JP2004179397A - Method for manufacturing solar cell module - Google Patents

Method for manufacturing solar cell module Download PDF

Info

Publication number
JP2004179397A
JP2004179397A JP2002343937A JP2002343937A JP2004179397A JP 2004179397 A JP2004179397 A JP 2004179397A JP 2002343937 A JP2002343937 A JP 2002343937A JP 2002343937 A JP2002343937 A JP 2002343937A JP 2004179397 A JP2004179397 A JP 2004179397A
Authority
JP
Japan
Prior art keywords
solar cell
sealing material
adhesive resin
resin sealing
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002343937A
Other languages
Japanese (ja)
Other versions
JP3856224B2 (en
Inventor
Yujiro Watanuki
勇次郎 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002343937A priority Critical patent/JP3856224B2/en
Publication of JP2004179397A publication Critical patent/JP2004179397A/en
Application granted granted Critical
Publication of JP3856224B2 publication Critical patent/JP3856224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a glassless thin-type solar cell module having improved mass productivity by eliminating the problems of long-term restraint of a vacuum laminating apparatus and the squeeze-out of an adhesive resin sealing material, improving working efficiency and productivity, and preventing inferior appearance. <P>SOLUTION: A laminated sheet, where a solar cell is laminated via a sheet-like adhesive resin sealing material, between a surface protection member and a rear protection member is subjected to heating pressure treatment at a specific temperature for specific time by the vacuum laminating apparatus. The adhesive resin sealing material is subjected to primary curing treatment. After that, heating pressure treatment is made at a specific temperature for specific time by specific pressure by using a heating pressurization treating apparatus 90 that differs from the vacuum laminating apparatus. The adhesive resin sealing material is subjected to secondary curing treatment to manufacture the glassless thin-film solar cell module 80. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、表面保護部材と裏面保護部材との間に、複数個の太陽電池素子を直列または並列接続した太陽電池を、シート状の接着性樹脂封止材を介して封止してなるガラスレスの薄型太陽電池モジュールの製造方法に関する。
【0002】
【従来の技術】
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられ、電力供給用以外に、建物の屋根や窓などにとりつけて利用される業務用,一般住宅用にも需要が広がってきている。一般住宅用として、太陽電池付き屋根瓦なども開発されている。
【0003】
近年では、プラスチックフィルムを用いたフレキシブルタイプの太陽電池の研究開発が進められており、このフレキシブル性を生かし、ロールツーロール方式やステップロール方式の製造方法により大量生産が可能となっている。
【0004】
上記薄膜太陽電池は、通常、太陽電池モジュールとして使用される。このモジュールとしては、電気絶縁性を有するフィルム基板上に形成された太陽電池を、電気絶縁性の保護材により封止するために、太陽電池の受光面側および非受光面側の双方に保護層を設けたものが知られている。
【0005】
図6および図7は、従来の太陽電池モジュールの模式的構造の一例を示し、図6は、太陽電池モジュールの側断面図、図7は、断面コ字形の金属製枠体を有するフレームに装着した状態の太陽電池モジュールの側断面図を示す。
【0006】
図6において、太陽電池1は、複数個の太陽電池素子が直列または並列接続されており、その受光面側にガラス板などの表面保護部材2、裏面側にアルミ箔の両面に一弗化エチレン(商品名:テドラー,デュポン社製)を接着した防湿保護シートなどの裏面保護部材3が設けられ、接着封止性に優れかつ安価なEVA(エチレン−酢酸ビニル共重合樹脂)などの接着性樹脂封止材4により熱融着封止されている。
【0007】
また太陽電池1は、そのプラス(+)極とマイナス(−)極に、内部リード線5、6が電気的に接続され、この内部リード線5、6は、裏面保護部材3に接着固定された端子ボックス7に、裏面保護部材3を貫通して導かれ、端子ボックス7の内部で外部リード線としてのケーブル8の芯線9、10と電気的に接続され、これら全体として太陽電池モジュール11を形成している。
【0008】
なお、前記表面保護部材2としては、ガラス板などの無機系材料の外に、透光性のアクリル樹脂板やポリカーボネイト樹脂板などの有機系材料を用いることもある。また、裏面保護部材3としては、上記金属箔入り樹脂以外に、フツ素系フィルムなどの有機系フィルム単体、有機系フィルムと金属箔を貼り合せた複合材料、もしくは金属板やガラス板などの金属・無機系材料を用いることもある。
【0009】
図7は、フレームに装着した太陽電池モジュールの一例を示し、図7において、太陽電池モジュール11は、その周囲にフレーム12が配置され、太陽電池モジュール11の周縁部が、金属製フレーム12の断面コ字形の枠体を有する保持部12aの内部に挿入され、隙間を埋めるように注入された接着性シール材13で固定保持されている。ここで、接着性シール材13は、加熱流動性のあるブチルゴムや液状で硬化後に固体となるシリコーンゴムなどの接着性のある弾性シール材が用いられ、ガラス板などの表面保護部材2やフレーム12の熱膨張を吸収するとともに、水分侵入を抑制している。
【0010】
次に太陽電池モジュール11の製造方法に関わる各構成部材のラミネート(熱融着封止)方法について、その一例として、真空ラミネート方式に関し、図8により説明する。図8において、太陽電池モジュール11は、予め表面保護部材2、接着性樹脂封止材4、リード線5、6が取付けられた太陽電池1、接着性樹脂封止材4、裏面保護部材3が順次積層されて真空ラミネート装置100に入れられる。しかる後、真空ラミネート装置100の上筐体101が閉じられて密閉され、加熱板103で所定温度に加熱されるとともに下筐体102に取り付けられた排気管104から図示しない排気装置でモジュール11が置かれている空間部105の空気が排気されて真空に保たれる。
【0011】
また同時に上筐体101に取り付けられた給排気管106からもゴム製ダイヤフラム107と上筐体101とで形成する空間部108の空気が排気されて真空となり、ゴム製ダイヤフラム107は上筐体101の内壁面109に張り付いている。この状態で太陽電池モジユール11が所定温度で所定時間、加熱された後、給排気管106から空気が導入され、空間部105と空間部108の圧力差(略大気圧差)で太陽電池モジュール11はゴム製ダイヤフラム107により真空加圧され、図6で示す断面構造の太陽電池モジュール11を形成する。
【0012】
前記太陽電池モジュールの構造や製造方法に関しては、上記以外にも種々の構造や製造方法が採用されている。図5は、太陽電池モジュールの諸構造を概括的に示す模式的断面図で、主要部材のみを示している。
【0013】
図5(a)は、図6に示した構造の太陽電池モジュールに相当し、21は太陽電池、22は表面保護部材(ガラス板)、23は裏面保護部材としての背面材(アルミ箔ラミネートポリフッ化ビニール、24は接着性樹脂封止材(EVA)を示す。
【0014】
図5(b)は、所謂スーパーストレート構造に相当し、ガラス基板に直接太陽電池を形成したもので、31はガラス基板太陽電池、33は背面材(アルミ箔ラミネートポリフッ化ビニール)、34は接着性樹脂封止材(EVA)を示す。
【0015】
また、図5(c)は、所謂サブストレート構造であって、SUS基板またはプラスチック基板に太陽電池を形成し、表面保護部材としてプラスチックの保護膜を用いたもので、41は太陽電池、42は表面保護膜(ETFEまたはFEP)、43は背面構造支持体(表面処理AL−亜鉛鋼板)、44は接着性樹脂封止材(EVA)を示す。
【0016】
さらに、図5(d)は、フレキシブルモジュールであって、表面保護部材および裏面保護部材としてプラスチックフィルムの保護膜を用いたもので、51は太陽電池、52は表面保護膜(ETFEまたはFEP)、53は裏面保護膜(ETFE,FEP,PVF等)、54は接着性樹脂封止材(EVA)を示す。さらにまた、図5(e)は、図5(d)の表面保護部材および裏面保護部材において、強化層としてガラス不織布65を追加したものを示す。
【0017】
上記以外にも、種々の太陽電池モジュール構造があり、ニーズに適した構造が採用される。なお、本件発明は、詳細は後述するように、ガラス板を用いない形式、即ち、図5(c)〜(e)に示すようなガラスレスの薄型太陽電池モジュールを対象とし、その製造方法に関する。図5(c)に示す43の背面構造支持体は、厚板状に図示しているが、薄板鋼板を使用する。
【0018】
図4は、前記ガラスレスの薄型太陽電池モジュールを形成する際の積層シートに関わる模式的構成図であって、背面構造支持体として鋼板を使用するモジュールの一例を示す(この種の各種モジュールの詳細については、例えば、特許文献1参照)。
【0019】
図4(a)は太陽電池モジュール用積層シートの平面図であり、図4(b)は図4(a)におけるX−X断面図である。図4においては、フレキシブル基板上に光電変換部が形成されてなる太陽電池70の両側には、内部配線72が配置され、補助配線73を介して太陽電池70の裏面電極に接続されている。これらはEVAなどのシート状の接着性樹脂封止材25により封止され、さらに光入射側は、ETFE(四フッ化エチレンポリマー)などの耐候性のある保護フィルム74により被覆され、光入射側と反対側は、鋼板等の裏面保護材により被覆されて、全体として鋼板付き太陽電池モジュール80を構成する。
【0020】
上記のような太陽電池モジュールの製造方法としては、前記図4(b)に示すような構造に積層組立て後、シート状の接着性樹脂封止材25の軟化・溶融から硬化工程、ならびに室温までの冷却工程等を、連続して同一真空ラミネート装置内で行っていた。
【0021】
【特許文献1】
特開2000−349308号公報(第2〜5頁、図1〜8参照)
【0022】
【発明が解決しようとする課題】
ところで、前述の同一真空ラミネート装置内で各種の処理を連続して行なう太陽電池モジュールの製造方法においては、下記のような問題があった。
【0023】
まず、EVAは、過酸化物で架橋されるため、架橋時間が10分から30分程度かかり、さらに真空処理や加熱冷却工程を含めると、約60〜70分程度と製造時間が長くなり、真空ラミネート装置を長時間拘束することとなる。従って、太陽電池モジュールを量産する場合、生産性が悪く、ひいては製造コストが高くなる問題があった。
【0024】
一方、近年、ガラス板を使用したガラスカバーモジュールタイプの製造方法として、真空ラミネート装置において、接着性樹脂封止材の溶融終了途中で取り出し、別の加熱装置(乾燥機等)で接着性樹脂封止材の硬化を完了させることが検討されている。この場合には、真空ラミネート装置を長時間拘束することなく、生産性は向上するものの、接着性樹脂封止材(EVA)が、上記別の加熱装置での硬化途中に、モジュールからはみ出し、この部分が加熱装置を汚す等の問題があり、この汚染の悪影響により、生産性が低下してしまう問題があった。
【0025】
上記ガラスカバーモジュールタイプの場合には、前記汚染の問題を解消するために、図6および図8で示すモジュールのように、保護フィルム(図6の3)の寸法を大きくして、真空ラミネート時に、EVAのはみ出し部分をここで受ける構造とする方法がとられており、若干はみ出した部分は、後で削除される。
【0026】
前記はみ出しの問題は、ガラスレスの薄型太陽電池モジュールでも同様に発生する問題ではあるが、ガラスレスの場合には、剛性が小さく腰が弱く、またモジュールの厚さ寸法も小とすることが要請されるので、前記保護フィルムの寸法増大による方法では、解消が困難である。また、剛性が小さいので、上記別の加熱装置への搬送は難がある等の問題もあり、同一の真空ラミネート装置内で、連続処理せざるを得ない。
【0027】
この発明は、上記のような点に鑑みてなされたもので、本発明の課題は、真空ラミネート装置を長時間拘束する問題および接着性樹脂封止材のはみ出しの問題を解消し、作業性,生産性の向上および外観不良の防止を図り、もって量産性に優れたガラスレスの薄型太陽電池モジュールの製造方法を提供することにある。
【0028】
【課題を解決するための手段】
前述の課題を解決するため、この発明においては、表面保護部材と裏面保護部材との間に、複数個の太陽電池素子を直列または並列接続した太陽電池を、シート状の接着性樹脂封止材を介して封止してなるガラスレスの薄型太陽電池モジュールの製造方法において、下記の工程を含むこととする(請求項1の発明)。
1)表面保護部材と裏面保護部材との間に、シート状の接着性樹脂封止材を介して太陽電池を積層した積層シートを、真空ラミネート装置により所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を一次硬化処理する工程(一次硬化処理工程)。
2)前記一次硬化処理工程後の積層シートを、前記真空ラミネート装置とは異なる加熱加圧処理装置により、所定圧力および所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を二次硬化処理する工程(二次硬化処理工程)。
【0029】
上記方法によれば、真空ラミネート装置による一次硬化工程で、架橋反応をそれ程進行させずに比較的短時間で積層シートを接着した上で、加熱加圧処理装置に搬入し、二次硬化工程で架橋を完了させてモジュールを形成するので、前記真空ラミネート装置の長時間拘束問題および接着性樹脂封止材のはみ出し問題を解消し、作業性,生産性および外観不良の防止を図ることができる。
【0030】
前記請求項1の発明の実施態様としては、下記請求項2ないし7の発明が好ましい。即ち、請求項1に記載の製造方法において、前記接着性樹脂封止材はEVA(エチレン−酢酸ビニル共重合樹脂)とし、かつ前記一次硬化処理工程における所定温度は140〜160℃とし、所定時間は5〜10分とする(請求項2の発明)。EVAの架橋硬化度合いは、温度と時間によって異なるが、比較的短時間で積層シートを接着し、搬送可能な状態とするためには、上記の範囲が好ましい。
【0031】
また、前記請求項1または2に記載の製造方法において、前記一次硬化処理工程の際、前記積層シートの両主面に剥離シートを重ねて処理する(請求項3の発明)。この剥離シートは、後述する請求項5の発明の複数モジュール処理におけるセパレーターとしての機能の他に、ガラスレス方式における積層シートの剛性強化の機能も兼ね、これにより、作業性が向上する。
【0032】
さらに、前記請求項1ないし3のいずれか1項に記載の製造方法において、前記接着性樹脂封止材はEVAとし、かつ前記二次硬化処理工程における所定温度は140〜160℃とし、所定圧力は0.001〜0.1MPaとする(請求項4の発明)。0.001MPaより小さい場合には、加圧効果が得られない。なぜならば、太陽電池の有無の境目部分等で、圧力が掛かり難い場所があって、膜厚が不均一となる場合があり、外観不良をも招く問題が発生する。また、0.1MPaより大きい場合には、過加圧により膜厚が薄くなり、寸法の安定性に難があり、また基板端部からEVAがはみ出す問題が発生する。
【0033】
また、前記請求項1ないし4のいずれか1項に記載の製造方法において、前記二次硬化処理工程の際、前記一次硬化処理工程後の積層シートを複数段、各積層シートの両主面に剥離シートを介して積層した積層体を、一括して加熱加圧処理する(請求項5の発明)。これにより、作業時間の短縮とコスト低減が図れる。
【0034】
さらに、前記請求項5に記載の製造方法において、前記積層体における各剥離シートは、各積層シートの両主面に対してそれぞれ各1枚配設し、かつ隣接する積層シートにおける各剥離シートの間に、それぞれゴム板を配設して、前記二次硬化処理を行なう(請求項6の発明)。これにより、ゴム板が緩衝材として作用し、シワ等の外観不良の発生が防止できる。
【0035】
さらにまた、前記請求項3ないし6のいずれか1項に記載の製造方法において、前記剥離シートは、エンボス付のフッ素樹脂含浸ガラスクロスからなることとする(請求項7の発明)。これにより、剥離が容易となり、かつ強度が向上する。
【0036】
【発明の実施の形態】
本発明の実施例について、比較例と共に以下に述べる。後述する実施例および比較例に用いた太陽電池モジュールの構成は、前記図4に示す積層シートから形成したものと同様である。
【0037】
(実施例)
前記図4(b)において、保護フィルム74は厚さ0.025mmのETFE耐候性フィルムとし、接着性樹脂封止材75として厚さ0.4mmのEVAを用いた。内部配線72はSn/Cu/Sn材料からなる厚さ0.10mm、幅8mmの金属箔を用いた。内部配線72としては、はんだメッキCu材料を用いることもできる。補助配線73としては、厚さ0.025mmのPETフィルムと厚さ0.030mmのアルミニウムとの積層体に導電性粘着剤を付した幅8mmのテープを用いた。
【0038】
図4(b)に示すような構造で、まず保護フィルム74を、図1に示すエンボス付きの剥離シート91(中興化成製、商品名:チューコーフロー:FGF−400)上にセットし、接着性樹脂封止材75を組立てた後、あらかじめ表面側に0.3mm膜厚の接着性樹脂封止材75が仮ラミネートされた太陽電池10と内部配線72とを所定の位置にセットし、補助配線73で太陽電池10と内部配線72との電気的接続を行った。次に、接着性樹脂封止材75を載置した後、ガルバリウム鋼板(川鉄鋼板製、商品名:レジノカラー新茶)71を載置し、最後にエンボス付きの剥離シート91をセットして組立てを終了する。
【0039】
所定枚数組立てて、真空ラミネート装置内に並行にセットし、150℃の温度で、所定の条件(例えば、5分間真空引き、1分間プレス、5分間一次硬化)で一次硬化処理を行い、高温状態の仮ラミネートされた太陽電池モジュールを、エンボス付き剥離シート91と共にそのまま取り出し、室温で一時保管した。
【0040】
前記工程を繰り返し、10数枚の一次硬化処理工程終了品を作製した後、図1の概略図に示すように、10数枚の太陽電池モジュール積層体を構成し、図示しないプレス簡易治具の上下のプレート93間に剥離シート91、ゴム板92の順に組立て、その間に前記一次キュアした剥離シート間にセットされた太陽電池モジュール80を、順次、ゴム板92を挿入しながら所定段数組立てた。次に、面圧が0.05MPaとなるように圧力を調整して加圧した。
【0041】
前記太陽電池モジュールを積層組立て終了したプレス簡易治具を、図2に示すように、加熱加圧処理装置90内にセットし、温度150℃で、約1時間二次硬化処理を行なった。その後、加熱加圧処理装置90の図示しない加熱処理用のスイッチを切り、60℃に低下するまで徐々に冷却し、鋼板付き太陽電池モジュールを製作した。
【0042】
(比較例)
前記図8に示すラミネート処理装置により、図3に示すラミネート条件プロファイル(15分間真空引き、1分間プレス、20分間硬化工程)により、真空ラミネート処理し、室温まで冷却して取り出した。なお、この時の作業時間は65分を要した。
【0043】
上記実施例により製作した太陽電池モジュールの製造工程の時間は、組立てから硬化取り出しまでが、モジュール1枚に換算すると約20分以内となり、工程時間を従来方法の比較例に比べて大幅に短縮することができた。また、従来方法は、EVAのはみ出しによる装置の汚染、それに伴う生産性の低下の問題があったが、フッ素樹脂系の剥離シートをモジュールの上下に重ねることにより、装置の汚染の問題は解消した。
【0044】
さらに、比較例の太陽電池モジュールの製造方法は、昇温工程、接着性樹脂封止材75の軟化・溶融から硬化、および室温まで冷却する工程を連続して同一真空ラミネート装置内で行なうため、装置が1時間以上拘束されてしまい、7〜8サイクル/日しか製造できない。従って、生産性が悪く、コスト高となるが、本発明の前記実施例のように、5分間真空引き、1分間プレス、5分間一次硬化の工程を行い、高温状態で取り出し、一時保管する方法を採用すれば、28〜32サイクル/日の製造が可能となる。従って、従来に比べて、生産性が著しく向上し、その分、コストの低減が図れる。
【0045】
【発明の効果】
この発明によれば前述のように、表面保護部材と裏面保護部材との間に、シート状の接着性樹脂封止材を介して太陽電池を積層した積層シートを、真空ラミネート装置により所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を一次硬化処理し、その後、前記真空ラミネート装置とは異なる加熱加圧処理装置により、所定圧力および所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を二次硬化処理して、ガラスレスの薄型太陽電池モジュールを製造することにより、
真空ラミネート装置を長時間拘束する問題および接着性樹脂封止材のはみ出しの問題を解消し、作業性,生産性の向上および外観不良の防止を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施例に関わるモジュールの積層体を示す図
【図2】本発明の実施例に関わる加熱加圧処理装置の概略図
【図3】従来の製造方法に関わる比較例のラミネート処理条件プロファイルを示す図
【図4】本発明の対象とする太陽電池モジュールの積層シートに関わる模式的構成図
【図5】従来の各種太陽電池モジュールの模式的構成の概略側断面図
【図6】従来の太陽電池モジュールの一例を示す模式的構成の側断面図
【図7】図6の太陽電池モジュールをフレームに取り付けた太陽電池モジュールの模式的構成の側断面図
【図8】太陽電池モジュールの製造方法に関わる真空ラミネート装置の側断面図
【符号の説明】
70:太陽電池、71:鋼板、74:保護フィルム、75:接着性樹脂封止材、80:太陽電池モジュール、90:加熱加圧処理装置、91:剥離シート、92:ゴム板、93:プレート、100:真空ラミネート装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a glass obtained by sealing a solar cell in which a plurality of solar cell elements are connected in series or in parallel between a front surface protection member and a back surface protection member via a sheet-like adhesive resin sealing material. The present invention relates to a method of manufacturing a thin thin solar cell module.
[0002]
[Prior art]
Thin-film solar cells are considered to be the mainstream of solar cells in the future because they are thin, lightweight, inexpensive in manufacturing cost, and easy to increase in area, so they are used not only for power supply but also for building roofs and windows. Demand is expanding for business use and general residential use. Roof tiles with solar cells have also been developed for general residential use.
[0003]
In recent years, research and development of a flexible solar cell using a plastic film has been promoted, and by utilizing this flexibility, mass production is possible by a roll-to-roll method or a step-roll method.
[0004]
The thin-film solar cell is usually used as a solar cell module. This module includes a protective layer on both the light-receiving side and the non-light-receiving side of the solar cell in order to seal the solar cell formed on the electrically insulating film substrate with an electrically insulating protective material. Is known.
[0005]
6 and 7 show an example of a schematic structure of a conventional solar cell module. FIG. 6 is a side sectional view of the solar cell module, and FIG. 7 is mounted on a frame having a U-shaped metal frame. FIG. 2 shows a side cross-sectional view of the solar cell module in a state where the solar cell module is in a state of being removed.
[0006]
In FIG. 6, a solar cell 1 has a plurality of solar cell elements connected in series or in parallel, a surface protection member 2 such as a glass plate on the light receiving surface side, and an ethylene monofluoride on both surfaces of an aluminum foil on the back surface side. (Trade name: Tedlar, manufactured by DuPont) Adhesive resin such as EVA (ethylene-vinyl acetate copolymer resin), which is provided with a back surface protective member 3 such as a moisture-proof protective sheet to which adhesive is adhered, and is excellent in adhesive sealability and inexpensive It is heat-sealed and sealed by the sealing material 4.
[0007]
In the solar cell 1, internal lead wires 5 and 6 are electrically connected to the positive (+) and negative (−) electrodes, and the internal leads 5 and 6 are bonded and fixed to the back surface protection member 3. The terminal box 7 is guided through the back surface protection member 3 and electrically connected to the core wires 9 and 10 of the cable 8 as an external lead inside the terminal box 7. Has formed.
[0008]
In addition, as the surface protection member 2, an organic material such as a translucent acrylic resin plate or a polycarbonate resin plate may be used in addition to an inorganic material such as a glass plate. In addition to the above-mentioned resin containing a metal foil, an organic film alone such as a fluorine-based film, a composite material obtained by laminating an organic film and a metal foil, or a metal such as a metal plate or a glass plate may be used as the back surface protective member 3. -In some cases, inorganic materials are used.
[0009]
FIG. 7 illustrates an example of a solar cell module mounted on a frame. In FIG. 7, a frame 12 is arranged around the solar cell module 11, and a peripheral portion of the solar cell module 11 is a cross section of the metal frame 12. It is inserted into a holding portion 12a having a U-shaped frame, and is fixed and held by an adhesive sealing material 13 injected so as to fill a gap. Here, as the adhesive sealing material 13, an adhesive elastic sealing material such as butyl rubber having heat fluidity or silicone rubber which becomes a solid after being cured in a liquid state is used, and the surface protection member 2 such as a glass plate and the frame 12 are used. Absorbs thermal expansion and suppresses moisture intrusion.
[0010]
Next, a method of laminating (thermally sealing and sealing) each component related to the method of manufacturing the solar cell module 11 will be described with reference to FIG. In FIG. 8, the solar cell module 11 includes a surface protection member 2, an adhesive resin sealing material 4, a solar cell 1 to which leads 5 and 6 are attached in advance, an adhesive resin sealing material 4, and a back surface protection member 3. They are sequentially laminated and placed in the vacuum laminating apparatus 100. Thereafter, the upper housing 101 of the vacuum laminating apparatus 100 is closed and hermetically closed, heated to a predetermined temperature by the heating plate 103, and the module 11 is discharged from the exhaust pipe 104 attached to the lower housing 102 by an exhaust device (not shown). The air in the space 105 where it is placed is exhausted and kept in a vacuum.
[0011]
At the same time, the air in the space 108 formed by the rubber diaphragm 107 and the upper housing 101 is exhausted from the air supply / exhaust pipe 106 attached to the upper housing 101 to create a vacuum. It is stuck on the inner wall surface 109. In this state, after the solar cell module 11 is heated at a predetermined temperature for a predetermined time, air is introduced from a supply / exhaust pipe 106, and a pressure difference (substantially atmospheric pressure difference) between the space 105 and the space 108 causes the solar cell module 11 to be heated. Is vacuum-pressed by a rubber diaphragm 107 to form a solar cell module 11 having a sectional structure shown in FIG.
[0012]
Regarding the structure and manufacturing method of the solar cell module, various structures and manufacturing methods other than the above are employed. FIG. 5 is a schematic cross-sectional view schematically showing various structures of the solar cell module, showing only main members.
[0013]
FIG. 5A corresponds to a solar cell module having the structure shown in FIG. 6, in which 21 is a solar cell, 22 is a surface protection member (glass plate), and 23 is a back material (aluminum foil laminated poly-foil) as a back surface protection member. Vinyl chloride 24 denotes an adhesive resin sealing material (EVA).
[0014]
FIG. 5 (b) corresponds to a so-called super straight structure in which solar cells are formed directly on a glass substrate, 31 is a glass substrate solar cell, 33 is a backing material (aluminum foil laminated polyvinyl fluoride), and 34 is an adhesive. 1 shows a conductive resin sealing material (EVA).
[0015]
FIG. 5C shows a so-called substrate structure in which a solar cell is formed on a SUS substrate or a plastic substrate, and a plastic protective film is used as a surface protective member. A surface protection film (ETFE or FEP), 43 indicates a back structure support (surface-treated AL-zinc steel plate), and 44 indicates an adhesive resin sealing material (EVA).
[0016]
Further, FIG. 5D shows a flexible module using a plastic film protective film as a front surface protection member and a rear surface protection member, 51 is a solar cell, 52 is a surface protection film (ETFE or FEP), 53 denotes a back surface protective film (ETFE, FEP, PVF, etc.), and 54 denotes an adhesive resin sealing material (EVA). Further, FIG. 5E shows the front surface protection member and the rear surface protection member of FIG. 5D with a glass nonwoven fabric 65 added as a reinforcing layer.
[0017]
In addition to the above, there are various solar cell module structures, and a structure suitable for needs is adopted. As will be described in detail later, the present invention is directed to a method without using a glass plate, that is, a glassless thin solar cell module as shown in FIGS. . The back structure support member 43 shown in FIG. 5C is shown as a thick plate, but uses a thin steel plate.
[0018]
FIG. 4 is a schematic configuration diagram relating to a laminated sheet when the glassless thin solar cell module is formed, and shows an example of a module using a steel plate as a back structure support (see FIG. For details, see, for example, Patent Document 1.
[0019]
FIG. 4A is a plan view of the laminated sheet for a solar cell module, and FIG. 4B is a cross-sectional view along XX in FIG. 4A. In FIG. 4, on both sides of a solar cell 70 having a photoelectric conversion unit formed on a flexible substrate, internal wirings 72 are arranged, and connected to the back electrode of the solar cell 70 via auxiliary wirings 73. These are sealed with a sheet-like adhesive resin sealing material 25 such as EVA, and the light incident side is covered with a weather-resistant protective film 74 such as ETFE (ethylene tetrafluoride polymer). The other side is covered with a back surface protection material such as a steel plate to constitute a solar cell module 80 with a steel plate as a whole.
[0020]
As a method for manufacturing the solar cell module as described above, after laminating and assembling into a structure as shown in FIG. 4B, the sheet-shaped adhesive resin sealing material 25 is softened and melted to a hardening step, and from room temperature to room temperature. , Etc., were continuously performed in the same vacuum laminating apparatus.
[0021]
[Patent Document 1]
JP 2000-349308 A (pages 2 to 5, see FIGS. 1 to 8)
[0022]
[Problems to be solved by the invention]
By the way, the method for manufacturing a solar cell module in which various processes are continuously performed in the same vacuum laminating apparatus has the following problems.
[0023]
First, since EVA is cross-linked with a peroxide, the cross-linking time takes about 10 to 30 minutes, and if a vacuum treatment and a heating / cooling step are included, the production time becomes as long as about 60 to 70 minutes. The device will be restrained for a long time. Therefore, when mass-producing the solar cell module, there is a problem that productivity is low, and the manufacturing cost is high.
[0024]
On the other hand, in recent years, as a manufacturing method of a glass cover module type using a glass plate, in a vacuum laminating apparatus, the adhesive resin sealing material is taken out in the middle of the completion of melting, and the adhesive resin sealing material is separated by another heating device (dryer or the like). It is being considered to complete the hardening of the stop material. In this case, although the productivity is improved without restraining the vacuum laminating device for a long time, the adhesive resin sealing material (EVA) protrudes from the module during the curing by the another heating device. There is a problem that the portion soils the heating device and the like, and there is a problem that the productivity is reduced due to the adverse effect of the contamination.
[0025]
In the case of the above-mentioned glass cover module type, in order to eliminate the problem of the contamination, the dimensions of the protective film (3 in FIG. 6) are increased as in the module shown in FIGS. , And EVA, the protruding portion is received here, and the protruding portion is deleted later.
[0026]
The protruding problem is a problem that also occurs in a glassless thin solar cell module, but in the case of a glassless, it is required that the rigidity is small, the waist is weak, and the thickness dimension of the module is also small. Therefore, it is difficult to solve the problem by the method using the dimension increase of the protective film. In addition, since the rigidity is low, there is a problem that it is difficult to transport to another heating device, and continuous processing must be performed in the same vacuum laminating device.
[0027]
The present invention has been made in view of the above points, and an object of the present invention is to solve the problem of restraining the vacuum laminating device for a long time and the problem of the sticking out of the adhesive resin sealing material. It is an object of the present invention to provide a method for manufacturing a glassless thin solar cell module which is capable of improving productivity and preventing appearance defects and which is excellent in mass productivity.
[0028]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the present invention, a solar cell having a plurality of solar cell elements connected in series or in parallel between a front surface protection member and a back surface protection member is formed into a sheet-like adhesive resin sealing material. A method for manufacturing a glass-less thin solar cell module sealed by a method comprising the following steps (the invention of claim 1).
1) A laminated sheet obtained by laminating a solar cell between a surface protection member and a back surface protection member via a sheet-like adhesive resin sealing material is heated and pressed at a predetermined temperature for a predetermined time by a vacuum laminating apparatus. And a step of performing a primary curing treatment on the adhesive resin sealing material (primary curing treatment step).
2) The laminated sheet after the primary curing process is heated and pressed at a predetermined pressure and a predetermined temperature for a predetermined time by a heating and pressure processing device different from the vacuum laminating device, and the adhesive resin sealing material is removed. Step of performing a secondary curing treatment (secondary curing treatment step).
[0029]
According to the above method, in the primary curing step by the vacuum laminating apparatus, after bonding the laminated sheet in a relatively short time without causing the crosslinking reaction to proceed so much, the laminate sheet is carried into the heat and pressure treatment apparatus, and the secondary curing step is performed. Since the cross-linking is completed to form the module, the problem of long-term restraint of the vacuum laminating apparatus and the problem of sticking out of the adhesive resin sealing material can be eliminated, and workability, productivity and appearance defects can be prevented.
[0030]
As an embodiment of the invention of claim 1, the following inventions of claims 2 to 7 are preferable. That is, in the manufacturing method according to claim 1, the adhesive resin sealing material is EVA (ethylene-vinyl acetate copolymer resin), the predetermined temperature in the primary curing step is 140 to 160 ° C., and the predetermined time Is 5 to 10 minutes (the invention of claim 2). The degree of cross-linking and curing of EVA varies depending on the temperature and time, but the above range is preferable in order to adhere the laminated sheet in a relatively short time so that the laminated sheet can be transported.
[0031]
Further, in the manufacturing method according to the first or second aspect, at the time of the primary curing treatment step, a release sheet is overlapped on both main surfaces of the laminated sheet and processed (the invention of the third aspect). This release sheet has not only a function as a separator in the multiple module processing of the invention of claim 5 described later but also a function of strengthening the rigidity of the laminated sheet in the glassless method, thereby improving workability.
[0032]
Furthermore, in the manufacturing method according to any one of claims 1 to 3, the adhesive resin sealing material is EVA, and a predetermined temperature in the secondary curing process is 140 to 160 ° C, and a predetermined pressure is set. Is set to 0.001 to 0.1 MPa (the invention of claim 4). When the pressure is less than 0.001 MPa, no pressurizing effect can be obtained. This is because there are places where pressure is unlikely to be applied, such as at the boundary between the presence and absence of a solar cell, and the film thickness may be non-uniform, which causes a problem of causing poor appearance. On the other hand, if it is larger than 0.1 MPa, the film thickness becomes thin due to over-pressurization, there is a difficulty in dimensional stability, and there is a problem that EVA protrudes from the edge of the substrate.
[0033]
Further, in the manufacturing method according to any one of claims 1 to 4, in the secondary curing process, a plurality of stacked sheets after the primary curing process are provided on both main surfaces of each laminated sheet. The laminated body laminated via the release sheet is subjected to heat and pressure treatment collectively (the invention of claim 5). Thereby, the working time and cost can be reduced.
[0034]
Furthermore, in the manufacturing method according to claim 5, each of the release sheets in the laminate is disposed on each of both main surfaces of each of the laminate sheets, and each of the release sheets in the adjacent laminate sheet. In the meantime, the secondary curing treatment is performed by arranging rubber plates in between (the invention of claim 6). This allows the rubber plate to act as a cushioning material, thereby preventing appearance defects such as wrinkles from occurring.
[0035]
Furthermore, in the manufacturing method according to any one of claims 3 to 6, the release sheet is made of an embossed fluororesin-impregnated glass cloth (the invention of claim 7). This facilitates peeling and improves strength.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the present invention will be described below together with comparative examples. The configuration of the solar cell module used in Examples and Comparative Examples described later is the same as that formed from the laminated sheet shown in FIG.
[0037]
(Example)
In FIG. 4B, the protective film 74 is an ETFE weather-resistant film having a thickness of 0.025 mm, and EVA having a thickness of 0.4 mm is used as the adhesive resin sealing material 75. As the internal wiring 72, a metal foil made of Sn / Cu / Sn material and having a thickness of 0.10 mm and a width of 8 mm was used. As the internal wiring 72, a solder-plated Cu material can be used. As the auxiliary wiring 73, a tape having a width of 8 mm in which a conductive adhesive was applied to a laminate of a PET film having a thickness of 0.025 mm and aluminum having a thickness of 0.030 mm was used.
[0038]
In the structure as shown in FIG. 4B, first, the protective film 74 is set on an embossed release sheet 91 (manufactured by Chuko Kasei Co., Ltd., trade name: Chuko Flow: FGF-400) shown in FIG. After assembling the resin encapsulant 75, the solar cell 10 having the adhesive resin encapsulant 75 having a thickness of 0.3 mm preliminarily laminated on the surface side and the internal wiring 72 are set at predetermined positions, and the auxiliary wiring is set. At 73, the solar cell 10 was electrically connected to the internal wiring 72. Next, after the adhesive resin encapsulant 75 is placed, a galvalume steel plate (manufactured by Kawa iron plate, trade name: Regino Color Shincha) 71 is placed, and finally the embossed release sheet 91 is set to complete the assembly. I do.
[0039]
Assemble a predetermined number of sheets, set them in parallel in a vacuum laminating apparatus, perform primary curing under the prescribed conditions (eg, evacuate for 5 minutes, press for 1 minute, and primary cure for 5 minutes) at a temperature of 150 ° C. Was temporarily taken out together with the embossed release sheet 91 and temporarily stored at room temperature.
[0040]
After repeating the above-described steps to produce ten or more finished products of the primary curing process, as shown in the schematic diagram of FIG. The release sheet 91 and the rubber plate 92 were assembled in this order between the upper and lower plates 93, and the solar cell modules 80 set between the primary cured release sheets were assembled in a predetermined number of steps while sequentially inserting the rubber plate 92 therebetween. Next, the pressure was adjusted and the pressure was adjusted so that the surface pressure became 0.05 MPa.
[0041]
The press simple jig in which the solar cell modules were stacked and assembled was set in a heating and pressurizing apparatus 90 as shown in FIG. 2, and a secondary curing treatment was performed at a temperature of 150 ° C. for about 1 hour. After that, a switch for heat treatment (not shown) of the heat and pressure treatment device 90 was turned off, and the temperature was gradually cooled until the temperature dropped to 60 ° C., thereby producing a solar cell module with a steel plate.
[0042]
(Comparative example)
A vacuum laminating process was performed by the laminating apparatus shown in FIG. 8 according to a laminating condition profile (vacuum evacuation for 15 minutes, press for 1 minute, curing process for 20 minutes) shown in FIG. The working time at this time required 65 minutes.
[0043]
The time required for the manufacturing process of the solar cell module manufactured according to the above-described embodiment is from about assembling to curing removal is within about 20 minutes in terms of one module, and the process time is significantly reduced as compared with the comparative example of the conventional method. I was able to. Further, the conventional method has a problem of contamination of the device due to the protrusion of the EVA and a reduction in productivity associated therewith. However, the problem of the contamination of the device has been solved by stacking fluororesin release sheets on the upper and lower sides of the module. .
[0044]
Further, in the method for manufacturing the solar cell module of the comparative example, the temperature raising step, the softening / melting of the adhesive resin sealing material 75 from the curing, and the step of cooling to room temperature are continuously performed in the same vacuum laminating apparatus. The device is restrained for over an hour and can only be manufactured 7-8 cycles / day. Therefore, the productivity is low and the cost is high. However, as in the above embodiment of the present invention, a method of evacuating for 5 minutes, pressing for 1 minute, performing primary curing for 5 minutes, taking out and temporarily storing in a high temperature state. If 28 is adopted, 28 to 32 cycles / day can be manufactured. Therefore, the productivity is remarkably improved as compared with the related art, and the cost can be reduced accordingly.
[0045]
【The invention's effect】
According to the present invention, as described above, a laminated sheet obtained by laminating solar cells via a sheet-like adhesive resin sealing material between a front surface protection member and a back surface protection member is formed at a predetermined temperature by a vacuum laminating apparatus. Heat and pressure treatment for a predetermined time, primary curing treatment of the adhesive resin sealing material, and then heat and pressure at a predetermined pressure and a predetermined temperature for a predetermined time by a heat and pressure processing device different from the vacuum laminating device. By treating the adhesive resin encapsulant for secondary curing, to produce a glass-less thin solar cell module,
The problem of restraining the vacuum laminating device for a long time and the problem of sticking out of the adhesive resin sealing material can be solved, and the workability and productivity can be improved and appearance defects can be prevented.
[Brief description of the drawings]
FIG. 1 is a diagram showing a stack of modules according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a heating and pressurizing apparatus according to an embodiment of the present invention. FIG. FIG. 4 is a diagram showing a lamination process condition profile. FIG. 4 is a schematic configuration diagram relating to a laminated sheet of a solar cell module to which the present invention is applied. FIG. 5 is a schematic side sectional view of a schematic configuration of various conventional solar cell modules. 6 is a side sectional view of a schematic configuration showing an example of a conventional solar cell module. FIG. 7 is a side sectional view of a schematic configuration of a solar cell module in which the solar cell module of FIG. 6 is mounted on a frame. Side sectional view of a vacuum laminating apparatus related to the module manufacturing method.
70: Solar cell, 71: Steel plate, 74: Protective film, 75: Adhesive resin sealing material, 80: Solar cell module, 90: Heat and pressure treatment device, 91: Release sheet, 92: Rubber plate, 93: Plate , 100: vacuum laminating apparatus.

Claims (7)

表面保護部材と裏面保護部材との間に、複数個の太陽電池素子を直列または並列接続した太陽電池を、シート状の接着性樹脂封止材を介して封止してなるガラスレスの薄型太陽電池モジュールの製造方法において、下記の工程を含むことを特徴とする太陽電池モジュールの製造方法。
1)表面保護部材と裏面保護部材との間に、シート状の接着性樹脂封止材を介して太陽電池を積層した積層シートを、真空ラミネート装置により所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を一次硬化処理する工程(一次硬化処理工程)。
2)前記一次硬化処理工程後の積層シートを、前記真空ラミネート装置とは異なる加熱加圧処理装置により、所定圧力および所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を二次硬化処理する工程(二次硬化処理工程)。
A glassless thin solar cell obtained by sealing a solar cell in which a plurality of solar cell elements are connected in series or in parallel between a surface protection member and a back surface protection member via a sheet-like adhesive resin sealing material. A method for manufacturing a solar cell module, comprising the following steps in a method for manufacturing a battery module.
1) A laminated sheet obtained by laminating a solar cell between a surface protection member and a back surface protection member via a sheet-like adhesive resin sealing material is heated and pressed at a predetermined temperature for a predetermined time by a vacuum laminating apparatus. And a step of performing a primary curing treatment on the adhesive resin sealing material (primary curing treatment step).
2) The laminated sheet after the primary curing process is heated and pressed at a predetermined pressure and a predetermined temperature for a predetermined time by a heating and pressure processing device different from the vacuum laminating device, and the adhesive resin sealing material is removed. Step of performing a secondary curing treatment (secondary curing treatment step).
請求項1に記載の製造方法において、前記接着性樹脂封止材はEVA(エチレン−酢酸ビニル共重合樹脂)とし、かつ前記一次硬化処理工程における所定温度は140〜160℃とし、所定時間は5〜10分とすることを特徴とする太陽電池モジュールの製造方法。The manufacturing method according to claim 1, wherein the adhesive resin sealing material is EVA (ethylene-vinyl acetate copolymer resin), and a predetermined temperature in the primary curing step is 140 to 160 ° C, and a predetermined time is 5 ° C. A method for producing a solar cell module, wherein the method is performed for 10 minutes to 10 minutes. 請求項1または2に記載の製造方法において、前記一次硬化処理工程の際、前記積層シートの両主面に剥離シートを重ねて処理することを特徴とする太陽電池モジュールの製造方法。3. The method according to claim 1, wherein in the primary curing step, a release sheet is overlapped on both main surfaces of the laminated sheet and processed. 4. 請求項1ないし3のいずれか1項に記載の製造方法において、前記接着性樹脂封止材はEVAとし、かつ前記二次硬化処理工程における所定温度は140〜160℃とし、所定圧力は0.001〜0.1MPaとすることを特徴とする太陽電池モジュールの製造方法。4. The method according to claim 1, wherein the adhesive resin sealing material is EVA, a predetermined temperature in the secondary curing process is 140 to 160 ° C., and a predetermined pressure is 0. 001 to 0.1 MPa, a method for manufacturing a solar cell module. 請求項1ないし4のいずれか1項に記載の製造方法において、前記二次硬化処理工程の際、前記一次硬化処理工程後の積層シートを複数段、各積層シートの両主面に剥離シートを介して積層した積層体を、一括して加熱加圧処理することを特徴とする太陽電池モジュールの製造方法。In the manufacturing method according to any one of claims 1 to 4, in the case of the secondary curing treatment step, the laminated sheet after the primary curing treatment step is a plurality of stages, and a release sheet is provided on both main surfaces of each laminated sheet. A method for manufacturing a solar cell module, comprising: performing a heating and pressurizing treatment on a stacked body that has been stacked via a batch. 請求項5に記載の製造方法において、前記積層体における各剥離シートは、各積層シートの両主面に対してそれぞれ各1枚配設し、かつ隣接する積層シートにおける各剥離シートの間に、それぞれゴム板を配設して、前記二次硬化処理を行なうことを特徴とする太陽電池モジュールの製造方法。In the manufacturing method according to claim 5, each release sheet in the laminated body is disposed for each one of both main surfaces of each laminated sheet, and between each release sheet in an adjacent laminated sheet, A method for manufacturing a solar cell module, wherein a rubber plate is provided and the secondary curing treatment is performed. 請求項3ないし6のいずれか1項に記載の製造方法において、前記剥離シートは、エンボス付のフッ素樹脂含浸ガラスクロスからなることを特徴とする太陽電池モジュールの製造方法。The method according to any one of claims 3 to 6, wherein the release sheet comprises an embossed glass cloth impregnated with a fluorine resin.
JP2002343937A 2002-11-27 2002-11-27 Manufacturing method of solar cell module Expired - Fee Related JP3856224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343937A JP3856224B2 (en) 2002-11-27 2002-11-27 Manufacturing method of solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343937A JP3856224B2 (en) 2002-11-27 2002-11-27 Manufacturing method of solar cell module

Publications (2)

Publication Number Publication Date
JP2004179397A true JP2004179397A (en) 2004-06-24
JP3856224B2 JP3856224B2 (en) 2006-12-13

Family

ID=32705605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343937A Expired - Fee Related JP3856224B2 (en) 2002-11-27 2002-11-27 Manufacturing method of solar cell module

Country Status (1)

Country Link
JP (1) JP3856224B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873499A1 (en) * 2004-07-23 2006-01-27 Thales Sa Apparatus for assembling/sticking two or more components such as patch antenna has chamber with separator and effluent circuit with inlet, outlet and valve
JP2007201344A (en) * 2006-01-30 2007-08-09 Nippon Mektron Ltd Lamination method of printed circuit board
JP2008282906A (en) * 2007-05-09 2008-11-20 Nakajima Glass Co Inc Manufacturing method for solar cell module
JP2011249835A (en) * 2011-08-01 2011-12-08 Nakajima Glass Co Inc Manufacturing method of solar cell module
JP2012216828A (en) * 2011-03-28 2012-11-08 Mitsubishi Chemicals Corp Manufacturing method of solar cell module
WO2015019443A1 (en) * 2013-08-07 2015-02-12 株式会社エヌ・ピー・シー Solar cell module laminating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873499A1 (en) * 2004-07-23 2006-01-27 Thales Sa Apparatus for assembling/sticking two or more components such as patch antenna has chamber with separator and effluent circuit with inlet, outlet and valve
EP1622437A1 (en) * 2004-07-23 2006-02-01 Thales Verfahren zum Verkleben oder Zusammenstellen mehrerer Elemente
JP2007201344A (en) * 2006-01-30 2007-08-09 Nippon Mektron Ltd Lamination method of printed circuit board
JP2008282906A (en) * 2007-05-09 2008-11-20 Nakajima Glass Co Inc Manufacturing method for solar cell module
JP2012216828A (en) * 2011-03-28 2012-11-08 Mitsubishi Chemicals Corp Manufacturing method of solar cell module
JP2011249835A (en) * 2011-08-01 2011-12-08 Nakajima Glass Co Inc Manufacturing method of solar cell module
WO2015019443A1 (en) * 2013-08-07 2015-02-12 株式会社エヌ・ピー・シー Solar cell module laminating device

Also Published As

Publication number Publication date
JP3856224B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP4401649B2 (en) Manufacturing method of solar cell module
EP2913921B1 (en) Solar cell apparatus
TW201228011A (en) Photovoltaic module and method for the production thereof
WO2003005457A1 (en) Solar cell module and method of manufacturing the same
JPH11312820A (en) Solar cell module and its manufacture
US8877540B2 (en) Solar cell module and manufacturing method of solar cell module
JP2003086822A (en) Solar battery module and method for manufacturing the same
JP2008282906A (en) Manufacturing method for solar cell module
WO2011158147A1 (en) System and method for laminating pv device
JP2002039631A (en) Photothermal hybrid panel, hybrid panel main body using it, and method of manufacturing it
JP3448198B2 (en) Method of manufacturing solar cell module
JPS60260164A (en) Solar battery module and manufacture thereof
JP3856224B2 (en) Manufacturing method of solar cell module
KR20220085436A (en) High-power shingled construction material integrated solar module for building facade and manufacturing method thereof
JP4086353B2 (en) LAMINATE MANUFACTURING METHOD AND SOLAR CELL MODULE MANUFACTURING METHOD
JP2007242677A (en) Solar battery module, method of manufacturing the same and solar battery system
JP2004311571A (en) Method of manufacturing solar cell module
WO2012029262A1 (en) Laminating method
JP2006295145A (en) Manufacturing method of solar cell module
JP2001060706A (en) Method for manufacture of solar cell module
JP2002111014A (en) Solar light generating plastic module
JP6438250B2 (en) Solar cell module and manufacturing method thereof
JPH11254526A (en) Laminating apparatus and method
US11545593B2 (en) Encapsulation for solar cell and method for encapsulating solar cell
JPH09312408A (en) Manufacture of solar battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees