JPWO2018230031A1 - Photovoltaic panel and method of manufacturing the same - Google Patents

Photovoltaic panel and method of manufacturing the same Download PDF

Info

Publication number
JPWO2018230031A1
JPWO2018230031A1 JP2018538909A JP2018538909A JPWO2018230031A1 JP WO2018230031 A1 JPWO2018230031 A1 JP WO2018230031A1 JP 2018538909 A JP2018538909 A JP 2018538909A JP 2018538909 A JP2018538909 A JP 2018538909A JP WO2018230031 A1 JPWO2018230031 A1 JP WO2018230031A1
Authority
JP
Japan
Prior art keywords
skin material
thermoelectric conversion
conversion element
conversion elements
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018538909A
Other languages
Japanese (ja)
Inventor
一史 関根
一史 関根
雅大 宮下
雅大 宮下
壮平 鮫島
壮平 鮫島
奈緒子 小山
奈緒子 小山
輝彦 熊田
輝彦 熊田
彰 山下
彰 山下
孝之 森岡
孝之 森岡
時岡 秀忠
秀忠 時岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018230031A1 publication Critical patent/JPWO2018230031A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

太陽電池セルで生じる熱を利用して熱電変換素子で発電を行い、電力を増大させる太陽光発電パネル及びその太陽光発電パネルの製造方法を得る。
第1表皮材2と第2表皮材3に挟まれたハニカムコア5と、第1表皮材2側に搭載された複数の太陽電池セル8と、第2表皮材3側に空隙11で隔てられ分散して配設された複数の熱電変換素子10と、複数の熱電変換素子10及び空隙11を覆うように設けられた放熱板9とを備える。また、第1表皮材2及び第2表皮材3を作製するステップと、ハニカムサンドイッチ構造体6を作製するステップと、ハニカムサンドイッチ構造体6に太陽電池セル8を実装するステップと、ハニカムサンドイッチ構造体6に熱電変換素子10を空隙11で隔て分散して配設するステップと、熱電変換素子10と空隙11を覆うように放熱板9を設けるステップにより製造する。
A photovoltaic power generation panel using the heat generated in a photovoltaic cell to generate power with a thermoelectric conversion element to increase power is obtained, and a method of manufacturing the photovoltaic power generation panel.
The honeycomb core 5 sandwiched between the first skin material 2 and the second skin material 3, the plurality of solar cells 8 mounted on the first skin material 2 side, and the second skin material 3 side are separated by the air gap 11 The plurality of thermoelectric conversion elements 10 disposed in a dispersed manner, and the plurality of thermoelectric conversion elements 10 and the heat dissipation plate 9 provided to cover the air gap 11 are provided. In addition, the steps of producing the first skin material 2 and the second skin material 3, the steps of producing the honeycomb sandwich structure 6, the steps of mounting the solar battery cell 8 on the honeycomb sandwich structure 6, and the honeycomb sandwich structure The thermoelectric conversion element 10 is manufactured by the step of separating and arranging the thermoelectric conversion element 10 with the air gap 11 and the step of providing the heat dissipation plate 9 so as to cover the thermoelectric conversion element 10 and the air gap 11.

Description

本発明は、熱電変換素子を備えた太陽光発電パネル及びその製造方法に関する。   The present invention relates to a photovoltaic panel provided with a thermoelectric conversion element and a method of manufacturing the same.

近年、衛星を活用した高速大容量通信の需要がますます高まっており、高機能な通信機器を搭載した通信放送衛星の開発が進められている。このような衛星において、通信速度・容量を増大させるための高機能通信機器は電力消費が大きく、大電力の衛星バスが必要となる。衛星バスには太陽光発電パネルが搭載されており、太陽光エネルギーを変換して電力を得ている。衛星バスを大電力化するためには、太陽電池セルの発電効率の増大や通信機器に搭載されるバッテリの充放電効率の向上が必要であるがこれらには限界がある。そのため太陽電池セルによる太陽光発電と他の発電技術とを組み合わせて大電力化を図ることが重要となる。   In recent years, the demand for high-speed, large-capacity communication utilizing satellites has been increasing, and development of communication and broadcasting satellites equipped with high-performance communication devices is in progress. In such satellites, high-performance communication equipment for increasing communication speed and capacity consumes a large amount of power, and a high-power satellite bus is required. Photovoltaic panels are mounted on the satellite bus and convert solar energy to obtain power. In order to increase the power of the satellite bus, it is necessary to increase the power generation efficiency of the solar battery cells and to improve the charge and discharge efficiency of the battery mounted on the communication device, but these have limitations. Therefore, it is important to achieve high power by combining solar power generation with solar cells and other power generation technology.

この発電技術の1つとして、熱電変換素子を利用して熱を電力に変換する技術が注目されている。熱電変換素子は、素子表面の温度と素子裏面の温度との間に温度差を与えることによって電力を得ることができ、最大電力は高温側の素子表面と低温側の素子裏面との温度差の2乗に比例する。   As one of the power generation techniques, a technique of converting heat into electric power using a thermoelectric conversion element is attracting attention. The thermoelectric conversion element can obtain power by giving a temperature difference between the temperature of the element surface and the temperature of the element back surface, and the maximum power is the temperature difference between the element surface on the high temperature side and the element back surface on the low temperature side It is proportional to the square.

特許文献1には、熱電変換素子を衛星構造体に埋め込み、発熱体となる搭載機器と接するように設けて発電する技術が開示されている。   Patent Document 1 discloses a technology in which a thermoelectric conversion element is embedded in a satellite structure and provided so as to be in contact with a mounted device serving as a heating element to generate electric power.

国際公開第2016/031667号International Publication No. 2016/031667

しかしながら、熱電変換素子を衛星構造体に埋め込んだ構成では、搭載機器からの熱が熱電変換素子だけでなく、熱電変換素子を埋め込んだ衛星構造体全体に伝わるため、熱電変換素子への入熱量が減少するとともに、素子表面の温度と素子裏面の温度との間で温度差が生じにくくなり、十分な電力が得られないという課題があった。   However, in the configuration in which the thermoelectric conversion element is embedded in the satellite structure, the heat from the mounted device is transmitted not only to the thermoelectric conversion element but also to the entire satellite structure in which the thermoelectric conversion element is embedded. As the temperature decreases, the temperature difference between the temperature on the surface of the element and the temperature on the back of the element is less likely to occur, and there is a problem that sufficient power can not be obtained.

本発明は、上述のような課題を解決するためになされたものであり、熱電変換素子の素子表面の温度と素子裏面の温度との間に十分な温度差を発生させることにより、得られる電力を増大させることができる太陽光発電パネル及びその製造方法を提供することを目的とする。   The present invention has been made to solve the problems as described above, and the electric power obtained by generating a sufficient temperature difference between the temperature of the element surface of the thermoelectric conversion element and the temperature of the element back surface SUMMARY OF THE INVENTION It is an object of the present invention to provide a photovoltaic panel capable of increasing the

本発明に係る太陽光発電パネルは、第1表皮材と第2表皮材とに挟まれたハニカムコアと、第1表皮材のハニカムコアと反対面に設けられた複数の太陽電池セルと、第2表皮材のハニカムコアと反対面に空隙で隔てられ分散して配設された複数の熱電変換素子と、複数の熱電変換素子の第2表皮材と反対面で接し、空隙を覆うように設けられた放熱板とを備える。   A photovoltaic panel according to the present invention comprises a honeycomb core sandwiched between a first skin material and a second skin material, a plurality of solar cells provided on the surface of the first skin material opposite to the honeycomb core, A plurality of thermoelectric conversion elements disposed on the opposite surface of the two skins separated by a gap on the opposite surface of the honeycomb core are in contact with the second skin of the plurality of thermoelectric conversion elements on the opposite surface, and are provided to cover the void. And a heat sink.

また、本発明に係る太陽光発電パネルの製造方法は、プリプレグを用いて第1表皮材及び第2表皮材を成形するステップと、第2表皮材上に接着シートを介してハニカムコアを設け、ハニカムコアの上に接着シートを介して第1表皮材を設けて積層体を形成するステップと、積層体をバギングフィルムで覆い、バギングフィルムで覆った内部の空気を排出し、減圧状態を保持しながら、バギングフィルムの外部から加圧及び加熱して、ハニカムサンドイッチ構造体を形成するステップと、ハニカムサンドイッチ構造体の第1表皮材側に複数の太陽電池セルを実装するステップと、ハニカムサンドイッチ構造体の第2表皮材側に複数の熱電変換素子を空隙で隔て分散して配設するステップと、複数の熱電変換素子の第2表皮材と反対面で接し、空隙を覆うように放熱板を設けるステップとを備える。   In the method of manufacturing a photovoltaic panel according to the present invention, a step of forming the first skin material and the second skin material using a prepreg, and a honeycomb core provided on the second skin material via an adhesive sheet, The first skin material is provided on the honeycomb core via an adhesive sheet to form a laminate, and the laminate is covered with a bagging film, and the internal air covered with the bagging film is discharged to maintain a reduced pressure state. While pressing and heating from outside the bagging film to form a honeycomb sandwich structure, mounting a plurality of solar cells on the first skin side of the honeycomb sandwich structure, and the honeycomb sandwich structure And a step of arranging the plurality of thermoelectric conversion elements on the side of the second skin material with a gap between the plurality of thermoelectric conversion elements, and contacting the second skin material of the plurality of thermoelectric conversion elements on the opposite surface, And a step of providing a heat radiating plate so as to cover the gap.

本発明に係る太陽光発電パネルによれば、太陽電池セルで生じた熱は、ハニカムコアを介して空隙で隔てられ分散して配設された複数の熱電変換素子に伝わり、それぞれの素子表面の温度と素子裏面の温度との間の温度差を利用して、一部が電力に変換され、残りが放熱板から放熱される。複数の熱電変換素子は、空隙で断熱されることにより、太陽電池セルで生じた熱の大部分を取り込むことができ、さらに分散して配設されることにより、素子表面の温度と素子裏面の温度との間に十分な温度差を生じさせることができ、得られる電力を増大させることができる。   According to the photovoltaic power generation panel of the present invention, the heat generated in the solar battery cell is transmitted to the plurality of thermoelectric conversion elements which are separated by the air gap via the honeycomb core and dispersed, and By utilizing the temperature difference between the temperature and the temperature on the back surface of the element, part is converted to electric power and the rest is dissipated from the heat sink. The plurality of thermoelectric conversion elements can take in most of the heat generated by the solar battery cell by being thermally insulated by the air gap, and by being further distributed and disposed, the temperature of the element surface and the element back surface A sufficient temperature difference can be produced with the temperature, and the power obtained can be increased.

また、本発明に係る太陽光発電パネルの製造方法によれば、プリプレグとハニカムコアの積層体を形成し、加熱及び加圧してハニカムサンドイッチ構造体を成形し、このハニカムサンドイッチ構造体の一方の面に太陽電池セルを配設するとともに、その反対面に放熱板で覆うように空隙で隔てられた複数の熱電変換素子を分散して配設するという簡単な工程により、太陽光発電パネルを得ることができる。   Further, according to the method of manufacturing a photovoltaic panel according to the present invention, a laminate of a prepreg and a honeycomb core is formed, heated and pressed to form a honeycomb sandwich structure, and one side of this honeycomb sandwich structure is formed. The solar power generation panel is obtained by a simple process of disposing the solar battery cells on one side and dispersing and arranging the plurality of thermoelectric conversion elements separated by the air gap so as to cover the opposite surface with the heat dissipation plate. Can.

本発明の実施の形態1における太陽光発電パネルの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the solar panel in Embodiment 1 of this invention. 本発明の実施の形態1における太陽光発電パネルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the solar panel in Embodiment 1 of this invention. 本発明の実施の形態1における太陽光発電パネルの熱電変換素子の充填率と、単位面積当たりに発生する電力及び素子表裏面との温度差との関係図である。It is a related figure of the filling factor of the thermoelectric conversion element of the solar energy generation panel in Embodiment 1 of this invention, the electric power generated per unit area, and the temperature difference with element front and back. 本発明の実施の形態1における第2表皮材上の熱電変換素子の配置を示す平面図である。It is a top view which shows arrangement | positioning of the thermoelectric conversion element on the 2nd skin material in Embodiment 1 of this invention. 本発明の実施の形態2における第2表皮材上の熱電変換素子の配置を示す平面図である。It is a top view which shows arrangement | positioning of the thermoelectric conversion element on the 2nd skin material in Embodiment 2 of this invention. 本発明の実施の形態3における太陽光発電パネルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the solar panel in Embodiment 3 of this invention. 本発明の実施の形態4における太陽光発電パネルを製造する一工程を示す説明図である。It is explanatory drawing which shows 1 process of manufacturing the solar energy generation panel in Embodiment 4 of this invention. 本発明の実施の形態4における太陽光発電パネルを製造する一工程を示す説明図である。It is explanatory drawing which shows 1 process of manufacturing the solar energy generation panel in Embodiment 4 of this invention. 本発明の実施の形態4における太陽光発電パネルを製造する一工程を示す説明図である。It is explanatory drawing which shows 1 process of manufacturing the solar energy generation panel in Embodiment 4 of this invention. 本発明の実施の形態4における太陽光発電パネルを製造する一工程を示す説明図である。It is explanatory drawing which shows 1 process of manufacturing the solar energy generation panel in Embodiment 4 of this invention. 本発明の実施の形態5における太陽光発電パネルを製造する一工程を示す説明図である。It is explanatory drawing which shows 1 process of manufacturing the solar energy power generation panel in Embodiment 5 of this invention. 本発明の実施の形態5における太陽光発電パネルを製造する一工程を示す説明図である。It is explanatory drawing which shows 1 process of manufacturing the solar energy power generation panel in Embodiment 5 of this invention. 本発明の実施の形態1における太陽光発電パネルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the solar panel in Embodiment 1 of this invention. 本発明の実施の形態1における太陽光発電パネルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the solar panel in Embodiment 1 of this invention.

以下、本発明による太陽光発電パネル及びその製造方法を、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。
実施の形態1.
Hereinafter, a photovoltaic panel according to the present invention and a method of manufacturing the same will be described according to a preferred embodiment with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
Embodiment 1

図1は、本発明を実施するための実施の形態1における太陽光発電パネルの概略構成を示す斜視図である。図2は、本実施の形態における太陽光発電パネルの概略構成を示す断面図である。図1、図2において太陽光発電パネル1は、第1表皮材2及び第2表皮材3と、第1表皮材2と第2表皮材3とに挟まれて接着シート4で接着されたハニカムコア5とを有するハニカムサンドイッチ構造体6を備えている。ハニカムサンドイッチ構造体6は、第1表皮材2のハニカムコア5が接着された面の反対面に、接着層71を介して複数の太陽電池セル8が配設される。また、第2表皮材3のハニカムコア5が接着された面の反対面には、接着層72を介して複数の熱電変換素子10が空隙11で隔てられ分散して配設される。そして、複数の熱電変換素子10及び空隙11を覆うように放熱板9が設けられる。   FIG. 1 is a perspective view showing a schematic configuration of a solar panel according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing a schematic configuration of a solar panel according to the present embodiment. In FIG. 1 and FIG. 2, the photovoltaic panel 1 is a honeycomb which is sandwiched between the first skin material 2 and the second skin material 3, the first skin material 2 and the second skin material 3 and is bonded by the adhesive sheet 4. A honeycomb sandwich structure 6 having a core 5 is provided. In the honeycomb sandwich structure 6, a plurality of solar battery cells 8 are disposed on the opposite surface of the surface of the first skin material 2 to which the honeycomb core 5 is adhered, with the adhesive layer 71 interposed therebetween. Also, on the opposite surface of the surface of the second skin material 3 to which the honeycomb core 5 is adhered, the plurality of thermoelectric conversion elements 10 are separated by the air gap 11 via the adhesive layer 72 and dispersed. And the heat sink 9 is provided so that several thermoelectric conversion elements 10 and the space | gap 11 may be covered.

ここで、第1表皮材2、第2表皮材3及び放熱板9として、例えば厚さが0.2mmの平板形状の炭素繊維強化プラスチックを用いることができる。ハニカムコア5は、例えば六角形セルの集合体で、箔厚0.02mm、セル幅3/8インチ、高さ25.4mmのアルミニウム合金を用いることができる。また、第1表皮材2及び第2表皮材3とハニカムコア5をそれぞれ接着する接着シート4として、例えばエポキシ接着剤を用いることができる。また、放熱板9はフィルムでもよく、例えば厚さが0.05mmのポリイミドフィルムを用いることができる。   Here, as the first skin material 2, the second skin material 3 and the heat dissipation plate 9, for example, a flat plate-shaped carbon fiber reinforced plastic having a thickness of 0.2 mm can be used. The honeycomb core 5 is, for example, an aggregate of hexagonal cells, and an aluminum alloy having a foil thickness of 0.02 mm, a cell width of 3/8 inch, and a height of 25.4 mm can be used. For example, an epoxy adhesive can be used as the adhesive sheet 4 for bonding the first skin material 2 and the second skin material 3 to the honeycomb core 5 respectively. Moreover, the heat sink 9 may be a film, and for example, a polyimide film having a thickness of 0.05 mm can be used.

熱電変換素子10は、例えば縦横幅7〜8mm、高さ1mmのKELK社製の素子を用いることができる。太陽電池セル8及び熱電変換素子10を接着する接着層71及び接着層72は、室温硬化型のシリコーン接着剤を用いることができる。   As the thermoelectric conversion element 10, for example, an element manufactured by KELK and having a width and width of 7 to 8 mm and a height of 1 mm can be used. The adhesive layer 71 and the adhesive layer 72 for adhering the solar battery cell 8 and the thermoelectric conversion element 10 can use a room temperature curing silicone adhesive.

熱電変換素子10は、素子表面10aとこれに対向する素子裏面10bとを有している。素子表面10aは、太陽電池セル8から伝わる熱で高温となる第2表皮材3に接着層72を介して接着されている。また素子裏面10bは、宇宙空間からの冷気で低温となる放熱板9に接着層72を介して接着されている。熱電変換素子10は、高温側の素子表面10aと低温側の素子裏面10bとの温度差を利用して発電させることができる。   The thermoelectric conversion element 10 has an element surface 10 a and an element back surface 10 b opposite to the element surface 10 a. The element surface 10 a is bonded to the second surface material 3 which is heated by the heat transmitted from the solar battery cell 8 via the adhesive layer 72. The element back surface 10b is bonded to the heat sink 9 which is at a low temperature due to the cold air from the space via an adhesive layer 72. The thermoelectric conversion element 10 can generate power using the temperature difference between the element surface 10a on the high temperature side and the element back surface 10b on the low temperature side.

ここで、複数の熱電変換素子10は、空隙11で隔てられ分散して配設されており、この空隙11は真空中で断熱される。この構成により、太陽電池セル8で生じた熱は、ハニカムコア5を介して第2表皮材3に伝わり、第2表皮材3に伝わった熱の大部分は、空隙11を伝わることなく、複数の熱電変換素子10を介して放熱板9から放熱される。したがって、太陽電池セル8からの熱を逃すことなく熱電変換素子10に伝え、無駄なく回収することができる。また分散して配設された熱電変換素子10の素子表面10aと素子裏面10bでは、十分な温度差を保つことができ、熱電変換素子10が発生する電力を増大させることができる。   Here, the plurality of thermoelectric conversion elements 10 are separated by the air gap 11 and distributed, and the air gap 11 is thermally insulated in vacuum. With this configuration, the heat generated in the solar battery cell 8 is transmitted to the second skin 3 via the honeycomb core 5, and most of the heat transmitted to the second skin 3 is not transmitted through the air gap 11. The heat is dissipated from the heat sink 9 through the thermoelectric conversion element 10 of FIG. Therefore, the heat from the solar battery cell 8 can be transmitted to the thermoelectric conversion element 10 without loss and recovered without waste. In addition, a sufficient temperature difference can be maintained between the element surface 10a and the element back surface 10b of the thermoelectric conversion elements 10 disposed in a dispersed manner, and the power generated by the thermoelectric conversion elements 10 can be increased.

熱電変換素子10の数は、多いほど電力を増大させることができる。一方、太陽光の熱は1289W/mから1421W/mとほぼ一定であるため、第2表皮材3に対する熱電変換素子10の接触面積を大きくすると、熱電変換素子10を通過するときの単位面積あたりの熱が小さくなり、素子表面10aの温度と素子裏面10bの温度との間で温度差が生じにくくなる。そのため、素子表面10aの温度と素子裏面10bの温度との間に十分な温度差を確保するためには、複数の熱電変換素子10は、第2表皮材3又は放熱板9に対し、適切な充填率で配設される必要がある。ここで充填率とは、第2表皮材3の面積又は放熱板9の面積に対する、複数の熱電変換素子10の素子表面10a又は素子裏面10bの合計面積の比率をいう。The more the number of thermoelectric conversion elements 10, the more the power can be increased. On the other hand, since the heat of sunlight is substantially constant from 1289 W / m 2 to 1421 W / m 2 , when the contact area of the thermoelectric conversion element 10 with the second skin material 3 is increased, the unit when passing through the thermoelectric conversion element 10 The heat per area is reduced, and a temperature difference is less likely to occur between the temperature of the element surface 10a and the temperature of the element back surface 10b. Therefore, in order to secure a sufficient temperature difference between the temperature of element surface 10a and the temperature of element back surface 10b, the plurality of thermoelectric conversion elements 10 are appropriate relative to second skin material 3 or heat sink 9 It needs to be arranged at the filling rate. Here, the filling rate refers to the ratio of the total area of the element surface 10 a or the element back surface 10 b of the plurality of thermoelectric conversion elements 10 to the area of the second skin material 3 or the area of the heat sink 9.

適切な充填率の検証として、太陽光発電パネル1を用いて、第2表皮材3の面積Aに対する複数の熱電変換素子10の素子表面10aの合計面積Bの比率B/Aを変化させたときの複数の熱電変換素子10が発生する電力を測定した。具体的には、真空(例えば、0.001Pa以下)かつ低温を維持できる真空容器内に、太陽光発電パネル1を設置し、キセノンランプを光源として光を太陽電池セル8に入射させ、アドバンテスト社製直流電圧・電流源モニタにより熱電変換素子10の電力を測定した。また、熱電対を用いて素子表面10aの温度と素子裏面10bの温度との温度差を測定した。   When the ratio B / A of the total area B of the element surfaces 10a of the plurality of thermoelectric conversion elements 10 to the area A of the second skin material 3 is changed using the photovoltaic panel 1 as verification of the appropriate filling rate The power generated by the plurality of thermoelectric conversion elements 10 was measured. Specifically, the photovoltaic panel 1 is installed in a vacuum vessel capable of maintaining a vacuum (for example, 0.001 Pa or less) and a low temperature, and light is incident on the solar battery cell 8 using a xenon lamp as a light source. The power of the thermoelectric conversion element 10 was measured by a DC voltage / current source monitor manufactured by Tokushu. Moreover, the temperature difference of the temperature of the element surface 10a and the temperature of the element back surface 10b was measured using the thermocouple.

図3に、熱電変換素子10の充填率を変化させた場合の単位面積当たりに発生する電力(電力密度)と、素子表面10aの温度と素子裏面10bの温度の温度差との関係を示す。図3より、充填率が0.3以下のとき、温度差は増大し、これとともに電力が増大することがわかった。また充填率が、0.003以上0.03以下の場合、さらに著しく温度差を増大させることができ、電力を増大できることがわかった。さらに充填率が0.007以上0.01以下のとき、電力が極大となることがわかった。   FIG. 3 shows the relationship between the power (power density) generated per unit area when the filling rate of the thermoelectric conversion element 10 is changed, and the temperature difference between the temperature of the element surface 10a and the temperature of the element back surface 10b. From FIG. 3, it was found that when the filling rate was 0.3 or less, the temperature difference increased and the power increased accordingly. It was also found that when the filling rate is 0.003 or more and 0.03 or less, the temperature difference can be further significantly increased, and the power can be increased. Furthermore, it was found that when the filling rate is 0.007 or more and 0.01 or less, the power becomes maximum.

したがって、複数の熱電変換素子10は、充填率が0より大きく0.3以下の範囲となるよう、空隙11で隔てられ、分散して配設されることにより、素子表面10aの温度と素子裏面10bの温度との間の温度差を大きくでき、発生する電力を増大させることができる。ここで、充填率が小さくなると、熱電変換素子10の数が減少するため、温度差が確保できても発生する電力は減少するので熱電変換素子10の充填率は0.003より大きく0.03以下の範囲とするのが好ましい。   Therefore, the plurality of thermoelectric conversion elements 10 are separated by the air gap 11 so as to be in the range of a filling factor of more than 0 and 0.3 or less, and dispersed to arrange the temperature of the element surface 10 a and the element back surface The temperature difference between the temperature of 10b can be increased, and the generated power can be increased. Here, since the number of thermoelectric conversion elements 10 decreases when the filling rate decreases, the generated power decreases even if the temperature difference can be secured, so the filling rate of the thermoelectric conversion elements 10 is larger than 0.003 and 0.03 The following range is preferable.

上述のとおり、太陽光発電パネル1は、第1表皮材2と第2表皮材3とに挟まれて設けられたハニカムコア5と、第1表皮材2のハニカムコア5側の面の反対面に設けられた複数の太陽電池セル8と、第2表皮材3のハニカムコア5側の面の反対面で、空隙11で隔てられ分散して配設された複数の熱電変換素子10と、熱電変換素子10の第2表皮材3と接した面の反対面に空隙11を覆うように設けられた放熱板9とを備えることにより、得られる電力を増大させることができる。したがって太陽光発電パネル1は、衛星が消費電力の大きな通信機器を搭載しても十分にその電力を補うことができる。   As described above, the photovoltaic panel 1 is opposite to the surface of the honeycomb core 5 provided between the first skin material 2 and the second skin material 3 and the surface of the first skin material 2 on the honeycomb core 5 side. And a plurality of thermoelectric conversion elements 10 disposed in a manner separated by a gap 11 on the surface opposite to the surface of the second skin material 3 on the side of the honeycomb core 5; By providing the heat sink 9 provided so as to cover the air gap 11 on the opposite surface of the surface of the conversion element 10 in contact with the second skin material 3, the obtained power can be increased. Therefore, even if a satellite carries the communication apparatus with large power consumption, the solar power generation panel 1 can fully compensate the electric power.

なお、図4に示すように熱電変換素子10をハニカムサンドイッチ構造体6のハニカムコア5を形成する六角形同士が重なる頂点、即ち三重点上に配設された構成とするとさらに好ましい。第2表皮材3の表面には、第2表皮材3とハニカムコア5との熱膨張率の差により、ハニカムコア5の三重点上以外の部分で、表皮にハニカム形状に応じた周期的な凹凸(ディンプル)が生じる。熱電変換素子10が配置された箇所でディンプルが生じると、熱電変換素子10に曲げ応力が働き、熱電変換素子10が損傷する。そのため、このように熱電変換素子10を配置することで、ディンプルによって熱電変換素子10が損傷するのを防ぐことができる。   More preferably, as shown in FIG. 4, the thermoelectric conversion element 10 is disposed at an apex where the hexagons forming the honeycomb core 5 of the honeycomb sandwich structure 6 overlap each other, that is, on the triple point. The surface of the second skin material 3 has a periodicity according to the honeycomb shape in the skin other than on the triple point of the honeycomb core 5 due to the difference of the thermal expansion coefficient between the second skin material 3 and the honeycomb core 5. Irregularities (dimples) occur. When a dimple is generated at a location where the thermoelectric conversion element 10 is disposed, bending stress acts on the thermoelectric conversion element 10, and the thermoelectric conversion element 10 is damaged. Therefore, by arranging the thermoelectric conversion element 10 in this manner, it is possible to prevent the thermoelectric conversion element 10 from being damaged by the dimples.

また、図13に示すように第2表皮材3のハニカムコア5側の面の反対面には、放射断熱材18が設けられるとさらに好ましい。放射断熱材18は、第2表皮材3のハニカムコア5が接着された面の反対面のうち、熱電変換素子10が配設されていない面に、例えば貼り付けられて設けられる。   Further, as shown in FIG. 13, it is more preferable that a radiation heat insulating material 18 be provided on the surface opposite to the surface on the side of the honeycomb core 5 of the second skin material 3. The radiation heat insulating material 18 is provided, for example, by being attached to the surface of the second surface material 3 opposite to the surface to which the honeycomb core 5 is attached, on which the thermoelectric conversion element 10 is not provided.

第2表皮材3に放射断熱材18が設けられることで、太陽電池セル8から伝わる熱が、第2表皮材3の熱電変換素子10が設けられていない面で放射により放熱されることを防ぐことができる。すなわち、太陽電池セル8から伝わる熱が、放射により空隙11を伝わることなく、複数の熱電変換素子10を介して放熱板9から放熱されることで、太陽電池セル8からの熱を無駄なく回収することができる。放射断熱材18は、放射率が放熱板9より小さい材料で形成されるものであればよく、例えば3M社製のアルミ箔テープを用いることができる。   The radiation heat insulating material 18 is provided on the second skin material 3 to prevent the heat transmitted from the solar battery cell 8 from being radiated by radiation on the surface of the second skin material 3 on which the thermoelectric conversion element 10 is not provided. be able to. That is, the heat transmitted from the solar battery cell 8 is dissipated from the heat dissipation plate 9 through the plurality of thermoelectric conversion elements 10 without being transmitted by the air gap 11 by radiation, so that the heat from the solar battery cell 8 is recovered without waste can do. The radiation heat insulating material 18 may be made of a material whose emissivity is smaller than that of the heat radiation plate 9, and for example, an aluminum foil tape manufactured by 3M can be used.

また、図14に示すように、第2表皮材3及び放熱板9は、高熱伝導シート19が設けられるとさらに好ましい。高熱伝導シート19は、第2表皮材3の熱電変換素子10が配置される面と、放熱板9の熱電変換素子10が配置される面の反対面とに、それぞれ貼り付けられて設けられる。これにより、第2表皮材3及び放熱板9の面内の熱伝導性を高め、分散して配設された複数の熱電変換素子10に、それぞれ熱を分配することができる。高熱伝導シート19は、熱伝導率が第2表皮材3及び放熱板9より大きい材料で形成されるものであればよく、例えばPanasonic社製グラファイトシートを用いることができる。
実施の形態2.
Further, as shown in FIG. 14, the second skin material 3 and the heat radiation plate 9 are more preferably provided with the high thermal conductivity sheet 19. The high thermal conductivity sheet 19 is attached to each of the surface of the second skin material 3 on which the thermoelectric conversion elements 10 are disposed and the surface of the heat sink 9 opposite to the surface on which the thermoelectric conversion elements 10 are disposed. Thereby, the heat conductivity in the surface of the 2nd skin material 3 and the heat sink 9 can be improved, and heat can be distributed to a plurality of thermoelectric conversion elements 10 distributed and arranged, respectively. The high thermal conductivity sheet 19 may be made of a material whose thermal conductivity is larger than that of the second skin material 3 and the heat dissipation plate 9, and for example, a graphite sheet manufactured by Panasonic Corporation can be used.
Second Embodiment

本発明を実施するための実施の形態2おける太陽光発電パネルについて、図5を参照して説明する。図5は、第2表皮材3上の熱電変換素子の配置を示す平面図である。図5中、図1と同一符号は同一又は相当部分を示す。   A photovoltaic panel according to a second embodiment for carrying out the present invention will be described with reference to FIG. FIG. 5 is a plan view showing the arrangement of the thermoelectric conversion elements on the second skin material 3. In FIG. 5, the same reference numerals as in FIG. 1 denote the same or corresponding parts.

実施の形態1の太陽光発電パネル1において、複数の熱電変換素子10は、第2表皮材3上に任意に配設されているのに対して、本実施の形態における太陽光発電パネル1では、第2表皮材3が複数の領域33に分割され、この領域33ごとに少なくとも1個の熱電変換素子10が空隙11で隔てられ分散して配設された構成となっている。ここで分割とは、領域33を切り離さずに仮想的に分けることを示す。   While the plurality of thermoelectric conversion elements 10 are arbitrarily disposed on the second skin material 3 in the solar panel 1 of the first embodiment, in the solar panel 1 of the present embodiment, The second skin material 3 is divided into a plurality of regions 33, and in each region 33, at least one thermoelectric conversion element 10 is separated by a gap 11 and dispersed. Here, “division” means to virtually divide the area 33 without separating it.

太陽光発電パネル1では、太陽光は第1表皮材2に敷き詰められている複数の太陽電池セル8に一様に入射して光電変換され、電力に変換されなかった残りの熱が、ハニカムコア5を介して第2表皮材3に一様に伝わる。図5の例では、第2表皮材3を面積aとする均等な複数の領域33に分割し、分割した領域33の中心位置にそれぞれ素子面積bとする1個の熱電変換素子10が、空隙11で隔てられ分散して配設される。これにより第2表皮材3に一様に伝わった熱が、熱電変換素子10へ均等に分配され効率よく電力に変換することができる。   In the photovoltaic panel 1, sunlight is uniformly incident on the plurality of solar battery cells 8 laid in the first skin material 2 and photoelectrically converted, and the remaining heat not converted into electric power is the honeycomb core It is uniformly transmitted to the second skin material 3 through 5. In the example of FIG. 5, one thermoelectric conversion element 10 which divides the second skin material 3 into a plurality of equal areas 33 having an area a and has an element area b at the center position of the divided areas 33 is an air gap. It is separated by 11 and distributed. As a result, the heat uniformly transmitted to the second skin material 3 can be evenly distributed to the thermoelectric conversion element 10 and efficiently converted to electric power.

上述のとおり、熱電変換素子10の素子表面10aの温度と素子裏面10bの温度との間の温度差は、熱電変換素子10の充填率に依存するが、第2表皮材3を分割した領域33の面積aを30cm2、熱電変換素子10の1個の素子面積bを0.6cm2としたとき、第2表皮材3に対する熱電変換素子10の充填率は、0.02となり、熱電変換素子10の単位面積当たりに発生する電力は15W/m2となった。As described above, the temperature difference between the temperature of the element surface 10 a of the thermoelectric conversion element 10 and the temperature of the element back surface 10 b depends on the filling factor of the thermoelectric conversion element 10. The filling factor of the thermoelectric conversion element 10 with respect to the second skin material 3 is 0.02, where the area a of the second surface material 3 is 30 cm 2 and the element area b of one thermoelectric conversion element 10 is 0.6 cm 2. The power generated per unit area of 10 was 15 W / m 2 .

したがって、本実施の形態における太陽光発電パネル1では、分割された複数の領域33ごとに少なくとも1個の熱電変換素子10が空隙11で隔てられ分散して配設されることにより、さらに効率よく太陽電池セル8からの熱を熱電変換素子10に伝えることができ、熱電変換素子10が発生する電力を増大させることができる。したがって太陽光発電パネル1は、消費電力の大きな通信機器を搭載しても十分にその電力を補うことができる。
実施の形態3.
Therefore, in the solar panel 1 according to the present embodiment, at least one thermoelectric conversion element 10 is separated by the air gap 11 and dispersedly arranged for each of the plurality of divided regions 33, thereby further efficiently. The heat from the solar battery cell 8 can be transmitted to the thermoelectric conversion element 10, and the power generated by the thermoelectric conversion element 10 can be increased. Therefore, even if the solar power generation panel 1 is equipped with a communication device with a large power consumption, its power can be sufficiently compensated.
Third Embodiment

本発明を実施するための実施の形態3における太陽光発電パネルについて、図6を参照して説明する。図6中、図1と同一符号は同一又は相当部分を示す。本実施の形態における太陽光発電パネル1は、実施の形態1で放熱板9を用いたものに対して、放熱板9を複数としたものである。以下では、実施の形態1と同様である点の説明を省略し、異なる点を中心に説明する。   A photovoltaic panel according to a third embodiment of the present invention will be described with reference to FIG. In FIG. 6, the same reference numerals as in FIG. 1 denote the same or corresponding parts. The solar panel 1 according to the present embodiment has a plurality of heat dissipating plates 9 as compared with the solar cell panel using the heat dissipating plate 9 in the first embodiment. In the following, description of the same points as Embodiment 1 will be omitted, and different points will be mainly described.

図6に示す太陽光発電パネル1では、ハニカムサンドイッチ構造体6の第1表皮材2に複数の太陽電池セル8が備えられ、第2表皮材3側に空隙11で隔てられた複数の熱電変換素子10と、平板状放熱板91及び凹凸状放熱板92が設けられている。   In the photovoltaic panel 1 shown in FIG. 6, a plurality of solar battery cells 8 are provided in the first skin material 2 of the honeycomb sandwich structure 6, and a plurality of thermoelectric conversions separated by the air gap 11 on the second skin material 3 side. An element 10, a flat heat dissipation plate 91, and an uneven heat dissipation plate 92 are provided.

凹凸状放熱板92は、断面を凹凸形状として一方向に連続して形成されており、第2表皮材3と平板状放熱板91との間に設けられている。複数の熱電変換素子10は、第2表皮材3と凹凸状放熱板92の凹部との間と、凹凸状放熱板92の凸部と平板状放熱板91との間にそれぞれ接着層72を介して空隙11で隔てられ分散して配設されている。   The uneven heat sink 92 is formed continuously in one direction with the cross section being uneven, and is provided between the second skin 3 and the flat heat sink 91. The plurality of thermoelectric conversion elements 10 each have an adhesive layer 72 between the second surface material 3 and the recess of the uneven heat sink 92, and between the convex of the uneven heat sink 92 and the flat plate 91. It is separated by the air gap 11 and distributed.

このような構成では、第2表皮材3と凹凸状放熱板92の凹部との間に配設された熱電変換素子10によって一部の熱を電力に変換し、残りの熱を、さらに凹凸状放熱板92の凸部と平板状放熱板91との間に配設された熱電変換素子10で再利用して電力に変換することができる。これによって太陽電池セル8からの熱をより無駄なく熱電変換素子10の発電に利用できる。   In such a configuration, a portion of the heat is converted to electric power by the thermoelectric conversion element 10 disposed between the second skin material 3 and the concave portion of the uneven heat sink 92, and the remaining heat is further uneven. The thermoelectric conversion element 10 disposed between the convex portion of the heat sink 92 and the flat heat sink 91 can be reused and converted to electric power. As a result, the heat from the solar battery cell 8 can be used for power generation of the thermoelectric conversion element 10 without waste.

また、凹凸状放熱板92を用いることで、放熱面積を大きくできるため、素子表面10aの温度と素子裏面10bの温度との間により十分な温度差を生じさせ、得られる電力を増大させることができる。   In addition, since the heat dissipation area can be increased by using the uneven heat sink 92, a sufficient temperature difference is caused between the temperature of the element surface 10a and the temperature of the element back surface 10b to increase the obtained power. it can.

また、凹凸状放熱板92の凹部と凸部とを利用することにより、高さの増分を最小化しながら、より多くの熱電変換素子10を配設することができる。図6では、熱電変換素子10を1個ずつ配設した例を示したが、複数個積層して配設してもよい。これにより太陽光発電パネル1の高さの増分を最小化しながら空隙11で隔てられた熱電変換素子10の数をさらに増やし、電力を増大させることができる。   Further, by utilizing the concave and convex portions of the uneven heat sink 92, it is possible to dispose more thermoelectric conversion elements 10 while minimizing the increase in height. Although FIG. 6 shows an example in which the thermoelectric conversion elements 10 are disposed one by one, a plurality of thermoelectric conversion elements 10 may be stacked. As a result, the number of thermoelectric conversion elements 10 separated by the air gap 11 can be further increased while minimizing the increment of the height of the photovoltaic panel 1, and the power can be increased.

上述のとおり、複数の熱電変換素子10が、第2表皮材3と凹凸状放熱板92との間及び凹凸状放熱板92と平板状放熱板91との間にそれぞれ空隙11で隔てられ、分散して配設されることにより、太陽電池セル8からの熱をより無駄なく熱電変換素子10の発電に利用できるとともに、高さの増分を最小化して、より多くの熱電変換素子10を配設させることができ、太陽光発電パネル1の発生する電力を増大させることができる。   As described above, the plurality of thermoelectric conversion elements 10 are separated by the air gap 11 between the second skin material 3 and the uneven heat dissipation plate 92 and between the uneven heat dissipation plate 92 and the flat heat dissipation plate 91, respectively. By arranging them, the heat from the solar battery cell 8 can be used for power generation of the thermoelectric conversion element 10 without wasting more, and the increment of the height is minimized to arrange more thermoelectric conversion elements 10 The power generated by the solar panel 1 can be increased.

なお、本実施の形態では、凹凸状放熱板92の断面が90度の屈曲部を有する凹凸形状である例を示したが、屈曲部の角度は90度でなくともよく、曲率を有していてもよい。   In the present embodiment, an example is shown in which the cross section of the concavo-convex heat dissipation plate 92 has a concavo-convex shape having a bent portion of 90 degrees, but the angle of the bent portion may not be 90 degrees and has a curvature. May be

また、本実施の形態では、平板状放熱板91、凹凸状放熱板92の2枚で構成する例を示したが、3枚以上としてもよい。
実施の形態4.
Moreover, although the example comprised with two sheets of the flat heat sink 91 and the uneven heat sink 92 was shown in this Embodiment, it is good also as three or more sheets.
Fourth Embodiment

次に、本発明を実施するための実施の形態4における太陽光発電パネルの製造方法について、図7から図10を参照しながら説明する。図7から図10において、図1と同一符号は同一又は相当部分を示す。   Next, a method of manufacturing a solar panel according to a fourth embodiment for carrying out the present invention will be described with reference to FIGS. 7 to 10. 7 to 10, the same reference numerals as in FIG. 1 denote the same or corresponding parts.

実施の形態4の太陽光発電パネルの製造方法は、次の工程で構成される。まず、太陽光発電パネル1の第1表皮材2及び第2表皮材3を作製する。炭素繊維に樹脂を含浸して作製された半硬化状態のシートであるプリプレグを複数枚重ね、第1表皮材2又は第2表皮材3の材料として、第1表皮材用プリプレグ積層体20又は第2表皮材用プリプレグ積層体30を用意する。図7に示すように、第1表皮材用プリプレグ積層体20又は第2表皮材用プリプレグ積層体30を定盤12に設置し、バギングフィルム13で全体を覆い、シール材14で密閉する。シール材14で密閉した後、ポンプ(図示せず)を動作させることでバギングフィルム13で覆った内部の空気を排出し、第1表皮材用プリプレグ積層体20又は第2表皮材用プリプレグ積層体30を減圧状態にする。   The method of manufacturing a photovoltaic panel of Embodiment 4 includes the following steps. First, the first skin material 2 and the second skin material 3 of the photovoltaic panel 1 are manufactured. A plurality of prepregs, which are semi-cured sheets prepared by impregnating a carbon fiber with a resin, are stacked, and as a material of the first skin material 2 or the second skin material 3, a prepreg laminate 20 for the first skin material or 2 Prepare a prepreg laminate 30 for the skin material. As shown in FIG. 7, the prepreg laminate 20 for the first skin material or the prepreg laminate 30 for the second skin material is installed on the surface plate 12, covered entirely with the bagging film 13, and sealed with the sealing material 14. After sealing with the sealing material 14, the air inside the bagging film 13 is discharged by operating a pump (not shown), and the prepreg laminate 20 for the first skin material or the prepreg laminate for the second skin material Depressurize 30.

続いて、第1表皮材用プリプレグ積層体20又は第2表皮材用プリプレグ積層体30をオートクレーブ内に設置し、バギングフィルム13の外部から加圧して加熱する。例えば3気圧下で120℃の温度を3時間保持する。これにより、第1表皮材2と第2表皮材3とを作製することができる。   Subsequently, the prepreg laminate 20 for the first skin material or the prepreg laminate 30 for the second skin material is installed in the autoclave, and the bagging film 13 is pressurized from the outside and heated. For example, the temperature of 120 ° C. is maintained for 3 hours under 3 atm. Thereby, the 1st skin material 2 and the 2nd skin material 3 can be produced.

ここで、第1表皮材用プリプレグ積層体20、第2表皮材用プリプレグ積層体30を加圧下で加熱する条件は、第1表皮材用プリプレグ積層体20、第2表皮材用プリプレグ積層体30を構成する樹脂の種類によって異なる。   Here, the conditions for heating the prepreg laminate 20 for the first skin material and the prepreg laminate 30 for the second skin material under pressure are the prepreg laminate 20 for the first skin material and the prepreg laminate 30 for the second skin material. Depends on the type of resin that makes up the

次に、図8に示すように、第2表皮材3の上に接着シート4を密着させた後、この接着シート4の上にハニカムコア5を配置する。続いて、接着シート4を密着させた第1表皮材2をハニカムコア5の上に被せることで積層体15を形成する。   Next, as shown in FIG. 8, after adhering the adhesive sheet 4 on the second surface material 3, the honeycomb core 5 is disposed on the adhesive sheet 4. Subsequently, the first skin material 2 to which the adhesive sheet 4 is in close contact is placed on the honeycomb core 5 to form a laminate 15.

次に、図9に示すように、積層体15を定盤12に設置し、バギングフィルム13で全体を覆い、シール材14で密閉する。シール材14で密閉した後、ポンプ(図示せず)を動作させることで、バギングフィルム13で覆った内部の空気を排出し、積層体15を減圧状態にする。   Next, as shown in FIG. 9, the laminated body 15 is placed on the surface plate 12, covered entirely with the bagging film 13, and sealed with the sealing material 14. After sealing with the seal member 14, by operating a pump (not shown), the internal air covered with the bagging film 13 is discharged to put the laminate 15 in a reduced pressure state.

その後、このバギングフィルム13で覆われた積層体15をオートクレーブ内に設置し、減圧状態を保持したまま、バギングフィルム13の外部から加圧して加熱する。例えば120℃で6時間保持する。これにより、接着シート4を介してハニカムコア5を第1表皮材2と第2表皮材3とで挟んだハニカムサンドイッチ構造体6を作製することができる。   Thereafter, the laminate 15 covered with the bagging film 13 is placed in an autoclave, and while maintaining the reduced pressure state, the bagging film 13 is pressurized from the outside and heated. For example, it holds at 120 ° C. for 6 hours. Thus, the honeycomb sandwich structure 6 in which the honeycomb core 5 is sandwiched between the first skin material 2 and the second skin material 3 via the adhesive sheet 4 can be manufactured.

次に、複数の熱電変換素子10を分散して配設する放熱板9を作製する。放熱板9は、第1表皮材2及び第2表皮材3と同様に、プリプレグを複数枚重ね、減圧処理した後、加圧下で加熱することにより作製することができる。   Next, the heat sink 9 which disperses and arranges a plurality of thermoelectric conversion elements 10 is produced. The heat dissipating plate 9 can be manufactured by stacking a plurality of prepregs in the same manner as the first skin material 2 and the second skin material 3 and subjecting to pressure reduction treatment and heating under pressure.

例えば、図10に示すように、熱電変換素子10と同程度の厚みの溝が複数形成された枠部材16を放熱板9上に設置し、枠部材16の溝に接着層72として室温硬化型のシリコーン接着剤を塗布する。接着層72上に複数の熱電変換素子10を配置し、枠部材16内の熱電変換素子10の上面に接着層72を塗布した後、枠部材16を取り除く。放熱板9上には両面に接着層72が塗布された熱電変換素子10が分散して配設される。   For example, as shown in FIG. 10, a frame member 16 in which a plurality of grooves having a thickness similar to that of the thermoelectric conversion element 10 is formed is disposed on the heat dissipation plate 9, and the grooves of the frame member Apply a silicone adhesive. The plurality of thermoelectric conversion elements 10 are disposed on the adhesive layer 72, and after the adhesive layer 72 is applied to the upper surface of the thermoelectric conversion element 10 in the frame member 16, the frame member 16 is removed. The thermoelectric conversion elements 10 having the adhesive layer 72 applied on both sides thereof are dispersedly disposed on the heat sink 9.

次に、複数の熱電変換素子10が分散して配設された放熱板9上にハニカムサンドイッチ構造体6を水平に載置し、接着層72を介して複数の熱電変換素子10とハニカムサンドイッチ構造体6の第2表皮材3とを空隙11を有するように接着する。このとき、放熱板9に熱電変換素子10と同じ厚みの複数のスペーサー(図示せず)を所定の間隔で取り付け、熱電変換素子10が空隙11で隔てられるようにしてもよい。   Next, the honeycomb sandwich structure 6 is horizontally placed on the heat sink 9 on which the plurality of thermoelectric conversion elements 10 are dispersed and disposed, and the plurality of thermoelectric conversion elements 10 and the honeycomb sandwich structure via the adhesive layer 72 The second skin material 3 of the body 6 is bonded so as to have a void 11. At this time, a plurality of spacers (not shown) having the same thickness as the thermoelectric conversion element 10 may be attached to the heat sink 9 at predetermined intervals so that the thermoelectric conversion element 10 is separated by the air gap 11.

そして、熱電変換素子10が分散して配設された放熱板9を備えたハニカムサンドイッチ構造体6の第1表皮材2上に複数の太陽電池セル8を実装し、太陽光発電パネル1を得ることができる。   Then, a plurality of solar battery cells 8 are mounted on the first skin material 2 of the honeycomb sandwich structure 6 provided with the heat dissipation plate 9 in which the thermoelectric conversion elements 10 are disposed in a dispersed manner, to obtain the photovoltaic panel 1 be able to.

ここで、上述の工程は一部前後してもよく、例えばハニカムサンドイッチ構造体6の第2表皮材3に枠部材16を設置して熱電変換素子10を分散して配設し、その後放熱板9と熱電変換素子10とを空隙11を有するように接着してもよい。   Here, the above-described steps may be partially performed, for example, the frame member 16 is installed on the second skin material 3 of the honeycomb sandwich structure 6 to disperse the thermoelectric conversion elements 10, and then the heat dissipation plate 9 and the thermoelectric conversion element 10 may be bonded so as to have an air gap 11.

また、ハニカムサンドイッチ構造体6を成形後、第2表皮材3のハニカムコア5側の面との反対面のうち、熱電変換素子10が配設されていない面に、放射断熱材18を例えば貼り付けて設けてもよい。また、第2表皮材3の熱電変換素子10が配置される面及び放熱板9の熱電変換素子10が配置される面の反対面に、高熱伝導シート19を例えば貼り付けて設けてもよい。   Further, after the honeycomb sandwich structure 6 is formed, for example, the radiation heat insulating material 18 is attached to the surface of the second skin material 3 opposite to the surface on the honeycomb core 5 side where the thermoelectric conversion element 10 is not provided. You may attach and provide. Further, the high thermal conductive sheet 19 may be provided, for example, by being attached to the surface of the second skin material 3 on which the thermoelectric conversion elements 10 are disposed and the surface of the heat sink 9 on which the thermoelectric conversion elements 10 are disposed.

上述のとおり、太陽光発電パネル1の製造方法は、接着シート4を介して第1表皮材2と第2表皮材3でハニカムコア5を挟み積層体15を形成するステップと、積層体15内の空気を排出し、減圧状態を保持しながら外部から加圧及び加熱して、ハニカムサンドイッチ構造体6を形成するステップと、第1表皮材2に複数の太陽電池セル8を実装するステップと、第2表皮材3側に複数の熱電変換素子10を空隙11で隔て分散して配設するステップと、複数の熱電変換素子10の第2表皮材3と反対面で接し、空隙11を覆うように放熱板9を設けるステップを備えることにより、簡単な工程で太陽光発電パネル1を製造することができる。
実施の形態5.
As described above, the method of manufacturing the photovoltaic panel 1 includes the steps of sandwiching the honeycomb core 5 with the first skin material 2 and the second skin material 3 via the adhesive sheet 4 to form the laminate 15, and in the laminate 15 Discharging the air and pressing and heating from the outside while maintaining the reduced pressure state to form the honeycomb sandwich structure 6, and mounting the plurality of solar cells 8 on the first skin material 2; The step of arranging the plurality of thermoelectric conversion elements 10 on the side of the second skin material 3 with the air gap 11 dispersed and disposed, and in contact with the second skin material 3 of the plurality of thermoelectric conversion elements 10 on the opposite surface The solar cell panel 1 can be manufactured by a simple process by providing the step of providing the heat sink 9 to the above.
Embodiment 5

次に、実施の形態5における太陽光発電パネルの製造方法について、図11、図12を参照しながら説明する。平板状放熱板91と凹凸状放熱板92とに熱電変換素子10を分散して配設する工程以外は、実施の形態4で示した太陽光発電パネルの製造方法と同様のため省略する。   Next, a method of manufacturing a solar panel according to the fifth embodiment will be described with reference to FIGS. 11 and 12. The steps other than the step of dispersing and arranging the thermoelectric conversion elements 10 in the flat heat dissipation plate 91 and the uneven heat dissipation plate 92 are the same as in the method of manufacturing the solar power generation panel shown in the fourth embodiment and thus will be omitted.

まず、接着シート4を介して第1表皮材2及び第2表皮材3でハニカムコア5を挟んだ積層体15内の空気を排出して減圧状態にした後、外部から加圧下で加熱して、ハニカムサンドイッチ構造体6を成形する。   First, after the air in the laminated body 15 in which the honeycomb core 5 is sandwiched between the first skin material 2 and the second skin material 3 is discharged through the adhesive sheet 4 to reduce pressure, heating is performed under pressure from the outside. , And the honeycomb sandwich structure 6 are formed.

次に、複数の熱電変換素子10を分散して配設する凹凸状放熱板92を作製する。図11に示すように、一方の面に矩形形状を有する一対の成形型17を用いて、プリプレグを複数枚積層した凹凸状放熱板用プリプレグ積層体90を挟む。   Next, the uneven heat-radiating plate 92 in which the plurality of thermoelectric conversion elements 10 are dispersed and disposed is manufactured. As shown in FIG. 11, using a pair of molds 17 having a rectangular shape on one side, a prepreg laminate 90 for an uneven heat-radiating plate in which a plurality of prepregs are laminated is sandwiched.

その後、図12に示すように、凹凸状放熱板用プリプレグ積層体90をバギングフィルム13で全体を覆い、シール材14で密閉する。シール材14で密閉した後、ポンプ(図示せず)を動作させることで、バギングフィルム13で覆った内部の空気を排出して減圧状態にする。そして減圧状態を保持したまま、オートクレーブ内に設置し、バギングフィルム13の外部から加圧して加熱することにより、凹凸状放熱板92が得られる。   Thereafter, as shown in FIG. 12, the whole of the concavo-convex heat sink prepreg laminate 90 is covered with the bagging film 13 and sealed with the sealing material 14. After sealing with the seal member 14, by operating a pump (not shown), the internal air covered with the bagging film 13 is discharged to be in a reduced pressure state. Then, the heat dissipating plate 92 is obtained by being installed in an autoclave while maintaining the reduced pressure state, and pressurizing and heating from the outside of the bagging film 13.

次に、第2表皮材3と凹凸状放熱板92との間、及び凹凸状放熱板92と平板状放熱板91との間に接着層72を介して熱電変換素子を配設し、図6に示す太陽光発電パネル1を製造する。実施の形態4と同じく、枠部材16を用いて、複数の熱電変換素子10の両面に接着層72を塗布し、平板状放熱板91に分散して配設する。続いて、平板状放熱板91上に凹凸状放熱板92を水平に載置し、接着層72を介して平板状放熱板91に配設された熱電変換素子10の上面と、凹凸状放熱板92の凸部とを空隙11を有するように接着する。   Next, a thermoelectric conversion element is disposed between the second surface material 3 and the uneven heat sink 92 and between the uneven heat sink 92 and the flat heat sink 91 via the adhesive layer 72, as shown in FIG. The solar power generation panel 1 shown to is manufactured. As in the fourth embodiment, the adhesive layer 72 is applied to both surfaces of the plurality of thermoelectric conversion elements 10 by using the frame member 16, and the adhesive layers 72 are dispersed in the plate-shaped heat dissipation plate 91. Subsequently, the uneven heat dissipation plate 92 is horizontally placed on the flat heat dissipation plate 91, and the upper surface of the thermoelectric conversion element 10 disposed on the flat heat dissipation plate 91 via the adhesive layer 72, and the uneven heat dissipation plate Bonding is carried out so as to have an air gap 11 with the 92 convex portions.

次に、凹凸状放熱板92の凹部に接着層72を塗布し、複数の熱電変換素子10を分散して配設し、さらに熱電変換素子10の上面に接着層72を塗布する。続いて、凹凸状放熱板92上にハニカムサンドイッチ構造体6を水平に載置し、接着層72を介して凹凸状放熱板92の凹部に配設された熱電変換素子10の上面とハニカムサンドイッチ構造体6の第2表皮材3とを空隙11を有するように接着する。   Next, the adhesive layer 72 is applied to the concave portion of the uneven heat sink 92, the plurality of thermoelectric conversion elements 10 are dispersedly disposed, and the adhesive layer 72 is further applied to the upper surface of the thermoelectric conversion element 10. Subsequently, the honeycomb sandwich structure 6 is horizontally placed on the uneven heat dissipation plate 92, and the upper surface of the thermoelectric conversion element 10 disposed in the recess of the uneven heat dissipation plate 92 via the adhesive layer 72 and the honeycomb sandwich structure The second skin material 3 of the body 6 is bonded so as to have a void 11.

そして、平板状放熱板91及び凹凸状放熱板92を備え、熱電変換素子10が分散して配設されたハニカムサンドイッチ構造体6の第1表皮材2上に複数の太陽電池セル8を実装し、図6に示す太陽光発電パネル1を得ることができる。ここで、上述の工程は一部前後してもよい。   Then, a plurality of solar battery cells 8 are mounted on the first skin material 2 of the honeycomb sandwich structure 6 provided with the flat heat dissipation plate 91 and the uneven heat dissipation plate 92 and the thermoelectric conversion elements 10 are dispersedly disposed. The solar power generation panel 1 shown in FIG. 6 can be obtained. Here, the above-described steps may be partially performed.

上述のとおり、ハニカムサンドイッチ構造体6を形成するステップと、凹凸状放熱板92を作製するステップと、平板状放熱板91に熱電変換素子10を分散して配設し、凹凸状放熱板92と空隙11を有するように接着するステップと、凹凸状放熱板92の凹部に熱電変換素子10を分散して配設し、ハニカムサンドイッチ構造体6の第2表皮材3に空隙11を有するように接着するステップと、第1表皮材2に太陽電池セル8を実装するステップにより、太陽光発電パネル1を簡単な工程で製造することができる。   As described above, the step of forming the honeycomb sandwich structure 6, the step of producing the uneven heat sink 92, and the plate-like heat sink 91, the thermoelectric conversion elements 10 are dispersedly disposed. The step of bonding so as to have the air gap 11 and the thermoelectric conversion elements 10 are dispersedly disposed in the concave portion of the uneven heat sink 92 so as to have the air gap 11 in the second surface material 3 of the honeycomb sandwich structure 6 By the step of performing and the step of mounting the solar battery cell 8 on the first skin material 2, the photovoltaic panel 1 can be manufactured in a simple process.

なお、実施の形態1から5において、第1表皮材2、第2表皮材3及び放熱板9、平板状放熱板91、凹凸状放熱板92として、炭素繊維強化プラスチックである場合を例示したが、強化繊維と樹脂との組合せから構成されていれば、例えばガラス繊維強化プラスチック等、他の強化繊維プラスチックであってもよい。   In Embodiments 1 to 5, the first skin material 2, the second skin material 3, the heat dissipation plate 9, the flat heat dissipation plate 91, and the uneven heat dissipation plate 92 are exemplified by carbon fiber reinforced plastic. For example, other reinforced fiber plastics such as glass fiber reinforced plastic may be used, as long as they are composed of a combination of reinforced fiber and resin.

また、実施の形態1から5において、ハニカムコア5の形状は六角形状である場合を例示したが、多角形であればよく、適宜設計することができる。また、ハニカムコア5の材料としてアルミニウム合金を例示したが、軽量かつ、強固な材料であれば良く、例えば、炭素繊維強化プラスチック、発泡プラスチック等を用いることができる。   Further, in the first to fifth embodiments, the case where the shape of the honeycomb core 5 is a hexagonal shape is exemplified, but any shape may be used as long as it has a polygonal shape. In addition, although an aluminum alloy is illustrated as a material of the honeycomb core 5, any material that is lightweight and strong may be used, and for example, carbon fiber reinforced plastic, foamed plastic, etc. can be used.

また、実施の形態1から5において、接着シート4としてエポキシ接着剤を用いた場合を示したが、熱硬化性樹脂であればよく、液状の接着剤を用いてもよい。   In the first to fifth embodiments, the case where an epoxy adhesive is used as the adhesive sheet 4 is shown. However, any thermosetting resin may be used, and a liquid adhesive may be used.

また、実施の形態1から5において、接着層71、72として室温硬化型のシリコーン接着剤を用いたが、熱伝導率が高い熱硬化性樹脂であればよく、フィルム状の接着剤を用いてもよい。   In the first to fifth embodiments, a room temperature curing silicone adhesive is used as the adhesive layers 71 and 72, but any thermosetting resin having a high thermal conductivity may be used, and a film adhesive is used. It is also good.

また、本発明はその要旨を逸脱しない範囲で、実施の形態1から5に開示されている複数の構成要素の適宜組み合わせてもよい。   In addition, the present invention may be combined with a plurality of constituent elements disclosed in Embodiments 1 to 5 without departing from the scope of the present invention.

1 太陽光発電パネル、2 第1表皮材、3 第2表皮材、4 接着シート、5ハニカムコア、6 ハニカムサンドイッチ構造体、71,72 接着層、8 太陽電池セル、9 放熱板、91 平板状放熱板、92 凹凸状放熱板、10 熱電変換素子、10a 素子表面、10b 素子裏面、11 空隙、12 定盤、13 バギングフィルム、14 シール材、15 積層体、16 枠部材、17 成形型、18 放射断熱材、19 高熱伝導シート、33 領域、 20 第1表皮材用プリプレグ積層体、30 第2表皮材用プリプレグ積層体、90 凹凸状放熱板用プリプレグ積層体 DESCRIPTION OF SYMBOLS 1 photovoltaic panel, 2 1st surface material, 3 2nd surface material, 4 adhesive sheet, 5 honeycomb core, 6 honeycomb sandwich structure, 71, 72 adhesive layer, 8 solar battery cell, 9 heat sink, 91 flat plate shape Heat sink, 92 uneven heat sink, 10 thermoelectric conversion element, 10a element surface, 10b element back surface, 11 air gap, 12 platen, 13 bagging film, 14 sealing material, 15 laminate, 16 frame members, 17 molds, 18 Radiation heat insulating material, 19 high thermal conductive sheet, 33 area, 20 prepreg laminate for first skin material, 30 prepreg laminate for second skin material, 90 prepreg laminate for uneven heat dissipation plate

本発明に係る太陽光発電パネルは、宇宙空間で使用される太陽光発電パネルであって、第1表皮材と第2表皮材とに挟まれたハニカムコアと、第1表皮材のハニカムコアと反対面に設けられた複数の太陽電池セルと、第2表皮材のハニカムコアと反対面に空隙で隔てられ分散して配設された複数の熱電変換素子と、複数の熱電変換素子の第2表皮材と反対面で接し、空隙を覆うように設けられた放熱板とを備え、第2表皮材は、均等な複数の領域に分割され、分割された領域ごとに、1個の熱電変換素子が、空隙で隔てられ分散して配設されるA photovoltaic panel according to the present invention is a photovoltaic panel used in space, comprising a honeycomb core sandwiched between a first skin material and a second skin material, and a honeycomb core of the first skin material A plurality of solar cells provided on the opposite surface, a plurality of thermoelectric conversion elements disposed on the opposite surface of the second skin material, separated by an air gap and disposed on the surface opposite to the honeycomb core, and a second of the plurality of thermoelectric conversion elements contact with the surface opposite to the surface material, e Bei a radiating plate provided so as to cover the gap, the second skin material is divided into equal plurality of areas, for each divided area, one thermoelectric conversion The elements are spaced apart and distributed in an air gap .

また、本発明に係る太陽光発電パネルの製造方法は、宇宙空間で使用される太陽光発電パネルの製造方法であって、プリプレグを用いて第1表皮材及び第2表皮材を成形するステップと、第2表皮材上に接着シートを介してハニカムコアを設け、ハニカムコアの上に接着シートを介して第1表皮材を設けて積層体を形成するステップと、
積層体をバギングフィルムで覆い、バギングフィルムで覆った内部の空気を排出し、減圧状態を保持しながら、バギングフィルムの外部から加圧及び加熱して、ハニカムサンドイッチ構造体を形成するステップと、ハニカムサンドイッチ構造体の第1表皮材側に複数の太陽電池セルを実装するステップと、ハニカムサンドイッチ構造体の第2表皮材側に複数の熱電変換素子を空隙で隔て分散して配設するステップと、複数の熱電変換素子の第2表皮材と反対面で接し、空隙を覆うように放熱板を設けるステップとを備え、熱電変換素子を配設するステップでは、第2表皮材を均等な複数の領域に分割し、分割された領域ごとに、1個の熱電変換素子を空隙で隔て分散して配設する

Further, a method of manufacturing a photovoltaic panel according to the present invention is a method of manufacturing a photovoltaic panel used in space, which comprises the steps of forming a first skin material and a second skin material using a prepreg. Providing a honeycomb core on the second skin material via an adhesive sheet, and providing a first skin material on the honeycomb core via the adhesive sheet to form a laminate;
Covering the laminated body with a bagging film, exhausting the internal air covered with the bagging film, and applying pressure and heat from the outside of the bagging film while maintaining a reduced pressure state to form a honeycomb sandwich structure; Mounting the plurality of solar cells on the first skin side of the sandwich structure, and dispersing and distributing the plurality of thermoelectric conversion elements on the second skin side of the honeycomb sandwich structure with a gap; contact with the second skin material of a plurality of thermoelectric conversion elements on the opposite side, e Bei and providing a radiating plate so as to cover the gaps, in the step of disposing the thermoelectric conversion element, a plurality of equally second skin material It divides | segments into area | regions, and divides | segments and disperse | distributes one thermoelectric conversion element with a space | gap for every divided area | region .

本発明に係る太陽光発電パネルは、宇宙空間で使用される太陽光発電パネルであって、第1表皮材と第2表皮材とに挟まれたハニカムコアと、第1表皮材のハニカムコアと反対面に設けられた複数の太陽電池セルと、第2表皮材のハニカムコアと反対面に空隙で隔てられ分散して配設された複数の熱電変換素子と、複数の熱電変換素子の第2表皮材と反対面で接し、空隙を覆うように設けられた放熱板とを備え、第2表皮材は、均等な複数の領域に分割され、分割された領域ごとに、1個の熱電変換素子が配設され、複数の熱電変換素子は、それぞれ個別に素子表面と素子裏面とを有し、素子表面及び素子裏面がそれぞれ第2表皮材及び放熱板に接着されている。 A photovoltaic panel according to the present invention is a photovoltaic panel used in space, comprising a honeycomb core sandwiched between a first skin material and a second skin material, and a honeycomb core of the first skin material A plurality of solar cells provided on the opposite surface, a plurality of thermoelectric conversion elements disposed on the opposite surface of the second skin material, separated by an air gap and disposed on the surface opposite to the honeycomb core, and a second of the plurality of thermoelectric conversion elements The second skin material is divided into a plurality of equal areas, and one thermoelectric conversion element is provided in each of the divided areas. The plurality of thermoelectric conversion elements individually have an element front surface and an element back surface, and the element front surface and the element back surface are respectively adhered to the second skin material and the heat sink.

また、本発明に係る太陽光発電パネルの製造方法は、宇宙空間で使用される太陽光発電パネルの製造方法であって、プリプレグを用いて第1表皮材及び第2表皮材を成形するステップと、第2表皮材上に接着シートを介してハニカムコアを設け、ハニカムコアの上に接着シートを介して第1表皮材を設けて積層体を形成するステップと、積層体をバギングフィルムで覆い、バギングフィルムで覆った内部の空気を排出し、減圧状態を保持しながら、バギングフィルムの外部から加圧及び加熱して、ハニカムサンドイッチ構造体を形成するステップと、ハニカムサンドイッチ構造体の第1表皮材側に複数の太陽電池セルを実装するステップと、ハニカムサンドイッチ構造体の第2表皮材側に複数の熱電変換素子を空隙で隔て分散して配設するステップと、複数の熱電変換素子の第2表皮材と反対面で接し、空隙を覆うように放熱板を設けるステップとを備え、熱電変換素子を配設するステップでは、第2表皮材を均等な複数の領域に分割し、分割された領域ごとに、1個の熱電変換素子を配設し、複数の熱電変換素子は、それぞれ個別に素子表面と素子裏面とを有し、素子表面及び素子裏面をそれぞれ第2表皮材及び放熱板に接着する。


Further, a method of manufacturing a photovoltaic panel according to the present invention is a method of manufacturing a photovoltaic panel used in space, which comprises the steps of forming a first skin material and a second skin material using a prepreg. Providing a honeycomb core on the second skin material via an adhesive sheet, providing the first skin material on the honeycomb core via the adhesive sheet to form a laminate, and covering the laminate with a bagging film, Step of forming a honeycomb sandwich structure by discharging air inside the bagging film and maintaining the reduced pressure state from outside of the bagging film to form a honeycomb sandwich structure, and a first surface material of the honeycomb sandwich structure Mounting the plurality of solar cells on the side and the plurality of thermoelectric conversion elements on the second surface side of the honeycomb And a step of providing a heat dissipation plate in contact with the second skin of the plurality of thermoelectric conversion elements on the opposite surface to cover the air gap, and in the step of arranging the thermoelectric conversion elements, the second skin is equalized Divided into a plurality of areas, and one thermoelectric conversion element is provided for each divided area, and the plurality of thermoelectric conversion elements individually have an element surface and an element back surface, and the element surface and the element The back side is adhered to the second skin material and the heat sink, respectively.


Claims (7)

第1表皮材と第2表皮材とに挟まれたハニカムコアと、
前記第1表皮材の前記ハニカムコアと反対面に設けられた複数の太陽電池セルと、
前記第2表皮材の前記ハニカムコアと反対面に空隙で隔てられ分散して配設された複数の熱電変換素子と、
前記複数の熱電変換素子の前記第2表皮材と反対面で接し、前記空隙を覆うように設けられた放熱板と
を備えたことを特徴とする太陽光発電パネル。
A honeycomb core sandwiched between the first skin material and the second skin material;
A plurality of solar cells provided on the surface of the first skin material opposite to the honeycomb core;
A plurality of thermoelectric conversion elements disposed on the surface of the second skin material opposite to the honeycomb core and separated by a gap and dispersed;
A solar panel according to any one of the preceding claims, further comprising: a heat sink that is in contact with the second skin of the plurality of thermoelectric conversion elements on the opposite surface and covers the air gap.
第2表皮材のハニカムコアと反対面のうち、熱電変換素子が配置されていない面に放射断熱材が設けられたことを特徴とする請求項1に記載の太陽光発電パネル。 The solar cell panel according to claim 1, wherein a radiation heat insulating material is provided on a surface of the second skin material opposite to the honeycomb core and on which the thermoelectric conversion element is not disposed. 熱電変換素子の第2表皮材又は放熱板との接触面積は、前記第2表皮材又は前記放熱板の面積に対して、0より大きく0.3以下の範囲であることを特徴とする請求項1又は2に記載の太陽光発電パネル。 The contact area of the thermoelectric conversion element with the second skin material or the heat sink is in the range of more than 0 and 0.3 or less with respect to the area of the second skin material or the heat sink. The solar power generation panel as described in 1 or 2. 第2表皮材は、複数の領域に分割され、前記分割された領域ごとに、少なくとも1個の熱電変換素子が、空隙で隔てられ分散して配設されたことを特徴とする請求項1から3のいずれか一項に記載の太陽光発電パネル。 The second skin material is divided into a plurality of regions, and for each of the divided regions, at least one thermoelectric conversion element is disposed separated by a gap and dispersed. The solar power generation panel as described in any one of 3. 複数の熱電変換素子は、ハニカムコアの六角形の頂点が重なる三重点上に配設されたことを特徴とする請求項1又は2に記載の太陽光発電パネル。 The photovoltaic panel according to claim 1 or 2, wherein the plurality of thermoelectric conversion elements are disposed on a triple point at which the apexes of hexagons of the honeycomb core overlap. 放熱板は、断面が凹凸形状で一方向に連続した凹凸状放熱板で構成され、
前記凹凸状放熱板の凹部に設けられた熱電変換素子と空隙とを有し、
前記凹凸状放熱板の凸部に設けられた熱電変換素子を介して平板形状の放熱板で覆われていることを特徴とする請求項1に記載の太陽光発電パネル。
The heat sink is composed of a heat sink having an uneven cross section and continuous in one direction,
It has a thermoelectric conversion element and an air gap provided in the recess of the uneven heat sink,
The solar panel according to claim 1, wherein the solar panel is covered with a flat plate-shaped heat dissipation plate via a thermoelectric conversion element provided on a convex portion of the uneven heat dissipation plate.
プリプレグを用いて第1表皮材及び第2表皮材を成形するステップと、
前記第2表皮材上に接着シートを介してハニカムコアを設け、前記ハニカムコアの上に接着シートを介して前記第1表皮材を設けて積層体を形成するステップと、
前記積層体をバギングフィルムで覆い、前記バギングフィルムで覆った内部の空気を排出し、減圧状態を保持しながら、前記バギングフィルムの外部から加圧及び加熱して、ハニカムサンドイッチ構造体を形成するステップと、
前記ハニカムサンドイッチ構造体の前記第1表皮材側に複数の太陽電池セルを実装するステップと、
前記ハニカムサンドイッチ構造体の前記第2表皮材側に複数の熱電変換素子を空隙で隔て分散して配設するステップと、
前記複数の熱電変換素子の前記第2表皮材と反対面で接し、前記空隙を覆うように放熱板を設けるステップと
を備えたことを特徴とする太陽光発電パネルの製造方法。
Molding the first skin material and the second skin material using a prepreg;
Providing a honeycomb core on the second skin material via an adhesive sheet, and providing the first skin material on the honeycomb core via the adhesive sheet to form a laminate;
Covering the laminated body with a bagging film, exhausting the internal air covered with the bagging film, and applying pressure and heat from the outside of the bagging film while maintaining a reduced pressure to form a honeycomb sandwich structure When,
Mounting a plurality of solar cells on the first skin side of the honeycomb sandwich structure;
Arranging a plurality of thermoelectric conversion elements on the side of the second skin material of the honeycomb sandwich structure with a gap therebetween and dispersing them;
And a step of providing a heat sink plate so as to be in contact with the second skin member of the plurality of thermoelectric conversion elements on the opposite surface to cover the air gap.
JP2018538909A 2017-06-16 2018-02-07 Photovoltaic panel and method of manufacturing the same Pending JPWO2018230031A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017118259 2017-06-16
JP2017118259 2017-06-16
PCT/JP2018/004147 WO2018230031A1 (en) 2017-06-16 2018-02-07 Photovoltaic power generation panel and method for manufacturing same

Publications (1)

Publication Number Publication Date
JPWO2018230031A1 true JPWO2018230031A1 (en) 2019-06-27

Family

ID=64659125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018538909A Pending JPWO2018230031A1 (en) 2017-06-16 2018-02-07 Photovoltaic panel and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JPWO2018230031A1 (en)
WO (1) WO2018230031A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023101292A1 (en) * 2021-12-03 2023-06-08 한국생산기술연구원 Bipv-applicable high-power shingled photovoltaic module and manufacturing method therefor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353U (en) * 1989-05-18 1991-01-07
JP3053025U (en) * 1998-04-07 1998-10-13 大野総一郎 Solar energy electrical converter
JP2003137199A (en) * 2001-10-31 2003-05-14 Mitsubishi Heavy Ind Ltd Solar battery panel and space machine having solar battery panel
JP2003314011A (en) * 2002-04-26 2003-11-06 Sumikei-Nikkei Engineering Co Ltd Building material with solar power generation function
US20070290287A1 (en) * 2002-04-23 2007-12-20 Freedman Philip D Thin film photodetector, method and system
EP2246914A1 (en) * 2009-04-28 2010-11-03 Solution e Partners S.r.l. A unit for converting solar energy and/or thermal energy into electric power
US7985919B1 (en) * 2006-08-18 2011-07-26 Nanosolar, Inc. Thermal management for photovoltaic devices
JP2011176131A (en) * 2010-02-24 2011-09-08 Toshiba Corp Thermoelectric generator and thermoelectric power generation system
JP2012508466A (en) * 2008-11-04 2012-04-05 イートン コーポレーション Combined heat and power system (CHP) for residential and industrial buildings
JP2013514471A (en) * 2009-12-17 2013-04-25 デザイナジー・エスア Substantially two-dimensional building material
WO2013061739A1 (en) * 2011-10-25 2013-05-02 株式会社 日立製作所 Composite thermoelectric conversion material, thermoelectric conversion material paste using same, and themoelectric conversion module using same
WO2013065856A1 (en) * 2011-11-01 2013-05-10 日本電気株式会社 Thermoelectric conversion element and thermoelectric conversion module
WO2016031667A1 (en) * 2014-08-29 2016-03-03 三菱電機株式会社 Honeycomb sandwich structure, and production method therefor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353U (en) * 1989-05-18 1991-01-07
JP3053025U (en) * 1998-04-07 1998-10-13 大野総一郎 Solar energy electrical converter
JP2003137199A (en) * 2001-10-31 2003-05-14 Mitsubishi Heavy Ind Ltd Solar battery panel and space machine having solar battery panel
US20070290287A1 (en) * 2002-04-23 2007-12-20 Freedman Philip D Thin film photodetector, method and system
JP2003314011A (en) * 2002-04-26 2003-11-06 Sumikei-Nikkei Engineering Co Ltd Building material with solar power generation function
US7985919B1 (en) * 2006-08-18 2011-07-26 Nanosolar, Inc. Thermal management for photovoltaic devices
JP2012508466A (en) * 2008-11-04 2012-04-05 イートン コーポレーション Combined heat and power system (CHP) for residential and industrial buildings
EP2246914A1 (en) * 2009-04-28 2010-11-03 Solution e Partners S.r.l. A unit for converting solar energy and/or thermal energy into electric power
JP2013514471A (en) * 2009-12-17 2013-04-25 デザイナジー・エスア Substantially two-dimensional building material
JP2011176131A (en) * 2010-02-24 2011-09-08 Toshiba Corp Thermoelectric generator and thermoelectric power generation system
WO2013061739A1 (en) * 2011-10-25 2013-05-02 株式会社 日立製作所 Composite thermoelectric conversion material, thermoelectric conversion material paste using same, and themoelectric conversion module using same
WO2013065856A1 (en) * 2011-11-01 2013-05-10 日本電気株式会社 Thermoelectric conversion element and thermoelectric conversion module
WO2016031667A1 (en) * 2014-08-29 2016-03-03 三菱電機株式会社 Honeycomb sandwich structure, and production method therefor

Also Published As

Publication number Publication date
WO2018230031A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2019230019A1 (en) Solar power generation paddle, method for producing same, and space structure
KR101522044B1 (en) Solar cell unit
JP6234171B2 (en) Battery module
JPH09276076A (en) Temperature regulator
KR101693338B1 (en) Composite end plate for batteries
JP2009541622A (en) Insulated window with photovoltaic cell and pressure equalization system
CN102473766A (en) Solar cell apparatus
CN112351662A (en) Heat dissipation composite layer, preparation method thereof and display panel
US10388843B2 (en) Honeycomb sandwich structure and method of manufacturing honeycomb sandwich structure
JPWO2018230031A1 (en) Photovoltaic panel and method of manufacturing the same
CN103151574A (en) Battery module heating equipment for electric vehicle
CN113437414A (en) Battery module with heat conduction buffer structure
JP6528924B1 (en) Photovoltaic paddle, method of manufacturing the same, and space structure
KR20210091765A (en) Lamination apparatus and method therefor
KR20210063201A (en) Battery module and battery pack including the same
JPS6245080A (en) Solar cell module
JP2003234491A (en) Heat collecting apparatus built-in type solar battery module and its manufacturing method
JP4881996B2 (en) Solar power collection unit
KR20190051300A (en) Method of attaching cooling plate to battery module and battery pack manufactured by the same
WO2012105177A1 (en) Assembled battery device
US20210013831A1 (en) Manufacturing a concentrating sub-module comprising a heat-dissipating material
CN112787027A (en) Heat dissipation bottom plate and battery box
JP2016072559A (en) Thermoelectric module with array of thermoelectric elements
JP2004179397A (en) Method for manufacturing solar cell module
RU2200357C1 (en) Solar battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180725

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180725

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190611