral portion formed around the laser irradiation point as a central portion, and a peripheral portion formed around the central portion. To say. The modification intensity inside the wafer is maximum at the laser irradiation point. The modification intensity of the peripheral portion decreases as the distance from the laser irradiation point increases.

図5及び図6には、断面が円形である改質部RPが示されているが、本明細書における改質部の形状や大きさは、図5及び図6に示されたような形状に限定されない。 Although the modified portion RP having a circular cross section is shown in FIGS. 5 and 6, the shape and size of the modified portion in the present specification are as shown in FIGS. 5 and 6. Not limited to.

改質部RPは、分割面DPの全体に亘って形成されていることも好ましい。形成する改質部RPの個数は、特に限定されない。例えば、ウエハWFの材質及びレーザによる改質強度に応じて、第1薄型化ウエハWT1及び第2薄型化ウエハWT2に分割し易いように、形成する改質部RPの個数を設定することもできる。また、半導体ウエハの生産性も考慮して、形成する改質部RPの個数を設定することもできる。 It is also preferable that the modified portion RP is formed over the entire divided surface DP. The number of modified parts RP to be formed is not particularly limited. For example, the number of reformed portion RPs to be formed can be set so as to be easily divided into the first thinning wafer WT1 and the second thinning wafer WT2 according to the material of the wafer WF and the modification strength by the laser. .. Further, the number of modified parts RP to be formed can be set in consideration of the productivity of the semiconductor wafer.

本実施形態では、図5及び図6に示すように、複数の改質部RPは、互いに重なっている。なお、本明細書において、複数の改質部は、互いに重なっているとは、一つの改質部が、他の改質部の内、少なくとも一つの改質部と重なっていることを意味しており、一つの改質部が他の全ての改質部と重なっていることを規定する意味ではない。レーザ照射工程においては、複数の改質部RPが互いに重なるようにレーザ照射条件を設定する。 In this embodiment, as shown in FIGS. 5 and 6, the plurality of modified parts RP overlap each other. In addition, in this specification, the fact that a plurality of modified parts overlap each other means that one modified part overlaps with at least one modified part among other modified parts. It does not mean that one reforming part overlaps with all other reforming parts. In the laser irradiation step, the laser irradiation conditions are set so that the plurality of reforming unit RPs overlap each other.

本実施形態では、レーザLBを分割面DPに沿って1μm以上350μm以下の間隔で照射することが好ましい。すなわち、レーザLBが照射された点(レーザ照射点)同士の間隔Dが、1μm以上350μm以下となるように、レーザLBを照射することが好ましい。レーザ照射点の間隔Dが1μm以上であれば生産性が向上する。レーザ照射点の間隔が350μm以下であれば、ウエハWFの厚み方向に亀裂が入り易くなるという不具合を抑制できる。レーザ照射点の間隔Dは、1μm以上350μm以下の範囲内であれば、全ての改質部RPにおいて同一であっても、異なっていてもよい。 In the present embodiment, it is preferable to irradiate the laser LB along the dividing surface DP at intervals of 1 μm or more and 350 μm or less. That is, it is preferable to irradiate the laser LB so that the distance D between the points irradiated with the laser LB (laser irradiation points) is 1 μm or more and 350 μm or less. If the distance D between the laser irradiation points is 1 μm or more, the productivity is improved. When the distance between the laser irradiation points is 350 μm or less, it is possible to suppress the problem that cracks are likely to occur in the thickness direction of the wafer WF. The distance D between the laser irradiation points may be the same or different in all the reformed portion RPs as long as it is within the range of 1 μm or more and 350 μm or less.

レーザ照射点の間隔は、例えば、保持テーブル48及びレーザ照射器32の少なくともいずれかの移動速度を変化させることで、所定の距離に調整することができる。 The distance between the laser irradiation points can be adjusted to a predetermined distance by, for example, changing the moving speed of at least one of the holding table 48 and the laser irradiator 32.

ウエハWFの内部に、ウエハWFを面方向に分割させるために必要な複数の改質部RPが形成されると、改質部形成手段30がレーザ照射器32の駆動を停止する。レーザ照射器32の駆動を停止した後、一次加工品WK1が図3中の二点鎖線で示す所定位置に到達すると、第2貼付手段40がリニアモータ47の駆動を停止する。次いで、第2貼付手段40がリニアモータ47を駆動し、保持テーブル48を左方向に移動させ、上記第1貼付手段20と同様の動作を行うことにより、図3の符号AAの図に示すような二次加工品WK2が形成される(第2貼付工程)。保持テーブル48が初期位置に復帰すると、第2貼付手段40がリニアモータ47の駆動を停止するとともに、図示しない減圧手段の駆動を停止する。 When a plurality of modified portion RPs necessary for dividing the wafer WF in the plane direction are formed inside the wafer WF, the modified portion forming means 30 stops driving the laser irradiator 32. After stopping the driving of the laser irradiator 32, when the primary processed product WK1 reaches a predetermined position indicated by the alternate long and short dash line in FIG. 3, the second sticking means 40 stops driving the linear motor 47. Next, the second sticking means 40 drives the linear motor 47, moves the holding table 48 to the left, and performs the same operation as the first sticking means 20, as shown in the figure of reference numeral AA in FIG. Secondary processed product WK2 is formed (second pasting step). When the holding table 48 returns to the initial position, the second sticking means 40 stops driving the linear motor 47 and stops driving the decompression means (not shown).

次いで、作業者又は図示しない搬送手段が、図7Aに示すように、第1接着シートAS1が下方となる状態で二次加工品WK2を下テーブル51の保持面51A上に載置すると、分割手段50が図示しない減圧手段を駆動し、二次加工品WK2を保持面51Aで吸着保持する。その後、分割手段50が回動モータ52を駆動し、上テーブル53を反時計回転方向に回転させ、図7Bに示すように、上テーブル53を二次加工品WK2に当接させた後、図示しない減圧手段を駆動し、当該二次加工品WK2を保持面53Aで吸着保持する。そして、分割手段50が回動モータ52を駆動し、上テーブル53を時計回転方向に回転させ、図7Cに示すように、複数の改質部RPが形成された分割面DPを境界にしてウエハWFを分割することで、薄型化された第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を形成する(分割工程)。次に、作業者又は図示しない搬送手段が第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を保持すると、分割手段50が図示しない減圧手段の駆動を停止し、第1薄型化ウエハWT1、及び第2薄型化ウエハWT2の吸着保持を解除する。その後、図示しない搬送手段が第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を次工程に搬送すると、各手段がそれぞれの駆動機器を駆動し、各部材を初期位置に復帰させ、以降、上記同様の動作が繰り返される。 Next, when the operator or the transporting means (not shown) places the secondary processed product WK2 on the holding surface 51A of the lower table 51 with the first adhesive sheet AS1 facing downward, as shown in FIG. 7A, the dividing means 50 drives a decompression means (not shown) to attract and hold the secondary processed product WK2 on the holding surface 51A. After that, the dividing means 50 drives the rotary motor 52 to rotate the upper table 53 in the counterclockwise rotation direction, and as shown in FIG. 7B, the upper table 53 is brought into contact with the secondary processed product WK2, and then illustrated. The secondary processed product WK2 is sucked and held by the holding surface 53A by driving the depressurizing means. Then, the dividing means 50 drives the rotation motor 52 to rotate the upper table 53 in the clockwise rotation direction, and as shown in FIG. 7C, the wafer is bounded by the dividing surface DP on which the plurality of reforming portion RPs are formed. By dividing the WF, the thinned first thinned wafer WT1 and the second thinned wafer WT2 are formed (division step). Next, when the operator or the conveying means (not shown) holds the first thinning wafer WT1 and the second thinning wafer WT2, the dividing means 50 stops driving the decompression means (not shown), and the first thinning wafer WT1. And the suction holding of the second thinning wafer WT2 is released. After that, when the conveying means (not shown) conveys the first thinning wafer WT1 and the second thinning wafer WT2 to the next step, each means drives each driving device and returns each member to the initial position. The same operation as above is repeated.

本実施形態によれば、ウエハWFの内部に複数の改質部RPを形成し、当該複数の改質部RPが形成された分割面DPを境界にして当該ウエハWFを分割する。そのため、本実施形態によれば、純水を用いることなく、研磨法に比べて薄型化の時間を短縮し、ウエハWFの割れを抑制でき、厚み精度を向上させることができる。
また、本実施形態によれば、複数の改質部RPを互いに重ねるように形成する。そのため、改質部が分割面に沿ってより多く存在しており、ウエハWFを分割し易くなる。
According to the present embodiment, a plurality of modified portion RPs are formed inside the wafer WF, and the wafer WF is divided with a division surface DP on which the plurality of modified portion RPs are formed as a boundary. Therefore, according to the present embodiment, it is possible to shorten the time for thinning, suppress cracking of the wafer WF, and improve the thickness accuracy as compared with the polishing method, without using pure water.
Further, according to the present embodiment, a plurality of modified portion RPs are formed so as to overlap each other. Therefore, more modified portions are present along the dividing surface, which makes it easier to divide the wafer WF.

[第2実施形態]
第2実施形態に係る薄型化板状部材の製造方法は、複数の改質部を形成する際の改質部同士の位置関係が、第1実施形態と異なる。その他の点については、第2実施形態は、第1実施形態と同様であるため、説明を省略又は簡略化する。
[Second Embodiment]
The method for manufacturing a thin plate-shaped member according to the second embodiment is different from the first embodiment in the positional relationship between the modified portions when forming a plurality of modified portions. Since the second embodiment is the same as the first embodiment in other respects, the description thereof will be omitted or simplified.

第2実施形態に係る薄型化板状部材の製造方法も、薄型化板状部材の一例である薄型化ウエハを製造するための薄型化ウエハの製造装置10を用いて実施できる。 The method for manufacturing the thinned plate-shaped member according to the second embodiment can also be carried out by using the thinned wafer manufacturing apparatus 10 for manufacturing the thinned wafer, which is an example of the thinned plate-shaped member.

第2実施形態に係る薄型化板状部材の製造方法は、レーザ照射工程に関して、第1実施形態のレーザ照射工程と相違する。具体的には、第2実施形態においては、改質部RP同士が互いに離れている点で、改質部同士が互いに重なっている第1実施形態とは異なる。 The method for manufacturing the thin plate-shaped member according to the second embodiment is different from the laser irradiation step of the first embodiment in terms of the laser irradiation step. Specifically, the second embodiment is different from the first embodiment in that the modified portions RPs are separated from each other, and the modified portions overlap each other.

図8は、ウエハWFの内部の分割面DPに沿って複数の改質部RPを形成した後のウエハWFの縦断面概略図である。
図9は、ウエハWFの内部の分割面DPに沿って複数の改質部RPを形成した後のウエハWFの横断面概略図である。
なお、図8及び図9において、図の視認性の観点からハッチは省略してある。
FIG. 8 is a schematic vertical cross-sectional view of the wafer WF after forming a plurality of modified portion RPs along the divided surface DP inside the wafer WF.
FIG. 9 is a schematic cross-sectional view of the wafer WF after forming a plurality of modified portion RPs along the divided surface DP inside the wafer WF.
Note that in FIGS. 8 and 9, the hatch is omitted from the viewpoint of visibility of the drawings.

本実施形態では、図8及び図9に示すように、複数の改質部RPは、互いに離れている。レーザ照射工程においては、複数の改質部RPが互いに重ならないようにレーザ照射条件を設定する。 In this embodiment, as shown in FIGS. 8 and 9, the plurality of modified parts RP are separated from each other. In the laser irradiation step, the laser irradiation conditions are set so that the plurality of reforming unit RPs do not overlap each other.

図8及び図9には、断面が円形である改質部RPが示されているが、本明細書における改質部の形状や大きさは、図8及び図9に示されたような形状に限定されない。 Although the modified portion RP having a circular cross section is shown in FIGS. 8 and 9, the shape and size of the modified portion in the present specification are as shown in FIGS. 8 and 9. Not limited to.

本実施形態においても、レーザLBを分割面DPに沿って1μm以上350μm以下の間隔で照射することが好ましい。すなわち、レーザLBが照射された点(レーザ照射点)同士の間隔D1が、1μm以上350μm以下となるように、レーザLBを照射することが好ましい。レーザ照射点の間隔D1が1μm以上であれば生産性が向上する。レーザ照射点の間隔が350μm以下であれば、ウエハWFの厚み方向に亀裂が入り易くなるという不具合を抑制できる。レーザ照射点の間隔D1は、1μm以上350μm以下の範囲内であれば、全ての改質部RPにおいて同一であっても、異なっていてもよい。 Also in this embodiment, it is preferable to irradiate the laser LB along the dividing surface DP at intervals of 1 μm or more and 350 μm or less. That is, it is preferable to irradiate the laser LB so that the distance D1 between the points irradiated with the laser LB (laser irradiation points) is 1 μm or more and 350 μm or less. If the distance D1 between the laser irradiation points is 1 μm or more, the productivity is improved. When the distance between the laser irradiation points is 350 μm or less, it is possible to suppress the problem that cracks are likely to occur in the thickness direction of the wafer WF. The distance D1 between the laser irradiation points may be the same or different in all the reforming unit RPs as long as it is within the range of 1 μm or more and 350 μm or less.

隣り合う改質部RP同士の間隔(一方の改質部の端と他方の改質部との端との間隔)は、ウエハWFを面方向に分割できる間隔であれば、特に限定されない。 The distance between adjacent modified portions RP (distance between the end of one modified portion and the end of the other modified portion) is not particularly limited as long as the wafer WF can be divided in the plane direction.

レーザ照射点の間隔は、例えば、保持テーブル48及びレーザ照射器32の少なくともいずれかの移動速度を変化させることで、所定の距離に調整することができる。 The distance between the laser irradiation points can be adjusted to a predetermined distance by, for example, changing the moving speed of at least one of the holding table 48 and the laser irradiator 32.

本実施形態によれば、ウエハWFの内部に複数の改質部RPを形成し、当該複数の改質部RPが形成された分割面DPを境界にして当該ウエハWFを分割する。そのため、本実施形態によれば、純水を用いることなく、研磨法に比べて薄型化の時間を短縮し、ウエハWFの割れを抑制でき、厚み精度を向上させることができる。
また、本実施形態によれば、複数の改質部RPを互いに重ならないように形成する。そのため、レーザ照射点の数を少なくすることができ、薄型化板状部材の生産性が向上する。
According to the present embodiment, a plurality of modified portion RPs are formed inside the wafer WF, and the wafer WF is divided with a division surface DP on which the plurality of modified portion RPs are formed as a boundary. Therefore, according to the present embodiment, it is possible to shorten the time for thinning, suppress cracking of the wafer WF, and improve the thickness accuracy as compared with the polishing method, without using pure water.
Further, according to the present embodiment, a plurality of modified portion RPs are formed so as not to overlap each other. Therefore, the number of laser irradiation points can be reduced, and the productivity of the thin plate-shaped member is improved.

[第3実施形態]
第3実施形態に係る薄型化板状部材の製造方法は、複数の改質部を形成する際のレーザ照射点同士の間隔が分割面内において異なる。第1実施形態、及び第2実施形態と異なる点について以下に説明し、第1実施形態、及び第2実施形態と同様な点は、説明を省略又は簡略化する。
[Third Embodiment]
In the method for manufacturing a thin plate-shaped member according to the third embodiment, the distance between the laser irradiation points when forming a plurality of modified portions is different in the divided plane. The differences from the first embodiment and the second embodiment will be described below, and the same points as those of the first embodiment and the second embodiment will be omitted or simplified.

本実施形態に係る薄型化板状部材の製造方法においては、レーザ照射工程を次に示すように具体的なレーザ照射条件の下で行うことを特徴とする。 The method for manufacturing a thin plate-shaped member according to the present embodiment is characterized in that the laser irradiation step is performed under specific laser irradiation conditions as shown below.

すなわち、本実施形態に係る製造方法のレーザ照射工程において、レーザの照射点の位置を移動させながら板状部材に複数の改質部を形成し、板状部材の外周部側におけるレーザ照射点同士の間隔と、板状部材の中心部側におけるレーザ照射点同士の間隔とが、異なる。 That is, in the laser irradiation step of the manufacturing method according to the present embodiment, a plurality of modified portions are formed on the plate-shaped member while moving the position of the laser irradiation point, and the laser irradiation points on the outer peripheral side of the plate-shaped member are connected to each other. The distance between the laser irradiation points on the central side of the plate-shaped member is different from that of the laser irradiation points.

本実施形態に係る製造方法のレーザ照射工程においては、レーザを照射するレーザ照射器、及び板状部材の少なくともいずれかを移動させることが好ましい。すなわち、本実施形態に係る製造方法のレーザ照射工程においては、板状部材を移動させずにレーザ照射器を移動させることでレーザ照射点の位置を移動させる第1態様、レーザ照射器を移動させずに板状部材を移動させることでレーザ照射点の位置を移動させる第2態様、並びに板状部材及びレーザ照射器を移動させることでレーザ照射点の位置を移動させる第3態様のいずれかを採用することができる。後述する本実施形態のより詳細な説明では、本実施形態の第1態様を採用した場合を一例として挙げる。 In the laser irradiation step of the manufacturing method according to the present embodiment, it is preferable to move at least one of the laser irradiator that irradiates the laser and the plate-shaped member. That is, in the laser irradiation step of the manufacturing method according to the present embodiment, the first aspect of moving the position of the laser irradiation point by moving the laser irradiator without moving the plate-shaped member, the laser irradiator is moved. One of the second aspect in which the position of the laser irradiation point is moved by moving the plate-shaped member and the third aspect in which the position of the laser irradiation point is moved by moving the plate-shaped member and the laser irradiator. Can be adopted. In a more detailed description of the present embodiment described later, a case where the first aspect of the present embodiment is adopted will be given as an example.

本実施形態に係る製造方法のレーザ照射工程においては、レーザ照射器、及び板状部材の少なくともいずれかを回転させることにより、レーザの照射点の位置を移動させることが好ましい。レーザ照射器、及び板状部材の少なくともいずれかを回転させることで、レーザ照射速度を向上させることができる。レーザ照射器、及び板状部材の少なくともいずれかを回転させることで、レーザを直線的に照射する場合と比べて、加速と減速の回数を減らすことができる。レーザを直線的に複数個所に照射する場合は、面方向にて照射位置を変更させる際に、一度、移動速度を減速させて位置変更を行うのに対して、レーザ照射器、及び板状部材の少なくともいずれかを回転させる場合は、同速度で連続して面内に照射できる。
ここで、本実施形態に係る製造方法のレーザ照射工程においては、レーザ照射器、及び板状部材の少なくともいずれかを、回転させるだけでなく、平行移動させる動作を組み合わせても良い。
In the laser irradiation step of the manufacturing method according to the present embodiment, it is preferable to move the position of the laser irradiation point by rotating at least one of the laser irradiator and the plate-shaped member. The laser irradiation speed can be improved by rotating at least one of the laser irradiator and the plate-shaped member. By rotating at least one of the laser irradiator and the plate-shaped member, the number of accelerations and decelerations can be reduced as compared with the case where the laser is linearly irradiated. When irradiating a plurality of places linearly with a laser, when changing the irradiation position in the plane direction, the moving speed is once reduced to change the position, whereas the laser irradiator and the plate-shaped member When at least one of the above is rotated, the in-plane can be continuously irradiated at the same speed.
Here, in the laser irradiation step of the manufacturing method according to the present embodiment, at least one of the laser irradiator and the plate-shaped member may be combined with an operation of not only rotating but also translating.

本実施形態に係る薄型化板状部材の製造方法においても、板状部材は、特に限定されないが、半導体ウエハであることが好ましい。 Also in the method for manufacturing a thin plate-shaped member according to the present embodiment, the plate-shaped member is not particularly limited, but a semiconductor wafer is preferable.

本実施形態に係る薄型化板状部材の製造方法も、薄型化ウエハの製造装置10を用いて実施できる。
また、本実施形態に係る薄型化板状部材の製造方法は、図10に示すような改質部形成手段30Aを有する薄型化ウエハの製造装置を用いて実施することもできる。
The method for manufacturing the thinned plate-shaped member according to the present embodiment can also be carried out by using the thinned wafer manufacturing apparatus 10.
Further, the method for manufacturing the thinned plate-shaped member according to the present embodiment can also be carried out by using a thinned wafer manufacturing apparatus having the modified portion forming means 30A as shown in FIG.

図10A、図10B、及び図10Cには、改質部形成手段30Aの概略図が示されている。
改質部形成手段30Aは、駆動部320と、軸部321と、アーム部322と、レーザ照射器323と、を備える。
10A, 10B, and 10C show a schematic view of the modified portion forming means 30A.
The reforming portion forming means 30A includes a driving portion 320, a shaft portion 321 and an arm portion 322, and a laser irradiator 323.

駆動部320は、軸部321を介して支持するアーム部322を、軸部321を回転軸として回転させる。 The drive unit 320 rotates the arm unit 322 supported via the shaft unit 321 with the shaft unit 321 as a rotation axis.

アーム部322の長手方向の一端部側にレーザ照射器323が取り付けられており、他端部側に軸部321が取り付けられている。
レーザ照射器323は、アーム部322の長手方向に沿って移動可能に取り付けられていることが好ましい。例えば、レーザ照射器323は、第1実施形態におけるリニアモータ31及びスライダ31Aを有する駆動機器によって移動させることもできる。そのため、本実施形態の改質部形成手段30Aは、アーム部322が当該駆動機器を有していることが好ましい。
レーザ照射器323は、板状部材としての半導体ウエハを改質できるレーザLBを照射可能であれば特に限定されない。レーザ照射器323は、例えば、前記実施形態で用いたレーザ照射器32と同様でもよい。
The laser irradiator 323 is attached to one end side of the arm portion 322 in the longitudinal direction, and the shaft portion 321 is attached to the other end side.
It is preferable that the laser irradiator 323 is movably attached along the longitudinal direction of the arm portion 322. For example, the laser irradiator 323 can also be moved by a drive device having a linear motor 31 and a slider 31A according to the first embodiment. Therefore, in the modified portion forming means 30A of the present embodiment, it is preferable that the arm portion 322 has the driving device.
The laser irradiator 323 is not particularly limited as long as it can irradiate a laser LB capable of modifying a semiconductor wafer as a plate-shaped member. The laser irradiator 323 may be the same as the laser irradiator 32 used in the above embodiment, for example.

次に、改質部形成手段30Aを有する薄型化ウエハの製造装置を用いた本実施形態に係る薄型化板状部材の製造方法を説明する。レーザ照射工程以外は、第1実施形態又は第2実施形態で説明した工程と同様に実施できるので、説明を省略する。 Next, a method of manufacturing a thin plate-shaped member according to the present embodiment using a thinning wafer manufacturing apparatus having a modified portion forming means 30A will be described. Since the steps other than the laser irradiation step can be carried out in the same manner as the steps described in the first embodiment or the second embodiment, the description thereof will be omitted.

図10Aには、ウエハWFのウエハ外周部WFe側にレーザLBを照射する工程を示す概略図が示されている。本実施形態においても、ウエハWFの内部の分割面DPに沿ってレーザLBを照射し、複数の改質部RPを形成する。
本実施形態では、図10Aに示すように、まず、分割面DPのウエハ外周部WFe側にレーザLBを照射し、1つ目のレーザ照射点LPを形成する。
次に、アーム部322を所定角度ずつ、回転させ、レーザLBを照射し、2つ目のレーザ照射点を形成する。このように、アーム部322を所定角度、回転させながらレーザを照射して、アーム部322の回転方向に沿って複数のレーザ照射点LPを所定間隔で形成する。
FIG. 10A shows a schematic view showing a step of irradiating the wafer outer peripheral portion WFe side of the wafer WF with the laser LB. Also in this embodiment, the laser LB is irradiated along the divided surface DP inside the wafer WF to form a plurality of modified portion RPs.
In the present embodiment, as shown in FIG. 10A, first, the laser LB is irradiated to the wafer outer peripheral portion WFe side of the divided surface DP to form the first laser irradiation point LP.
Next, the arm portion 322 is rotated by a predetermined angle to irradiate the laser LB to form a second laser irradiation point. In this way, the laser is irradiated while rotating the arm portion 322 at a predetermined angle, and a plurality of laser irradiation point LPs are formed at predetermined intervals along the rotation direction of the arm portion 322.

図10Bには、アーム部322を180度、回転させ、レーザLBを照射し、レーザ照射点LPを形成した状態の概略図が示されている。 FIG. 10B shows a schematic view of a state in which the arm portion 322 is rotated 180 degrees, the laser LB is irradiated, and the laser irradiation point LP is formed.

引き続きアーム部322を所定角度ずつ、回転させ、レーザLBを照射し、アーム部322を回転させた角度が360度になるまで、回転とレーザ照射を続ける。これにより、レーザ照射点LPが周方向に沿って所定間隔で配列された状態となり、改質部も周方向に沿って形成された状態となる。周方向に沿って整列するレーザ照射点LP同士の間隔は、1μm以上350μm以下であることが好ましい。 Subsequently, the arm portion 322 is rotated by a predetermined angle to irradiate the laser LB, and the rotation and the laser irradiation are continued until the angle at which the arm portion 322 is rotated reaches 360 degrees. As a result, the laser irradiation points LP are arranged at predetermined intervals along the circumferential direction, and the modified portion is also formed along the circumferential direction. The distance between the laser irradiation point LPs aligned along the circumferential direction is preferably 1 μm or more and 350 μm or less.

アーム部322を、360度、回転させた後に、レーザ照射器323をアーム部322の長手方向に沿って軸部321側へ向けて所定距離移動させる。 After rotating the arm portion 322 by 360 degrees, the laser irradiator 323 is moved along the longitudinal direction of the arm portion 322 toward the shaft portion 321 side by a predetermined distance.

図10Cには、レーザ照射器323をアーム部322の長手方向に沿って軸部321側へ向けて所定距離移動させた状態の概略図が示されている。
レーザ照射器323を所定距離移動させた後、レーザ照射し、レーザ照射点LPを形成する。その後、引き続きアーム部322を所定角度ずつ、回転させ、レーザを照射し、アーム部322を回転させた角度が360度になるまで、回転とレーザ照射を続ける。アーム部322を360度、回転させた後に、レーザ照射器323をアーム部322の長手方向に沿って軸部321側へ向けて所定距離移動させる。
このように、アーム部322の回転と、レーザ照射器323のスライド移動とを組み合わせることで、ウエハWFの周方向に沿って同心円状にレーザ照射点LPが複数配列された状態となる。
FIG. 10C shows a schematic view of a state in which the laser irradiator 323 is moved by a predetermined distance toward the shaft portion 321 side along the longitudinal direction of the arm portion 322.
After moving the laser irradiator 323 by a predetermined distance, laser irradiation is performed to form a laser irradiation point LP. After that, the arm portion 322 is continuously rotated by a predetermined angle to irradiate the laser, and the rotation and the laser irradiation are continued until the angle at which the arm portion 322 is rotated reaches 360 degrees. After rotating the arm portion 322 by 360 degrees, the laser irradiator 323 is moved along the longitudinal direction of the arm portion 322 toward the shaft portion 321 side by a predetermined distance.
By combining the rotation of the arm portion 322 and the slide movement of the laser irradiator 323 in this way, a plurality of laser irradiation point LPs are concentrically arranged along the circumferential direction of the wafer WF.

図11は、本実施形態のレーザ照射工程におけるレーザ照射点LP同士の位置及び間隔、並びに分割面DPにおけるレーザ照射点LPの配列密度を示す縦断面概略図である。 FIG. 11 is a schematic vertical cross-sectional view showing the positions and intervals between the laser irradiation point LPs in the laser irradiation step of the present embodiment, and the arrangement density of the laser irradiation point LPs on the divided surface DP.

本実施形態に係る製造方法において、ウエハ外周部WFe側におけるレーザ照射点LP同士の間隔と中心部WFc側におけるレーザ照射点LP同士の間隔とが異なるという態様の一例としては、図11に示すように、ウエハ外周部WFe側におけるレーザ照射点LP同士の間隔が、中心部WFc側におけるレーザ照射点LP同士の間隔よりも小さいことが好ましい。別の態様の例としては、ウエハ外周部WFe側におけるレーザ照射点LP同士の間隔が、中心部WFc側におけるレーザ照射点LP同士の間隔よりも大きい場合も挙げられる。 As an example of the mode in which the distance between the laser irradiation point LPs on the outer peripheral portion WFe side of the wafer and the distance between the laser irradiation point LPs on the central portion WFc side are different in the manufacturing method according to the present embodiment, as shown in FIG. In addition, it is preferable that the distance between the laser irradiation point LPs on the outer peripheral portion WFe side of the wafer is smaller than the distance between the laser irradiation points LPs on the central portion WFc side. As another example of the embodiment, the distance between the laser irradiation point LPs on the outer peripheral portion WFe side of the wafer may be larger than the distance between the laser irradiation points LPs on the central portion WFc side.

すなわち、本実施形態に係る製造方法においては、ウエハWFの分割面DPに沿って照射するレーザ照射点LP同士の間隔を、分割面DP内において均一にするのではなく、間隔を小さくする領域と、間隔を大きくする領域とを設ける。 That is, in the manufacturing method according to the present embodiment, the distance between the laser irradiation point LPs to be irradiated along the division surface DP of the wafer WF is not made uniform in the division surface DP, but is a region where the distance is reduced. , Provide an area to increase the interval.

このようにレーザ照射点LP同士の間隔を分割面DP内において異ならせることで、分割面DP内において均一にレーザ照射する場合と比べて、レーザ照射点LPの数を減らすことができ、製造効率が向上する。 By making the distance between the laser irradiation point LPs different in the divided surface DP in this way, the number of laser irradiation point LPs can be reduced as compared with the case where the laser irradiation is uniformly performed in the divided surface DP, and the manufacturing efficiency can be reduced. Is improved.

また、分割面DPに沿ってウエハWFを分割可能となるように改質部が複数形成されていれば良いため、レーザ照射点LP同士の間隔を狭くする領域と、広くする領域とを設けても、ウエハWFの分割性と製造効率との両立を図ることができる。レーザ照射点LP同士の間隔は、レーザ照射点LP同士の間隔を狭くする領域と、広くする領域とが、いずれも1μm以上350μm以下の範囲を満たすことが好ましい。例えば、レーザ照射点LP同士の間隔を狭くする領域においては、レーザ照射点LP同士の間隔が、1μm以上100μm未満の範囲内となるようにレーザ照射し、レーザ照射点LP同士の間隔を広くする領域においては、100μm以上350μm以下の範囲内となるようにレーザ照射することが好ましい。 Further, since it is sufficient that a plurality of modified portions are formed so that the wafer WF can be divided along the dividing surface DP, a region for narrowing the distance between the laser irradiation point LPs and a region for widening the distance between the laser irradiation points LP are provided. In addition, it is possible to achieve both the resolvability of the wafer WF and the manufacturing efficiency. As for the distance between the laser irradiation point LPs, it is preferable that the region where the distance between the laser irradiation point LPs is narrowed and the region where the distance between the laser irradiation points LPs are widened satisfy the range of 1 μm or more and 350 μm or less. For example, in a region where the distance between the laser irradiation point LPs is narrowed, the laser irradiation is performed so that the distance between the laser irradiation point LPs is within the range of 1 μm or more and less than 100 μm, and the distance between the laser irradiation point LPs is widened. In the region, it is preferable to irradiate the laser so as to be within the range of 100 μm or more and 350 μm or less.

また、本実施形態に係る製造方法においては、レーザ照射点LP同士の間隔が、ウエハ外周部WFe側から中心部WFc側に向かうにつれて大きくなることが好ましい。この場合において、レーザ照射点LP同士の間隔が、ウエハ外周部WFe側から中心部WFc側に向かうにつれて連続的に減少する態様に限定されない。
レーザ照射点LP同士の間隔が、ウエハ外周部WFe側から中心部WFc側に向かうにつれて大きくなる場合には、ウエハ外周部WFe側の領域においては、ある一定の間隔でレーザを照射し、当該領域よりも中心部WFc側の領域においては、当該間隔よりも大きな一定の間隔でレーザを照射する態様も含まれる。例えば、図11に示すように、ウエハWFにおいて、ウエハ外周部WFe側の第1領域AR1と、中心部WFc側の第2領域AR2と、第1領域AR1と第2領域AR2との間の第3領域AR3と、を設定し、第1領域AR1に対して、第1の間隔LD1でレーザを複数個所に照射し、第3領域AR3に対して、第3の間隔LD3でレーザを複数個所に照射し、第2領域AR2に対して、第2の間隔LD2で前記レーザを複数個所に照射し、第1の間隔LD1は、第3の間隔LD3よりも小さく、第3の間隔LD3は、第2の間隔LD2よりも小さいことが好ましい。なお、ここでは、3つの領域を設定する態様を例に挙げて説明したが、2つの領域を設定しても良いし、4つ以上の領域を設定しても良い。
Further, in the manufacturing method according to the present embodiment, it is preferable that the distance between the laser irradiation point LPs increases from the wafer outer peripheral portion WFe side toward the central portion WFc side. In this case, the distance between the laser irradiation points LP is not limited to the mode in which the distance between the laser irradiation points LPs continuously decreases from the wafer outer peripheral portion WFe side toward the central portion WFc side.
When the distance between the laser irradiation points LP increases from the wafer outer peripheral portion WFe side toward the central portion WFc side, the laser is irradiated at a certain interval in the wafer outer peripheral portion WFe side region, and the region is concerned. In the region on the WFc side of the central portion, the mode of irradiating the laser at a constant interval larger than the interval is also included. For example, as shown in FIG. 11, in the wafer WF, the first region AR1 on the outer peripheral portion WFe side of the wafer, the second region AR2 on the central portion WFc side, and the second region between the first region AR1 and the second region AR2. The three regions AR3 are set, the first region AR1 is irradiated with lasers at a plurality of locations at the first interval LD1, and the third region AR3 is irradiated with lasers at a plurality of locations at the third interval LD3. The second region AR2 is irradiated with the laser at a plurality of locations at the second interval LD2, the first interval LD1 is smaller than the third interval LD3, and the third interval LD3 is the third. The interval of 2 is preferably smaller than LD2. In addition, although the embodiment in which three regions are set has been described here as an example, two regions may be set or four or more regions may be set.

本実施形態によれば、ウエハWFの内部に複数の改質部RPを形成し、当該複数の改質部RPが形成された分割面DPを境界にして当該ウエハWFを分割する。そのため、純水を用いることなく、研磨法に比べて薄型化の時間を短縮し、ウエハWFの割れを抑制でき、厚み精度を向上させることができる。
さらに、本実施形態によれば、レーザ照射点LP同士を分割面DP内において、均一な間隔で形成することなく、改質部RPを形成し、ウエハWFを分割することができるので、ウエハWFの分割性を維持しつつ、生産性をさらに向上させることができる。
According to the present embodiment, a plurality of modified portion RPs are formed inside the wafer WF, and the wafer WF is divided with a division surface DP on which the plurality of modified portion RPs are formed as a boundary. Therefore, without using pure water, the time for thinning can be shortened as compared with the polishing method, cracking of the wafer WF can be suppressed, and the thickness accuracy can be improved.
Further, according to the present embodiment, the modified portion RP can be formed and the wafer WF can be divided without forming the laser irradiation point LPs in the dividing surface DP at uniform intervals. Therefore, the wafer WF can be divided. Productivity can be further improved while maintaining the partitionability of the.

[第4実施形態]
第4実施形態に係る薄型化板状部材の製造方法においては、複数の改質部を形成する際に使用する改質部形成手段が第3実施形態で説明した改質部形成手段30Aとは異なる。第1、第2、及び第3実施形態と異なる点について以下に説明し、第1、第2、及び第3実施形態と同様な点は、説明を省略又は簡略化する。
[Fourth Embodiment]
In the method for manufacturing a thin plate-shaped member according to the fourth embodiment, the modified portion forming means used when forming a plurality of modified portions is the modified portion forming means 30A described in the third embodiment. different. The differences from the first, second, and third embodiments will be described below, and the same points as those of the first, second, and third embodiments will be omitted or simplified.

図12A、図12B、及び図12Cには、本実施形態で使用する改質部形成手段30Bの概略図が示されている。
本実施形態に係る薄型化板状部材の製造方法は、図12A、図12B、及び図12Cに示すような改質部形成手段30Bを有する薄型化ウエハの製造装置を用いて実施することもできる。
改質部形成手段30Bは、駆動部320と、軸部321と、アーム部322Bと、第1レーザ照射器323Aと、第2レーザ照射器323Bと、を備える。
12A, 12B, and 12C show schematic views of the modified portion forming means 30B used in the present embodiment.
The method for manufacturing the thinned plate-shaped member according to the present embodiment can also be carried out by using a thinned wafer manufacturing apparatus having the reforming portion forming means 30B as shown in FIGS. 12A, 12B, and 12C. ..
The reforming portion forming means 30B includes a driving portion 320, a shaft portion 321 and an arm portion 322B, a first laser irradiator 323A, and a second laser irradiator 323B.

駆動部320は、軸部321を介して支持するアーム部322Bを、軸部321を回転軸として回転させる。 The drive unit 320 rotates the arm unit 322B supported via the shaft unit 321 with the shaft unit 321 as a rotation shaft.

アーム部322Bは、第3実施形態のアーム部322よりも長い形状である。
アーム部322Bの長手方向の一端部側に第1レーザ照射器323Aが取り付けられ、他端部側に第2レーザ照射器323Bが取り付けられ、アーム部322Bの長手方向の一端部側と他端部側との間の中心部に軸部321が取り付けられている。
The arm portion 322B has a shape longer than that of the arm portion 322 of the third embodiment.
The first laser irradiator 323A is attached to one end side of the arm portion 322B in the longitudinal direction, the second laser irradiator 323B is attached to the other end side, and the one end side and the other end portion of the arm portion 322B in the longitudinal direction. The shaft portion 321 is attached to the central portion between the side and the side.

第1レーザ照射器323A及び第2レーザ照射器323Bは、アーム部322Bの長手方向に沿って移動可能に取り付けられていることが好ましい。例えば、第1レーザ照射器323A及び第2レーザ照射器323Bは、第1実施形態におけるリニアモータ31及びスライダ31Aを有する駆動機器によって移動させることもできる。そのため、本実施形態の改質部形成手段30Bにおいては、アーム部322Bが当該駆動機器を有していることが好ましい。また、第1レーザ照射器323Aは、アーム部322Bの一端部側から、アーム部322Bの中心部を超えて、他端部側まで移動可能にアーム部322Bに取り付けられていることが好ましい。また、第2レーザ照射器323Bも、アーム部322Bの他端部側から、アーム部322Bの中心部を超えて、一端部側まで移動可能にアーム部322Bに取り付けられていることが好ましい。 It is preferable that the first laser irradiator 323A and the second laser irradiator 323B are movably attached along the longitudinal direction of the arm portion 322B. For example, the first laser irradiator 323A and the second laser irradiator 323B can also be moved by the drive device having the linear motor 31 and the slider 31A in the first embodiment. Therefore, in the modified portion forming means 30B of the present embodiment, it is preferable that the arm portion 322B has the driving device. Further, it is preferable that the first laser irradiator 323A is attached to the arm portion 322B so as to be movable from one end side of the arm portion 322B to the other end side beyond the central portion of the arm portion 322B. Further, it is preferable that the second laser irradiator 323B is also attached to the arm portion 322B so as to be movable from the other end side of the arm portion 322B to the one end portion side beyond the central portion of the arm portion 322B.

第1レーザ照射器323A及び第2レーザ照射器323Bは、板状部材としての半導体ウエハを改質できるレーザLBを照射可能であれば特に限定されない。レーザ照射器323は、例えば、前記実施形態で用いたレーザ照射器32と同様でもよい。 The first laser irradiator 323A and the second laser irradiator 323B are not particularly limited as long as they can irradiate the laser LB capable of modifying the semiconductor wafer as a plate-shaped member. The laser irradiator 323 may be the same as the laser irradiator 32 used in the above embodiment, for example.

次に、改質部形成手段30Bを有する薄型化ウエハの製造装置を用いた本実施形態に係る薄型化板状部材の製造方法を説明する。レーザ照射工程以外は、第1実施形態又は第2実施形態で説明した工程と同様に実施できるので、説明を省略する。 Next, a method of manufacturing a thin plate-shaped member according to the present embodiment using a thinning wafer manufacturing apparatus having the modified portion forming means 30B will be described. Since the steps other than the laser irradiation step can be carried out in the same manner as the steps described in the first embodiment or the second embodiment, the description thereof will be omitted.

図12Aには、ウエハWFのウエハ外周部WFe側にレーザLBを照射する工程を示す概略図が示されている。本実施形態においても、ウエハWFの内部の分割面DPに沿ってレーザLBを照射し、複数の改質部RPを形成する。
本実施形態では、図12Aに示すように、分割面DPのウエハ外周部WFe側にレーザLBを照射する。改質部形成手段30Bは、2つのレーザ照射器を有するため、2箇所同時にレーザ照射点LPを形成し、改質部を形成できる。
次に、アーム部322Bを所定角度ずつ、回転させ、レーザLBを照射し、次のレーザ照射点LPを形成する。このように、アーム部322Bを所定角度、回転させながらレーザLBを照射して、アーム部322Bの回転方向に沿って複数のレーザ照射点LPを所定間隔で形成する。
アーム部322Bを回転させた角度が180度になるまで、回転とレーザ照射を続ける。これにより、レーザ照射点LPが周方向に沿って所定間隔で配列された状態となり、改質部も周方向に沿って形成された状態となる。周方向に沿って形成された改質部同士の間隔は、1μm以上350μm以下であることが好ましい。
FIG. 12A shows a schematic view showing a step of irradiating the wafer outer peripheral portion WFe side of the wafer WF with the laser LB. Also in this embodiment, the laser LB is irradiated along the divided surface DP inside the wafer WF to form a plurality of modified portion RPs.
In the present embodiment, as shown in FIG. 12A, the laser LB is irradiated to the wafer outer peripheral portion WFe side of the dividing surface DP. Since the modified portion forming means 30B has two laser irradiators, it is possible to form the laser irradiation point LP at two locations at the same time to form the modified portion.
Next, the arm portion 322B is rotated by a predetermined angle to irradiate the laser LB to form the next laser irradiation point LP. In this way, the laser LB is irradiated while rotating the arm portion 322B at a predetermined angle, and a plurality of laser irradiation point LPs are formed at predetermined intervals along the rotation direction of the arm portion 322B.
Rotation and laser irradiation are continued until the angle at which the arm portion 322B is rotated reaches 180 degrees. As a result, the laser irradiation points LP are arranged at predetermined intervals along the circumferential direction, and the modified portion is also formed along the circumferential direction. The distance between the modified portions formed along the circumferential direction is preferably 1 μm or more and 350 μm or less.

図12Bには、第1レーザ照射器323A及び第2レーザ照射器323Bをアーム部322Bの長手方向に沿って軸部321側へ向けて所定距離移動させた状態の概略図が示されている。
具体的には、アーム部322Bを180度、回転させながらレーザ照射して改質部を形成した後に、第1レーザ照射器323A及び第2レーザ照射器323Bをアーム部322Bの長手方向に沿って、アーム部322Bの中心部へ向けて、所定距離移動させる。
第1レーザ照射器323A及び第2レーザ照射器323Bを移動させた後、レーザ照射してレーザ照射点LPを形成し、改質部を形成する。その後、引き続きアーム部322Bを所定角度ずつ、回転させ、レーザLBを照射し、アーム部322Bを回転させた角度が180度になるまで、回転とレーザ照射を続ける。アーム部322Bを180度、回転させた後に、第1レーザ照射器323A及び第2レーザ照射器323Bをアーム部322Bの長手方向に沿って、さらにアーム部322Bの中心部へ向けて、所定距離移動させる。
FIG. 12B shows a schematic view of a state in which the first laser irradiator 323A and the second laser irradiator 323B are moved by a predetermined distance toward the shaft portion 321 side along the longitudinal direction of the arm portion 322B.
Specifically, after irradiating the arm portion 322B with a laser while rotating it 180 degrees to form a modified portion, the first laser irradiator 323A and the second laser irradiator 323B are placed along the longitudinal direction of the arm portion 322B. , Move a predetermined distance toward the center of the arm portion 322B.
After moving the first laser irradiator 323A and the second laser irradiator 323B, laser irradiation is performed to form a laser irradiation point LP to form a modified portion. After that, the arm portion 322B is continuously rotated by a predetermined angle to irradiate the laser LB, and the rotation and the laser irradiation are continued until the rotated angle of the arm portion 322B becomes 180 degrees. After rotating the arm portion 322B by 180 degrees, the first laser irradiator 323A and the second laser irradiator 323B are moved by a predetermined distance along the longitudinal direction of the arm portion 322B toward the center of the arm portion 322B. Let me.

図12Cには、アーム部322Bの回転と、第1レーザ照射器323A及び第2レーザ照射器323Bのスライド移動とを繰り返し実施し、ウエハWFの中心部WFc側まで第1レーザ照射器323A及び第2レーザ照射器323Bが移動した状態の概略図が示されている。
このように、アーム部322Bの回転と、第1レーザ照射器323A及び第2レーザ照射器323Bのスライド移動とを組み合わせることで、ウエハWFの周方向に沿って同心円状にレーザ照射点LPが複数配列された状態となる。また、本実施形態の製造方法によっても、ウエハWFの断面視では、図12Cのように、ウエハWFのウエハ外周部WFe側の領域におけるレーザ照射点LP同士の間隔よりも、ウエハWFの中心部WFc側におけるレーザ照射点LP同士の間隔が大きい。
In FIG. 12C, the rotation of the arm portion 322B and the slide movement of the first laser irradiator 323A and the second laser irradiator 323B are repeatedly performed, and the first laser irradiator 323A and the first laser irradiator 323A and the first laser irradiator 323A and the second laser irradiator 323A to the center WFc side of the wafer WF are repeatedly performed. 2 A schematic diagram of a state in which the laser irradiator 323B is moved is shown.
In this way, by combining the rotation of the arm portion 322B and the slide movement of the first laser irradiator 323A and the second laser irradiator 323B, a plurality of laser irradiation point LPs are concentrically formed along the circumferential direction of the wafer WF. It will be in an arranged state. Further, even with the manufacturing method of the present embodiment, in the cross-sectional view of the wafer WF, as shown in FIG. 12C, the central portion of the wafer WF is more than the distance between the laser irradiation points LP in the region on the wafer outer peripheral portion WFe side of the wafer WF. The distance between the laser irradiation point LPs on the WFc side is large.

本実施形態に係る改質部形成手段30Bを有する薄型化ウエハの製造装置を用いることによっても、第3実施形態で説明した図11のようにレーザ照射点LPを配列させ、改質部を形成することができる。 By using the thinning wafer manufacturing apparatus having the modified portion forming means 30B according to the present embodiment, the laser irradiation points LP are arranged as shown in FIG. 11 described in the third embodiment to form the modified portion. can do.

本実施形態によれば、ウエハWFの内部に複数の改質部RPを形成し、当該複数の改質部RPが形成された分割面DPを境界にして当該ウエハWFを分割する。そのため、純水を用いることなく、研磨法に比べて薄型化の時間を短縮し、ウエハWFの割れを抑制でき、厚み精度を向上させることができる。
さらに、本実施形態によれば、レーザ照射点LP同士を分割面DP内において、均一な間隔で形成することなく、改質部RPを形成し、ウエハWFを分割することができるので、ウエハWFの分割性を維持しつつ、生産性をさらに向上させることができる。
さらに、本実施形態によれば、レーザ照射器を2つ用いてレーザ照射を行うので、第3実施形態に比べて、生産性を向上させることができる。
According to the present embodiment, a plurality of modified portion RPs are formed inside the wafer WF, and the wafer WF is divided with a division surface DP on which the plurality of modified portion RPs are formed as a boundary. Therefore, without using pure water, the time for thinning can be shortened as compared with the polishing method, cracking of the wafer WF can be suppressed, and the thickness accuracy can be improved.
Further, according to the present embodiment, the modified portion RP can be formed and the wafer WF can be divided without forming the laser irradiation point LPs in the dividing surface DP at uniform intervals. Therefore, the wafer WF can be divided. Productivity can be further improved while maintaining the partitionability of the.
Further, according to the present embodiment, since the laser irradiation is performed by using two laser irradiators, the productivity can be improved as compared with the third embodiment.

[第5実施形態]
第5実施形態に係る薄型化板状部材の製造方法においては、複数の改質部を形成する際に使用する改質部形成手段が第3実施形態及び第4実施形態で説明した改質部形成手段とは異なる。第1、第2、第3、及び第4実施形態と異なる点について以下に説明し、第1、第2、第3、及び第4実施形態と同様な点は、説明を省略又は簡略化する。
[Fifth Embodiment]
In the method for manufacturing a thin plate-shaped member according to the fifth embodiment, the modified portion forming means used when forming a plurality of modified portions is the modified portion described in the third embodiment and the fourth embodiment. It is different from the forming means. The differences from the first, second, third, and fourth embodiments will be described below, and the same points as those of the first, second, third, and fourth embodiments will be omitted or simplified. ..

図13A、図13B、及び図13Cには、本実施形態で使用する改質部形成手段30Cの概略図が示されている。
本実施形態に係る薄型化板状部材の製造方法は、図13A、図13B、及び図13Cに示すような改質部形成手段30Cを有する薄型化ウエハの製造装置を用いて実施することもできる。
改質部形成手段30Cは、駆動部320と、軸部321と、アーム部322Cと、第1の複数レーザ照射器324と、第2の複数レーザ照射器326と、を備える。
13A, 13B, and 13C show schematic views of the modified portion forming means 30C used in the present embodiment.
The method for manufacturing the thinned plate-shaped member according to the present embodiment can also be carried out by using a thinned wafer manufacturing apparatus having the modified portion forming means 30C as shown in FIGS. 13A, 13B, and 13C. ..
The reforming portion forming means 30C includes a driving portion 320, a shaft portion 321 and an arm portion 322C, a first plurality of laser irradiators 324, and a second plurality of laser irradiators 326.

駆動部320は、軸部321を介して支持するアーム部322Cを、軸部321を回転軸として回転させる。 The drive unit 320 rotates the arm unit 322C supported via the shaft unit 321 with the shaft unit 321 as a rotation shaft.

アーム部322Cは、第3実施形態のアーム部322よりも長い形状である。
アーム部322Cの長手方向の一端部側に第1の複数レーザ照射器324が取り付けられ、他端部側に第2の複数レーザ照射器326が取り付けられ、アーム部322Cの長手方向の一端部側と他端部側との間の中心部に軸部321が取り付けられている。
The arm portion 322C has a shape longer than that of the arm portion 322 of the third embodiment.
The first plurality of laser irradiators 324 are attached to one end side of the arm portion 322C in the longitudinal direction, the second plurality of laser irradiators 326 are attached to the other end side, and the one end portion side of the arm portion 322C in the longitudinal direction. The shaft portion 321 is attached to the central portion between the portion and the other end portion side.

第1の複数レーザ照射器324及び第2の複数レーザ照射器326は、アーム部322Cの長手方向に沿って移動可能に取り付けられていることが好ましい。例えば、第1の複数レーザ照射器324及び第2の複数レーザ照射器326は、第1実施形態におけるリニアモータ31及びスライダ31Aを有する駆動機器によって移動させることもできる。そのため、本実施形態の改質部形成手段30Cは、アーム部322Cが当該駆動機器を有していることが好ましい。また、第1の複数レーザ照射器324は、アーム部322Cの一端部側から、アーム部322Cの中心部を超えて、他端部側まで移動可能にアーム部322Cに取り付けられていることが好ましい。また、第2の複数レーザ照射器326も、アーム部322Cの他端部側から、アーム部322Cの中心部を超えて、一端部側まで移動可能にアーム部322Cに取り付けられていることが好ましい。 It is preferable that the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 are movably attached along the longitudinal direction of the arm portion 322C. For example, the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 can also be moved by the drive device having the linear motor 31 and the slider 31A in the first embodiment. Therefore, in the modified portion forming means 30C of the present embodiment, it is preferable that the arm portion 322C has the driving device. Further, it is preferable that the first plurality of laser irradiators 324 are attached to the arm portion 322C so as to be movable from one end side of the arm portion 322C to the other end side beyond the central portion of the arm portion 322C. .. Further, it is preferable that the second plurality of laser irradiators 326 are also attached to the arm portion 322C so as to be movable from the other end side of the arm portion 322C to the one end portion side beyond the central portion of the arm portion 322C. ..

第1の複数レーザ照射器324及び第2の複数レーザ照射器326は、それぞれ、板状部材としての半導体ウエハを改質できるレーザLBを、複数個所に照射可能であれば特に限定されない。例えば、第1の複数レーザ照射器324及び第2の複数レーザ照射器326は、それぞれ、複数のレーザ光源を有する態様であってもよい。なお、図13A、図13B、及び図13Cには、第1の複数レーザ照射器324及び第2の複数レーザ照射器326は、それぞれ、3箇所からレーザLBを照射する態様が記載されているが、本発明は、このような態様に限定されない。例えば、第1の複数レーザ照射器324及び第2の複数レーザ照射器326は、それぞれ、2箇所に同時に照射できる態様であってもよいし、4箇所以上に同時に照射できる態様であってもよい。また、第1の複数レーザ照射器324及び第2の複数レーザ照射器326から同時に照射できるレーザの数は、互いに同じでも、異なっていても良い。 The first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 are not particularly limited as long as they can irradiate a plurality of laser LBs capable of modifying a semiconductor wafer as a plate-shaped member. For example, the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 may each have a plurality of laser light sources. Although FIGS. 13A, 13B, and 13C show modes in which the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 each irradiate the laser LB from three locations. , The present invention is not limited to such aspects. For example, the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 may be in a mode in which two locations can be irradiated at the same time, or a mode in which four or more locations can be simultaneously irradiated. .. Further, the number of lasers that can be simultaneously irradiated from the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 may be the same as or different from each other.

さらに、第1の複数レーザ照射器324及び第2の複数レーザ照射器326は、それぞれ、照射する複数のレーザ同士の間隔を拡げたり、狭めたりする機構を有していることが好ましい。 Further, it is preferable that the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 each have a mechanism for widening or narrowing the distance between the plurality of lasers to be irradiated.

次に、改質部形成手段30Cを有する薄型化ウエハの製造装置を用いた本実施形態に係る薄型化板状部材の製造方法を説明する。レーザ照射工程以外は、第1実施形態又は第2実施形態で説明した工程と同様に実施できるので、説明を省略する。 Next, a method of manufacturing a thin plate-shaped member according to the present embodiment using a thinning wafer manufacturing apparatus having the modified portion forming means 30C will be described. Since the steps other than the laser irradiation step can be carried out in the same manner as the steps described in the first embodiment or the second embodiment, the description thereof will be omitted.

図13Aには、ウエハWFのウエハ外周部WFe側にレーザLBを照射する工程を示す概略図が示されている。本実施形態においても、ウエハWFの内部の分割面DPに沿ってレーザLBを照射し、複数の改質部RPを形成する。
本実施形態では、図13Aに示すように、分割面DPのウエハ外周部WFe側に、レーザLBを照射する。改質部形成手段30Cは、2つのレーザ照射器を有し、第1の複数レーザ照射器324及び第2の複数レーザ照射器326は、同時に複数のレーザLBを照射するので、複数個所に同時にレーザ照射点LPを形成し、改質部を形成できる。
第1の複数レーザ照射器324及び第2の複数レーザ照射器326からレーザLBを同時に照射して形成されたレーザ照射点LP同士の間隔(ウエハWFの径方向に並んだレーザ照射点LP同士の間隔)は、それぞれ独立に、1μm以上350μm以下であることが好ましい。
図13Aに示した本実施形態の一例では、第1の複数レーザ照射器324及び第2の複数レーザ照射器326から、それぞれ、同時に3箇所のレーザLBが照射されるので、ウエハWFの分割面DPに対して6箇所のレーザ照射点LPを同時に形成し、改質部を同時に6つ形成できる。
FIG. 13A shows a schematic view showing a step of irradiating the wafer outer peripheral portion WFe side of the wafer WF with the laser LB. Also in this embodiment, the laser LB is irradiated along the divided surface DP inside the wafer WF to form a plurality of modified portion RPs.
In the present embodiment, as shown in FIG. 13A, the laser LB is irradiated to the wafer outer peripheral portion WFe side of the dividing surface DP. The reforming portion forming means 30C has two laser irradiators, and since the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 simultaneously irradiate a plurality of laser LBs, a plurality of laser LBs are simultaneously irradiated to a plurality of locations. A laser irradiation point LP can be formed to form a modified portion.
Spacing between laser irradiation point LPs formed by simultaneously irradiating laser LB from the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 (laser irradiation point LPs arranged in the radial direction of the wafer WF). The interval) is preferably 1 μm or more and 350 μm or less independently of each other.
In the example of the present embodiment shown in FIG. 13A, the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 each simultaneously irradiate three laser LBs, so that the divided surface of the wafer WF is divided. Six laser irradiation point LPs can be formed simultaneously with respect to the DP, and six modified portions can be formed at the same time.

次に、アーム部322Cを所定角度ずつ、回転させ、レーザLBを照射し、次のレーザ照射点を形成する。このように、アーム部322Cを所定角度、回転させながらレーザLBを照射して、アーム部322Cの回転方向に沿って複数のレーザ照射点LPを所定間隔で形成する。
アーム部322Cを回転させた角度が180度になるまで、回転とレーザ照射を続ける。これにより、レーザ照射点LPが周方向に沿って所定間隔で配列された状態となり、改質部も周方向に沿って形成された状態となる。周方向に沿って形成されたレーザ照射点LP同士の間隔は、1μm以上350μm以下であることが好ましい。
Next, the arm portion 322C is rotated by a predetermined angle to irradiate the laser LB to form the next laser irradiation point. In this way, the laser LB is irradiated while rotating the arm portion 322C at a predetermined angle, and a plurality of laser irradiation point LPs are formed at predetermined intervals along the rotation direction of the arm portion 322C.
The rotation and laser irradiation are continued until the angle at which the arm portion 322C is rotated reaches 180 degrees. As a result, the laser irradiation points LP are arranged at predetermined intervals along the circumferential direction, and the modified portion is also formed along the circumferential direction. The distance between the laser irradiation point LPs formed along the circumferential direction is preferably 1 μm or more and 350 μm or less.

図13Bには、第1の複数レーザ照射器324及び第2の複数レーザ照射器326をアーム部322Cの長手方向に沿って軸部321側へ向けて所定距離移動させた状態の概略図が示されている。
具体的には、アーム部322Cを180度、回転させながらレーザ照射して改質部を形成した後に、第1の複数レーザ照射器324及び第2の複数レーザ照射器326をアーム部322Cの長手方向に沿って、アーム部322Cの中心部へ向けて、所定距離移動させる。さらに、本実施形態では、アーム部322Cに沿って移動させる際に、第1の複数レーザ照射器324及び第2の複数レーザ照射器326から照射される複数のレーザ同士の間隔も拡げる。これによって、レーザ照射点LP同士の間隔も拡げることができ、改質部同士の間隔も拡げることができる。
第1の複数レーザ照射器324及び第2の複数レーザ照射器326をアーム部322Cに沿って移動させ、さらに照射されるレーザ同士の間隔も拡げた後、レーザ照射してレーザ照射点LPを形成し、改質部を形成する。その後、引き続きアーム部322Cを所定角度ずつ、回転させ、レーザLBを照射し、アーム部322Cを回転させた角度が180度になるまで、回転とレーザ照射を続ける。アーム部322Cを180度、回転させた後に、第1の複数レーザ照射器324及び第2の複数レーザ照射器326をアーム部322Cの長手方向に沿って、さらにアーム部322Cの中心部へ向けて、所定距離移動させる。
FIG. 13B shows a schematic view of a state in which the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 are moved by a predetermined distance toward the shaft portion 321 side along the longitudinal direction of the arm portion 322C. Has been done.
Specifically, after the modified portion is formed by irradiating the arm portion 322C with a laser while rotating it 180 degrees, the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 are subjected to the longitudinal length of the arm portion 322C. A predetermined distance is moved toward the center of the arm portion 322C along the direction. Further, in the present embodiment, when moving along the arm portion 322C, the distance between the plurality of lasers irradiated from the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 is also increased. As a result, the distance between the laser irradiation point LPs can be increased, and the distance between the modified portions can also be increased.
The first multiple laser irradiator 324 and the second multiple laser irradiator 326 are moved along the arm portion 322C, the distance between the lasers to be irradiated is further widened, and then the laser is irradiated to form the laser irradiation point LP. And form a modified part. After that, the arm portion 322C is continuously rotated by a predetermined angle to irradiate the laser LB, and the rotation and the laser irradiation are continued until the angle at which the arm portion 322C is rotated reaches 180 degrees. After rotating the arm portion 322C by 180 degrees, the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 are further directed toward the center of the arm portion 322C along the longitudinal direction of the arm portion 322C. , Move a predetermined distance.

図13Cには、第1の複数レーザ照射器324及び第2の複数レーザ照射器326が、ウエハWFの中心部WFc側まで移動した状態の概略図が示されている。
具体的には、図13Cには、図13Bに示した第1の複数レーザ照射器324及び第2の複数レーザ照射器326の位置よりもさらにアーム部322C中心部側にスライド移動させ、第1の複数レーザ照射器324及び第2の複数レーザ照射器326から照射される複数のレーザ同士の間隔もさらに拡げた状態の概略図が示されている。
改質部形成手段30Cを、図13Cに示す状態とすることで、図13Bに示したレーザ照射したウエハWFの領域よりも内側の領域に、レーザ照射点LP同士の間隔を拡げてレーザ照射が可能になり、形成された改質部同士の間隔もさらに拡げることができる。
このように、アーム部322Cの回転と、第1の複数レーザ照射器324及び第2の複数レーザ照射器326のスライド移動と、第1の複数レーザ照射器324及び第2の複数レーザ照射器326から照射される複数のレーザ同士の間隔の拡張と、を組み合わせることで、ウエハWFの周方向に沿って同心円状にレーザ照射点LPが複数配列された状態となる。
また、本実施形態の製造方法によっても、ウエハWFの断面視では、図12Cと同様に、ウエハWFのウエハ外周部WFe側の領域におけるレーザ照射点LP同士の間隔よりも、ウエハWFの中心部WFc側におけるレーザ照射点LP同士の間隔が大きい。
FIG. 13C shows a schematic view of a state in which the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 have moved to the central WFc side of the wafer WF.
Specifically, in FIG. 13C, the position of the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326 shown in FIG. 13B is further slid toward the center of the arm portion 322C, and the first A schematic view of a state in which the distance between the plurality of lasers irradiated from the plurality of laser irradiators 324 and the second plurality of laser irradiators 326 is further widened is shown.
By setting the modified portion forming means 30C to the state shown in FIG. 13C, the laser irradiation can be performed by widening the distance between the laser irradiation points LP in the region inside the region of the laser-irradiated wafer WF shown in FIG. 13B. This makes it possible, and the distance between the formed modified portions can be further increased.
In this way, the rotation of the arm portion 322C, the slide movement of the first plurality of laser irradiators 324 and the second plurality of laser irradiators 326, and the first plurality of laser irradiators 324 and the second multiple laser irradiators 326 By combining the expansion of the distance between the plurality of lasers irradiated from the laser, a plurality of laser irradiation point LPs are arranged concentrically along the circumferential direction of the wafer WF.
Further, even with the manufacturing method of the present embodiment, in the cross-sectional view of the wafer WF, as in FIG. 12C, the central portion of the wafer WF is more than the distance between the laser irradiation points LP in the region on the wafer outer peripheral portion WFe side of the wafer WF. The distance between the laser irradiation point LPs on the WFc side is large.

本実施形態によれば、ウエハWFの内部に複数の改質部RPを形成し、当該複数の改質部RPが形成された分割面DPを境界にして当該ウエハWFを分割する。そのため、純水を用いることなく、研磨法に比べて薄型化の時間を短縮し、ウエハWFの割れを抑制でき、厚み精度を向上させることができる。
さらに、本実施形態によれば、レーザ照射点LP同士を分割面DP内において、均一な間隔で形成することなく、改質部RPを形成し、ウエハWFを分割することができるので、ウエハWFの分割性を維持しつつ、生産性をさらに向上させることができる。
さらに、本実施形態によれば、同時に複数個所にレーザを照射できるレーザ照射器を2つ用いてレーザ照射を行うので、第4実施形態に比べて、生産性を向上させることができる。
According to the present embodiment, a plurality of modified portion RPs are formed inside the wafer WF, and the wafer WF is divided with a division surface DP on which the plurality of modified portion RPs are formed as a boundary. Therefore, without using pure water, the time for thinning can be shortened as compared with the polishing method, cracking of the wafer WF can be suppressed, and the thickness accuracy can be improved.
Further, according to the present embodiment, the modified portion RP can be formed and the wafer WF can be divided without forming the laser irradiation point LPs in the dividing surface DP at uniform intervals. Therefore, the wafer WF can be divided. Productivity can be further improved while maintaining the partitionability of the.
Further, according to the present embodiment, the laser irradiation is performed by using two laser irradiators capable of irradiating the laser at a plurality of places at the same time, so that the productivity can be improved as compared with the fourth embodiment.

[実施形態の変形]
以上のように、本発明を実施するための最良の構成、方法等は、前記記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想、及び目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。また、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれる。
[Modification of Embodiment]
As described above, the best configuration, method, etc. for carrying out the present invention are disclosed in the above description, but the present invention is not limited thereto. That is, the present invention is mainly illustrated and described with respect to a particular embodiment, but without departing from the technical idea of the present invention and the scope of the object, the shape with respect to the above-described embodiment. , Materials, quantities, and other detailed configurations can be modified by those skilled in the art. Further, the description limiting the shape, material, etc. disclosed above is exemplarily described for facilitating the understanding of the present invention, and does not limit the present invention. Therefore, those shapes, materials, etc. The description by the name of the member excluding some or all of the restrictions such as the above is included in the present invention.

本明細書における改質部の形状や大きさは、図5、図6、図8及び図9に示されたような形状に限定されない。改質部の形状としては、例えば、球状、楕円球状、円柱状、角柱状、円錐状、及び角錐状などが挙げられる。改質部の大きさは、板状部材を複数の薄型化板状部材に分割できるものであれば特に限定されない。改質部は、分割前の板状部材の厚みを考慮した大きさであることが好ましい。改質部が板状部材の厚み方向に大き過ぎると、厚み方向に亀裂が生じるおそれがあるためである。そのため、改質部は、分割面に沿った面方向で分割できるように形成されていればよい。 The shape and size of the modified portion in the present specification are not limited to the shapes shown in FIGS. 5, 6, 8 and 9. Examples of the shape of the modified portion include a spherical shape, an elliptical spherical shape, a columnar shape, a prismatic shape, a conical shape, and a pyramidal shape. The size of the modified portion is not particularly limited as long as the plate-shaped member can be divided into a plurality of thinned plate-shaped members. The modified portion is preferably sized in consideration of the thickness of the plate-shaped member before division. This is because if the modified portion is too large in the thickness direction of the plate-shaped member, cracks may occur in the thickness direction. Therefore, the modified portion may be formed so that it can be divided in the plane direction along the dividing surface.

前記実施形態では、板状部材を2つの薄型化板状部材に分割する態様を例に挙げて説明したが、その他の態様としては、板状部材を3つ以上の薄型化板状部材に分割する態様が挙げられる。例えば、3つの薄型化板状部材に分割する場合には、板状部材の内部に分割面を設定する際に、2つの分割面(第1分割面及び第2分割面)を設定し、第1分割面に沿って複数の改質部RPを形成し、第2分割面に沿って複数の改質部RPを形成すればよい。また、その他の態様としては、薄型化板状部材を用いてレーザ照射工程及び分割工程を実施して、さらに薄型化させた板状部材を形成する態様も挙げられる。 In the above-described embodiment, the embodiment in which the plate-shaped member is divided into two thinned plate-shaped members has been described as an example, but in another embodiment, the plate-shaped member is divided into three or more thinned plate-shaped members. A mode to do is mentioned. For example, in the case of dividing into three thinned plate-shaped members, when setting the dividing surface inside the plate-shaped member, two dividing surfaces (first dividing surface and second dividing surface) are set, and the first A plurality of modified portion RPs may be formed along the one partition plane, and a plurality of modified portion RPs may be formed along the second divided surface. Further, as another embodiment, there is also an embodiment in which a laser irradiation step and a division step are performed using a thin plate-shaped member to form a further thin plate-shaped member.

また、例えば、第1貼付手段20、及び第2貼付手段40は、帯状の接着シート基材に閉ループ状の切込が形成されることで、その内側が第1接着シートAS1、及び第2接着シートAS2とされ、所定の間隔を隔てて複数の第1接着シートAS1、及び第2接着シートAS2が第1剥離シートRL1、及び第2剥離シートに仮着された原反を繰り出してもよい。
第1貼付手段20、及び第2貼付手段40は、帯状の接着シート基材が第1剥離シートRL1、及び第2剥離シートRL2に仮着された原反が採用された場合、切断刃、レーザカッター、熱カッター、エアカッター、及び圧縮水カッター等の切断手段により、接着シート基材に閉ループ状の切込を形成し、当該切込の内側に第1接着シートAS1、及び第2接着シートAS2を形成してもよい。
第1貼付手段20、及び第2貼付手段40は、それぞれ、帯状の接着シート基材を第1リングフレームRF1、及び第2リングフレームRF2に貼付した後、上記のような切断手段により、接着シート基材に閉ループ状の切込を形成し、当該切込の内側に第1接着シートAS1、及び第2接着シートAS2を形成してもよい。
第1貼付手段20、及び第2貼付手段40を構成する剥離部材は、ローラや線状部材でもよい。
第1貼付手段20、及び第2貼付手段40を構成する押圧手段は、ブレード材、ゴム、樹脂、スポンジ、エアの吹き付け等の押圧部材を採用することができる。
保持テーブル28、及び保持テーブル48は、メカチャックやチャックシリンダ等のチャック手段、クーロン力、接着剤、粘着剤、磁力、ベルヌーイ吸着、駆動機器等で、ウエハWF、第1リングフレームRF1、第2リングフレームRF2、及び一次加工品WK1等を支持してもよい。
薄型化ウエハの製造装置10は、第2貼付手段40を備えていなくてもよい。この場合、分割手段50は、保持面53Aで直接、ウエハWFの第2表面WF2を保持すればよい。
Further, for example, in the first sticking means 20 and the second sticking means 40, a closed loop-shaped notch is formed in the strip-shaped adhesive sheet base material, so that the inside thereof is the first adhesive sheet AS1 and the second adhesive. The sheet AS2 may be used, and a plurality of first adhesive sheets AS1 and second adhesive sheet AS2 may be fed out with the original fabric temporarily attached to the first release sheet RL1 and the second release sheet at predetermined intervals.
In the first sticking means 20 and the second sticking means 40, when the original fabric in which the strip-shaped adhesive sheet base material is temporarily attached to the first peeling sheet RL1 and the second peeling sheet RL2 is adopted, the cutting blade and the laser A closed loop-shaped notch is formed in the adhesive sheet base material by a cutting means such as a cutter, a hot cutter, an air cutter, and a compressed water cutter, and the first adhesive sheet AS1 and the second adhesive sheet AS2 are formed inside the notch. May be formed.
In the first sticking means 20 and the second sticking means 40, after sticking the strip-shaped adhesive sheet base material to the first ring frame RF1 and the second ring frame RF2, respectively, the adhesive sheet is used by the cutting means as described above. A closed loop-shaped notch may be formed in the base material, and a first adhesive sheet AS1 and a second adhesive sheet AS2 may be formed inside the notch.
The peeling member constituting the first sticking means 20 and the second sticking means 40 may be a roller or a linear member.
As the pressing means constituting the first sticking means 20 and the second sticking means 40, a pressing member such as a blade material, rubber, resin, sponge, or air blowing can be adopted.
The holding table 28 and the holding table 48 are chuck means such as a mechanical chuck and a chuck cylinder, a Coulomb force, an adhesive, an adhesive, a magnetic force, Bernoulli adsorption, a drive device, etc., and are a wafer WF, a first ring frame RF1, and a second. The ring frame RF2, the primary processed product WK1, and the like may be supported.
The thinning wafer manufacturing apparatus 10 does not have to include the second sticking means 40. In this case, the dividing means 50 may directly hold the second surface WF2 of the wafer WF on the holding surface 53A.

レーザ照射工程は、分割される前のウエハWFにレーザLBを照射して実施すればよい。例えば、第1接着シートAS1を貼付する前のウエハWFにレーザLBを照射してもよい。 The laser irradiation step may be performed by irradiating the wafer WF before being divided with the laser LB. For example, the laser LB may be irradiated to the wafer WF before the first adhesive sheet AS1 is attached.

レーザLBをウエハWFに対して照射する方向は、前記実施形態のように、ウエハWFの第2表面WF2側からレーザLBを照射する方向に限定されない。例えば、ウエハWFの第1表面WF1側からレーザLBを照射してもよい。また、例えば、ウエハWFの第1表面WF1側及び第2表面WF2側の両方からレーザLBを照射してもよい。さらに、ウエハWFの第1表面WF1側及び第2表面WF2側の両方からレーザLBを照射する場合は、第1表面WF1側及び第2表面WF2側から同時にレーザLBを照射してもよい。ウエハWFの側面側からレーザLBを照射してもよい。ウエハWFの側面側からレーザLBを照射する場合、分割面DPに沿って改質部RPが形成されるように、レーザ照射条件を設定すればよい。 The direction in which the laser LB is irradiated to the wafer WF is not limited to the direction in which the laser LB is irradiated from the second surface WF2 side of the wafer WF as in the above embodiment. For example, the laser LB may be irradiated from the first surface WF1 side of the wafer WF. Further, for example, the laser LB may be irradiated from both the first surface WF1 side and the second surface WF2 side of the wafer WF. Further, when the laser LB is irradiated from both the first surface WF1 side and the second surface WF2 side of the wafer WF, the laser LB may be simultaneously irradiated from the first surface WF1 side and the second surface WF2 side. The laser LB may be irradiated from the side surface side of the wafer WF. When irradiating the laser LB from the side surface side of the wafer WF, the laser irradiation conditions may be set so that the modified portion RP is formed along the divided surface DP.

改質部形成手段30は、第1接着シートAS1が貼付されたウエハWFに対して第1接着シートAS1側からレーザLBを照射してもよいし、第2接着シートAS2が貼付されたウエハWFに対して第1接着シートAS1側又は第2接着シート側からレーザLBを照射してもよいし、ウエハWFの外周面側からレーザLBを照射してもよいし、ウエハWFの側面側からレーザLBを照射してもよいし、第1接着シートAS1側、第2接着シートAS2側、外周面側、及び側面側の内、2つ又は全部の方向からレーザLBを照射してもよい。
改質部形成手段30は、保持テーブル28、保持テーブル48、下テーブル51又は上テーブル53で吸着保持されたウエハWFに対してレーザLBを照射してもよい。
改質部形成手段30は、焦点が線状のレーザ(線状レーザ)や焦点が面状のレーザ(面状レーザ)を照射可能なレーザ照射器を採用してもよいし、複数のレーザ照射器を採用してもよいし、リニアモータ31を採用しなくてもよい。
改質部形成手段30は、焦点の位置を任意に決定することができ、形成される第1薄型化ウエハWT1と第2薄型化ウエハWT2との厚みの比は、50対50でもよいし、1対99でもよいし、1000対1でもよく、希望する薄型化ウエハの厚みに合わせて、レーザ照射によって形成する改質部RPの位置(ウエハWFの表面からの深さ)を決定することができる。
The modified portion forming means 30 may irradiate the wafer WF to which the first adhesive sheet AS1 is attached with the laser LB from the side of the first adhesive sheet AS1, or the wafer WF to which the second adhesive sheet AS2 is attached. The laser LB may be irradiated from the first adhesive sheet AS1 side or the second adhesive sheet side, the laser LB may be irradiated from the outer peripheral surface side of the wafer WF, or the laser may be irradiated from the side surface side of the wafer WF. The laser LB may be irradiated from two or all of the first adhesive sheet AS1 side, the second adhesive sheet AS2 side, the outer peripheral surface side, and the side surface side.
The reforming portion forming means 30 may irradiate the wafer WF held by adsorption on the holding table 28, the holding table 48, the lower table 51 or the upper table 53 with the laser LB.
The reforming portion forming means 30 may employ a laser irradiator capable of irradiating a laser having a linear focus (linear laser) or a laser having a planar focus (plane laser), or a plurality of laser irradiations. A device may or may not be adopted.
The modified portion forming means 30 can arbitrarily determine the position of the focal point, and the thickness ratio of the first thinning wafer WT1 and the second thinning wafer WT2 to be formed may be 50:50. It may be 1 to 99 or 1000 to 1, and the position (depth from the surface of the wafer WF) of the modified portion RP formed by laser irradiation can be determined according to the desired thickness of the thinned wafer. it can.

第1、第2、第3、及び第4実施形態の改質部形成手段は、第5実施形態で説明したような複数のレーザを同時に照射可能な複数レーザ照射器を搭載させた態様であってもよい。 The modified portion forming means of the first, second, third, and fourth embodiments is an embodiment in which a plurality of laser irradiators capable of simultaneously irradiating a plurality of lasers as described in the fifth embodiment are mounted. You may.

第1、第2、第3、第4、及び第5実施形態においては、ウエハWFを保持する保持テーブル48が、ウエハWFを回転させることのできる回転機構を備えていることも好ましい。保持テーブル48がウエハWFを回転させる場合、例えば、第3、第4、及び第5実施形態のような改質部形成手段にてレーザ照射器を支持するアーム部を回転させなくとも、レーザ照射点LPをウエハWFの周方向に沿って形成できる。
そのため、薄型化ウエハの製造装置の一態様として、ウエハWFを保持する保持テーブル48が、ウエハWFを回転させることのできる回転機構を備え、レーザ照射器を支持するアーム部は回転機構を備えていない態様でもよい。この態様の場合は、回転機構を備えた保持テーブル48にてウエハWFを回転させながら、レーザ照射器にてレーザLBを照射すればよい。
また、薄型化ウエハの製造装置の一態様として、ウエハWFを保持する保持テーブル48が、ウエハWFを回転させることのできる回転機構を備え、かつ、レーザ照射器を支持するアーム部を回転させるための回転機構を備えた態様でもよい。この態様の場合には、少なくともいずれかの回転機構を駆動させて、レーザ照射器とウエハWFとの相対的な位置を変化させながら、レーザLBを照射すればよい。
In the first, second, third, fourth, and fifth embodiments, it is also preferable that the holding table 48 for holding the wafer WF is provided with a rotation mechanism capable of rotating the wafer WF. When the holding table 48 rotates the wafer WF, for example, the laser irradiation is performed without rotating the arm portion that supports the laser irradiator by the reforming portion forming means as in the third, fourth, and fifth embodiments. The point LP can be formed along the circumferential direction of the wafer WF.
Therefore, as one aspect of the thinning wafer manufacturing apparatus, the holding table 48 for holding the wafer WF is provided with a rotation mechanism capable of rotating the wafer WF, and the arm portion supporting the laser irradiator is provided with the rotation mechanism. It may not be in the form. In this embodiment, the laser LB may be irradiated by the laser irradiator while rotating the wafer WF on the holding table 48 provided with the rotation mechanism.
Further, as one aspect of the thinning wafer manufacturing apparatus, the holding table 48 for holding the wafer WF is provided with a rotation mechanism capable of rotating the wafer WF, and the arm portion supporting the laser irradiator is rotated. The mode may be provided with the rotation mechanism of the above. In this embodiment, at least one of the rotation mechanisms may be driven to irradiate the laser LB while changing the relative positions of the laser irradiator and the wafer WF.

第3、第4、及び第5実施形態においては、レーザ照射点LPが同心円状に形成された態様を例に挙げて説明したが、本発明はこのような態様に限定されない。例えば、レーザ照射点LPがウエハWFの中心部WFcからウエハ外周部WFe側へ向かって渦巻状に整列するようにレーザ照射点LPを形成する態様も挙げられる。 In the third, fourth, and fifth embodiments, the mode in which the laser irradiation point LP is formed concentrically has been described as an example, but the present invention is not limited to such a mode. For example, there is also an embodiment in which the laser irradiation point LP is formed so that the laser irradiation point LP is spirally aligned from the central portion WFc of the wafer WF toward the outer peripheral portion WFe side of the wafer.

第3、第4、及び第5実施形態においては、レーザ照射点LP同士の間隔が、板状部材の外周部側と板状部材の中心部側とで異なる態様を例に挙げて説明したが、本発明はこのような態様に限定されない。例えば、レーザ照射工程では、板状部材の外周部側から板状部材の中心部側に亘ってレーザの照射点の位置を移動させながら、板状部材に複数の改質部を一定の間隔で形成する態様も挙げられる。この態様の場合、例えば、レーザ照射点LP同士の間隔を一定の間隔とすること以外は、第3、第4、又は第5実施形態と同様に実施できる。例えば、図12A及び図12Bに示す工程まで第4実施形態と同様に実施し、その後は、図14に示すようにレーザ照射点LP同士の間隔を一定の間隔としてレーザを照射することで実施できる。 In the third, fourth, and fifth embodiments, the mode in which the distance between the laser irradiation points LP differs between the outer peripheral side of the plate-shaped member and the central portion side of the plate-shaped member has been described as an example. , The present invention is not limited to such aspects. For example, in the laser irradiation step, while moving the position of the laser irradiation point from the outer peripheral side of the plate-shaped member to the central portion side of the plate-shaped member, a plurality of modified portions are placed on the plate-shaped member at regular intervals. The mode of forming is also mentioned. In the case of this embodiment, for example, the same can be performed as in the third, fourth, or fifth embodiment except that the distance between the laser irradiation point LPs is a constant distance. For example, the steps shown in FIGS. 12A and 12B can be carried out in the same manner as in the fourth embodiment, and thereafter, as shown in FIG. 14, the laser irradiation can be carried out by irradiating the laser with a constant distance between the laser irradiation point LPs. ..

レーザ照射器を回転させてレーザ照射する場合、薄型化板状部材の製造装置は、板状部材の内部に複数の改質部を形成する改質部形成手段と、改質後の板状部材を少なくとも第1薄型化板状部材及び第2薄型化板状部材を形成する分割手段と、を備え、前記改質部形成手段は、アーム部と、レーザを照射するレーザ照射器と、前記アーム部を回転可能に支持する駆動部と、を有し、前記レーザ照射器は、前記アーム部にスライド移動可能に支持されていることが好ましい。
この薄型化板状部材の製造装置は、前述の実施形態等で説明した第1貼付手段20と、第2貼付手段40と、をさらに備えていることが好ましい。
この薄型化板状部材の製造装置において、改質部形成手段は、レーザ照射器を複数有することが好ましい。複数のレーザ照射器を有する場合、複数のレーザ同士の照射間隔を拡大及び縮小できることが好ましい。
この薄型化板状部材の製造装置において、レーザ照射器は、複数のレーザを同時に照射可能であることが好ましい。
この薄型化板状部材の製造装置において、板状部材を回転可能に支持する保持手段をさらに有することが好ましい。
When the laser irradiator is rotated to irradiate the laser, the thinning plate-shaped member manufacturing apparatus includes a reformed portion forming means for forming a plurality of modified portions inside the plate-shaped member and a plate-shaped member after modification. The modified portion forming means includes at least a first thinned plate-shaped member and a dividing means for forming the second thinned plate-shaped member, and the modified portion forming means includes an arm portion, a laser irradiator that irradiates a laser, and the arm. It is preferable that the laser irradiator has a drive unit that rotatably supports the unit, and the laser irradiator is slidably supported by the arm unit.
It is preferable that the apparatus for manufacturing the thin plate-shaped member further includes the first sticking means 20 and the second sticking means 40 described in the above-described embodiment and the like.
In the apparatus for manufacturing the thin plate-shaped member, it is preferable that the reforming portion forming means has a plurality of laser irradiators. When a plurality of laser irradiators are provided, it is preferable that the irradiation interval between the plurality of lasers can be increased or decreased.
In the apparatus for manufacturing the thin plate-shaped member, it is preferable that the laser irradiator can irradiate a plurality of lasers at the same time.
In this thinned plate-shaped member manufacturing apparatus, it is preferable to further have a holding means for rotatably supporting the plate-shaped member.

分割手段50は、メカチャックやチャックシリンダ等のチャック手段、クーロン力、接着剤、粘着剤、磁力、ベルヌーイ吸着、駆動機器等で二次加工品WK2の第1接着シートAS1側、及び第2接着シートAS2側の少なくとも一方側を保持する構成としてもよい。
分割手段50は、ウエハWFを分割する際に、下テーブル51と上テーブル53とを上下方向に相対移動させ、ウエハWFの厚み方向に当該ウエハWFを離間させてもよいし、下テーブル51や上テーブル53の支持面に平行な面方向に直線的に相対移動させたり、支持面に平行な面内で円周方向に相対回転させたりしてもよく、下テーブル51、及び上テーブル53の少なくとも一方を移動させたり回転させたりしてもよい。
The dividing means 50 is a chuck means such as a mechanical chuck or a chuck cylinder, a Coulomb force, an adhesive, an adhesive, a magnetic force, Bernoulli adsorption, a drive device, or the like, and is used as a secondary processed product WK2 on the AS1 side and the second adhesive. It may be configured to hold at least one side of the sheet AS2 side.
When dividing the wafer WF, the dividing means 50 may move the lower table 51 and the upper table 53 relative to each other in the vertical direction to separate the wafer WF in the thickness direction of the wafer WF, or may use the lower table 51 or the like. The lower table 51 and the upper table 53 may be moved linearly and relative to each other in the plane direction parallel to the support surface of the upper table 53, or may be relatively rotated in the circumferential direction in the plane parallel to the support surface. At least one may be moved or rotated.

ウエハWFは、回路を有するものであってもよい。回路は、ウエハWFの第1表面WF1及び第2表面WF2の少なくともいずれかに形成されていることが好ましい。当該回路が形成されている面が回路面に相当する。当該回路面は、第1表面WF1でもよいし、第2表面WF2でもよい。第1表面WF1及び第2表面WF2の両方が回路面でもよい。ウエハWFが回路を有する場合は、当該回路が形成された回路面に保護シートが貼着されていることが好ましい。保護シートが回路面に積層されていることで、回路を保護することができる。保護シートとしては、回路を保護できる材質であれば特に限定されない。例えば、ウエハWFが第1表面WF1に回路を有する場合、前記実施形態における第1接着シートAS1が第1表面WF1に積層されるので、回路を保護できる。 The wafer WF may have a circuit. The circuit is preferably formed on at least one of the first surface WF1 and the second surface WF2 of the wafer WF. The surface on which the circuit is formed corresponds to the circuit surface. The circuit surface may be the first surface WF1 or the second surface WF2. Both the first surface WF1 and the second surface WF2 may be circuit surfaces. When the wafer WF has a circuit, it is preferable that a protective sheet is attached to the circuit surface on which the circuit is formed. The circuit can be protected by laminating the protective sheet on the circuit surface. The protective sheet is not particularly limited as long as it is made of a material that can protect the circuit. For example, when the wafer WF has a circuit on the first surface WF1, the circuit can be protected because the first adhesive sheet AS1 in the embodiment is laminated on the first surface WF1.

薄型化ウエハの製造方法は、第1薄型化ウエハWT1、及び第2薄型化ウエハWT2の少なくともいずれかの表面に回路を形成する回路形成工程をさらに備えていてもよい。このように、分割工程の後の工程で回路を形成する場合は、第1薄型化ウエハWT1、及び第2薄型化ウエハWT2に分割されて現れた露出面(分割面DPに対応する面。第1露出面WF3及び第2露出面WF4。)に回路を形成してもよい。また、分割工程の後の工程で回路を形成する場合は、第1薄型化ウエハWT1、及び第2薄型化ウエハWT2に分割されて現れた露出面(分割面DPに対応する面。第1露出面WF3及び第2露出面WF4。)とは反対側の面に回路を形成してもよい。 The method for manufacturing the thinned wafer may further include a circuit forming step of forming a circuit on at least one surface of the first thinned wafer WT1 and the second thinned wafer WT2. In this way, when the circuit is formed in the step after the dividing step, the exposed surface (the surface corresponding to the divided surface DP) that appears after being divided into the first thinning wafer WT1 and the second thinning wafer WT2. A circuit may be formed on the 1 exposed surface WF3 and the 2nd exposed surface WF4). When the circuit is formed in a step after the dividing step, the exposed surface (the surface corresponding to the divided surface DP. The first exposure) that appears after being divided into the first thinning wafer WT1 and the second thinning wafer WT2. A circuit may be formed on a surface opposite to the surface WF3 and the second exposed surface WF4).

薄型化ウエハの製造方法は、第1露出面WF3及び第2露出面WF4の少なくともいずれかを研磨する研磨工程をさらに備えていてもよい。第1露出面WF3及び第2露出面WF4を研磨する方法は、特に限定されない。なお、この研磨工程では、ウエハWFを所望の厚みを有する第1薄型化ウエハWT1又は第2薄型化ウエハWT2の厚みになるまで研磨するのではなく、分割後に露出した面をより平滑にするための研磨であるため、この研磨工程を実施するのに必要な時間は、ウエハWFを薄型化するために必要な時間と比べて、大幅に短い。したがって、薄型化ウエハの製造方法が研磨工程を備えていても、研磨だけでウエハWFを薄型化する方法よりも、依然として製造効率は高い。
また、研磨工程の後に、研磨された第1露出面WF3及び第2露出面WF4の少なくともいずれかに回路を形成する回路形成工程を実施してもよい。
The method for producing a thin wafer may further include a polishing step of polishing at least one of the first exposed surface WF3 and the second exposed surface WF4. The method of polishing the first exposed surface WF3 and the second exposed surface WF4 is not particularly limited. In this polishing step, the wafer WF is not polished to the thickness of the first thinning wafer WT1 or the second thinning wafer WT2 having a desired thickness, but the exposed surface after division is made smoother. The time required to carry out this polishing step is significantly shorter than the time required to reduce the thickness of the wafer WF. Therefore, even if the thinning wafer manufacturing method includes a polishing step, the manufacturing efficiency is still higher than the method of thinning the wafer WF only by polishing.
Further, after the polishing step, a circuit forming step of forming a circuit on at least one of the polished first exposed surface WF3 and the second exposed surface WF4 may be performed.

また、薄型化ウエハの製造方法において、ウエハWFは、第1表面WF1及び第2表面WF2の少なくともいずれかの表面側で吸着保持されていることが好ましい。ウエハWFを吸着保持する場合、吸着保持されるウエハWFの面には保護シートが積層され、ウエハWFが保護シートを介して吸着保持されていることがより好ましい。レーザ照射工程及び分割工程の少なくともいずれかの工程においてウエハWFが吸着保持されていることが好ましい。ウエハWFは、吸着テーブルによって吸着保持されていることが好ましい。吸着テーブルとしては、ポーラステーブル等が挙げられる。 Further, in the method for producing a thin wafer, it is preferable that the wafer WF is adsorbed and held on at least one surface side of the first surface WF1 and the second surface WF2. When the wafer WF is adsorbed and held, it is more preferable that a protective sheet is laminated on the surface of the wafer WF to be adsorbed and held, and the wafer WF is adsorbed and held via the protective sheet. It is preferable that the wafer WF is adsorbed and held in at least one of the laser irradiation step and the dividing step. The wafer WF is preferably suction-held by a suction table. Examples of the adsorption table include a porous table and the like.

二次加工品WK2は、第1リングフレームRF1、第2リングフレームRF2、及び第2接着シートAS2のいずれか1つを備えていなくてもよい。
第1フレーム部材、及び第2フレーム部材は、円形、楕円形、三角形以上の多角形のものや、環状でないもの等、その他の形状であってもよい。
The secondary processed product WK2 does not have to include any one of the first ring frame RF1, the second ring frame RF2, and the second adhesive sheet AS2.
The first frame member and the second frame member may have other shapes such as a circular shape, an elliptical shape, a polygonal shape having a triangle or more, and a non-annular shape.

薄型化ウエハの製造装置10は、ウエハWF、第1リングフレームRF1、第2リングフレームRF2、一次加工品WK1、及び二次加工品WK2を搬送する駆動機器である多関節ロボットやベルトコンベア等の搬送手段を備えていてもよいし、第1リングフレームRF1、及び第2リングフレームRF2を複数収納できるストック手段を備え、搬送手段が当該ストック手段から第1リングフレームRF1、及び第2リングフレームRF2をそれぞれ保持テーブル28、及び保持テーブル48上に搬送するようにしてもよい。 The thinned wafer manufacturing apparatus 10 includes an articulated robot, a belt conveyor, and the like, which are drive devices for transporting the wafer WF, the first ring frame RF1, the second ring frame RF2, the primary processed product WK1, and the secondary processed product WK2. A transport means may be provided, or a stock means capable of accommodating a plurality of the first ring frame RF1 and the second ring frame RF2 is provided, and the transport means from the stock means to the first ring frame RF1 and the second ring frame RF2. May be transported onto the holding table 28 and the holding table 48, respectively.

薄型化板状部材の製造装置は、薄型化ウエハの製造装置10に限定されない。
例えば、図15A、図15B,図15C、図16A、及び図16Bに示す薄型化ウエハの製造装置100を用いて、薄型化板状部材を製造することもできる。
図15A、図15B,図15C、図16A、及び図16Bにおいて、薄型化板状部材としての薄型化ウエハの製造装置100は、支持面111に第1両面接着シートAT1の第1接着面AT11が貼付される第1硬質支持体110と、第1表面WF1全体が第1両面接着シートAT1の第2接着面AT12に貼付された板状部材としてのウエハWFの内部に、第1表面WF1に平行な分割面に沿って複数の改質部を形成する改質部形成手段120と、第1保持手段としての下テーブル130と、第1硬質支持体110を挟んでウエハWFの反対側に下テーブル130が位置するように、下テーブル130と第1硬質支持体110とを着脱自在に固定する第1固定手段140と、支持面151に第2両面接着シートAT2の第1接着面AT21が貼付される第2硬質支持体150と、ウエハWFを第2表面WF2側から保持する第2保持手段としての上テーブル160と、第2硬質支持体150を挟んでウエハWFの反対側に上テーブル160が位置するように、上テーブル160と第2硬質支持体150とを着脱自在に固定する第2固定手段170と、分割面を境界にして、ウエハWFを、第1表面WF1を有する第1薄型化板状部材としての第1薄型化ウエハWT1、及び第2表面WF2を有する第2薄型化板状部材としての第2薄型化ウエハWT2に分割するように、下テーブル130と上テーブル160とを相対移動させる相対移動手段180とを備えている。
分割面及び改質部は、前記実施形態で説明したものと同様である。
The manufacturing apparatus for the thinned plate-shaped member is not limited to the thinning wafer manufacturing apparatus 10.
For example, the thinned plate-shaped member can be manufactured by using the thinned wafer manufacturing apparatus 100 shown in FIGS. 15A, 15B, 15C, 16A, and 16B.
In FIGS. 15A, 15B, 15C, 16A, and 16B, in the thinning wafer manufacturing apparatus 100 as a thinning plate-like member, the first adhesive surface AT11 of the first double-sided adhesive sheet AT1 is provided on the support surface 111. The first hard support 110 to be attached and the entire first surface WF1 are parallel to the first surface WF1 inside the wafer WF as a plate-like member attached to the second adhesive surface AT12 of the first double-sided adhesive sheet AT1. A lower table on the opposite side of the wafer WF with a modified portion forming means 120 for forming a plurality of modified portions along a split surface, a lower table 130 as a first holding means, and a first hard support 110. The first fixing means 140 for detachably fixing the lower table 130 and the first rigid support 110 so that the 130 is located, and the first adhesive surface AT21 of the second double-sided adhesive sheet AT2 are attached to the support surface 151. A second hard support 150, an upper table 160 as a second holding means for holding the wafer WF from the second surface WF2 side, and an upper table 160 on the opposite side of the wafer WF with the second hard support 150 interposed therebetween. The second thinning means 170 for detachably fixing the upper table 160 and the second hard support 150 so as to be located, and the first thinning of the wafer WF having the first surface WF1 with the divided surface as a boundary. The lower table 130 and the upper table 160 are relative to each other so as to be divided into a first thinning wafer WT1 as a plate-shaped member and a second thinning wafer WT2 as a second thinning plate-shaped member having a second surface WF2. It is provided with a relative moving means 180 for moving.
The divided surface and the modified portion are the same as those described in the above embodiment.

第1硬質支持体110、及び第2硬質支持体150は、板状であることが好ましい。第1硬質支持体110、及び第2硬質支持体150の材料及び形状は、機械的強度を考慮して適宜決定すればよい。第1硬質支持体110、及び第2硬質支持体150の材料としては、それぞれ独立に、例えば、金属材料、非金属無機材料、樹脂材料、及び複合材料等が挙げられる。金属材料としては、SUS等が挙げられる。非金属無機材料としては、ガラス、及びシリコンウエハ等が挙げられる。樹脂材料としては、ポリイミド、及びポリアミドイミド等が挙げられる。複合材料としては、ガラスエポキシ樹脂等が挙げられる。第1硬質支持体110、及び第2硬質支持体150の材料としては、SUS、ガラス、及びシリコンウエハからなる群から選択されるいずれかの材料であることが好ましい。 The first hard support 110 and the second hard support 150 are preferably plate-shaped. The materials and shapes of the first hard support 110 and the second hard support 150 may be appropriately determined in consideration of mechanical strength. Examples of the materials of the first hard support 110 and the second hard support 150 include metal materials, non-metal inorganic materials, resin materials, composite materials, and the like independently of each other. Examples of the metal material include SUS and the like. Examples of the non-metallic inorganic material include glass and silicon wafers. Examples of the resin material include polyimide and polyamide-imide. Examples of the composite material include glass epoxy resin and the like. The material of the first hard support 110 and the second hard support 150 is preferably any material selected from the group consisting of SUS, glass, and a silicon wafer.

第1硬質支持体110、及び第2硬質支持体150の厚さは、機械的強度、及び取り扱い性等を考慮して適宜決定すればよく、例えば、それぞれ独立に、100μm以上50mm以下である。
第1硬質支持体110は、後述するように、上テーブル160の回転によってウエハWFに第1両面接着シートAT1から離れる方向への力が作用したときに、変形しないものであればよく、例えば曲げ強さが50MPa以上であることが好ましい。
また、第2硬質支持体150の硬度は、後述するように、上テーブル160の回転によって第2両面接着シートAT2にウエハWFから離れる方向への力が作用したときに、変形しないものであればよく、例えば曲げ強さが50MPa以上であることが好ましい。
改質部形成手段120は、レーザ照射器121を備えている。
第1固定手段140は、減圧ポンプや真空エジェクタ等によって構成された下側減圧手段141を備え、配管142を介して接続された下テーブル130の内部空間を減圧することによって、下テーブル130の保持面131で、第1硬質支持体110を吸着保持可能に構成されている。
第2固定手段170は、下側減圧手段141と同様に構成された上側減圧手段171を備え、配管172を介して接続された上テーブル160の内部空間を減圧することによって、上テーブル160の保持面161で、第2硬質支持体150を吸着保持可能に構成されている。
第1固定手段140、及び第2固定手段170は、減圧ポンプや真空エジェクタ等によって構成された下側減圧手段141、及び上側減圧手段171を備え、配管142、及び配管172を介して接続された下テーブル130、及び上テーブル160の内部空間を減圧することによって、下テーブル130、及び上テーブル160の保持面131、及び保持面161で、第1硬質支持体110、及び第2硬質支持体150を吸着保持可能に構成されている。
相対移動手段180は、下テーブル130の側方に配置された駆動機器としての回動モータ181を備えている。回動モータ181の出力軸182は、上テーブル160の端部から下方に延びる延出部162に接続されている。
The thicknesses of the first hard support 110 and the second hard support 150 may be appropriately determined in consideration of mechanical strength, handleability, etc., and are, for example, 100 μm or more and 50 mm or less independently of each other.
As will be described later, the first rigid support 110 may be bent as long as it does not deform when a force is applied to the wafer WF in the direction away from the first double-sided adhesive sheet AT1 by the rotation of the upper table 160. The strength is preferably 50 MPa or more.
Further, as described later, the hardness of the second hard support 150 is such that it does not deform when a force is applied to the second double-sided adhesive sheet AT2 in the direction away from the wafer WF by the rotation of the upper table 160. Often, for example, the bending strength is preferably 50 MPa or more.
The reforming portion forming means 120 includes a laser irradiator 121.
The first fixing means 140 includes a lower decompression means 141 composed of a decompression pump, a vacuum ejector, or the like, and holds the lower table 130 by depressurizing the internal space of the lower table 130 connected via the pipe 142. The surface 131 is configured to be able to attract and hold the first rigid support 110.
The second fixing means 170 includes an upper decompression means 171 configured in the same manner as the lower decompression means 141, and holds the upper table 160 by depressurizing the internal space of the upper table 160 connected via the pipe 172. The surface 161 is configured to be able to attract and hold the second rigid support 150.
The first fixing means 140 and the second fixing means 170 include a lower decompression means 141 composed of a decompression pump, a vacuum ejector, and the like, and an upper decompression means 171 and are connected via a pipe 142 and a pipe 172. By decompressing the internal space of the lower table 130 and the upper table 160, the first hard support 110 and the second hard support 150 are formed on the holding surface 131 and the holding surface 161 of the lower table 130 and the upper table 160. It is configured to be able to suck and hold.
The relative moving means 180 includes a rotating motor 181 as a driving device arranged on the side of the lower table 130. The output shaft 182 of the rotary motor 181 is connected to an extension portion 162 extending downward from the end portion of the upper table 160.

以上の薄型化ウエハの製造装置100において、ウエハWFから第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を製造する手順を説明する。
先ず、図15Aに示すように、支持面111に第1両面接着シートAT1の第1接着面AT11が貼付された第1硬質支持体110を準備し、同図中二点鎖線で示すウエハWFの第1表面WF1全体を、実線で示すように第2接着面AT12に貼付する。このとき、気泡が形成されないように第1表面WF1を第2接着面AT12に貼付する。なお、第1接着面AT11における第1表面WF1に対応する領域全体も、気泡が形成されないように、第1硬質支持体110に貼付されることが好ましい。また、第1両面接着シートAT1を第1硬質支持体110、及び第1表面WF1に貼付する方法や順序は特に限定されず、例えば、第1両面接着シートAT1をウエハWFに貼付した後、第1硬質支持体110に貼付してもよい。
The procedure for manufacturing the first thinning wafer WT1 and the second thinning wafer WT2 from the wafer WF in the above thinning wafer manufacturing apparatus 100 will be described.
First, as shown in FIG. 15A, a first rigid support 110 having the first adhesive surface AT11 of the first double-sided adhesive sheet AT1 attached to the support surface 111 is prepared, and the wafer WF shown by the alternate long and short dash line in the figure is prepared. The entire first surface WF1 is attached to the second adhesive surface AT12 as shown by the solid line. At this time, the first surface WF1 is attached to the second adhesive surface AT12 so that bubbles are not formed. The entire region of the first adhesive surface AT11 corresponding to the first surface WF1 is also preferably attached to the first hard support 110 so that air bubbles are not formed. Further, the method and order in which the first double-sided adhesive sheet AT1 is attached to the first hard support 110 and the first surface WF1 are not particularly limited. For example, after the first double-sided adhesive sheet AT1 is attached to the wafer WF, the first is attached. 1 It may be attached to the rigid support 110.

次に、図15Bに示すように、作業者又は多関節ロボットやベルトコンベア等の図示しない搬送手段が、ウエハWF、及び第1硬質支持体110を改質部形成手段120の下方に移動させ、改質部形成手段120がレーザ照射器121を駆動し、図示しない相対移動機構がレーザ照射器121、及び第1硬質支持体110を相対的に水平方向に移動させる。レーザ照射器121のレーザLBは、前記実施形態と同様にしてウエハWFに照射する。レーザLBの照射により、ウエハWFの内部に複数の改質部RPを形成する。ウエハWFの内部に分割面DPに沿って複数の改質部RPが形成されると、改質部形成手段120がレーザ照射器121の駆動を停止する。 Next, as shown in FIG. 15B, a transport means (not shown) such as an operator or an articulated robot or a belt conveyor moves the wafer WF and the first rigid support 110 below the reforming portion forming means 120. The reforming portion forming means 120 drives the laser irradiator 121, and a relative moving mechanism (not shown) moves the laser irradiator 121 and the first hard support 110 in a relatively horizontal direction. The laser LB of the laser irradiator 121 irradiates the wafer WF in the same manner as in the above embodiment. By irradiating the laser LB, a plurality of modified portion RPs are formed inside the wafer WF. When a plurality of modified portion RPs are formed inside the wafer WF along the dividing surface DP, the modified portion forming means 120 stops driving the laser irradiator 121.

この後、図16Aに示すように、第1硬質支持体110を挟んでウエハWFの反対側に下テーブル130が位置し、第2硬質支持体150に第2両面接着シートAT2の第1接着面AT21が貼付され、ウエハWFの第2表面WF2全体に第2両面接着シートAT2の第2接着面AT22が貼付され、第2硬質支持体150を挟んでウエハWFの反対側に上テーブル160が位置する状態にする。このとき、気泡が形成されないように、第2表面WF2を第2接着面AT22に貼付する。なお、第1接着面AT21における第2表面WF2に対応する領域全体も、気泡が形成されないように、第2硬質支持体150に貼付されることが好ましい。
そして、第1固定手段140、及び第2固定手段170がそれぞれ下側減圧手段141、及び上側減圧手段171を駆動し、第1硬質支持体110を下テーブル130の保持面131で、第2硬質支持体150を上テーブル160の保持面161でそれぞれ吸着保持する。なお、第1硬質支持体110を下テーブル130上に位置させたり、第2両面接着シートAT2を第2硬質支持体150、及び第2表面WF2に貼付したり、第2硬質支持体150を上テーブル160の下方に位置させたりする方法や順序は特に限定されず、例えば、第2両面接着シートAT2を第2硬質支持体150に貼付した後に第2表面WF2に貼付してもよいし、その逆の貼付順序でもよい。
After that, as shown in FIG. 16A, the lower table 130 is located on the opposite side of the wafer WF with the first hard support 110 interposed therebetween, and the first adhesive surface of the second double-sided adhesive sheet AT2 is placed on the second hard support 150. AT21 is attached, the second adhesive surface AT22 of the second double-sided adhesive sheet AT2 is attached to the entire second surface WF2 of the wafer WF, and the upper table 160 is located on the opposite side of the wafer WF with the second rigid support 150 sandwiched between them. To be in a state to do. At this time, the second surface WF2 is attached to the second adhesive surface AT22 so that bubbles are not formed. It is preferable that the entire region of the first adhesive surface AT21 corresponding to the second surface WF2 is also attached to the second hard support 150 so that air bubbles are not formed.
Then, the first fixing means 140 and the second fixing means 170 drive the lower decompression means 141 and the upper decompression means 171, respectively, and the first hard support 110 is placed on the holding surface 131 of the lower table 130 by the second hard. The support 150 is sucked and held by the holding surface 161 of the upper table 160, respectively. The first hard support 110 can be positioned on the lower table 130, the second double-sided adhesive sheet AT2 can be attached to the second hard support 150 and the second surface WF2, or the second hard support 150 can be placed on the upper table. The method and order of locating the table 160 below the table 160 are not particularly limited. For example, the second double-sided adhesive sheet AT2 may be attached to the second rigid support 150 and then attached to the second surface WF2. The pasting order may be reversed.

その後、図16Bに示すように、相対移動手段180が回動モータ181を駆動し、上テーブル160を時計回転方向に回転させ、複数の改質部RPが形成された分割面DPを境界にしてウエハWFを分割することで、薄型化された第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を形成する。 After that, as shown in FIG. 16B, the relative moving means 180 drives the rotation motor 181 to rotate the upper table 160 in the clockwise rotation direction, with the divided surface DP on which the plurality of reforming portion RPs are formed as a boundary. By dividing the wafer WF, the thinned first thinned wafer WT1 and the second thinned wafer WT2 are formed.

このとき、ウエハWFの第1表面WF1全体に第1両面接着シートAT1の第2接着面AT12が貼付され、第1硬質支持体110に第1接着面AT11が接着されているため、上テーブル160の回転によってウエハWFに第1両面接着シートAT1から離れる方向への力が作用したときに、第1硬質支持体110によってウエハWF全体の撓みが抑制されたまま、上テーブル160が回転する。したがって、ウエハWFを破損させることなく分割でき、第1薄型化ウエハWT1を適切に製造できる。
また、ウエハWFの第2表面WF2全体に第2両面接着シートAT2の第2接着面AT22が貼付され、第2硬質支持体150に第1接着面AT21が接着されているため、上テーブル160の回転によって第2両面接着シートAT2にウエハWFから離れる方向への力が作用したときに、第2硬質支持体150によってウエハWF全体の撓みが抑制されたまま、上テーブル160が回転する。したがって、ウエハWFを破損させることなく分割でき、第2薄型化ウエハWT2を適切に製造できる。
さらに、第1硬質支持体110、及び第2硬質支持体150で第1薄型化ウエハWT1、及び第2薄型化ウエハWT2をそれぞれ支持しているため、第1硬質支持体110、及び第2硬質支持体150を保持することによって、第1薄型化ウエハWT1、及び第2薄型化ウエハWT2の搬送が容易になる。
At this time, since the second adhesive surface AT12 of the first double-sided adhesive sheet AT1 is attached to the entire first surface WF1 of the wafer WF and the first adhesive surface AT11 is adhered to the first hard support 110, the upper table 160 When a force is applied to the wafer WF in the direction away from the first double-sided adhesive sheet AT1 due to the rotation of the wafer WF, the upper table 160 rotates while the deflection of the entire wafer WF is suppressed by the first rigid support 110. Therefore, the wafer WF can be divided without being damaged, and the first thinning wafer WT1 can be appropriately manufactured.
Further, since the second adhesive surface AT22 of the second double-sided adhesive sheet AT2 is attached to the entire second surface WF2 of the wafer WF and the first adhesive surface AT21 is adhered to the second hard support 150, the upper table 160 When a force acts on the second double-sided adhesive sheet AT2 in the direction away from the wafer WF due to the rotation, the upper table 160 rotates while the bending of the entire wafer WF is suppressed by the second rigid support 150. Therefore, the wafer WF can be divided without being damaged, and the second thinned wafer WT2 can be appropriately manufactured.
Further, since the first hard support 110 and the second hard support 150 support the first thinning wafer WT1 and the second thinning wafer WT2, respectively, the first hard support 110 and the second hard support 110 and the second hard support 150 are supported. By holding the support 150, the first thinning wafer WT1 and the second thinning wafer WT2 can be easily transported.

次に、作業者又は図示しない搬送手段が第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を保持すると、第1固定手段140、及び第2固定手段170がそれぞれ下側減圧手段141、及び上側減圧手段171の駆動を停止し、第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を支持している第1硬質支持体110、及び第2硬質支持体150の吸着保持をそれぞれ解除する。
本実施形態では、第1固定手段140、及び第2固定手段170として、第1硬質支持体110、及び第2硬質支持体150を吸着保持で固定する構成を適用しているため、例えば、粘着剤で固定する場合のように、吸着保持を解除した後に下テーブル130の保持面131、及び上テーブル160の保持面161のそれぞれに付着した粘着成分を除去する必要がなく、作業性の低下を抑制できる。
その後、図示しない搬送手段が第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を次工程に搬送すると、各手段がそれぞれの駆動機器を駆動し、各部材を初期位置に復帰させ、以降上記同様の動作が繰り返される。
Next, when an operator or a conveying means (not shown) holds the first thinning wafer WT1 and the second thinning wafer WT2, the first fixing means 140 and the second fixing means 170 respectively hold the lower decompression means 141 and the lower decompression means 141. The drive of the upper decompression means 171 is stopped, and the suction holding of the first thinning wafer WT1 and the first hard support 110 and the second hard support 150 supporting the second thinning wafer WT2 are released. ..
In the present embodiment, as the first fixing means 140 and the second fixing means 170, a configuration in which the first hard support 110 and the second hard support 150 are fixed by suction holding is applied. Unlike the case of fixing with an agent, it is not necessary to remove the adhesive component adhering to each of the holding surface 131 of the lower table 130 and the holding surface 161 of the upper table 160 after the adsorption holding is released, which reduces workability. Can be suppressed.
After that, when the conveying means (not shown) conveys the first thinning wafer WT1 and the second thinning wafer WT2 to the next step, each means drives each driving device and returns each member to the initial position. The same operation is repeated.

以上のような薄型化ウエハの製造装置100によれば、第1薄型化ウエハWT1、及び第2薄型化ウエハWT2を適切に製造できる。 According to the thinning wafer manufacturing apparatus 100 as described above, the first thinning wafer WT1 and the second thinning wafer WT2 can be appropriately manufactured.

薄型化ウエハの製造装置100を用いた薄型化板状部材の製造方法の変形例としては、例えば、第1硬質支持体110を適用していれば、第2硬質支持体150を適用せずに、ウエハWFを直接あるいは第2両面接着シートAT2を介して上テーブル160の保持面161で吸着保持させてもよい。
第2硬質支持体150を適用していれば、第1硬質支持体110を適用せずに、ウエハWFを直接あるいは第1両面接着シートAT1を介して下テーブル130の保持面131で吸着保持させてもよく、この場合、第2硬質支持体150、第2両面接着シートAT2が、それぞれ本発明の第1硬質支持体、第1両面接着シートに該当することになる。
As a modification of the method for manufacturing a thin plate-shaped member using the thinning wafer manufacturing apparatus 100, for example, if the first hard support 110 is applied, the second hard support 150 is not applied. , The wafer WF may be adsorbed and held on the holding surface 161 of the upper table 160 directly or via the second double-sided adhesive sheet AT2.
If the second hard support 150 is applied, the wafer WF is sucked and held by the holding surface 131 of the lower table 130 directly or via the first double-sided adhesive sheet AT1 without applying the first hard support 110. In this case, the second hard support 150 and the second double-sided adhesive sheet AT2 correspond to the first hard support and the first double-sided adhesive sheet of the present invention, respectively.

その他、前記した実施形態及び実施形態の変形においては、以下の点も適用することができる。
第1接着シートAS1、第2接着シートAS2、及び板状部材の材質、種別、形状等は、特に限定されることはない。例えば、第1接着シートAS1、及び第2接着シートAS2は、円形、楕円形、三角形や四角形等の多角形、及びその他の形状であってもよいし、感圧接着性、及び感熱接着性等の接着形態のものであってもよく、感熱接着性の第1接着シートAS1、及び第2接着シートAS2が採用された場合は、当該第1接着シートAS1、及び第2接着シートAS2を加熱する適宜なコイルヒータやヒートパイプの加熱側等の加熱手段を設けるといった適宜な方法で接着されればよい。また、このような第1接着シートAS1、及び第2接着シートAS2は、例えば、接着剤層だけの単層のもの、基材シートと接着剤層との間に中間層を有するもの、基材シートの上面にカバー層を有する等3層以上のもの、更には、基材シートを接着剤層から剥離することのできる所謂両面接着シートのようなものであってもよく、両面接着シートは、単層又は複層の中間層を有するものや、中間層のない単層又は複層のものであってよい。また、板状部材としては、例えば、食品、樹脂容器、半導体ウエハ(シリコン半導体ウエハ及び化合物半導体ウエハ等)、回路基板、情報記録基板(光ディスク等)、ガラス板、鋼板、陶器、木板、及び樹脂板等、並びに任意の形態の部材及び物品なども対象とすることができる。なお、第1接着シートAS1、及び第2接着シートAS2を機能的、用途的な読み方に換え、例えば、情報記載用ラベル、装飾用ラベル、保護シート、ダイシングテープ、ダイアタッチフィルム、ダイボンディングテープ、及び記録層形成樹脂シート等の任意の形状の任意のシート、フィルム、テープ等を前述のような任意の板状部材に貼付することができる。
In addition, the following points can also be applied to the above-described embodiment and modifications of the embodiment.
The materials, types, shapes, etc. of the first adhesive sheet AS1, the second adhesive sheet AS2, and the plate-shaped member are not particularly limited. For example, the first adhesive sheet AS1 and the second adhesive sheet AS2 may have a circular shape, an elliptical shape, a polygonal shape such as a triangle or a square shape, and other shapes, and have pressure-sensitive adhesiveness, heat-sensitive adhesiveness, and the like. When the heat-sensitive adhesive first adhesive sheet AS1 and second adhesive sheet AS2 are adopted, the first adhesive sheet AS1 and the second adhesive sheet AS2 are heated. Adhesion may be performed by an appropriate method such as providing an appropriate heating means such as a coil heater or a heating side of a heat pipe. Further, such a first adhesive sheet AS1 and a second adhesive sheet AS2 are, for example, a single layer having only an adhesive layer, a base material having an intermediate layer between the base material sheet and the adhesive layer, and a base material. It may be a so-called double-sided adhesive sheet having a cover layer on the upper surface of the sheet, or a so-called double-sided adhesive sheet capable of peeling the base sheet from the adhesive layer. It may have a single-layer or multi-layer intermediate layer, or may be a single-layer or multi-layer without an intermediate layer. Examples of plate-shaped members include foods, resin containers, semiconductor wafers (silicon semiconductor wafers and compound semiconductor wafers, etc.), circuit boards, information recording substrates (optical disks, etc.), glass plates, steel plates, pottery, wooden boards, and resins. Boards and the like, as well as members and articles of any form can also be targeted. The first adhesive sheet AS1 and the second adhesive sheet AS2 are replaced with functional and versatile readings, for example, information description labels, decorative labels, protective sheets, dicing tapes, die attach films, die bonding tapes, etc. And any sheet, film, tape, etc. of any shape such as a recording layer forming resin sheet can be attached to any plate-shaped member as described above.

本発明における手段、及び工程は、それら手段、及び工程について説明した動作、機能又は工程を果たすことができる限り何ら限定されることはなく、まして、前記実施形態で示した単なる一実施形態の構成物や工程に全く限定されることはない。例えば、第1貼付工程は、板状部材の一方の面に第1接着シートを貼付可能なものであれば、出願当初の技術常識に照らし合わせ、その技術範囲内のものであればなんら限定されることはない(他の手段、及び工程についての説明は省略する)。
また、前記実施形態における駆動機器は、回動モータ、直動モータ、リニアモータ、単軸ロボット、多関節ロボット等の電動機器、エアシリンダ、油圧シリンダ、ロッドレスシリンダ、及びロータリシリンダ等のアクチュエータ等を採用することができる上、それらを直接的又は間接的に組み合せたものを採用することもできる(実施形態で例示したものと重複するものもある)。
The means and steps in the present invention are not limited as long as they can perform the operations, functions or steps described for the means and steps, much less the configuration of just one embodiment shown in the above embodiment. It is not limited to goods or processes at all. For example, the first sticking step is limited as long as the first adhesive sheet can be stuck on one surface of the plate-shaped member, in light of the common general technical knowledge at the time of filing, and within the technical scope. There is no such thing (explanation of other means and processes is omitted).
The drive equipment in the above embodiment includes electric equipment such as a rotary motor, a linear motor, a linear motor, a single-axis robot, and an articulated robot, an actuator such as an air cylinder, a hydraulic cylinder, a rodless cylinder, and a rotary cylinder. Can be adopted, and a combination thereof can be directly or indirectly adopted (some of them overlap with those illustrated in the embodiment).

10 :薄型化ウエハの製造装置(薄型化板状部材の製造装置)
100 :薄型化ウエハの製造装置(薄型化板状部材の製造装置)
30A :改質部形成手段
320 :駆動部
322 :アーム部
323 :レーザ照射器
DP :分割面
LB :レーザ
RP :改質部
WF :ウエハ(板状部材)
WF1 :第1表面
WF2 :第2表面
WT1 :第1薄型化ウエハ(第1薄型化板状部材)
WT2 :第2薄型化ウエハ(第2薄型化板状部材)
10: Thinning wafer manufacturing equipment (thinning plate-shaped member manufacturing equipment)
100: Thinning wafer manufacturing equipment (thinning plate-shaped member manufacturing equipment)
30A: Modified part forming means 320: Drive part 322: Arm part 323: Laser irradiator DP: Divided surface LB: Laser RP: Modified part WF: Wafer (plate-shaped member)
WF1: First surface WF2: Second surface WT1: First thinned wafer (first thinned plate-shaped member)
WT2: Second thinning wafer (second thinning plate-like member)

Claims (28)

板状部材にレーザを照射するレーザ照射工程と、
前記板状部材を分割面に沿って分割して、少なくとも第1薄型化板状部材及び第2薄型化板状部材を形成する分割工程と、を備え、
前記板状部材にレーザを照射する工程においては、前記板状部材の内部に複数の改質部を前記分割面に沿って形成し、
前記第1薄型化板状部材の厚みは、前記板状部材の厚みよりも小さく、
前記第2薄型化板状部材の厚みは、前記板状部材の厚みよりも小さい、
薄型化板状部材の製造方法。
A laser irradiation process that irradiates a plate-shaped member with a laser,
The plate-shaped member is divided along a dividing surface to form at least a first thinned plate-shaped member and a second thinned plate-shaped member.
In the step of irradiating the plate-shaped member with a laser, a plurality of modified portions are formed inside the plate-shaped member along the divided surface.
The thickness of the first thin plate-shaped member is smaller than the thickness of the plate-shaped member.
The thickness of the second thin plate-shaped member is smaller than the thickness of the plate-shaped member.
A method for manufacturing a thin plate-shaped member.
請求項1に記載の薄型化板状部材の製造方法において、
前記レーザ照射工程では、前記板状部材の外周部側から前記板状部材の中心部側に亘って前記レーザの照射点の位置を移動させながら、前記板状部材に複数の前記改質部を一定の間隔で形成する、
薄型化板状部材の製造方法。
In the method for manufacturing a thin plate-shaped member according to claim 1,
In the laser irradiation step, a plurality of the modified portions are applied to the plate-shaped member while moving the position of the laser irradiation point from the outer peripheral side of the plate-shaped member to the central portion side of the plate-shaped member. Form at regular intervals,
A method for manufacturing a thin plate-shaped member.
請求項1に記載の薄型化板状部材の製造方法において、
前記レーザ照射工程では、前記レーザの照射点の位置を移動させながら前記板状部材に複数の前記改質部を形成し、
前記板状部材の外周部側における前記照射点同士の間隔と、前記板状部材の中心部側における前記照射点同士の間隔とが、異なる、
薄型化板状部材の製造方法。
In the method for manufacturing a thin plate-shaped member according to claim 1,
In the laser irradiation step, a plurality of the modified portions are formed on the plate-shaped member while moving the position of the irradiation point of the laser.
The distance between the irradiation points on the outer peripheral side of the plate-shaped member and the distance between the irradiation points on the central portion side of the plate-shaped member are different.
A method for manufacturing a thin plate-shaped member.
請求項3に記載の薄型化板状部材の製造方法において、
前記板状部材の外周部側における前記照射点同士の間隔が、前記板状部材の中心部側における前記照射点同士の間隔よりも小さい、
薄型化板状部材の製造方法。
In the method for manufacturing a thin plate-shaped member according to claim 3,
The distance between the irradiation points on the outer peripheral side of the plate-shaped member is smaller than the distance between the irradiation points on the central portion side of the plate-shaped member.
A method for manufacturing a thin plate-shaped member.
請求項3又は請求項4に記載の薄型化板状部材の製造方法において、
前記照射点同士の間隔が、前記板状部材の外周部側から前記板状部材の中心部側に向かうにつれて大きくなる、
薄型化板状部材の製造方法。
In the method for manufacturing a thin plate-shaped member according to claim 3 or 4.
The distance between the irradiation points increases from the outer peripheral side of the plate-shaped member toward the central portion side of the plate-shaped member.
A method for manufacturing a thin plate-shaped member.
請求項4又は請求項5に記載の薄型化板状部材の製造方法において、
前記板状部材は、前記板状部材の外周部側の第1領域と、前記板状部材の中心部側の第2領域と、前記第1領域と前記第2領域との間の第3領域と、を有し、
前記第1領域に対して、第1の間隔で前記レーザを複数個所に照射し、
前記第3領域に対して、第3の間隔で前記レーザを複数個所に照射し、
前記第2領域に対して、第2の間隔で前記レーザを複数個所に照射し、
前記第1の間隔は、前記第3の間隔よりも小さく、
前記第3の間隔は、前記第2の間隔よりも小さい、
薄型化板状部材の製造方法。
In the method for manufacturing a thin plate-shaped member according to claim 4 or 5.
The plate-shaped member includes a first region on the outer peripheral side of the plate-shaped member, a second region on the central portion side of the plate-shaped member, and a third region between the first region and the second region. And have
The first region is irradiated with the laser at a plurality of locations at the first interval.
The laser is applied to a plurality of locations at a third interval on the third region.
The second region is irradiated with the laser at a plurality of locations at a second interval.
The first interval is smaller than the third interval,
The third interval is smaller than the second interval.
A method for manufacturing a thin plate-shaped member.
請求項2から請求項6のいずれか一項に記載の薄型化板状部材の製造方法において、
前記レーザを照射するレーザ照射器、及び前記板状部材の少なくともいずれかを移動させることにより、前記レーザ照射工程における前記レーザの照射点の位置を移動させる、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 2 to 6.
By moving at least one of the laser irradiator for irradiating the laser and the plate-shaped member, the position of the irradiation point of the laser in the laser irradiation step is moved.
A method for manufacturing a thin plate-shaped member.
請求項7に記載の薄型化板状部材の製造方法において、
前記レーザ照射器、及び前記板状部材の少なくともいずれかを回転させることにより、前記レーザ照射工程における前記レーザの照射点の位置を移動させる、
薄型化板状部材の製造方法。
In the method for manufacturing a thin plate-shaped member according to claim 7.
By rotating at least one of the laser irradiator and the plate-shaped member, the position of the laser irradiation point in the laser irradiation step is moved.
A method for manufacturing a thin plate-shaped member.
請求項7又は請求項8に記載の薄型化板状部材の製造方法において、
前記レーザ照射器から、複数の前記レーザを同時に照射する、
薄型化板状部材の製造方法。
In the method for manufacturing a thin plate-shaped member according to claim 7 or 8.
A plurality of the lasers are simultaneously irradiated from the laser irradiator.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項9のいずれか一項に記載の薄型化板状部材の製造方法において、
前記板状部材の厚みは、3mm以下である、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 9.
The thickness of the plate-shaped member is 3 mm or less.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項10のいずれか一項に記載の薄型化板状部材の製造方法において、
前記第1薄型化板状部材の厚み及び前記第2薄型化板状部材の厚みの少なくともいずれかが、500μm以下である、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 10.
At least one of the thickness of the first thin plate-shaped member and the thickness of the second thin plate-shaped member is 500 μm or less.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項11のいずれか一項に記載の薄型化板状部材の製造方法において、
前記レーザを前記分割面に沿って1μm以上350μm以下の間隔で照射する、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 11.
The laser is irradiated along the dividing surface at intervals of 1 μm or more and 350 μm or less.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項12のいずれか一項に記載の薄型化板状部材の製造方法において、
複数の前記改質部は、互いに重なっている、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 12.
The plurality of modified portions overlap each other.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項12のいずれか一項に記載の薄型化板状部材の製造方法において、
複数の前記改質部は、互いに離れている、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 12.
The plurality of reforming portions are separated from each other.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項14のいずれか一項に記載の薄型化板状部材の製造方法において、
前記板状部材は、第1表面、及び前記第1表面とは反対側の第2表面を有し、
前記レーザを、前記第1表面及び前記第2表面の少なくともいずれかの表面側から照射する、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 14.
The plate-shaped member has a first surface and a second surface opposite to the first surface.
The laser is irradiated from at least one surface side of the first surface and the second surface.
A method for manufacturing a thin plate-shaped member.
請求項15に記載の薄型化板状部材の製造方法において、
前記第1表面及び前記第2表面の少なくともいずれかの表面には保護シートが積層されている、
薄型化板状部材の製造方法。
In the method for manufacturing a thin plate-shaped member according to claim 15,
A protective sheet is laminated on at least one of the first surface and the second surface.
A method for manufacturing a thin plate-shaped member.
請求項16に記載の薄型化板状部材の製造方法において、
前記保護シートが積層された前記板状部材の表面側から前記レーザを照射して、前記板状部材の内部に複数の前記改質部を形成する、
薄型化板状部材の製造方法。
In the method for manufacturing a thin plate-shaped member according to claim 16.
The laser is irradiated from the surface side of the plate-shaped member on which the protective sheet is laminated to form a plurality of the modified portions inside the plate-shaped member.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項17のいずれか一項に記載の薄型化板状部材の製造方法において、
前記分割工程は、前記板状部材の厚み方向に前記板状部材を離間させることにより、複数の前記改質部が形成された前記分割面を境界にして前記第1薄型化板状部材及び前記第2薄型化板状部材に分割する工程である、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 17.
In the dividing step, the plate-shaped member is separated in the thickness direction of the plate-shaped member, so that the first thinned plate-shaped member and the thinned plate-shaped member are defined with the divided surface on which a plurality of the modified portions are formed as a boundary. The process of dividing into the second thin plate-shaped member,
A method for manufacturing a thin plate-shaped member.
請求項1から請求項18のいずれか一項に記載の薄型化板状部材の製造方法において、
前記板状部材の表面は、回路を有する、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 18.
The surface of the plate-shaped member has a circuit.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項19のいずれか一項に記載の薄型化板状部材の製造方法において、
前記第1薄型化板状部材は、前記分割工程における前記板状部材の分割によって現れた第1露出面を有し、
前記第2薄型化板状部材は、前記分割工程における前記板状部材の分割によって現れた第2露出面を有し、
前記第1露出面及び前記第2露出面の少なくともいずれかを研磨する研磨工程を有する、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 19.
The first thin plate-shaped member has a first exposed surface that appears due to the division of the plate-shaped member in the dividing step.
The second thin plate-shaped member has a second exposed surface that appears due to the division of the plate-shaped member in the dividing step.
It has a polishing step of polishing at least one of the first exposed surface and the second exposed surface.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項20のいずれか一項に記載の薄型化板状部材の製造方法において、
前記第1薄型化板状部材及び前記第2薄型化板状部材の少なくともいずれかの表面に回路を形成する回路形成工程をさらに備える、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 20.
A circuit forming step of forming a circuit on at least one surface of the first thinned plate-shaped member and the second thinned plate-shaped member is further provided.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項21のいずれか一項に記載の薄型化板状部材の製造方法において、
前記板状部材の材質は、シリコン、窒化ケイ素、窒化ガリウム、シリコンカーバイド、サファイア、ガリウム砒素、及びガラスからなる群から選択される、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 21.
The material of the plate-shaped member is selected from the group consisting of silicon, silicon nitride, gallium nitride, silicon carbide, sapphire, gallium arsenide, and glass.
A method for manufacturing a thin plate-shaped member.
請求項1から請求項22のいずれか一項に記載の薄型化板状部材の製造方法において、
前記板状部材は、ウエハである、
薄型化板状部材の製造方法。
The method for manufacturing a thin plate-shaped member according to any one of claims 1 to 22.
The plate-shaped member is a wafer.
A method for manufacturing a thin plate-shaped member.
板状部材の内部に複数の改質部を形成する改質部形成手段と、
改質後の前記板状部材を少なくとも第1薄型化板状部材及び第2薄型化板状部材に分割する分割手段と、を備え、
前記改質部形成手段は、アーム部と、レーザを照射するレーザ照射器と、前記アーム部を回転可能に支持する駆動部と、を有し、
前記レーザ照射器は、前記アーム部にスライド移動可能に支持されている、
薄型化板状部材の製造装置。
A modified portion forming means for forming a plurality of modified portions inside a plate-shaped member,
A dividing means for dividing the modified plate-shaped member into at least a first thinned plate-shaped member and a second thinned plate-shaped member is provided.
The modified portion forming means includes an arm portion, a laser irradiator that irradiates a laser, and a drive portion that rotatably supports the arm portion.
The laser irradiator is supported by the arm portion so as to be slidable.
A device for manufacturing thin plate-shaped members.
請求項24に記載の薄型化板状部材の製造装置において、
前記改質部形成手段は、前記レーザ照射器を複数有する、
薄型化板状部材の製造装置。
In the apparatus for manufacturing a thin plate-shaped member according to claim 24.
The modified portion forming means has a plurality of the laser irradiators.
A device for manufacturing thin plate-shaped members.
請求項24又は請求項25に記載の薄型化板状部材の製造装置において、
前記レーザ照射器は、複数のレーザを同時に照射可能である、
薄型化板状部材の製造装置。
In the apparatus for manufacturing a thin plate-shaped member according to claim 24 or 25.
The laser irradiator can irradiate a plurality of lasers at the same time.
A device for manufacturing thin plate-shaped members.
請求項26に記載の薄型化板状部材の製造装置において、
前記レーザ照射器は、複数の前記レーザ同士の照射間隔を拡大及び縮小できる、
薄型化板状部材の製造装置。
In the apparatus for manufacturing a thin plate-shaped member according to claim 26.
The laser irradiator can increase and decrease the irradiation interval between the plurality of lasers.
A device for manufacturing thin plate-shaped members.
請求項24から請求項27のいずれか一項に記載の薄型化板状部材の製造装置において、
前記板状部材を回転可能に支持する保持手段をさらに有する、
薄型化板状部材の製造装置。
The apparatus for manufacturing a thin plate-shaped member according to any one of claims 24 to 27.
Further having a holding means for rotatably supporting the plate-shaped member.
A device for manufacturing thin plate-shaped members.
JP2019539392A 2017-09-04 2018-08-21 Manufacturing method for thin plate-shaped member and manufacturing apparatus for thin plate-shaped member Active JP7267923B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017169775 2017-09-04
JP2017169775 2017-09-04
JP2018019650 2018-02-06
JP2018019650 2018-02-06
PCT/JP2018/030804 WO2019044588A1 (en) 2017-09-04 2018-08-21 Thinned plate member production method and thinned plate member production device

Publications (2)

Publication Number Publication Date
JPWO2019044588A1 true JPWO2019044588A1 (en) 2020-10-15
JP7267923B2 JP7267923B2 (en) 2023-05-02

Family

ID=65527375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019539392A Active JP7267923B2 (en) 2017-09-04 2018-08-21 Manufacturing method for thin plate-shaped member and manufacturing apparatus for thin plate-shaped member

Country Status (5)

Country Link
JP (1) JP7267923B2 (en)
KR (1) KR102565071B1 (en)
CN (1) CN111095493B (en)
TW (1) TWI775931B (en)
WO (1) WO2019044588A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246919B2 (en) * 2018-12-21 2023-03-28 浜松ホトニクス株式会社 Laser processing method, semiconductor member manufacturing method, and laser processing apparatus
CN113518686B (en) * 2019-03-28 2023-05-26 东京毅力科创株式会社 Processing apparatus and processing method
US20220181157A1 (en) * 2019-04-19 2022-06-09 Tokyo Electron Limited Processing apparatus and processing method
TW202116468A (en) * 2019-07-18 2021-05-01 日商東京威力科創股份有限公司 Processing device and processing method
JP2021168347A (en) * 2020-04-10 2021-10-21 株式会社ディスコ Production method for wafer
KR20230002491A (en) * 2020-04-30 2023-01-05 린텍 가부시키가이샤 Sheet peeling method and sheet peeling device, and dividing method and dividing device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257983A (en) * 1984-06-04 1985-12-19 Mitsubishi Electric Corp Laser beam welding equipment
JPH10216981A (en) * 1997-02-03 1998-08-18 Amada Co Ltd Optical axis moving type laser bean machine
JP2005109323A (en) * 2003-10-01 2005-04-21 Tokyo Seimitsu Co Ltd Laser beam dicing device
JP2005340668A (en) * 2004-05-28 2005-12-08 Purex:Kk Method and apparatus for removing organic substance
JP2008129596A (en) * 2006-11-21 2008-06-05 Palo Alto Research Center Inc Light scanning mechanism having stable scanning path and focusing state, laser ablation apparatus using the same and photovoltaic device manufacturing system
JP2010153590A (en) * 2008-12-25 2010-07-08 Hamamatsu Photonics Kk Processing method for cutting
JP2013141701A (en) * 2012-01-12 2013-07-22 Panasonic Corp Substrate producing method and modification layer forming device
JP2014116338A (en) * 2012-12-06 2014-06-26 Lintec Corp Cleaving device and cleaving method
JP2016015447A (en) * 2014-07-03 2016-01-28 パナソニックIpマネジメント株式会社 Wafer manufacturing method and apparatus
JP2016043401A (en) * 2014-08-26 2016-04-04 信越ポリマー株式会社 Substrate processing method and substrate
WO2016083610A2 (en) * 2014-11-27 2016-06-02 Siltectra Gmbh Splitting of a solid using conversion of material
JP2016201575A (en) * 2016-08-30 2016-12-01 国立大学法人埼玉大学 Manufacturing method for single crystal substrate
JP2016225536A (en) * 2015-06-02 2016-12-28 株式会社ディスコ Production method of wafer
JP2017022283A (en) * 2015-07-13 2017-01-26 株式会社ディスコ POLYCRYSTALLINE SiC WAFER GENERATING METHOD
JP2017024039A (en) * 2015-07-21 2017-02-02 株式会社ディスコ Wafer thinning method
JP2017092314A (en) * 2015-11-12 2017-05-25 株式会社ディスコ SiC SUBSTRATE SEPARATING METHOD
JP2017130638A (en) * 2016-01-22 2017-07-27 リンテック株式会社 Processing apparatus and processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066376A (en) 2002-08-05 2004-03-04 Nippei Toyama Corp Coolant injection device of semiconductor wafer grinding machine, and method therefor
JP2015230964A (en) * 2014-06-05 2015-12-21 株式会社ディスコ Wafer processing method
JP6395634B2 (en) * 2015-02-09 2018-09-26 株式会社ディスコ Wafer generation method
TW201727814A (en) * 2016-01-25 2017-08-01 Lintec Corp Dividing device for plate member and dividing method for plate member capable of accurately regulating thickness of plate member after dividing even for larger plate member

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257983A (en) * 1984-06-04 1985-12-19 Mitsubishi Electric Corp Laser beam welding equipment
JPH10216981A (en) * 1997-02-03 1998-08-18 Amada Co Ltd Optical axis moving type laser bean machine
JP2005109323A (en) * 2003-10-01 2005-04-21 Tokyo Seimitsu Co Ltd Laser beam dicing device
JP2005340668A (en) * 2004-05-28 2005-12-08 Purex:Kk Method and apparatus for removing organic substance
JP2008129596A (en) * 2006-11-21 2008-06-05 Palo Alto Research Center Inc Light scanning mechanism having stable scanning path and focusing state, laser ablation apparatus using the same and photovoltaic device manufacturing system
JP2010153590A (en) * 2008-12-25 2010-07-08 Hamamatsu Photonics Kk Processing method for cutting
JP2013141701A (en) * 2012-01-12 2013-07-22 Panasonic Corp Substrate producing method and modification layer forming device
JP2014116338A (en) * 2012-12-06 2014-06-26 Lintec Corp Cleaving device and cleaving method
JP2016015447A (en) * 2014-07-03 2016-01-28 パナソニックIpマネジメント株式会社 Wafer manufacturing method and apparatus
JP2016043401A (en) * 2014-08-26 2016-04-04 信越ポリマー株式会社 Substrate processing method and substrate
WO2016083610A2 (en) * 2014-11-27 2016-06-02 Siltectra Gmbh Splitting of a solid using conversion of material
JP2016225536A (en) * 2015-06-02 2016-12-28 株式会社ディスコ Production method of wafer
JP2017022283A (en) * 2015-07-13 2017-01-26 株式会社ディスコ POLYCRYSTALLINE SiC WAFER GENERATING METHOD
JP2017024039A (en) * 2015-07-21 2017-02-02 株式会社ディスコ Wafer thinning method
JP2017092314A (en) * 2015-11-12 2017-05-25 株式会社ディスコ SiC SUBSTRATE SEPARATING METHOD
JP2017130638A (en) * 2016-01-22 2017-07-27 リンテック株式会社 Processing apparatus and processing method
JP2016201575A (en) * 2016-08-30 2016-12-01 国立大学法人埼玉大学 Manufacturing method for single crystal substrate

Also Published As

Publication number Publication date
JP7267923B2 (en) 2023-05-02
CN111095493B (en) 2024-04-02
TW201921474A (en) 2019-06-01
WO2019044588A1 (en) 2019-03-07
KR20200047554A (en) 2020-05-07
CN111095493A (en) 2020-05-01
KR102565071B1 (en) 2023-08-08
TWI775931B (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP7267923B2 (en) Manufacturing method for thin plate-shaped member and manufacturing apparatus for thin plate-shaped member
JP6408366B2 (en) Separation device and separation method
JP6013806B2 (en) Wafer processing method
JP6363947B2 (en) Separation device and separation method
JP7231548B2 (en) METHOD AND APPARATUS FOR MANUFACTURING THIN PLATE-LIKE MEMBER
JP3196099U (en) Spacing device
JP2016127123A (en) Spacing device and spacing method
JP6386866B2 (en) Separation device and separation method
JP2014120508A (en) Dividing device and dividing method
KR102396892B1 (en) Spacing device and spacing method
JP6420623B2 (en) Separation device and separation method
JP2017157777A (en) Processing method and processing device
JP6818933B1 (en) Laminated body manufacturing method and laminated body manufacturing equipment
JP2014139983A (en) Sheet bonding device and sheet bonding method
JP2017130638A (en) Processing apparatus and processing method
KR20180132510A (en) Alignment device and transfer device
WO2021153264A1 (en) Method for manufacturing thinned wafer, and device for manufacturing thinned wafer
JP6827144B1 (en) Laminated body manufacturing method and laminated body manufacturing equipment
JP7022570B2 (en) Substrate removal method and substrate removal device, as well as transfer method and transfer device
KR102398710B1 (en) Spacing device and spacing method
JP6884961B2 (en) Separation device and separation method
JP2017073427A (en) Processing device
JP2016154198A (en) Sheet peeling device and peeling method
JP2022071440A (en) Laminate manufacturing method and laminate manufacturing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230220

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230420

R150 Certificate of patent or registration of utility model

Ref document number: 7267923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150