JPWO2019008833A1 - フェーズドアレイ探傷装置と方法 - Google Patents

フェーズドアレイ探傷装置と方法 Download PDF

Info

Publication number
JPWO2019008833A1
JPWO2019008833A1 JP2019528355A JP2019528355A JPWO2019008833A1 JP WO2019008833 A1 JPWO2019008833 A1 JP WO2019008833A1 JP 2019528355 A JP2019528355 A JP 2019528355A JP 2019528355 A JP2019528355 A JP 2019528355A JP WO2019008833 A1 JPWO2019008833 A1 JP WO2019008833A1
Authority
JP
Japan
Prior art keywords
probe
phased array
line
reference line
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019528355A
Other languages
English (en)
Other versions
JP6934054B2 (ja
Inventor
伸太郎 福本
伸太郎 福本
拓 川▲崎▼
拓 川▲崎▼
敬弘 荒川
敬弘 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Inspection and Instrumentation Co Ltd
Original Assignee
IHI Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Inspection and Instrumentation Co Ltd filed Critical IHI Inspection and Instrumentation Co Ltd
Publication of JPWO2019008833A1 publication Critical patent/JPWO2019008833A1/ja
Application granted granted Critical
Publication of JP6934054B2 publication Critical patent/JP6934054B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0625Annular array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

フェーズドアレイ探触子(10)の複数の超音波振動子(12)(セグメント(15))は、同心円状に分離され、かつ円の中心を通る基準線Lに直交する列上に分離し、基準線Lに対し線対称に位置する。フェーズドアレイ探触子(10)の検出面(14)は、直径Dの円形であり、基準線Lに対し対称の複数の円弧状部分に分割された複数のセグメント(15)を有する。さらに、線対称の対の超音波振動子(12)を同一条件で制御する複数の制御チャンネルを有する制御装置を備える。

Description

本発明は、複数の素子を円状に順次励起させる機能と、列状に順次励起させる機能を有し、二つの機能を同時に作用させることで、例えば超音波ビームを円形に集束させることと、任意の方向に進行させることとができるフェーズドアレイ探傷装置とこれを用いた超音波探傷方法に関する。
フェーズドアレイ探触子は、複数の振動子により構成され、各振動子が超音波を送受信するタイミング(位相)を独立して制御し、合成された超音波波面を形成することにより、超音波ビームの制御を行うものである。
従来のフェーズドアレイ探触子は、リニアアレイ探触子、マトリクスアレイ探触子、及び、アニュラーアレイ探触子に大別することができる。
リニアアレイ探触子は、方形振動子を短冊状に一方向に分割したプローブ、マトリクスアレイ探触子は、方形振動子を縦横の二方向に分割したプローブ、アニュラーアレイ探触子は、円形振動子を同心円状に分割したプローブである。これらの探触子はそれぞれ長短を有し使い分けられている。
アニュラーアレイ探触子は、例えば特許文献1,2に開示されている。
また、マトリクスアレイ探触子は、例えば特許文献3に開示されている。
特開平6−38298号公報 特開2009−105762号公報 特表2016−501375号公報
リニアアレイ探触子では、分割した分割線の直交方向に超音波ビーム(以下単に「ビーム」という)の進行方向を電子的に変えたり、任意の深さにビームを集束させることができるが、これと直交方向にはビームを制御することができない。このために、例えばビーム幅を狭く集束させて、きずの寸法測定精度を改善しようとしても、一方向にしか集束できず測定精度の改善は一方向に限られる。
一方、リング状のアニュラーアレイ探触子によれば、円状に超音波ビームを細かく集束できるので、例えばきずの寸法測定では縦横いずれの測定精度の改善も期待できる。しかし、アニュラーアレイ探触子は、ビームの進行方向を自在に制御することはできない。
マトリクスアレイ探触子によれば、縦横のいずれにも分割面をもつので、アニュラーアレイ探触子のように円形に超音波ビームを集束させることも、任意の方向に超音波ビームを進行させることもできる。
しかし、マトリクスアレイ探触子の場合、各振動子が超音波を送受信するタイミング(位相)を独立に制御する制御装置の制御チャンネル(以下、単に「チャンネル」という)が多くなる。
例えば、現状多用されている64チャンネルの制御装置の場合、マトリクスアレイ探触子の素子数は8×8=64個が最大となり、縦方向及び横方向の分割面数が少なく、ノイズレベルが過大となる。
さらに制御装置のチャンネル数を増やすことは、制御装置のハード及びソフトの新開発を必要とするため、過大な費用と時間を必要とする。
本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、制御装置のチャンネル数を増やさずに、複数の素子を円状に順次励起させる機能と、列状に順次励起させる機能を有し、二つの機能を同時に作用させることで、例えば超音波ビームを円形に集束させることと、任意の方向に進行させることとができ、かつノイズレベルを小さくできる、フェーズドアレイ探傷装置と方法を提供することにある。
本発明によれば、同心円状に分離され、かつ円の中心を通る基準線に直交する列上に分離し、前記基準線に対し線対称に位置する複数の超音波振動子を有する、フェーズドアレイ探触子と、
前記線対称の対の前記超音波振動子を同一条件で制御する複数の制御チャンネルを有する制御装置と、を備える、フェーズドアレイ探傷装置が提供される。
また本発明によれば、上記のフェーズドアレイ探傷装置を用い、
前記基準線に対し線対称の対の前記超音波振動子を、同一条件で制御する、フェーズドアレイ探傷方法が提供される。
本発明によれば、複数の超音波振動子が、同心円状に分離されているので、同心円状の複数の超音波振動子を同一条件で制御して、それぞれの超音波ビームを円形に集束させることができる。
また基準線に直交する列上に分離しているので、複数のそれぞれの超音波振動子の位相差を基準線方向で制御することで、超音波ビームを基準線に沿った方向に進行させたり、基準線方向に集束させた線状の集束ビームを形成させることができる。
さらに、複数の制御チャンネルが線対称の対の超音波振動子を同一条件で制御するので、制御装置のチャンネル数を増やさずに、基準線に沿った超音波振動子の個数を増やすことができ、これによりノイズレベルを小さくできる。
本発明によるフェーズドアレイ探傷装置の全体構成図である。 図1のA−A矢視図であり、発明プローブの第1実施形態を示す図である。 本発明のフェーズドアレイ探傷方法の説明図である。 発明プローブの第2実施形態を示す図2と同様の図である。 発明プローブ10の第3実施形態を示す図2と同様の図である。 図5の発明プローブ10の制御方法の説明図である。 第2実施形態の発明プローブを用い、円筒形の外面を有する試験体を検査する場合の模式的側面図である。 図7AのX軸を通る断面図である。 図7Aと図7Bに対して、斜めに傾いた面を持つくさび(中間部材2)上に本発明の探触子10を搭載して試験体の軸方向に斜めに超音波を入射させる斜角探傷の例を示している。 分割数が8分割の場合の、リニアプローブ、アニュラープローブ、および、マトリクスプローブのシミュレーションで求めたビームプロファイルの比較図である。 分割数が4〜32分割の場合の、幅方向のエコー高さの比較図である。 振動子の分割数と副極ノイズレベルとの関係図である。 振動子の分割数と超音波ビームSのビーム幅との関係図である。 マトリクスプローブと、発明プローブの第1,2実施形態とのビームプロファイルの比較図である。 端部のエコーレベルとビーム幅の関係図である。 リニアプローブ、マトリクスプローブ、及び発明プローブによる探傷試験結果の比較図である。 円筒形の外面を有する試験体に対する、発明プローブ、アニュラープローブ、及び、マトリクスプローブによる探傷試験結果の比較図である。 製作した発明プローブの外形図である。 製作した発明プローブの超音波振動子の配置図である。 製作した発明プローブの試験条件を示す説明図である。 きずの説明図である。 欠陥平面上のCスキャン画像である。 走査方向におけるピーク図である。 走査方向に直交する方向におけるピーク図である。 探触子の構造例を示す断面図である。 探触子の別の構造例を示す断面図である。
以下、本発明の好ましい実施形態を、図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。
図1は、本発明によるフェーズドアレイ探傷装置100の全体構成図である。
この図において、フェーズドアレイ探傷装置100は、フェーズドアレイ探触子10及び制御装置20を備える。なお、1は、試験体TPの表面(試験体表面)である。
以下、本発明のフェーズドアレイ探触子10を、単に「探触子10」又は「発明プローブ10」と略称する。
フェーズドアレイ探触子10(発明プローブ10)は、独立して励起する複数の超音波振動子12を有する。
図23Aは、探触子10の構造例を示す断面図である。
複数の超音波振動子12が1枚の圧電素子9(圧電セラミックや水晶など)の場合は、独立して励起する領域を設けるには、特定の領域(励起領域B)での振動が他の領域に及ばないように複数の超音波振動子12を分離しておく必要がある。
すなわち、探触子10の検出面14には1枚の共通電極Cを取り付け、反対側の電極(分割電極A)は分割しておき、所定の領域(励起領域B)だけに電圧を印加するようにする。また、励起領域Bで生じた振動が他の領域に伝播しないように、圧電素子9に分割電極Aの分割にあわせて可能な限り深い溝8aを設けて複数の超音波振動子12に分割する。
具体的には、1枚の圧電素子9の両側に電極A,Bを取り付けて、最後に検出面14の反対側から電極Bと圧電素子9をあわせてできるだけ深い溝8aで分離して複数の超音波振動子12とするのがよい。
図23Bは、探触子10の別の構造例を示す断面図である。
この図に示すように、探触子10は、小さな格子状や円柱状に分割された小さな圧電素子9を配列して、隙間8bにエポキシ樹脂などを充填したコンポジットタイプが好ましい。
コンポジットタイプでは、検査面14に1枚の共通電極Cを取り付け、反対側に励起させる領域の複数の分割電極Aを設けることで、独立して励起する複数の超音波振動子12の励起領域Bを形成できる。
すなわち、図23Bにおいて、通電する分割電極Aと検出面14の共通電極Cとに挟まれた微小な圧電素子9のみが励起し、その振動はその他の圧電素子9に影響を及ぼすことがない。
この構造によれば、片面の分割電極Aを例えばメッキ技術を利用して形成すれば、複雑な複数の振動領域の分割も可能になる。すなわち、検出面14とは反対側の電極を分割しておくだけで、一枚のコンポジットタイプの圧電素子9を複数の超音波振動子12に分割することができる。
図1において、隣接する超音波振動子12の間には隙間11が設けられ、それぞれ独立して作動するようになっている。隙間11は、図23Aにおける溝8a、又は図23Bにおける隙間8bに相当する。
隙間11の大きさ(ギャップ幅)は後述する例では0.05mmである。
また発明プローブ10は、超音波ビームSを発信し受信する検出面14を有する。
なお、この例において、検出面14は、試験体TPの表面(試験体表面1)に直接接しているが、その間に中間部材2(図7B、図8参照)を設けてもよい。
制御装置20は、複数の超音波振動子12を制御し、各超音波振動子12により超音波ビームSを発信し受信する。超音波ビームSの振動数は後述する例では鋼中に使用可能な5MHzである。
図1において、フェーズドアレイ探傷装置100は、さらに表示装置22、及び画像処理装置24を備える。
表示装置22は、ディスプレイ装置であり、発明プローブ10で受信した超音波ビームSの探傷波形などを表示する。
画像処理装置24は、例えば探傷波形から異物(例えばき裂)の回折波を抽出し、幾何学的に異物の大きさを求める。
図1において、本発明は、試験体TPが鉄鋼製の圧力容器や厚肉配管であり、検出対象とするきずMが試験体表面1から深さxの位置にある場合を想定する。このような検査対象は、原子力やボイラの圧力容器や配管に相当する。
上述したように、例えば、現状多用されている64チャンネルの制御装置20の場合、マトリクスアレイ探触子の素子数は8×8=64個が最大となり、縦方向及び横方向に使用される素子数が制約されることで超音波ビームSの制御が難しくなる欠点がある。
特に、試験体表面1から深い位置にビームを集束させるには振動子全体の大きさが大きくなり、分割数の制限の影響が顕著になる。
例えば、超音波ビームSを集束させることができる範囲(試験体表面1からの深さx)は、近距離音場内であり、次式(1)で示され、振動子が大きいほど集束の効果が得られる。
x<D/4λ・・・(1)
D:分割する振動子の公称直径、λ:波長
ここで公称直径Dは、振動子の面積に相当する円の直径を意味する。
すなわち、鋼中縦波で深さ100mmの近傍に超音波ビームSを集束させるには最低24mmの振動子を分割する必要があり(鋼中に使用可能な5MHz使用)、より効果的に行うには35mm程度の素子を分割するのが望ましい。
従って、分割する振動子の公称直径Dを大きくする必要がある。
図2は、図1のA−A矢視図であり、発明プローブ10の第1実施形態を示す図である。
この図において、複数の超音波振動子12は、中心Oを中心とする同心円状に分離され、かつ周方向にそれぞれ分離して位置する。また各超音波振動子12は、同心円の中心Oを通る基準線Lに直交する方向に列上に分離されており、基準線Lに対し線対称に位置する。
「同心円」は完全な同心円に限定されず、例えば楕円の同心円であってもよい。
基準線Lは、この例では図中のY軸である。
超音波振動子12の出力はその大きさに比例する。また線対称の超音波振動子12の大きさは、同一に形成されている。
図2において、発明プローブ10の検出面14は、直径Dの円形であり、基準線Lに対し対称の複数の円弧状部分に分割された複数のセグメント15を有する。セグメント15は、上述した1つの超音波振動子12に相当する。
セグメント15は、この例では中心の円形部分とその他の円弧状部分からなる。なお、セグメント15の形状はこの例に限定されず、その他の形状であってもよい。
また、隣接するセグメント15の間の隙間11の大きさ(ギャップ幅)は、一定であることが好ましいが変化してもよい。以下、ギャップ幅が一定又は一定に近い場合、セグメント間の隙間11を分割線16と呼ぶ。
セグメント15の分割線16は、この例では、複数の円形分割線16aと複数の直線分割線16bと、からなる。
図2において、直線分割線16bは、互いに平行であり、円形の中心Oを通る基準線Lに直交し、かつ円形分割線16aの両端に接している。この場合、直線分割線16bは、基準線Lと円形分割線16aの交点を通り、互いに平行な直線である。
円形分割線16aは、この例では5本であり、検出面14の円形を6つの円環状部分(リング状部分)に分割している。直線分割線16bは、この例では10本であり、リング状部分を61の円弧状部分(中央の一つの円を含む)に分割している。以下、図2の分割を、「6リング、11行分割」と呼ぶ。
図2において、セグメント15の内側に記載された「数字」は、セグメント番号Iである。セグメント番号I(=1〜61)は、各セグメント15に異なる番号が付されている。
この結果、検出面14は、円形分割線16aと直線分割線16bで分割された61のセグメント15を有する。
制御装置20は、複数の制御チャンネル21を有する。各制御チャンネル21は線対称の対の超音波振動子12を同一条件で制御する。
複数(この例では61)の制御チャンネル21は、セグメント番号I(=1〜61)のセグメント15の超音波振動子12をそれぞれ制御する。
本発明のフェーズドアレイ探傷方法は、上述したフェーズドアレイ探傷装置100を用い、基準線Lに対し線対称の対の超音波振動子12を、同一の位相で同時に励起する。
図4は、発明プローブ10の第2実施形態を示す図2と同様の図である。
この図において、第1実施形態と同様に、直線分割線16bは、円形の中心を通る基準線Lに直交し、かつ円形分割線16aの両端に接している。
円形分割線16aは、この例では7本であり、検出面14の円形を8つの円環状部分(リング状部分)に分割している。直線分割線16bは、この例では14本であり、リング状部分を多数(113)の円弧状部分(中央の一つの円を含む)に分割している。以下、図4の分割を、「8リング、15行分割」と呼ぶ。
図4において、例えば、セグメント番号Iが10、11、12、14と15のセグメント15は、Y軸に対し線対称に位置しており、同一の制御チャンネル21により同一条件で制御される。
Y軸に対し線対称に位置する他の対の超音波振動子12も同様である。
その他の構成は、第1実施形態と同様である。
図5は、発明プローブ10の第3実施形態を示す図4と同様の図である。
円形分割線16aは、この例では7本であり、検出面14の円形を8つの円環状部分(リング状部分)に分割している。直線分割線16bは、この例では多数(112本)であり、リング状部分を多数(113)の円弧状部分(中央の一つの円を含む)に分割している。
図5において、セグメント15の内側に記載された「数字」は、セグメント番号Iである。セグメント番号I(=1〜64)は、Y軸に対し線対称に位置する対のセグメント15に、同一番号が付されている。
すなわち、この例で検出面14は、Y軸上に位置する15のセグメント15には異なるセグメント番号Iが付され、Y軸に対し線対称に位置する1対のセグメント15にはそれぞれ同一のセグメント番号Iが付されている。
この結果、検出面14は、円形分割線16aと直線分割線16bで分割された113のセグメント15を有する。
図6は、図5の発明プローブ10の制御方法の説明図である。
第3実施形態において、直線分割線16bは、半径方向の線であり、基準線Lに直交せず、かつ円形分割線16aの両端に接しない点で、第1、第2実施形態と相違している。
しかし、図6に示すように、X軸(基準線Lに直交)に平行な直線上(例えばL1,L2)に位置する複数のセグメント15を同一条件で制御することで、第1、第2実施形態と同様の同等の効果を得ることができる。
図3は、本発明のフェーズドアレイ探傷方法の説明図で、図5に示す実施形態3を用いて説明している。
この図は、超音波ビームSを集束したり、傾けたり(進行方向を変えたり)するための遅延則の例を示している。遅延則とは、各素子(微笑振動子)を励起させる時間の規則である。
なお、図3(A)(B)(C)における、(a)は横方向より観察した図、(b)は三軸表示による図である。
図3(A)は、真下30mmの位置に本発明の探触子10を用いて集束させるための遅延則である。振動子の上側の棒グラフが遅延時間にあたる。真下に集束させるためには、外側のリングから順次励起させ、最後に中央部の素子を励起させることで、一定の深さ位置で位相をそろえて集束することができる。
図3(B)は、10度進行方向を傾ける場合の遅延則を示している。ビームの傾きとは反対側の素子より順次励起させ、最後にビームを傾ける側の素子を励起する。本発明では、リング状の分割に加えて直線的な分割も伴っており、この直線的分割で超音波ビームSを傾けることができる。
一方、本発明の任意の傾きを持たせて超音波ビームSを任意の深さに集束させる遅延則を図3(C)に示すが、図3(A)と図3(B)の遅延則の合成となる。すなわち、本発明は、リング状の分割と直線的分割を組み合わせ、かつ左右対称の素子を同時に励起させたことで最少素子数で傾きと集束位置を自在に調整することが可能になった。
上述した構成により、図3(A)に示したように、円状の複数の超音波振動子12(セグメント15)を同一条件で制御することにより、従来のアニュラーアレイ探触子と同様に、それぞれの超音波ビームSを円形に集束させることができる。
また、図3(B)に示したように、基準線上に遅延則を設け、各素子から基準腺に下ろした垂線の交点位置の遅延時間で素子を励起することで、超音波ビームSを基準線Lに沿った方向に進行させることができる。また、基準線方向に線状に集束したビームを形成することができる。すなわち、図6に示すL1の59、45、33、23、15,9の素子、及びL2の61、47、35、25の素子は同時に励起されている。なお「基準線Lに沿った方向」は、発明プローブ10を中心Oを中心に回転させることで、自由に設定することができる。
またこの際、図3(C)に示したように、図3(a)の円状に集束させる遅延則に、図3(b)に示すL線に沿った方向の遅延則を加味することで、例えば、基準線Lに沿って進行する超音波ビームSを円状にも集束させることができる。
図7Aは、第2実施形態の発明プローブ10を用い、円筒形の外面を有する試験体TPを検査する場合の模式的側面図である。また、図7Bは、図7AのX軸を通る断面図である。
また、図8は、超音波を試験片に垂直に入射するときの図7Aと図7Bに対して、斜めに傾いた面を持つくさび(中間部材2)上に本発明の探触子10を搭載して試験体TPの軸方向に斜めに超音波を入射させる斜角探傷の例を示している。
本発明の方法では、図7Aに示すように、円筒形の外面を有する試験体TPに対し、試験体TPの外側より円筒形の中心線に向けて行う垂直探傷において、試験体TPと接触する検出面14を外面に接触させ、かつ基準線Lを円筒形の軸方向に直交する周方向に向けて、試験体TPを探傷検査する。
この例において、発明プローブ10の検出面14は平面であり、試験体TPの外面は円弧面である。そのため、図7Bと図8において、発明プローブ10の検出面14と試験体TPの外面の間に、中間部材2を挟んでいる。中間部材2の材質は、一般にはアクリル樹脂などの樹脂で作成される。
なお、図7Aと図7Bでは、中間部材2を用いず、水やグリセリンを接触媒質とした直接接触で用いてもよく、また、水中で探触子と試験体TPとの距離を離して探傷する水浸探傷法で用いてもよい。
図8では、中間部材2に傾斜面を持つアクリル樹脂など樹脂で作製されるくさびを用いている。くさびの傾斜面は、軸方向に向けて設置され、傾斜面上に発明プローブ10が、基準線Lを円筒形の軸方向に直交する周方向に向けて設置される。これによって、超音波は試験体に軸方向に沿って、斜め方向に試験体に超音波が入射される軸方向の斜角探傷が行われる。中間部材2の円筒形試験体側の面は、平坦でも円筒形の曲率に合わせた曲率面であってもよい。また、ここでは中間部材2にくさびを用いて、くさび上に本発明プローブを設置する場合を述べたが、発明プローブ10とくさびを一体としたフェーズドアレイ探傷用の斜角探触子であってもよい。
また、円形分割線16aが7以上であり、直線分割線16bが14本以上であり、超音波振動子12が64以上である、ことが好ましい。
上述した本発明の実施形態によれば、複数の超音波振動子12が、同心円状に分離され、かつ円の中心を通る基準線Lに直交する列上に分離し、基準線Lに対して線対称に配列されている。この構成により、同心円上の複数の超音波振動子12を同一条件で制御して、アニュラーアレイ探触子と同様に、それぞれ超音波ビームSを円形に集束させることができる。
円柱試験体は、図7Bの断面より見れば超音波が試験体TPに入射する界面は円であるが、側面から見れば直線である。試験体内部に形成される超音波ビームSを側面から観察すれば、平板の内部のビームプロファイルと同様に集束させることが可能である。しかし、断面上で観察すると、超音波ビームSは円状の試験体界面で屈折し、試験体TPの音速の方が中間部材2の音速より一般に早いので試験体内部の超音波ビームSは拡散し、集束する位置が側面の場合とは大きく異なる結果となり、円状に集束できなくなって検査精度が悪くなる。
本発明の探触子は、リング状に分割した素子で円状に超音波ビームSを集束させる機能に加えて、基準線Lの直線状に遅延則を設けて直線状に超音波ビームSを制御する機能を持っている。すなわち、断面上の円状の界面でビームが拡散する分だけ、周方向の集束効果をよりあげることで、側面から見た超音波ビームSの集束を断面方向においてもより同等に近づけて、円状に近い集束効果を得ることができる。
さらに、複数の制御チャンネル21が線対称の対の超音波振動子12を同一条件で制御するので、制御装置20のチャンネル数を増やさずに、基準線Lに沿った超音波振動子12の個数を増やすことができ、これによりノイズレベルを小さくできる。
以下、本発明の実施例1〜3を従来例と比較してシミュレーション結果に基づき説明する。
図9は、分割数が8分割の場合の、リニアアレイ探触子、アニュラーアレイ探触子、および、マトリクスアレイ探触子のビームプロファイルの比較図である。各図において、上図は試験体内の超音波ビームSの集束状態を示し、下図は上図で最も超音波ビームSが集束している位置(最大エコー位置)における幅方向のエコー強度(ビーム強度)を示している。
以下、リニアアレイ探触子を「リニアプローブ」、アニュラーアレイ探触子を「アニュラープローブ」、マトリクスアレイ探触子を「マトリクスプローブ」と略称する。
この図において、各振動子の大きさは、リニアプローブとマトリクスプローブでは、35×35mmの方形振動子を分割しており、アニュラープローブでは直径35mmの円形振動子を分割している。また、隙間11の大きさ(ギャップ幅)を0.05mmと一定にして、深さ100mmの位置に集束点を設定している。
図10は、分割数が4〜32分割の場合の、幅方向のエコー高さの比較図である。なお、マトリクスプローブの最大分割数は、8×8=64分割であるため、4,6,8分割のみを示している。
図9、図10のビームプロファイルの比較から、分割数が少なく、個々の素子(上述したセグメント15)の大きさが大きくなると、超音波ビームSの集束性が悪くなることがわかった。また、得られたビームプロファイルにおいて、測定に使用する集束した超音波ビームSの周辺に、副極と考えられるビームが強くなり、きずMを主極と副極でとらえたり、あるいは主極と副極を分離できずに測定精度が悪くなる結果となることがわかった。
図11は、振動子の分割数と深さ75mmにおける副極ノイズレベルとの関係図である。
この図は、図9、図10のビームプロファイルを比較した結果である。
図11から、副極ノイズレベルを10%以下にするには、アニュラープローブの場合は4分割以上、リニアプローブでは11分割以上が必要になることがわかる。これより、図3のリングの分割数が5である6リング11行分割において、副極ノイズレベルを10%以下にすることができる。また、8×8の64チャンネルの通常のマトリクスプローブでは10%以下を達成することはできないことがわかる。
図12は、振動子の分割数と超音波ビームSのビーム幅との関係図である。
この図では、最も音圧が集中する位置における、最大音圧の1/2以上のビーム幅で求めている。
図12から、振動子の分割数が少なくなると急激にビーム幅が大きくなり、超音波ビームSの集中性が悪くなることがわかる。
またこの図から、アニュラーアレイの場合には8リング以上に、リニアアレイの場合には13分割以上とすることで、最小ビーム幅の5%の範囲にビームを制御できるのがわかる。すなわち、図4及び図5の実施例2及び3の8リング15行分割で達成できる。
上述した実施例1,2から、以下のことが明らかとなった。
(1)図2と図4に示すように、発明プローブ10の検出面14は、同心円状の円形分割線16a(中央の円および楕円リングも含む)と互いに平行な直線分割線16bとによって分割することが好ましい。
(2)また、同心円状の円形分割線16aの隙間位置に、互いに平行な直線分割線16bが一致することが好ましい。
(1)(2)の構成により、検出面14を同心円上かつ中心を通る基準線に直交する方向に分離し、基準線Lに対し線対称に位置するセグメント15に容易に分割することができる。またこの場合、隣接するセグメント15の間の隙間11の大きさ(ギャップ幅)を一定又は一定に近い幅に維持することができ、隙間11を除く検出面14の全面を有効利用できる。
(3)中央の円を含めて、円形分割線16aによる分割数は6以上であり、直線分割線16bによる分割数は11以上であることが好ましい。
この構成により、発明プローブ10をアニュラーアレイ探触子と同様に、超音波ビームSを円形に集束させる場合に、図11における副極ノイズレベルを3〜4%の低い値に抑えることができる。
また、発明プローブ10をリニアアレイ探触子と同様に、超音波ビームSを基準線Lに沿って任意の方向に進行させる場合に、図12における超音波ビームSのビーム幅を4.3〜4.4mmの低い値に抑えることができる。
(4)円の中心Oを通り、基準線Lを挟んで線対称に位置する対の超音波振動子12を同時励起させることが好ましい。
(5)発明プローブ10を、厚肉の円柱または配管に用いる場合、基準線L(Y軸)の方向を円柱または配管の軸方向と直交する方向に向けて探傷することが好ましい。
(4)(5)の構成により、断面方向から見たときの試験体に入射するビームプロファイルを、超音波ビームが試験体に入射するときの円形界面の影響を補正して、側面から見た平滑面と同様のビームプロファイルに近づけて探傷精度を改善することができる。
(6)またこの場合、円形分割線16aによる分割数を8、直線分割線16bによる分割数を15とし、基準線Lに対し線対称に位置する対のセグメント15を同一の制御チャンネル21で制御するのがよい。
基準線Lを挟んで線対称にある超音波振動子12を同時励起させることにより、64の制御チャンネル21で、円形分割線16aと直線分割線16bで分割された113のセグメント15を制御することができる。これによって、ビームの集束効果を最適のビーム幅の5%以内にすることができる。
図13は、マトリクスプローブと、発明プローブ10の第1,2実施形態とのビームプロファイルの比較図である。
この図において、(A)は、35×35mmの方形振動子を8列8行に分割したマトリクスプローブである。また、(B)は、直径35mmの円形振動子の6リング、11行分割の発明プローブ10(第1実施形態)、(C)は、直径35mmの円形振動子の8リング、15行分割の発明プローブ10(第2実施形態)である。
また、各図において、(a)は、縦波屈折角を5.7度、深さ100mm、距離10mmに設定した場合、(b)は、縦波屈折角を11.3度、深さ100mm、距離20mmに設定した場合である。
図14は、図13から得られた、端部のエコーレベルとビーム幅の関係図である。
この図から、第1,2実施形態の発明プローブ10によるビーム幅が、従来法(マトリクスプローブ)よりも小さいことがわかる。
図15は、深さ70mmの位置に、20×20mmの平板きずと直径3mmの球状きずがある場合の、リニアプローブ、マトリクスプローブ、及び発明プローブ10による探傷試験結果の比較図である。
この図から、リニアプローブ、マトリクスプローブと比較して、発明プローブ10により、平板きず及び球状きずをより高い精度で検出できることがわかる。
図16は、円筒形の外面を有する試験体TPに対する、発明プローブ10、アニュラープローブ、及び、マトリクスプローブによる探傷試験結果の比較図である。
この図において、(A)は、発明プローブ10の第3実施形態の8リングで113の円弧状素子分割、(B)は、アニュラープローブの32分割、(C)はマトリクスプローブの8×8分割である。
また、各図において、(a)は、軸方向断面、(b)は、軸直交方向断面である。
この図から、アニュラープローブ及びマトリクスプローブと比較して、発明プローブ10により、軸方向断面及び軸直交方向断面の両方において、ビームを集束させることができ、より高い精度できずを検出できることがわかる。
特に、アニュラーアレイ探触子では、円状に分割した振動子を用いており、平滑面では90度直交する断面でのビームの集束特性は同等であるが、円柱試験体の本試験の場合には、特に軸直交断面において、ビームが入射する界面での円状の曲率でビームが大きく拡散して集束していないのがわかり、測定精度を著しく害することがわかる。これに対し、本発明の探傷では、特に周方向の曲率分を、基準線に直交する方向に列をなして分割しており、基準線方向に遅延則を設けて曲率の影響を補正しているので、軸方向断面ならびに軸直交方向断面においてともによく集束し、円状に集束できて検査精度が大きく改善できるのがわかる。
上述した本発明の装置を製作し試験した。
(製作した発明プローブ10)
表1は、製作した発明プローブ10の仕様である。
図17は、製作した発明プローブ10の外形図である。この図において、(A)は上面図、(B)は側面図、(C)は下面図である。
図18は製作した発明プローブ10の超音波振動子12の配置図である。
この図において、超音波振動子12の配置は、図4と同じであり、「8リング、15行分割」である。また、検出面14の直径Dは、34.4mm、セグメント15の幅bは2.2mm、隙間11の大きさ(ギャップ幅G)は0.1mmである。
(試験条件)
図19Aは、製作した発明プローブ10の試験条件を示す説明図である。
試験に用いた試験体TPは、幅(W=100mm)、長さ(L=160mm)、高さ(H=120mm)の鋼製ブロックである。試験体TPの上面(試験体表面1)に対向して下面に45°の傾斜面を加工し、その傾斜面の中央に模擬欠陥(きずM)を加工した。
図19Bは、きずMの説明図である。きずMは、破線で示す直径30mmの円の内側にピッチ5mm、直径1mmの丸孔を十字状に9か所設けた。以下、きずMを有する平面傾斜面3を「欠陥平面3」と呼ぶ。
図19Aにおいて、横波屈折角45度のくさび2に発明プローブ10を取り付けて試験体表面1から探傷試験を実施した。この際、走査方向は、図19Aの紙面に直交する方向(幅方向)とした。
また、比較例として、32チャンネルのリニアアレイ探触子(従来プローブ)を用いて同様の探傷試験を実施した。
(試験結果)
図20は、欠陥平面上のCスキャン画像であり、(A)は発明プローブ10の画像、(B)は従来プローブの画像である。Cスキャン画像とは、上部より投影して見た画像を意味する。
図20において、横軸はスキャン距離(mm)、縦軸は偏向角度(Angle:°)である。この試験では、超音波探傷する際に前後方向に集束位置を変化させており、偏向角度は中心を0°とし、±7.5°の範囲である。
図20から、従来プローブの画像と比較して、発明プローブ10の画像が、模擬欠陥を鮮明に検出していることがわかる。
図21は、走査方向におけるピーク図であり、図22は走査方向に直交する方向(図19Aで左右方向)におけるピーク図である。図21、図22において、(A)は発明プローブ10の画像、(B)は従来プローブの画像である。
図21において、横軸はスキャン距離(mm)、縦軸はビーム強度(%)である。図22において、横軸は偏向角度(°)、縦軸はビーム強度(%)である。ビーム強度は最大値を100%としている。
図21と図22からも、従来プローブの画像の画像と比較して、発明プローブ10の画像が、模擬欠陥を高い精度で検出していることがわかる。
なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。
A 分割電極、B 励起領域、C 共通電極、
D 分割する振動子のサイズ(検出面の直径)、I セグメント番号、
L 基準線、M きず、O 中心、S 超音波ビーム、TP 試験体、
x 深さ、1 試験体表面、2 中間部材(くさび)、3 欠陥平面、
8a 溝、8b 隙間、9 圧電素子、
10 フェーズドアレイ探触子(探触子、発明プローブ)、11 隙間、
12 超音波振動子、14 検出面、15 セグメント、16 分割線、
16a 円形分割線、16b 直線分割線、20 制御装置、
21 制御チャンネル、22 表示装置、24 画像処理装置、
100 フェーズドアレイ探傷装置

Claims (8)

  1. 同心円状に分離され、かつ円の中心を通る基準線に直交する列上に分離し、前記基準線に対し線対称に位置する複数の超音波振動子を有する、フェーズドアレイ探触子と、
    前記線対称の対の前記超音波振動子を同一条件で制御する複数の制御チャンネルを有する制御装置と、を備える、フェーズドアレイ探傷装置。
  2. 前記フェーズドアレイ探触子は、超音波ビームを発信し受信する円形の検出面を有し、
    前記検出面は、前記基準線に対し対称の複数の円弧状部分に分割された複数のセグメントを有する、請求項1に記載のフェーズドアレイ探傷装置。
  3. 前記セグメントの分割線は、前記円形を複数の円環状部分に分割する同心円の複数の円形分割線と、前記円環状部分を複数の前記円弧状部分に分割する複数の互いに平行な直線分割線と、からなる、請求項2に記載のフェーズドアレイ探傷装置。
  4. 前記直線分割線は、前記中心を通る前記基準線に直交し、かつ前記円形分割線の両端に接する、請求項3に記載のフェーズドアレイ探傷装置。
  5. 前記円形分割線は、5以上である、請求項3に記載のフェーズドアレイ探傷装置。
  6. 請求項1に記載のフェーズドアレイ探傷装置を用い、
    前記基準線に対し線対称の対の前記超音波振動子を、同一条件で制御する、フェーズドアレイ探傷方法。
  7. 円筒形の外面を有する試験体に対し、前記試験体の外側より前記円筒形の中心線に向けて行う垂直探傷及び軸方向の斜角探傷において、前記基準線を前記円筒形の軸方向に直交する周方向に向けて、前記試験体を探傷検査する、請求項6に記載のフェーズドアレイ探傷方法。
  8. 円形分割線が7以上であり、直線分割線が14本以上であり、前記超音波振動子が64以上である、請求項6に記載のフェーズドアレイ探傷方法。
JP2019528355A 2017-07-03 2018-03-14 フェーズドアレイ探傷装置と方法 Active JP6934054B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017130126 2017-07-03
JP2017130126 2017-07-03
PCT/JP2018/010047 WO2019008833A1 (ja) 2017-07-03 2018-03-14 フェーズドアレイ探傷装置と方法

Publications (2)

Publication Number Publication Date
JPWO2019008833A1 true JPWO2019008833A1 (ja) 2020-05-07
JP6934054B2 JP6934054B2 (ja) 2021-09-08

Family

ID=64950751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019528355A Active JP6934054B2 (ja) 2017-07-03 2018-03-14 フェーズドアレイ探傷装置と方法

Country Status (5)

Country Link
US (1) US11293905B2 (ja)
EP (1) EP3650849A4 (ja)
JP (1) JP6934054B2 (ja)
CN (1) CN110770578B (ja)
WO (1) WO2019008833A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020131020A1 (en) * 2018-12-17 2020-06-25 Emerge Now Inc. Systems for interfacing with immersive computing environments
JP2021043012A (ja) * 2019-09-09 2021-03-18 キオクシア株式会社 検査装置
JP7289815B2 (ja) * 2020-03-27 2023-06-12 株式会社Ihi検査計測 長尺物探傷システムと方法
CN117783284B (zh) * 2024-02-27 2024-05-07 广东汕头超声电子股份有限公司 一种全自动蓄能器焊缝超声相控阵检测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244691A (ja) * 1992-02-27 1993-09-21 Hitachi Ltd 超音波探触子
JP2001286467A (ja) * 2000-04-07 2001-10-16 Hitachi Medical Corp 超音波診断装置
JP2005351718A (ja) * 2004-06-09 2005-12-22 Mitsubishi Heavy Ind Ltd 全方位探傷プローブ
JP2011069780A (ja) * 2009-09-28 2011-04-07 Hitachi-Ge Nuclear Energy Ltd 超音波測定装置,それに用いる超音波センサおよび超音波測定方法
JP2016501375A (ja) * 2012-12-06 2016-01-18 ゼネラル・エレクトリック・カンパニイ Dgsサイジングのためのプローブ方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103129A (en) * 1990-07-26 1992-04-07 Acoustic Imaging Technologies Corporation Fixed origin biplane ultrasonic transducer
JPH0638298A (ja) 1992-07-14 1994-02-10 Toshiba Corp 超音波探触子
US5882309A (en) * 1997-05-07 1999-03-16 General Electric Company Multi-row ultrasonic transducer array with uniform elevator beamwidth
US5840032A (en) * 1997-05-07 1998-11-24 General Electric Company Method and apparatus for three-dimensional ultrasound imaging using transducer array having uniform elevation beamwidth
FR2778462B1 (fr) 1998-05-07 2000-07-13 Snecma Procede de controle ultrasonore en immersion de pieces a geometrie cylindrique
JP3638814B2 (ja) * 1999-03-31 2005-04-13 三菱電機株式会社 自動超音波探傷装置
US6622562B2 (en) 2001-01-05 2003-09-23 Bjorn A. J. Angelsen Multi pre-focused annular array for high resolution ultrasound imaging
JP2003290228A (ja) * 2002-03-29 2003-10-14 Ge Medical Systems Global Technology Co Llc 2次元アレイ超音波探触子の駆動方法および超音波診断装置
US7245063B2 (en) 2004-11-12 2007-07-17 Honeywell International, Inc. Optimized ultrasonic phased array transducer for the inspection of billet material
JP4583901B2 (ja) * 2004-12-13 2010-11-17 富士フイルム株式会社 体腔内診断用超音波プローブ、および体腔内診断用超音波プローブの作製方法
JP5329945B2 (ja) * 2006-02-23 2013-10-30 株式会社日立メディコ 超音波診断装置及び超音波診断装置の超音波画像表示方法
US7617733B2 (en) * 2007-07-18 2009-11-17 Uchicago Argonne, Llc Method and apparatus for ultrasound phased array testing of bearing balls
JP5033575B2 (ja) 2007-10-24 2012-09-26 日立アロカメディカル株式会社 アニュラーアレイ振動子
DE102008027228B4 (de) * 2008-05-29 2018-12-13 Ge Inspection Technologies Gmbh Verfahren und Vorrichtung zur zerstörungsfreien Ultraschalluntersuchung eines Prüfstücks mit zueinander gewinkelten, ebenen Oberflächen
US8210043B2 (en) 2009-04-06 2012-07-03 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic measurement method, ultrasonic measurement apparatus, and ultrasonic sensor
CN101712027B (zh) * 2009-11-05 2012-02-01 中国船舶重工集团公司第七一五研究所 由平面圆片元件组成的中心对称相控聚焦阵换能器
DE102011108730B4 (de) 2011-07-28 2015-11-12 Ndt Global Gmbh & Co. Kg Verfahren und Vorrichtung zur Ultraschallprüfung mit einem Matrix Phased Array Prüfkopf
DE102011053942A1 (de) 2011-09-26 2013-03-28 Ge Sensing & Inspection Technologies Gmbh Verfahren zur zerstörungsfreien Prüfung eines Prüflings hoher Materialstärke mittels Ultraschall, die Verwendung eines Prüfkopfs zur Ausführung des Verfahrens, ein Ultraschallprüfkopf, eine Ansteuereinheit für einen Ultraschallprüfkopf und eine Vorrichtung für die zerstörungsfreie Prüfung eines Prüflings hoher Materialstärke mittels Ultraschall
CN102824190B (zh) * 2012-09-24 2015-02-04 深圳大学 一种二维环型相控阵超声换能器结构
CN103344706B (zh) * 2013-06-26 2015-04-15 哈尔滨工业大学 线性阵列相控阵探头的设计方法
US11353430B2 (en) * 2017-03-13 2022-06-07 Baker Hughes Oilfield Operations Llc Phased array probe and method for testing a spot-weld

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05244691A (ja) * 1992-02-27 1993-09-21 Hitachi Ltd 超音波探触子
JP2001286467A (ja) * 2000-04-07 2001-10-16 Hitachi Medical Corp 超音波診断装置
JP2005351718A (ja) * 2004-06-09 2005-12-22 Mitsubishi Heavy Ind Ltd 全方位探傷プローブ
JP2011069780A (ja) * 2009-09-28 2011-04-07 Hitachi-Ge Nuclear Energy Ltd 超音波測定装置,それに用いる超音波センサおよび超音波測定方法
JP2016501375A (ja) * 2012-12-06 2016-01-18 ゼネラル・エレクトリック・カンパニイ Dgsサイジングのためのプローブ方法

Also Published As

Publication number Publication date
WO2019008833A1 (ja) 2019-01-10
EP3650849A1 (en) 2020-05-13
CN110770578B (zh) 2023-07-25
US11293905B2 (en) 2022-04-05
EP3650849A4 (en) 2020-07-29
US20200116672A1 (en) 2020-04-16
JP6934054B2 (ja) 2021-09-08
CN110770578A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
JP6934054B2 (ja) フェーズドアレイ探傷装置と方法
JP5841026B2 (ja) 超音波探傷法及び超音波探傷装置
JP5590249B2 (ja) 欠陥検出装置、欠陥検出方法、プログラム及び記憶媒体
US8857263B2 (en) Ultrasonic probe and method for the nondestructive testing of a planar test specimen
US10261055B2 (en) Probe, ultrasonic testing apparatus, and ultrasonic testing control method
JP2007078692A (ja) 単一指標の可変角度フェーズドアレイプローブ
KR101308071B1 (ko) 곡률 쐐기를 가지는 위상배열 초음파 탐촉자의 빔 집속점 보정 방법
JP6871534B2 (ja) 対比試験片及び超音波フェーズドアレイ探傷試験方法
JP2013234886A (ja) Tofd法による超音波探傷方法と装置
JP2011163814A (ja) 超音波探傷試験方法
JP2005351718A (ja) 全方位探傷プローブ
JP7289815B2 (ja) 長尺物探傷システムと方法
JP5959677B2 (ja) 超音波探傷装置および超音波探傷方法
JPH11316215A (ja) 超音波探傷装置及び超音波探傷方法
JP4359892B2 (ja) 超音波探傷方法
JP4527216B2 (ja) 超音波探傷方法及び超音波探傷装置
Nanekar et al. Sound beam focusing using phased array–SAFT technique
JPS6066159A (ja) 電子走査型横波斜角探触子及びこれを用いた非破壊検査方法
JP2019174239A (ja) 超音波探傷方法
JP2005221371A (ja) 超音波探触子
Mu et al. Long-range pipe imaging with a guided wave focal scan
Liang et al. Ultrasonic inspection of thick parts with phased array dynamic focusing
Nardoni et al. Sizing the height of discontinuities, their characterisation in planar/volumetric by phased array technique based on diffracted echoes
Nanekar et al. Synthetic focusing of sound beam using linear array
JPS6027853A (ja) 超音波探傷装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210820

R150 Certificate of patent or registration of utility model

Ref document number: 6934054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150