WO2013061739A1 - Composite thermoelectric conversion material, thermoelectric conversion material paste using same, and themoelectric conversion module using same - Google Patents

Composite thermoelectric conversion material, thermoelectric conversion material paste using same, and themoelectric conversion module using same Download PDF

Info

Publication number
WO2013061739A1
WO2013061739A1 PCT/JP2012/075593 JP2012075593W WO2013061739A1 WO 2013061739 A1 WO2013061739 A1 WO 2013061739A1 JP 2012075593 W JP2012075593 W JP 2012075593W WO 2013061739 A1 WO2013061739 A1 WO 2013061739A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
semiconductor
glass
oxide
composite material
Prior art date
Application number
PCT/JP2012/075593
Other languages
French (fr)
Japanese (ja)
Inventor
正 藤枝
沢井 裕一
内藤 孝
拓也 青柳
山本 浩貴
秀明 鷹野
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2013061739A1 publication Critical patent/WO2013061739A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a thermoelectric conversion material, and in particular, a thermoelectric conversion composite material in which a semiconductor thermoelectric conversion material and semiconductor glass are combined, a thermoelectric conversion material paste using the composite material, and a thermoelectric manufactured using the composite material. It concerns the conversion module.
  • Thermoelectric conversion materials are used as power generation elements and cooling elements because they exhibit the property of generating electricity when given a temperature difference (Seebeck effect) and conversely cooling when electricity flows (Peltier effect). Since the former property can directly convert heat into electricity, power generation using exhaust heat is possible, which is expected as one of clean energy technologies.
  • thermoelectric conversion materials Bi-Te materials, Bi-Sb materials, Bi-Te-Sb materials, etc. are known as thermoelectric conversion materials. Since the electromotive force due to the Seebeck effect is proportional to the temperature difference between the high-temperature part and the low-temperature part of the thermoelectric conversion element, a conventional thermoelectric conversion module must use a bulk-type thermoelectric conversion element to increase the temperature difference. There were many. However, the bulk-type thermoelectric conversion element has a problem in that microfabrication is not easy and the output density is low and the power generation unit price of the module is high. Therefore, development of a thermoelectric conversion element and a thermoelectric conversion module with high output density at low cost is strongly desired.
  • Patent Document 1 discloses ceramic thermoelectric conversion material particles having a diameter of 2 to 3 ⁇ m, ceramic thermoelectric conversion material particles having a diameter of 200 ⁇ m or less, and metal oxide fine particles as a binder.
  • a thermoelectric conversion element in which a paste composed of a solvent is formed by screen printing is disclosed. According to Patent Document 1, it is said that a highly efficient thermoelectric conversion element can be provided with good sinterability.
  • Patent Document 2 discloses a thermoelectric material in which an organic thermoelectric material and an inorganic thermoelectric material are integrated in a dispersed state, and the organic thermoelectric material is polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof.
  • the inorganic thermoelectric material is Bi- (Te, Se) -based, Si-Ge-based, Pb-Te-based,
  • a thermoelectric material that is at least one selected from GeTe—AgSbTe, (Co, Ir, Ru) —Sb, and (Ca, Sr, Bi) Co 2 O 5 is disclosed.
  • an organic thermoelectric conversion material and an inorganic thermoelectric conversion material are hybridized to have both the workability of the organic thermoelectric conversion material and the thermoelectric characteristics of the inorganic thermoelectric conversion material, and according to the characteristics of the inorganic thermoelectric conversion material. It is said that a novel thermoelectric material capable of obtaining n-type thermoelectric characteristics can be provided.
  • Non-Patent Document 1 discloses a thin-film thermoelectric conversion module manufactured by using a semiconductor process such as a sputtering method. According to Non-Patent Document 1, by using a semiconductor process, for example, a thermoelectric conversion module having 540 35 ⁇ m square thermocouples on a 3.3 mm square chip of a silicon wafer can be manufactured. By using the thermoelectric conversion module, power generation using waste heat becomes possible, and a batteryless wireless sensor module is realized.
  • thermoelectric conversion material and the thermoelectric conversion element described in Patent Document 1 and Patent Document 2 can be used in a simple manufacturing process such as screen printing or coating by making the thermoelectric conversion material into a paste or liquid and have a desired pattern. A thick film can be formed easily (ie, at a low manufacturing cost).
  • the thermoelectric conversion material and the thermoelectric conversion element of Patent Document 1 use metal oxide fine particles as a binder of the inorganic thermoelectric conversion material, and the metal oxide fine particles do not have a thermoelectric conversion function. There was a problem that the thermoelectric conversion performance of was hindered. Further, the thermoelectric conversion material of Patent Document 2 has a problem in that the thermoelectric conversion performance as a whole is hindered because the thermoelectric conversion characteristics of the organic thermoelectric conversion material to be dispersed and mixed (hybridized) are low. .
  • thermoelectric conversion module described in Non-Patent Document 1 has a fine pattern and a dense film is formed, the element density per unit area of the module is high and the output (electromotive force) is high. It is expected to be obtained.
  • a thin film it is essentially difficult to take a temperature difference between the front and back surfaces of the element (the front and back surfaces of the module), and a very large cooling member (for example, a cooling fin) is used to create the temperature difference. I need. For this reason, there is a problem that the thermoelectric conversion module is enlarged as a whole.
  • a semiconductor process vacuum process
  • the manufacturing apparatus cost is high and the module price is high.
  • an object of the present invention is to provide a thermoelectric conversion composite material capable of producing a thermoelectric conversion element having high characteristics even using a low-cost process, and a thermoelectric conversion material paste using the composite material. It is another object of the present invention to provide a low-cost and highly efficient thermoelectric conversion module using the composite material.
  • thermoelectric conversion composite material in which a semiconductor thermoelectric conversion material and a binder are combined in order to achieve the above object, wherein the binder has the same polarity as the semiconductor thermoelectric conversion material.
  • the semiconductor glass is a lead-free glass containing vanadium oxide when the component is expressed by an oxide and having a softening point of 480 ° C. or lower.
  • “Lead-free” in the present invention refers to a prohibited substance (lead) in the RoHS Directive (Directive by the European Union (EU) on restrictions on the use of specific hazardous substances in electronic and electrical equipment, effective July 1, 2006). It shall be allowed to contain in the range below the specified value. The definition of the softening point of glass will be described later.
  • the present invention can be improved or changed as follows in the thermoelectric conversion composite material according to the present invention.
  • the concentration of pentavalent vanadium ions and the concentration of tetravalent vanadium ions are different.
  • the ratio of “pentavalent vanadium ion concentration: [V 5+ ]” to “tetravalent vanadium ion concentration: [V 4+ ]” is not “1” ([V 5+ ] / [V 4+ ] ⁇ 1).
  • the “valence and concentration of vanadium ion” in the present invention is defined as the valence and concentration measured by quantitative analysis by oxidation-reduction titration method based on JIS G1221.
  • the semiconductor glass further contains tellurium dioxide and / or diphosphorus pentoxide when the component is represented by an oxide, and when all of the vanadium oxide is converted into divanadium pentoxide, The total compounding ratio of vanadium (V 2 O 5 ), the tellurium dioxide (TeO 2 ) and the diphosphorus pentoxide (P 2 O 5 ) is 60% by mass or more.
  • the semiconductor thermoelectric conversion material is p-type, and the semiconductor glass has diarsenic trioxide (As 2 O 3 ), iron (III) oxide (Fe 2 O 3 ) when the component is expressed by an oxide.
  • the semiconductor thermoelectric conversion material is n-type, and the semiconductor glass has silver oxide (I) (Ag 2 O), copper oxide (II) (CuO), alkali when the component is represented by an oxide. It further contains at least one of a metal oxide and an alkaline earth metal oxide.
  • the compounding ratio of the semiconductor glass is 10 to 50% by volume.
  • the semiconductor thermoelectric conversion material is a Bi- (Te, Se, Sn, Sb) material, Pb-Te material, Zn-Sb material, Mg-Si material, Si-Ge material, GeTe- At least one selected from AgSbTe materials, (Co, Ir, Ru) -Sb materials, (Ca, Sr, Bi) Co 2 O 5 materials, Fe-Si materials, and Fe-V-Al materials It is.
  • the thermoelectric conversion material paste according to the present invention includes the above-described thermoelectric conversion composite material and a solvent.
  • thermoelectric conversion material paste according to the present invention the solvent is butyl carbitol acetate or ⁇ -terpineol, and further contains ethyl cellulose or nitrocellulose as a resin binder.
  • the thermoelectric conversion element according to the present invention is made of the above-described thermoelectric conversion composite material, and at least a part of the semiconductor glass is crystallized.
  • the thermoelectric conversion element is defined as a semiconductor thermoelectric conversion material formed into a desired shape and size and fired (sintered).
  • the crystallized portion is a vanadium complex oxide crystal.
  • thermoelectric conversion module includes a substrate, a plurality of thermoelectric conversion elements arranged on the substrate, and a plurality of thermoelectric conversion elements formed on the substrate and adjacent to each other.
  • the thermoelectric conversion element is a thermoelectric conversion element made of the above-described thermoelectric conversion composite material, and is electrically connected in series so that the polarities of the adjacent thermoelectric conversion elements are alternated.
  • the thermoelectric conversion module is defined as a plurality of thermoelectric conversion elements electrically connected.
  • thermoelectric conversion composite material capable of producing a thermoelectric conversion element having high characteristics even using a low-cost process
  • thermoelectric conversion material paste using the composite material. Furthermore, by using the composite material, a low-cost and high-efficiency thermoelectric conversion module can be provided.
  • thermoelectric conversion module which concerns on this invention.
  • thermoelectric conversion module which concerns on this invention.
  • thermoelectric conversion module which concerns on this invention.
  • thermoelectric conversion module which concerns on this invention.
  • thermoelectric conversion module which concerns on this invention.
  • thermoelectric conversion module which concerns on this invention.
  • thermoelectric conversion module which concerns on this invention.
  • thermoelectric conversion module which concerns on this invention.
  • thermoelectric conversion module which concerns on this invention.
  • thermoelectric conversion module which concerns on this invention.
  • solar energy / solar heat combined power generation system using the thermoelectric conversion module according to the present invention It is a cross-sectional schematic diagram which shows the measuring method of the conversion efficiency of a thermoelectric conversion module.
  • thermoelectric conversion materials that enable the production of thermoelectric conversion elements that are more efficient than conventional methods even using low-cost processes such as screen printing and coating
  • present inventors have newly developed semiconductor thermoelectric conversion materials and new ones. It has been found that the above-described object can be achieved by compounding with a semiconductor glass.
  • thermoelectric conversion composite material As described above, the thermoelectric conversion composite material according to the present invention is obtained by compounding a semiconductor thermoelectric conversion material with a semiconductor glass having the same polarity as the semiconductor thermoelectric conversion material, and the semiconductor glass oxidizes components. It is a lead-free glass containing vanadium oxide and having a softening point of 480 ° C. or lower. More specifically, the semiconductor glass used in the present invention further contains and contains tellurium dioxide (TeO 2 ) and / or diphosphorus pentoxide (P 2 O 5 ) when the component is represented by an oxide. When all vanadium oxides are converted as divanadium pentoxide (V 2 O 5 ), the total blending ratio of divanadium pentoxide, tellurium dioxide and diphosphorus pentoxide is 60% by mass or more.
  • the semiconductor glass of the present invention becomes both a p-type semiconductor and an n-type semiconductor by adjusting the valence balance of vanadium ions in the glass.
  • the ratio of “pentavalent vanadium ion concentration: [V 4+ ]” to “pentavalent vanadium ion concentration: [V 5+ ]” is smaller than “1” ([V 5+ ] / [V 4+ ] ⁇ 1) is a p-type semiconductor, and if it is greater than “1” ([V 5+ ] / [V 4+ ]> 1), it is an n-type semiconductor.
  • the semiconductor glass By making the polarity of the semiconductor glass the same as that of the semiconductor thermoelectric conversion material, the semiconductor glass can be compounded without impairing the thermoelectric conversion characteristics as a whole.
  • the “valence and concentration of vanadium ions” can be measured by quantitative analysis by a redox titration method based on JIS G1221. Further, the conductivity of the semiconductor glass in an amorphous state is about 10 ⁇ 2 to 10 ⁇ 6 S / m.
  • the polarity (that is, [V 5+ ] / [V 4+ ]) of the semiconductor glass of the present invention can be controlled by an additive element.
  • an element having an effect of reducing divanadium pentoxide (V 2 O 5 ) may be added.
  • diarsenic trioxide As 2 O 3
  • iron (III) oxide Fe 2 O 3
  • antimony trioxide Sb 2 O 3
  • bismuth oxide At least one or more of (III) (Bi 2 O 3 ), tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), and manganese oxide (MnO) may be added.
  • the polarity of the semiconductor glass is n-type ([V 5+ ] / [V 4+ ]> 1)
  • the component is represented by an oxide
  • the addition of these elements not only controls the polarity of the semiconductor glass but also has an effect of strengthening the glass structure (an effect of increasing the stability of the glass) and an effect of improving the water resistance.
  • the semiconductor glass used in the present invention is characterized by a low softening point of 480 ° C. or lower.
  • a low softening point of 480 ° C. or lower.
  • firing can be performed at a temperature lower than the sintering temperature of thermoelectric conversion materials in conventional bulk thermoelectric conversion elements (for example, 600 to 650 ° C for Bi-Te materials). It becomes possible.
  • Lowering the calcination temperature in addition to reducing the energy cost required for calcination, suppresses unwanted chemical reactions and thus prevents degradation of thermoelectric conversion characteristics.
  • FIG. 1 is an example of a chart obtained in the temperature rising process of differential thermal analysis (DTA) for a typical semiconductor glass in the present invention.
  • DTA measurement was performed using ⁇ -alumina as a reference sample at a temperature increase rate of 5 ° C./min in the atmosphere.
  • the mass of the reference sample and the measurement sample was 650 mg, respectively.
  • DTA differential thermal analysis
  • each temperature shall be the temperature calculated
  • the characteristic temperatures (eg, softening point T s ) described herein are based on the above definition.
  • the semiconductor thermoelectric conversion material compounded with the semiconductor glass is not particularly limited, and an optimum material can be selected according to the use temperature. For example, if it is used at 200 ° C. or lower, a Bi— (Te, Sb) -based material can be preferably used. In addition to the above, for example, Bi- (Te, Se, Sn, Sb) materials, Pb-Te materials, Zn-Sb materials, Mg-Si materials, Si-Ge materials, GeTe-AgSbTe -Based materials, (Co, Ir, Ru) -Sb based materials, (Ca, Sr, Bi) Co 2 O 5 based materials, Fe-Si based materials, Fe-V-Al based materials, etc. can be suitably used. . Furthermore, in order to cope with a wide temperature range, it is possible to combine thermoelectric conversion materials having different operating temperatures.
  • thermoelectric conversion material of the present invention is a composite of the semiconductor thermoelectric conversion material and the semiconductor glass described above, and the semiconductor thermoelectric conversion material powder and the semiconductor glass powder are mixed and applied and fired. (Details will be described later).
  • the particle diameters of the semiconductor thermoelectric conversion material powder and the semiconductor glass powder to be mixed are each preferably 5 ⁇ m or less in consideration of applicability in the application process.
  • the mixing ratio of the semiconductor glass to the semiconductor thermoelectric conversion material is preferably 10% by volume or more and 50% by volume or less (10 to 50% by volume).
  • the mixing ratio of the semiconductor glass is less than 10% by volume, the surface of the particles of the semiconductor thermoelectric conversion material is not sufficiently wetted by the softened / molten semiconductor glass, so that the liquid phase sintering of the semiconductor thermoelectric conversion material particles does not proceed sufficiently.
  • the mixing ratio of the semiconductor glass exceeds 50% by volume, the contact area between the semiconductor thermoelectric conversion material particles decreases, and the thermoelectric conversion characteristics as a whole deteriorate.
  • thermoelectric conversion material The performance of the thermoelectric conversion material will be briefly described.
  • the performance of thermoelectric conversion materials is often expressed using a dimensionless figure of merit (ZT) expressed by the following equation (1) as an index.
  • ZT dimensionless figure of merit
  • S Seebeck coefficient
  • conductivity
  • thermal conductivity
  • T operating temperature
  • the Seebeck coefficient is a physical property value of the thermoelectric conversion material, but when the thermoelectric conversion material is a sintered body, the conductivity and thermal conductivity are characteristic values.
  • formula (1) is applied to the thermoelectric conversion composite material (composite of semiconductor thermoelectric conversion material and semiconductor glass) according to the present invention, there are the following points to consider.
  • (A) Seebeck coefficient may decrease due to compounding.
  • (B) The effective conductivity may decrease due to the composite.
  • the effective thermal conductivity may decrease due to the composite. In other words, it can be said that it is important to suppress the decrease in the Seebeck coefficient (that is, the suppression of the chemical reaction between the semiconductor thermoelectric conversion material and the semiconductor glass) and the effective decrease in the electrical conductivity.
  • At least a part of the semiconductor glass combined with the semiconductor thermoelectric conversion material is crystallized.
  • M x V 2 O 5 M: copper, silver, alkali metal, alkaline earth metal, 0 ⁇ x ⁇ 1
  • LiV 2 O 4 CaVO
  • SrVO 3 La 1-x Sr x VO 3
  • Gd 1-x Sr x VO 3 V 2 O 3 , VO 2 and the like are preferably deposited.
  • FIG. 2 is a graph showing the temperature dependence of the electrical conductivity of the semiconductor glass on which Cu x V 2 O 5 is deposited and the semiconductor glass on which V 2 O 5 is deposited.
  • Conductivity at room temperature of the semiconductor glass before precipitating vanadium composite oxide crystals (crystallized glass) is because it was 10- 4 S / m order, as shown in FIG. 2, the present invention It has been confirmed that the electrical conductivity of the glass is dramatically improved (about 5 digits) by crystallizing the semiconductor glass.
  • thermoelectric conversion material paste includes the above-described thermoelectric conversion composite material and a solvent.
  • the paste may further contain a resin binder.
  • a resin binder As the solvent, butyl carbitol acetate or ⁇ -terpineol is preferably used.
  • the resin binder ethyl cellulose or nitrocellulose is preferably used.
  • a paste using ⁇ -terpineol as a solvent and not using a cellulose resin binder may be used.
  • thermoelectric conversion composite material By forming the thermoelectric conversion composite material according to the present invention into a paste, a desired shape (fine pattern) can be easily formed on the substrate using a low-cost process such as screen printing or coating. Thereafter, the semiconductor thermoelectric material in the paste is subjected to liquid phase sintering by firing at a temperature about 20 to 40 ° C. higher than the softening point T s of the semiconductor glass in the paste, thereby producing a thermoelectric conversion element and a thermoelectric conversion module. be able to.
  • thermoelectric conversion element is defined as a p-type semiconductor thermoelectric conversion material or an n-type semiconductor thermoelectric conversion material that is molded and fired (sintered) into a desired shape and size, and is a thermoelectric conversion module. Is defined as that a plurality of thermoelectric conversion elements are electrically connected.
  • FIG. 3 is a schematic cross-sectional view showing an example of the manufacturing process of the thermoelectric conversion module according to the present invention.
  • thermoelectric conversion module of the present invention and the manufacturing method thereof will be described with reference to FIG.
  • the substrate 101 may be any material having high thermal conductivity, and is not particularly limited.
  • aluminum can be used suitably.
  • alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon carbide (SiC), beryllia (BeO), or the like having high thermal conductivity and high insulation may be used.
  • the insulating layer 102 only needs to have a high insulating property.
  • alumina or aluminum nitride may be formed by oxidizing or nitriding the substrate surface. It is more preferable that the insulating layer 102 has high thermal conductivity. Note that the insulating layer 102 is not necessarily formed when the substrate is highly insulating.
  • the electrode 103 is not particularly limited as long as it has an electric conductivity of the order of 10 5 S / m or more and a small difference in thermal expansion coefficient from the base material 101.
  • a metal film formed by a sputtering method or an electrode film coated and baked with a conductive paste may be used.
  • thermoelectric conversion material paste which concerns on this invention is prepared.
  • the p-type thermoelectric conversion material paste 104 is prepared by mixing p-type semiconductor thermoelectric conversion material particles 105, p-type semiconductor glass 106, and a solvent (for example, butyl carbitol acetate).
  • n-type thermoelectric conversion material paste 107 is prepared by mixing n-type semiconductor thermoelectric conversion material particles 108, n-type semiconductor glass 109, and a solvent (for example, butyl carbitol acetate).
  • thermoelectric conversion material pastes 104 and 107 are applied on the electrode 103 so that the polarities of the thermoelectric conversion material paste are alternated.
  • a coating method a screen printing method, an ink jet method, a stamp method, a photoresist film method, or the like can be suitably used. Thereafter, the solvent is removed by heating to about 150 ° C. to form a thermoelectric conversion material layer (precursor of thermoelectric conversion element).
  • thermoelectric Conversion Element / Thermoelectric Conversion Module Formation Step the substrate 101 on which the electrode 103 prepared in the above-described electrode formation step is formed is overlaid on the thermoelectric conversion material layer. At this time, it is preferable to arrange the substrate 101 on which the electrodes 103 are formed so that the polarities of the thermoelectric conversion materials are alternately connected in series. Thereafter, baking is performed at a temperature about 20 to 40 ° C. higher than the softening point T s of the semiconductor glasses 106 and 109, thereby forming a plurality of electrically connected thermoelectric conversion elements (that is, thermoelectric conversion modules).
  • thermoelectric conversion module it is preferable to seal the ends of the two substrates 101 to be paired with glass.
  • a glass paste 111 for sealing (or glass frit for sealing) may be applied to the end of the substrate 101, and then fired and sealed in an electric furnace. At this time, it is preferable to seal the inside of the thermoelectric conversion module while evacuating.
  • the glass paste 111 for sealing Although there is no special limitation as glass used for the glass paste 111 for sealing, it is desirable to use the glass which can be sealed in the temperature range which does not cause a chemical reaction between the semiconductor thermoelectric conversion material in the thermoelectric conversion element and the semiconductor glass. Moreover, it is preferable that the glass for sealing is glass excellent in water resistance.
  • FIG. 4 is a schematic cross-sectional view showing another example of the manufacturing process of the thermoelectric conversion module according to the present invention. Another example of the manufacturing process of the thermoelectric conversion module according to the present invention will be described with reference to FIG.
  • a highly insulating insulating layer 202 is formed on one surface of the substrate 201. After that, an electrode 203 is formed over the insulating layer 202. A pair of substrates 201 on which electrodes 203 are formed are prepared.
  • thermoelectric conversion material layer forming step a p-type thermoelectric conversion material paste 204 including p-type semiconductor thermoelectric conversion material particles 205 and p-type semiconductor glass 206 is applied on the electrode 203 of one substrate 201, and the other An n-type thermoelectric conversion material paste 207 containing n-type semiconductor thermoelectric conversion material particles 208 and n-type semiconductor glass 209 is applied on the electrode 203 of the substrate 201. Thereafter, each substrate is heated to about 150 ° C. to remove the solvent, thereby forming a thermoelectric conversion material layer (thermoelectric conversion element precursor).
  • thermoelectric conversion element / thermoelectric conversion module forming step the substrates on which the thermoelectric conversion material layers are formed are overlapped so that the polarities of the thermoelectric conversion materials are alternately connected in series. Thereafter, firing is performed at a temperature about 20 to 40 ° C. higher than the softening point T s of the semiconductor glasses 206 and 209, thereby forming a plurality of electrically connected thermoelectric conversion elements (that is, thermoelectric conversion modules).
  • the sealing process was abbreviate
  • FIG. 5 is a schematic perspective view showing an example of the thermoelectric conversion module according to the present invention.
  • a plurality of thermoelectric conversion elements p-type thermoelectric conversion element 304, n-type thermoelectric conversion element 305 are arranged between two opposing substrates 301.
  • the p-type thermoelectric conversion elements 304 and the n-type thermoelectric conversion elements 305 are electrically connected in series via the electrodes 302 formed on the substrate 301 so as to alternate.
  • Extraction electrodes 303 are attached to both ends of the thermoelectric conversion elements connected in series.
  • thermoelectric conversion element shown in the figure are examples, and the optimum shape and dimensions are the thermal conductivity of the thermoelectric conversion composite material to be used, the interfacial thermal resistivity between the thermoelectric conversion composite material and the electrode, It is designed as appropriate in consideration of the interface electrical resistivity and the use of the thermoelectric conversion module.
  • FIG. 6 is a schematic cross-sectional view showing an example of a combined solar / solar heat power generation system using the thermoelectric conversion module according to the present invention.
  • a combined solar / solar thermal power generation system 400 using a thermoelectric conversion module according to the present invention includes a solar cell module 401, a thermoelectric conversion module 402 according to the present invention, and a heat exchanger 403. It has a configuration.
  • the solar cell module 401 is disposed at a position facing sunlight, and has a structure in which a plurality of solar cells 406 connected through a lead frame 407 are fixed by a transparent resin 408 as an example.
  • the incident surface of sunlight is protected by tempered glass 405.
  • the thermoelectric conversion module 402 disposed on the back surface of the solar cell module 401 has a structure similar to that shown in FIGS. 3 to 5, and includes a plurality of thermoelectric conversion elements (p-type thermoelectric conversion elements) between two opposing substrates 409.
  • thermoelectric conversion elements 412, n-type thermoelectric conversion elements 413) are arranged, and electrodes formed on the substrate 409 via the insulating layer 410 so that the p-type thermoelectric conversion elements 412 and the n-type thermoelectric conversion elements 413 are alternately arranged.
  • 411 is electrically connected in series.
  • a heat exchanger 403 is disposed on the other surface of the thermoelectric conversion module 402. Further, a side plate 404 is attached to the side surface of the solar / solar heat combined power generation system 400 via a sealing glass 414.
  • the combined solar and solar power generation system 400 includes solar power generation by the solar cell module 401, solar power generation by the thermoelectric conversion module 402 using a temperature difference between the lower surface of the solar cell module 401 and the upper surface of the heat exchanger 403, and thermoelectric power generation.
  • Recovery for example, hot water supply
  • waste heat that could not be used in the conversion module 402 can be performed by the heat exchanger 403. That is, a cogeneration system of electric power and heat can be constructed.
  • the combined solar / solar heat power generation system 400 can suppress the decrease in efficiency due to the temperature increase of the solar battery cell 406 by actively removing the heat of the solar battery module 401 by the thermoelectric conversion module 402. Furthermore, the temperature difference between the upper and lower surfaces of the thermoelectric conversion module 402 is expanded by actively removing heat from the other surface of the thermoelectric conversion module 402 (surface opposite to the solar cell module 401) with the heat exchanger 403. The thermoelectric conversion efficiency can be improved.
  • Example 1 In this example, semiconductor glasses having various compositions were prepared, and the semiconductor glass was evaluated.
  • the platinum crucible containing the raw material mixed powder was placed in a glass melting furnace and heated and melted. The temperature was raised at a rate of 5 ° C./min, and the glass melted at the set temperature (900 to 1000 ° C.) was held for 1 hour with stirring. Thereafter, the platinum crucible was taken out of the glass melting furnace and cast into a graphite mold heated to 150 to 300 ° C. in advance. Next, the cast glass was moved to a strain relief furnace that had been heated to a strain relief temperature in advance, strain was removed by holding for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min. The glass block cooled to room temperature was pulverized to prepare semiconductor glass SG-01 to SG-19 powders having the nominal compositions shown in the table.
  • the softening point T s was measured by differential thermal analysis (DTA) for each semiconductor glass powder obtained above.
  • the DTA measurement was performed with the reference sample ( ⁇ -alumina) and the measurement sample each having a mass of 650 mg and a temperature increase rate of 5 ° C / min in the atmosphere, and the peak temperature of the second endothermic peak was determined as the softening point T s (See FIG. 1).
  • the results are shown in Table 2.
  • As a result of DTA measurement it was confirmed that all of the semiconductor glasses SG-01 to SG-19 according to the present invention had a softening point of 480 ° C. or lower.
  • the fired molded body was pulverized in a mortar, and the reaction product was identified by a wide-angle X-ray diffraction measurement method (so-called ⁇ -2 ⁇ method).
  • a wide-angle X-ray diffraction measurement method for identification of detected peaks, an ICDD (International Center for Diffraction Data) card, which is a collection of X-ray diffraction standard data, was used.
  • a wide-angle X-ray diffractometer manufactured by Rigaku Corporation, model: RU200B was used as the measuring device.
  • the obtained X-ray diffraction pattern is composed only of a halo pattern derived from glass and a diffraction peak derived from Bi 2 Te 3 , it was determined that the mixed semiconductor glass did not chemically react with Bi 2 Te 3. Evaluated as “pass”.
  • the obtained X-ray diffraction pattern is a reaction product of semiconductor glass and Bi 2 Te 3 (for example, Bi 2 TeO 5 or Bi 4 TeO 8 ), and the volume fraction of the reaction product calculated from the diffraction peak intensity is less than 1/5 of the volume fraction of Bi 2 Te 3 ".
  • the volume fraction of the reaction product calculated from the diffraction peak intensity was more than 1/5 of the volume fraction of Bi 2 Te 3 , it was evaluated as “failed”.
  • the evaluation results are also shown in Table 2.
  • the semiconductor glasses SG-01 to SG-19 of the present invention all have low chemical reactivity with Bi 2 Te 3 when fired in an argon atmosphere.
  • SG-01, SG-02, SG-15, and SG-17 were confirmed to have low chemical reactivity with Bi 2 Te 3 even in firing in the atmosphere.
  • thermoelectric conversion element according to the present invention was produced and its characteristics were evaluated.
  • thermoelectric conversion material As a semiconductor thermoelectric conversion material, p-type Bi 0.3 Sb 1.7 Te 3 powder (manufactured by Toyoshima Seisakusho Co., Ltd., purity: 3N or more, particle size (D50): 3.2 ⁇ m) and n-type Bi 2 Te 3 powder (Co., Ltd.) Made by Toshima Seisakusho, purity: 3N or more, particle size (D50): 2.5 ⁇ m) were prepared. In addition, p-type SG-07 and n-type SG-15 were prepared as compound semiconductor glasses.
  • p-type Bi 0.3 Sb 1.7 Te 3 powder 70% by volume
  • p-type SG-07 (30% by volume)
  • EC ethyl cellulose
  • BCA butyl carbitol acetate
  • 15% by weight of the mixed solution was prepared to produce a p-type thermoelectric conversion material paste.
  • n-type Bi 2 Te 3 powder 70% by volume
  • n-type SG-15 (30% by volume) are mixed, and 15 masses of a mixed solution of EC and BCA is added to the mixed powder.
  • An n-type thermoelectric conversion material paste was prepared.
  • thermoelectric conversion element manufactured by Toshima Seisakusho Co., Ltd.
  • a thermoelectric conversion element manufactured by Toshima Seisakusho Co., Ltd.
  • the Seebeck coefficient and electrical conductivity of these thermoelectric conversion elements were measured with a thermoelectric property evaluation apparatus (manufactured by ULVAC-RIKO, model: ZEM-3). The measurement was performed three times in each of the temperatures of 323 K, 373 K, and 423 K in low-pressure helium gas, and the average value was obtained.
  • Table 3 The results are shown in Table 3.
  • thermoelectric conversion element according to the present invention maintained the same thermoelectric characteristics as compared with the conventional bulk type thermoelectric conversion element.
  • the semiconductor glass of the present invention and the thermoelectric conversion material paste using the same do not adversely affect the thermoelectric properties of the semiconductor thermoelectric conversion material.
  • a thermoelectric conversion element can be produced by firing at a lower temperature than in the case of a conventional bulk thermoelectric conversion element.
  • thermoelectric conversion module according to the present invention was produced, and its conversion efficiency was measured.
  • thermoelectric conversion module (Evaluation of thermoelectric conversion module) The thermoelectric conversion module shown in FIG. 5 was produced using the thermoelectric conversion material paste produced in Example 2. The dimensions and shape of the thermoelectric conversion elements 304 and 305 were made into a cubic shape with a side of about 100 ⁇ m, and 1.44 million thermoelectric conversion elements were integrated on a 70 cm square substrate 301. Table 4 shows an outline of the manufacturing conditions.
  • FIG. 7 is a schematic cross-sectional view showing a method for measuring the conversion efficiency of the thermoelectric conversion module.
  • the produced thermoelectric conversion module 502 was installed between the heater 501 and the copper block 504 having a known thermal conductivity. On the other end side of the copper block 504, a heat sink 505 for removing heat was disposed.
  • thermoelectric conversion module 502 One surface of the thermoelectric conversion module 502 was heated by the heater 501, and the module output P output from the extraction electrode 503 and the heat flux Q flowing through the copper block 504 were measured.
  • the thermoelectric conversion module 502 It was confirmed that a sufficiently high performance was obtained with a conversion efficiency ⁇ of about 2%.
  • thermoelectric conversion material paste 101, 201 ... substrate, 102, 202 ... insulating layer, 103, 203 ... electrode, 104, 204 ... p-type thermoelectric conversion material paste, 105, 205 ... p-type semiconductor thermoelectric conversion material particles, 106, 206... p-type semiconductor glass, 107, 207 ... n-type thermoelectric conversion material paste, 108, 208 ... n-type semiconductor thermoelectric conversion material particles, 109, 209 ... n-type semiconductor glass, 111 ... sealing glass paste, 300 ... thermoelectric conversion module, 301 ... substrate, 302 ... electrode, 303 ... extraction electrode, 304 ... p-type thermoelectric conversion element, 305 ... n-type thermoelectric conversion element, 400 ...
  • thermoelectric conversion module 403 ... heat exchanger, 404 ... side plate, 405 ... tempered glass, 406 ... Solar cell, 407 ... Lead frame, 408 ... Transparent resin, 409 ... Substrate, 410 ... insulating layer, 411 ... electrode, 412 ... p-type thermoelectric conversion element, 413 ... n-type thermoelectric conversion element, 414 ... sealing glass, 501 ... Heater, 502 ... Thermoelectric conversion module, 503 ... Lead electrode, 504 ... Copper block, 505 ... Heat sink.

Abstract

 Provided are: a composite thermoelectric conversion material with which it is possible to produce high-performance thermoelectric conversion elements using a low-cost process; a thermoelectric conversion material paste using the composite thermoelectric conversion material; and a low-cost, high-efficiency thermoelectric conversion module. The composite thermoelectric conversion material according to the present invention is obtained by forming a composite of a semiconductor thermoelectric conversion material and a binder, and is characterized in that the binder is a semiconductor glass having the same polarity as the semiconductor thermoelectric conversion material, and in that the semiconductor glass is a lead-free glass which has a softening point of 480°C or lower and includes vanadium oxide when the components are expressed as oxides.

Description

熱電変換複合材料、それを用いた熱電変換材料ペースト、およびそれを用いた熱電変換モジュールThermoelectric conversion composite material, thermoelectric conversion material paste using the same, and thermoelectric conversion module using the same
 本発明は、熱電変換材料に関し、特に、半導体熱電変換材料と半導体ガラスとを複合化した熱電変換複合材料、該複合材料を用いた熱電変換材料ペースト、および該複合材料を用いて製造される熱電変換モジュールに関するものである。 The present invention relates to a thermoelectric conversion material, and in particular, a thermoelectric conversion composite material in which a semiconductor thermoelectric conversion material and semiconductor glass are combined, a thermoelectric conversion material paste using the composite material, and a thermoelectric manufactured using the composite material. It concerns the conversion module.
 熱電変換材料は、温度差を与えると発電し(ゼーベック効果)、逆に、電気を流すと冷える(ペルチェ効果)という性質を示すことから、発電素子や冷却素子として利用されている。前者の性質は、熱を電気に直接変換することができるため排熱を利用した発電等が可能であり、クリーンエネルギー技術の1つとして期待されている。 Thermoelectric conversion materials are used as power generation elements and cooling elements because they exhibit the property of generating electricity when given a temperature difference (Seebeck effect) and conversely cooling when electricity flows (Peltier effect). Since the former property can directly convert heat into electricity, power generation using exhaust heat is possible, which is expected as one of clean energy technologies.
 熱電変換材料として、従来からBi-Te系材料、Bi-Sb系材料、Bi-Te-Sb系材料等が知られている。ゼーベック効果による起電力は、熱電変換素子の高温部と低温部との温度差に比例することから、温度差を大きく取るために従来の熱電変換モジュールでは、バルク形の熱電変換素子を利用することが多かった。しかしながら、バルク形の熱電変換素子は、微細加工が容易でない上に出力密度が低く、モジュールの発電単価が高くなる問題があった。そのため、低コストで出力密度の高い熱電変換素子および熱電変換モジュールの開発が強く望まれている。 Conventionally, Bi-Te materials, Bi-Sb materials, Bi-Te-Sb materials, etc. are known as thermoelectric conversion materials. Since the electromotive force due to the Seebeck effect is proportional to the temperature difference between the high-temperature part and the low-temperature part of the thermoelectric conversion element, a conventional thermoelectric conversion module must use a bulk-type thermoelectric conversion element to increase the temperature difference. There were many. However, the bulk-type thermoelectric conversion element has a problem in that microfabrication is not easy and the output density is low and the power generation unit price of the module is high. Therefore, development of a thermoelectric conversion element and a thermoelectric conversion module with high output density at low cost is strongly desired.
 熱電変換素子の1例として、特許文献1には、2~3μm径のセラミックス系熱電変換材料粒子と、200 nm以下径のセラミックス系熱電変換材料微粒子と、結着材である金属酸化物微粒子と、溶剤とから構成されるペーストをスクリーン印刷によって成形した熱電変換素子が開示されている。特許文献1によれば、焼結性がよく、高効率の熱電変換素子を提供することができるとされている。 As an example of a thermoelectric conversion element, Patent Document 1 discloses ceramic thermoelectric conversion material particles having a diameter of 2 to 3 μm, ceramic thermoelectric conversion material particles having a diameter of 200 μm or less, and metal oxide fine particles as a binder. A thermoelectric conversion element in which a paste composed of a solvent is formed by screen printing is disclosed. According to Patent Document 1, it is said that a highly efficient thermoelectric conversion element can be provided with good sinterability.
 また、特許文献2には、有機熱電材料と無機熱電材料とが分散状態で一体化されている熱電材料であり、前記有機熱電材料が、ポリアニリン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリアセン誘導体、及びこれらの材料の共重合体から選択され、前記無機熱電材料が、Bi-(Te,Se)系、Si-Ge系、Pb-Te系、GeTe-AgSbTe系、(Co,Ir,Ru)-Sb系、(Ca,Sr,Bi)Co2O5系から選択される少なくとも一種である熱電材料が開示されている。特許文献2によれば、有機熱電変換材料と無機熱電変換材料をハイブリッド化して、有機熱電変換材料の加工性と無機熱電変換材料の熱電特性とを併せ持つと共に、無機熱電変換材料の特性に応じてn型の熱電特性も得ることができる新規な熱電材料を提供することができるとされている。 Patent Document 2 discloses a thermoelectric material in which an organic thermoelectric material and an inorganic thermoelectric material are integrated in a dispersed state, and the organic thermoelectric material is polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof. Selected from polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyacene derivatives, and copolymers of these materials, the inorganic thermoelectric material is Bi- (Te, Se) -based, Si-Ge-based, Pb-Te-based, A thermoelectric material that is at least one selected from GeTe—AgSbTe, (Co, Ir, Ru) —Sb, and (Ca, Sr, Bi) Co 2 O 5 is disclosed. According to Patent Document 2, an organic thermoelectric conversion material and an inorganic thermoelectric conversion material are hybridized to have both the workability of the organic thermoelectric conversion material and the thermoelectric characteristics of the inorganic thermoelectric conversion material, and according to the characteristics of the inorganic thermoelectric conversion material. It is said that a novel thermoelectric material capable of obtaining n-type thermoelectric characteristics can be provided.
 また、非特許文献1には、スパッタッリング法等の半導体プロセスを用いて作製された薄膜形の熱電変換モジュールが開示されている。非特許文献1によれば、半導体プロセスを用いることで、例えばシリコンウエハの3.3 mm角チップ上に35μm角の熱電対540個を有する熱電変換モジュールが作製可能とされている。そして、該熱電変換モジュールを用いることで廃熱を利用した発電が可能となり、バッテリーレスの無線センサモジュールが実現されるとしている。 Further, Non-Patent Document 1 discloses a thin-film thermoelectric conversion module manufactured by using a semiconductor process such as a sputtering method. According to Non-Patent Document 1, by using a semiconductor process, for example, a thermoelectric conversion module having 540 35 μm square thermocouples on a 3.3 mm square chip of a silicon wafer can be manufactured. By using the thermoelectric conversion module, power generation using waste heat becomes possible, and a batteryless wireless sensor module is realized.
特開2010-225719号公報JP 2010-225719 A 特開2003-46145号公報JP 2003-46145 A
 特許文献1や特許文献2に記載の熱電変換材料および熱電変換素子は、熱電変換材料をペースト状あるいは液状にしてスクリーン印刷や塗布等の簡易な製造プロセスを用いることができ、所望のパターンを有する厚膜を容易に(すなわち、低い製造コストで)形成することができる。しかしながら、特許文献1の熱電変換材料および熱電変換素子は、無機熱電変換材料の結着剤として金属酸化物微粒子を用いており、該金属酸化物微粒子が熱電変換機能を有しないことから、全体としての熱電変換性能が阻害される問題があった。また、特許文献2の熱電変換材料は、分散混合する(ハイブリッド化する)有機熱電変換材料の熱電変換特性が低いことから、先と同様に全体としての熱電変換性能が阻害される問題があった。 The thermoelectric conversion material and the thermoelectric conversion element described in Patent Document 1 and Patent Document 2 can be used in a simple manufacturing process such as screen printing or coating by making the thermoelectric conversion material into a paste or liquid and have a desired pattern. A thick film can be formed easily (ie, at a low manufacturing cost). However, the thermoelectric conversion material and the thermoelectric conversion element of Patent Document 1 use metal oxide fine particles as a binder of the inorganic thermoelectric conversion material, and the metal oxide fine particles do not have a thermoelectric conversion function. There was a problem that the thermoelectric conversion performance of was hindered. Further, the thermoelectric conversion material of Patent Document 2 has a problem in that the thermoelectric conversion performance as a whole is hindered because the thermoelectric conversion characteristics of the organic thermoelectric conversion material to be dispersed and mixed (hybridized) are low. .
 一方、非特許文献1に記載の薄膜形の熱電変換モジュールは、微細パターンを有しかつ緻密質な膜が形成されることから、モジュール単位面積当たりの素子密度が高く、高い出力(起電力)を得られることが期待される。しかしながら、薄膜であるが故に素子の表裏面(モジュールの表裏面)での温度差を取ることが本質的に困難であり、温度差を作り出すために非常に大きな冷却部材(例えば、冷却フィン)を必要とする。そのため、熱電変換モジュールが全体として大型化してしまうという問題があった。また、半導体プロセス(真空プロセス)で製造するため、製造装置コストが大きく、モジュール価格が高くなる問題があった。 On the other hand, since the thin-film thermoelectric conversion module described in Non-Patent Document 1 has a fine pattern and a dense film is formed, the element density per unit area of the module is high and the output (electromotive force) is high. It is expected to be obtained. However, since it is a thin film, it is essentially difficult to take a temperature difference between the front and back surfaces of the element (the front and back surfaces of the module), and a very large cooling member (for example, a cooling fin) is used to create the temperature difference. I need. For this reason, there is a problem that the thermoelectric conversion module is enlarged as a whole. In addition, since it is manufactured by a semiconductor process (vacuum process), there is a problem that the manufacturing apparatus cost is high and the module price is high.
 したがって本発明の目的は、低コストプロセスを用いても高特性を有する熱電変換素子を作製可能とする熱電変換複合材料、および該複合材料を用いた熱電変換材料ペーストを提供することにある。さらに、該複合材料を用いて低コストで高効率な熱電変換モジュールを提供することにある。 Therefore, an object of the present invention is to provide a thermoelectric conversion composite material capable of producing a thermoelectric conversion element having high characteristics even using a low-cost process, and a thermoelectric conversion material paste using the composite material. It is another object of the present invention to provide a low-cost and highly efficient thermoelectric conversion module using the composite material.
 本発明の1つの態様は、上記目的を達成するため、半導体熱電変換材料と結着材とが複合された熱電変換複合材料であって、前記結着材は、前記半導体熱電変換材料と同極性の半導体ガラスであり、前記半導体ガラスは、成分を酸化物で表したときに酸化バナジウムを含有し、軟化点が480℃以下の無鉛ガラスであることを特徴とする複合熱電変換材料を提供する。なお、本発明における「無鉛」とは、RoHS指令(電子・電気機器における特定有害物質の使用制限についての欧州連合(EU)による指令、2006年7月1日施行)における禁止物質(鉛)を指定値以下の範囲で含有することを容認するものとする。ガラスの軟化点の定義については後述する。 One aspect of the present invention is a thermoelectric conversion composite material in which a semiconductor thermoelectric conversion material and a binder are combined in order to achieve the above object, wherein the binder has the same polarity as the semiconductor thermoelectric conversion material. The semiconductor glass is a lead-free glass containing vanadium oxide when the component is expressed by an oxide and having a softening point of 480 ° C. or lower. “Lead-free” in the present invention refers to a prohibited substance (lead) in the RoHS Directive (Directive by the European Union (EU) on restrictions on the use of specific hazardous substances in electronic and electrical equipment, effective July 1, 2006). It shall be allowed to contain in the range below the specified value. The definition of the softening point of glass will be described later.
 また、本発明は、上記の本発明に係る熱電変換複合材料において、以下のような改良や変更を加えることができる。
(i)前記半導体ガラス中で、5価のバナジウムイオンの濃度と4価のバナジウムイオンの濃度とが異なる。言い換えると、「5価のバナジウムイオンの濃度:[V5+]」と「4価のバナジウムイオンの濃度:[V4+]」との比が「1」ではない([V5+]/[V4+]≠1)。なお、本発明における「バナジウムイオンの価数および濃度」とは、JIS G1221に準拠した酸化還元滴定法による定量分析によって測定される価数および濃度と定義する。
(ii)前記半導体ガラスは、成分を酸化物で表したときに二酸化テルルおよび/または五酸化二燐を更に含有し、前記酸化バナジウムを全て五酸化二バナジウムとして換算した場合に、前記五酸化二バナジウム(V2O5)と前記二酸化テルル(TeO2)と前記五酸化二燐(P2O5)との合計配合率が60質量%以上である。
(iii)前記半導体熱電変換材料がp型であり、前記半導体ガラスは、成分を酸化物で表したときに、三酸化二砒素(As2O3)、酸化鉄(III)(Fe2O3)、三酸化アンチモン(Sb2O3)、酸化ビスマス(III)(Bi2O3)、三酸化タングステン(WO3)、三酸化モリブデン(MoO3)、および酸化マンガン(MnO)のうち少なくとも1種類以上を更に含有する。
(iv)前記半導体熱電変換材料がn型であり、前記半導体ガラスは、成分を酸化物で表したときに、酸化銀(I)(Ag2O)、酸化銅(II)(CuO)、アルカリ金属酸化物、およびアルカリ土類金属酸化物のうち少なくとも1種類以上を更に含有する。
(v)前記半導体ガラスの配合率が10~50体積%である。
(vi)前記半導体熱電変換材料が、Bi-(Te,Se,Sn,Sb)系材料、Pb-Te系材料、Zn-Sb系材料、Mg-Si系材料、Si-Ge系材料、GeTe-AgSbTe系材料、(Co,Ir,Ru)-Sb系材料、(Ca,Sr,Bi)Co2O5系材料、Fe-Si系材料、およびFe-V-Al系材料から選ばれる少なくとも1種である。
(vii)本発明に係る熱電変換材料ペーストは、上記の熱電変換複合材料と溶剤とを含む。
(viii)本発明に係る熱電変換材料ペーストは、前記溶剤がブチルカルビトールアセテートまたはα-テルピネオールであり、樹脂バインダーとしてエチルセルロースまたはニトロセルロースを更に含む。
(ix)本発明に係る熱電変換素子は、上記の熱電変換複合材料からなり、前記半導体ガラスの少なくとも一部が結晶化している。なお、本発明において、熱電変換素子とは、所望の形状・寸法に成形され焼成(焼結)された半導体熱電変換材料と定義する。
(x)本発明に係る熱電変換素子は、前記結晶化している部分がバナジウム複合酸化物結晶である。
(xi)本発明に係る熱電変換モジュールは、基板と、前記基板上に配列された複数の熱電変換素子と、前記基板に形成され隣接する前記熱電変換素子の間を電気的に接続する複数の電極とを具備し、前記熱電変換素子は、上記の熱電変換複合材料からなる熱電変換素子であり、隣接する前記熱電変換素子の極性が交互になるように電気的に直列接続されている。なお、本発明において、熱電変換モジュールとは、複数の熱電変換素子が電気的に接続されているものと定義する。
In addition, the present invention can be improved or changed as follows in the thermoelectric conversion composite material according to the present invention.
(I) In the semiconductor glass, the concentration of pentavalent vanadium ions and the concentration of tetravalent vanadium ions are different. In other words, the ratio of “pentavalent vanadium ion concentration: [V 5+ ]” to “tetravalent vanadium ion concentration: [V 4+ ]” is not “1” ([V 5+ ] / [V 4+ ] ≠ 1). The “valence and concentration of vanadium ion” in the present invention is defined as the valence and concentration measured by quantitative analysis by oxidation-reduction titration method based on JIS G1221.
(Ii) The semiconductor glass further contains tellurium dioxide and / or diphosphorus pentoxide when the component is represented by an oxide, and when all of the vanadium oxide is converted into divanadium pentoxide, The total compounding ratio of vanadium (V 2 O 5 ), the tellurium dioxide (TeO 2 ) and the diphosphorus pentoxide (P 2 O 5 ) is 60% by mass or more.
(Iii) The semiconductor thermoelectric conversion material is p-type, and the semiconductor glass has diarsenic trioxide (As 2 O 3 ), iron (III) oxide (Fe 2 O 3 ) when the component is expressed by an oxide. ), Antimony trioxide (Sb 2 O 3 ), bismuth oxide (III) (Bi 2 O 3 ), tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), and manganese oxide (MnO) Further contains more than one kind.
(Iv) The semiconductor thermoelectric conversion material is n-type, and the semiconductor glass has silver oxide (I) (Ag 2 O), copper oxide (II) (CuO), alkali when the component is represented by an oxide. It further contains at least one of a metal oxide and an alkaline earth metal oxide.
(V) The compounding ratio of the semiconductor glass is 10 to 50% by volume.
(Vi) The semiconductor thermoelectric conversion material is a Bi- (Te, Se, Sn, Sb) material, Pb-Te material, Zn-Sb material, Mg-Si material, Si-Ge material, GeTe- At least one selected from AgSbTe materials, (Co, Ir, Ru) -Sb materials, (Ca, Sr, Bi) Co 2 O 5 materials, Fe-Si materials, and Fe-V-Al materials It is.
(Vii) The thermoelectric conversion material paste according to the present invention includes the above-described thermoelectric conversion composite material and a solvent.
(Viii) In the thermoelectric conversion material paste according to the present invention, the solvent is butyl carbitol acetate or α-terpineol, and further contains ethyl cellulose or nitrocellulose as a resin binder.
(Ix) The thermoelectric conversion element according to the present invention is made of the above-described thermoelectric conversion composite material, and at least a part of the semiconductor glass is crystallized. In the present invention, the thermoelectric conversion element is defined as a semiconductor thermoelectric conversion material formed into a desired shape and size and fired (sintered).
(X) In the thermoelectric conversion element according to the present invention, the crystallized portion is a vanadium complex oxide crystal.
(Xi) The thermoelectric conversion module according to the present invention includes a substrate, a plurality of thermoelectric conversion elements arranged on the substrate, and a plurality of thermoelectric conversion elements formed on the substrate and adjacent to each other. The thermoelectric conversion element is a thermoelectric conversion element made of the above-described thermoelectric conversion composite material, and is electrically connected in series so that the polarities of the adjacent thermoelectric conversion elements are alternated. In the present invention, the thermoelectric conversion module is defined as a plurality of thermoelectric conversion elements electrically connected.
 本発明によれば、低コストプロセスを用いても高特性を有する熱電変換素子を作製可能とする熱電変換複合材料、および該複合材料を用いた熱電変換材料ペーストを提供することができる。さらに、該複合材料を用いることで、低コストで高効率な熱電変換モジュールを提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion composite material capable of producing a thermoelectric conversion element having high characteristics even using a low-cost process, and a thermoelectric conversion material paste using the composite material. Furthermore, by using the composite material, a low-cost and high-efficiency thermoelectric conversion module can be provided.
本発明における代表的な半導体ガラスに対する示差熱分析(DTA)の昇温過程で得られるチャートの1例である。It is an example of the chart obtained in the temperature rising process of the differential thermal analysis (DTA) with respect to the typical semiconductor glass in this invention. CuxV2O5を析出させた半導体ガラスとV2O5を析出させた半導体ガラスの導電率の温度依存性を示すグラフである。It is a graph showing the temperature dependence of the Cu x V 2 O 5 semiconductor glass to precipitate and V 2 O 5 the conductivity of semiconductor glass to precipitate. 本発明に係る熱電変換モジュールの製造工程の1例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the manufacturing process of the thermoelectric conversion module which concerns on this invention. 本発明に係る熱電変換モジュールの製造工程の他の1例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of the manufacturing process of the thermoelectric conversion module which concerns on this invention. 本発明に係る熱電変換モジュールの1例を示す斜視模式図である。It is a perspective schematic diagram which shows one example of the thermoelectric conversion module which concerns on this invention. 本発明に係る熱電変換モジュールを利用した太陽光・太陽熱複合発電システムの1例を示す断面模式図である。It is a cross-sectional schematic diagram which shows one example of the solar energy / solar heat combined power generation system using the thermoelectric conversion module according to the present invention. 熱電変換モジュールの変換効率の測定方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the measuring method of the conversion efficiency of a thermoelectric conversion module.
 本発明者らは、スクリーン印刷や塗布等の低コストプロセスを用いても従来よりも高効率な熱電変換素子を作製可能とする熱電変換材料について鋭意検討を行った結果、半導体熱電変換材料と新規な半導体ガラスとを複合化することにより、前記の目的を達成できることを見出した。以下、本発明に係る実施形態について、図面を参照しながら詳細に説明する。ただし、本発明はここに取り上げる実施形態に限定されるものではなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。 As a result of intensive studies on thermoelectric conversion materials that enable the production of thermoelectric conversion elements that are more efficient than conventional methods even using low-cost processes such as screen printing and coating, the present inventors have newly developed semiconductor thermoelectric conversion materials and new ones. It has been found that the above-described object can be achieved by compounding with a semiconductor glass. Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the embodiments taken up here, and can be combined and improved as appropriate without departing from the scope of the invention.
 (熱電変換複合材料)
 前述したように、本発明に係る熱電変換複合材料は、半導体熱電変換材料に対して、該半導体熱電変換材料と同極性の半導体ガラスを複合化したものであり、前記半導体ガラスは、成分を酸化物で表したときに酸化バナジウムを含み、軟化点が480℃以下の無鉛ガラスである。より具体的には、本発明で用いる半導体ガラスは、成分を酸化物で表したときに二酸化テルル(TeO2)および/または五酸化二燐(P2O5)を更に含有し、含有される酸化バナジウムを全て五酸化二バナジウム(V2O5)として換算した場合に、五酸化二バナジウムと二酸化テルルと五酸化二燐との合計配合率が60質量%以上である。
(Thermoelectric composite material)
As described above, the thermoelectric conversion composite material according to the present invention is obtained by compounding a semiconductor thermoelectric conversion material with a semiconductor glass having the same polarity as the semiconductor thermoelectric conversion material, and the semiconductor glass oxidizes components. It is a lead-free glass containing vanadium oxide and having a softening point of 480 ° C. or lower. More specifically, the semiconductor glass used in the present invention further contains and contains tellurium dioxide (TeO 2 ) and / or diphosphorus pentoxide (P 2 O 5 ) when the component is represented by an oxide. When all vanadium oxides are converted as divanadium pentoxide (V 2 O 5 ), the total blending ratio of divanadium pentoxide, tellurium dioxide and diphosphorus pentoxide is 60% by mass or more.
 本発明の半導体ガラスは、ガラス中のバナジウムイオンの価数バランス調整により、p型半導体にもn型半導体にもなる。「4価のバナジウムイオン濃度:[V4+]」に対する「5価のバナジウムイオン濃度:[V5+]」の比が「1」より小さい場合([V5+]/[V4+]<1)にはp型半導体となり、「1」より大きい場合([V5+]/[V4+]>1)にはn型半導体となる。半導体ガラスの極性を半導体熱電変換材料の極性と同極にすることによって、全体としての熱電変換特性を損なうことなく、複合化することができる。なお、「バナジウムイオンの価数および濃度」は、JIS G1221に準拠した酸化還元滴定法による定量分析によって測定できる。また、この半導体ガラスの非晶質状態での導電率は10-2~10-6 S/m程度である。 The semiconductor glass of the present invention becomes both a p-type semiconductor and an n-type semiconductor by adjusting the valence balance of vanadium ions in the glass. When the ratio of “pentavalent vanadium ion concentration: [V 4+ ]” to “pentavalent vanadium ion concentration: [V 5+ ]” is smaller than “1” ([V 5+ ] / [V 4+ ] <1) is a p-type semiconductor, and if it is greater than “1” ([V 5+ ] / [V 4+ ]> 1), it is an n-type semiconductor. By making the polarity of the semiconductor glass the same as that of the semiconductor thermoelectric conversion material, the semiconductor glass can be compounded without impairing the thermoelectric conversion characteristics as a whole. The “valence and concentration of vanadium ions” can be measured by quantitative analysis by a redox titration method based on JIS G1221. Further, the conductivity of the semiconductor glass in an amorphous state is about 10 −2 to 10 −6 S / m.
 本発明の半導体ガラスの極性(すなわち、[V5+]/[V4+])は、添加元素によって制御することができる。半導体ガラスの極性をp型([V5+]/[V4+]<1)にする場合、五酸化二バナジウム(V2O5)を還元する効果のある元素を添加すればよい。具体的には、成分を酸化物で表したときに、三酸化二砒素(As2O3)、酸化鉄(III)(Fe2O3)、三酸化アンチモン(Sb2O3)、酸化ビスマス(III)(Bi2O3)、三酸化タングステン(WO3)、三酸化モリブデン(MoO3)、および酸化マンガン(MnO)のうち少なくとも1種類以上を添加すればよい。 The polarity (that is, [V 5+ ] / [V 4+ ]) of the semiconductor glass of the present invention can be controlled by an additive element. When the polarity of the semiconductor glass is p-type ([V 5+ ] / [V 4+ ] <1), an element having an effect of reducing divanadium pentoxide (V 2 O 5 ) may be added. Specifically, when the components are represented by oxides, diarsenic trioxide (As 2 O 3 ), iron (III) oxide (Fe 2 O 3 ), antimony trioxide (Sb 2 O 3 ), bismuth oxide At least one or more of (III) (Bi 2 O 3 ), tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), and manganese oxide (MnO) may be added.
 一方、半導体ガラスの極性をn型([V5+]/[V4+]>1)にする場合、五酸化二バナジウム(V2O5)の還元を抑制する効果のある元素を添加すればよい。具体的には、成分を酸化物で表したときに、酸化銀(I)(Ag2O)、酸化銅(II)(CuO)、アルカリ金属酸化物、およびアルカリ土類金属酸化物のうち少なくとも1種類以上を添加すればよい。いずれの場合にも、これらの元素の添加は、半導体ガラスの極性を制御するだけではなく、ガラス構造を強化する効果(ガラスの安定性を高める効果)と耐水性を向上する効果とを奏する。 On the other hand, if the polarity of the semiconductor glass is n-type ([V 5+ ] / [V 4+ ]> 1), add an element that has the effect of suppressing the reduction of divanadium pentaoxide (V 2 O 5 ) That's fine. Specifically, when the component is represented by an oxide, at least one of silver oxide (I) (Ag 2 O), copper oxide (II) (CuO), alkali metal oxide, and alkaline earth metal oxide One or more types may be added. In any case, the addition of these elements not only controls the polarity of the semiconductor glass but also has an effect of strengthening the glass structure (an effect of increasing the stability of the glass) and an effect of improving the water resistance.
 また、本発明で用いる半導体ガラスは、軟化点が480℃以下と低いことを特徴とする。軟化点が低い半導体ガラスを複合化することにより、従来のバルク形の熱電変換素子における熱電変換材料の焼結温度(例えば、Bi-Te系材料において600~650℃)よりも低温での焼成が可能となる。焼成温度の低温化は、焼成に要するエネルギーコストの低減に加えて、望まない化学反応を抑制することから熱電変換特性の低下を防止する。 Further, the semiconductor glass used in the present invention is characterized by a low softening point of 480 ° C. or lower. By compounding semiconductor glass with a low softening point, firing can be performed at a temperature lower than the sintering temperature of thermoelectric conversion materials in conventional bulk thermoelectric conversion elements (for example, 600 to 650 ° C for Bi-Te materials). It becomes possible. Lowering the calcination temperature, in addition to reducing the energy cost required for calcination, suppresses unwanted chemical reactions and thus prevents degradation of thermoelectric conversion characteristics.
 ここで、本発明におけるガラスの特性温度(転移点、屈伏点、軟化点、結晶化温度)の定義について説明する。図1は、本発明における代表的な半導体ガラスに対する示差熱分析(DTA)の昇温過程で得られるチャートの1例である。DTA測定は、参照試料としてα-アルミナを用い、大気中5℃/minの昇温速度で行った。参照試料および測定試料の質量は、それぞれ650 mgとした。本発明においては、図1に示したように、第1吸熱ピークの開始温度をガラス転移点Tg(粘度=1013.3 poiseに相当)、該第1吸熱ピークのピーク温度を屈伏点Td(粘度=1011.0 poiseに相当)、第2吸熱ピークのピーク温度を軟化点Ts(粘度=107.65 poiseに相当)、第1発熱ピークの開始温度を結晶化温度Tcと定義する。なお、それぞれの温度は、接線法によって求められる温度とする。本明細書に記載の特性温度(例えば、軟化点Ts)は上記の定義に基づくものである。 Here, the definition of the characteristic temperature (transition point, yield point, softening point, crystallization temperature) of the glass in the present invention will be described. FIG. 1 is an example of a chart obtained in the temperature rising process of differential thermal analysis (DTA) for a typical semiconductor glass in the present invention. DTA measurement was performed using α-alumina as a reference sample at a temperature increase rate of 5 ° C./min in the atmosphere. The mass of the reference sample and the measurement sample was 650 mg, respectively. In the present invention, as shown in FIG. 1, the first endothermic peak start temperature is the glass transition point T g (corresponding to viscosity = 10 13.3 poise), and the first endothermic peak peak temperature is the yield point T d ( Viscosity = 10 11.0 poise), the peak temperature of the second endothermic peak is defined as the softening point T s (viscosity = 10 7.65 poise), and the first exothermic peak start temperature is defined as the crystallization temperature T c . In addition, each temperature shall be the temperature calculated | required by the tangent method. The characteristic temperatures (eg, softening point T s ) described herein are based on the above definition.
 半導体ガラスと複合化する半導体熱電変換材料は、特に限定されず、使用温度に応じて最適なものを選択することができる。例えば、200℃以下で使用するならば、Bi-(Te,Sb)系材料を好適に用いることができる。また、上記以外にも、例えば、Bi-(Te,Se,Sn,Sb)系材料、Pb-Te系材料、Zn-Sb系材料、Mg-Si系材料、Si-Ge系材料、GeTe-AgSbTe系材料、(Co,Ir,Ru)-Sb系材料、(Ca,Sr,Bi)Co2O5系材料、Fe-Si系材料、Fe-V-Al系材料等を好適に用いることができる。さらに、広範囲な温度域に対応させるために、使用温度の異なる熱電変換材料を組み合わせることも可能である。 The semiconductor thermoelectric conversion material compounded with the semiconductor glass is not particularly limited, and an optimum material can be selected according to the use temperature. For example, if it is used at 200 ° C. or lower, a Bi— (Te, Sb) -based material can be preferably used. In addition to the above, for example, Bi- (Te, Se, Sn, Sb) materials, Pb-Te materials, Zn-Sb materials, Mg-Si materials, Si-Ge materials, GeTe-AgSbTe -Based materials, (Co, Ir, Ru) -Sb based materials, (Ca, Sr, Bi) Co 2 O 5 based materials, Fe-Si based materials, Fe-V-Al based materials, etc. can be suitably used. . Furthermore, in order to cope with a wide temperature range, it is possible to combine thermoelectric conversion materials having different operating temperatures.
 前述したように、本発明の熱電変換材料は、半導体熱電変換材料と上述した半導体ガラスとを複合化したものであり、半導体熱電変換材料の粉末と半導体ガラスの粉末とを混合し、塗布・焼成して使用される(詳細は後述する)。混合する半導体熱電変換材料粉末と半導体ガラス粉末の粒子径は、塗布工程における塗布性を考慮すると、それぞれ5μm以下であることが好ましい。 As described above, the thermoelectric conversion material of the present invention is a composite of the semiconductor thermoelectric conversion material and the semiconductor glass described above, and the semiconductor thermoelectric conversion material powder and the semiconductor glass powder are mixed and applied and fired. (Details will be described later). The particle diameters of the semiconductor thermoelectric conversion material powder and the semiconductor glass powder to be mixed are each preferably 5 μm or less in consideration of applicability in the application process.
 また、半導体熱電変換材料に対する半導体ガラスの混合比は、10体積%以上50体積%以下(10~50体積%)が好ましい。半導体ガラスの混合比が10体積%未満であると、半導体熱電変換材料の粒子表面が軟化・溶融した半導体ガラスで十分に濡れないため、半導体熱電変換材料粒子の液相焼結が十分に進行しない。一方、半導体ガラスの混合比が50体積%を超えると、半導体熱電変換材料粒子同士の接触面積が減少するため、全体としての熱電変換特性が低下してしまう。 The mixing ratio of the semiconductor glass to the semiconductor thermoelectric conversion material is preferably 10% by volume or more and 50% by volume or less (10 to 50% by volume). When the mixing ratio of the semiconductor glass is less than 10% by volume, the surface of the particles of the semiconductor thermoelectric conversion material is not sufficiently wetted by the softened / molten semiconductor glass, so that the liquid phase sintering of the semiconductor thermoelectric conversion material particles does not proceed sufficiently. . On the other hand, when the mixing ratio of the semiconductor glass exceeds 50% by volume, the contact area between the semiconductor thermoelectric conversion material particles decreases, and the thermoelectric conversion characteristics as a whole deteriorate.
 ここで、熱電変換材料の性能について、簡単に説明する。熱電変換材料の性能は、しばしば次式(1)で示される無次元性能指数(ZT)を指標として表わされる。S:ゼーベック係数、σ:導電率、κ:熱伝導率、および、T:動作温度である。このZTが大きいほど、高い変換効率が得られる。 Here, the performance of the thermoelectric conversion material will be briefly described. The performance of thermoelectric conversion materials is often expressed using a dimensionless figure of merit (ZT) expressed by the following equation (1) as an index. S: Seebeck coefficient, σ: conductivity, κ: thermal conductivity, and T: operating temperature. The higher the ZT, the higher the conversion efficiency.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ゼーベック係数は熱電変換材料の物性値であるが、熱電変換材料が焼結体の場合、導電率および熱伝導率は特性値となる。式(1)を本発明に係る熱電変換複合材料(半導体熱電変換材料と半導体ガラスとの複合化)に当てはめて考えると、次のような留意点がある。(a)複合化によって、ゼーベック係数が低下する可能性がある。(b)複合化によって、実効的な導電率が低下する可能性がある。(c)複合化によって、実効的な熱伝導率が低下する可能性がある。言い換えると、ゼーベック係数の低下の抑制(すなわち、半導体熱電変換材料と半導体ガラスとの化学反応の抑制)と、実効的な導電率の低下の抑制とが重要であると言える。 The Seebeck coefficient is a physical property value of the thermoelectric conversion material, but when the thermoelectric conversion material is a sintered body, the conductivity and thermal conductivity are characteristic values. When formula (1) is applied to the thermoelectric conversion composite material (composite of semiconductor thermoelectric conversion material and semiconductor glass) according to the present invention, there are the following points to consider. (A) Seebeck coefficient may decrease due to compounding. (B) The effective conductivity may decrease due to the composite. (C) The effective thermal conductivity may decrease due to the composite. In other words, it can be said that it is important to suppress the decrease in the Seebeck coefficient (that is, the suppression of the chemical reaction between the semiconductor thermoelectric conversion material and the semiconductor glass) and the effective decrease in the electrical conductivity.
 半導体熱電変換材料と複合化した半導体ガラスの少なくとも一部は、結晶化していることが好ましい。半導体ガラスの少なくとも一部を結晶化させることで、半導体ガラス自体の導電率(電気導電率)を向上させ、熱電変換複合材料の実効的な導電率の低下を抑制することが可能となる。具体的には、高導電率のバナジウム複合酸化物結晶であるMxV2O5(M: 銅、銀、アルカリ金属、アルカリ土類金属、0<x<1)、LiV2O4、CaVO3、SrVO3、La1-xSrxVO3、Gd1-xSrxVO3、V2O3、VO2等を析出させることが好ましい。本発明の半導体ガラスの結晶化にあたって特段の制約はなく、従前のガラスの結晶化方法を適宜適用できる。 It is preferable that at least a part of the semiconductor glass combined with the semiconductor thermoelectric conversion material is crystallized. By crystallizing at least a part of the semiconductor glass, it is possible to improve the electrical conductivity (electrical conductivity) of the semiconductor glass itself and to suppress a decrease in the effective electrical conductivity of the thermoelectric conversion composite material. Specifically, M x V 2 O 5 (M: copper, silver, alkali metal, alkaline earth metal, 0 <x <1), LiV 2 O 4 , CaVO, which are highly conductive vanadium complex oxide crystals 3 , SrVO 3 , La 1-x Sr x VO 3 , Gd 1-x Sr x VO 3 , V 2 O 3 , VO 2 and the like are preferably deposited. There are no particular restrictions on the crystallization of the semiconductor glass of the present invention, and conventional glass crystallization methods can be applied as appropriate.
 図2は、CuxV2O5を析出させた半導体ガラスとV2O5を析出させた半導体ガラスの導電率の温度依存性を示すグラフである。バナジウム複合酸化物結晶を析出させる(ガラスを結晶化させる)前の半導体ガラスの室温での導電率は10-4 S/mオーダーであったことから、図2に示したように、本発明の半導体ガラスを結晶化させることによって、ガラスの導電率が飛躍的に(約5桁)向上することが確認された。 FIG. 2 is a graph showing the temperature dependence of the electrical conductivity of the semiconductor glass on which Cu x V 2 O 5 is deposited and the semiconductor glass on which V 2 O 5 is deposited. Conductivity at room temperature of the semiconductor glass before precipitating vanadium composite oxide crystals (crystallized glass) is because it was 10- 4 S / m order, as shown in FIG. 2, the present invention It has been confirmed that the electrical conductivity of the glass is dramatically improved (about 5 digits) by crystallizing the semiconductor glass.
 (熱電変換材料ペースト)
 本発明に係る熱電変換材料ペーストは、上述した熱電変換複合材料と溶剤とを含むものである。該ペーストは、樹脂バインダーを更に含んでいてもよい。溶剤としては、ブチルカルビトールアセテートまたはα-テルピネオールが好ましく用いられる。樹脂バインダーとしては、エチルセルロースまたはニトロセルロースが好ましく用いられる。一方、溶剤としてα-テルピネオールを用い、セルロース系の樹脂バインダーを用いないペーストでもよい。
(Thermoelectric conversion material paste)
The thermoelectric conversion material paste according to the present invention includes the above-described thermoelectric conversion composite material and a solvent. The paste may further contain a resin binder. As the solvent, butyl carbitol acetate or α-terpineol is preferably used. As the resin binder, ethyl cellulose or nitrocellulose is preferably used. On the other hand, a paste using α-terpineol as a solvent and not using a cellulose resin binder may be used.
 本発明に係る熱電変換複合材料をペースト化することにより、スクリーン印刷や塗布等の低コストプロセスを用いて、基板上に所望の形状(微細パターン)を容易に成形することができる。その後、ペースト中の半導体ガラスの軟化点Tsよりも20~40℃程度高い温度で焼成することで、ペースト中の半導体熱電材料を液相焼結させ、熱電変換素子および熱電変換モジュールを製造することができる。 By forming the thermoelectric conversion composite material according to the present invention into a paste, a desired shape (fine pattern) can be easily formed on the substrate using a low-cost process such as screen printing or coating. Thereafter, the semiconductor thermoelectric material in the paste is subjected to liquid phase sintering by firing at a temperature about 20 to 40 ° C. higher than the softening point T s of the semiconductor glass in the paste, thereby producing a thermoelectric conversion element and a thermoelectric conversion module. be able to.
 (熱電変換素子および熱電変換モジュール)
 次に、本発明に係る熱電変換素子および熱電変換モジュールについて説明する。前述したように、本発明において、熱電変換素子とは、所望の形状・寸法に成形され焼成(焼結)されたp型半導体熱電変換材料やn型半導体熱電変換材料と定義し、熱電変換モジュールとは、複数の熱電変換素子が電気的に接続されているものと定義している。
(Thermoelectric conversion element and thermoelectric conversion module)
Next, a thermoelectric conversion element and a thermoelectric conversion module according to the present invention will be described. As described above, in the present invention, the thermoelectric conversion element is defined as a p-type semiconductor thermoelectric conversion material or an n-type semiconductor thermoelectric conversion material that is molded and fired (sintered) into a desired shape and size, and is a thermoelectric conversion module. Is defined as that a plurality of thermoelectric conversion elements are electrically connected.
 図3は、本発明に係る熱電変換モジュールの製造工程の1例を示す断面模式図である。以下、図3に沿って本発明の熱電変換モジュールとその製造方法について説明する。 FIG. 3 is a schematic cross-sectional view showing an example of the manufacturing process of the thermoelectric conversion module according to the present invention. Hereinafter, the thermoelectric conversion module of the present invention and the manufacturing method thereof will be described with reference to FIG.
 (1)電極形成工程
 まず、基板101の片側表面に、高絶縁性の絶縁層102を形成する。その後、絶縁層102上に電極103を形成する。電極103が形成された基板101を一対用意する。
(1) Electrode Formation Step First, a highly insulating insulating layer 102 is formed on one surface of the substrate 101. Thereafter, an electrode 103 is formed over the insulating layer 102. A pair of substrates 101 on which electrodes 103 are formed are prepared.
 基板101は高熱伝導性の材質であればよく、特に限定されない。例えば、金属ならばアルミニウムを好適に用いることができる。また、金属以外にも高熱伝導率かつ高絶縁性のアルミナ(Al2O3)、窒化アルミニウム(AlN)、炭化珪素(SiC)、ベリリア(BeO)等を用いても良い。絶縁層102としては、高絶縁性を有するものであればよく、例えば基板がアルミニウムであれば、基板表面の酸化処理あるいは窒化処理により、アルミナあるいは窒化アルミニウムを形成すればよい。絶縁層102が高熱伝導性を有することは、より好ましい。なお、基板が高絶縁性のものである場合には、絶縁層102を形成する必要はない。 The substrate 101 may be any material having high thermal conductivity, and is not particularly limited. For example, if it is a metal, aluminum can be used suitably. In addition to metal, alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon carbide (SiC), beryllia (BeO), or the like having high thermal conductivity and high insulation may be used. The insulating layer 102 only needs to have a high insulating property. For example, if the substrate is aluminum, alumina or aluminum nitride may be formed by oxidizing or nitriding the substrate surface. It is more preferable that the insulating layer 102 has high thermal conductivity. Note that the insulating layer 102 is not necessarily formed when the substrate is highly insulating.
 電極103としては、導電率が105 S/mオーダー以上であり、基材101との熱膨張率差が小さいものであればよく、特段の限定はない。例えば、スパッター法により形成した金属膜でもよいし、導電性ペーストを塗布・焼成した電極膜でもよい。 The electrode 103 is not particularly limited as long as it has an electric conductivity of the order of 10 5 S / m or more and a small difference in thermal expansion coefficient from the base material 101. For example, a metal film formed by a sputtering method or an electrode film coated and baked with a conductive paste may be used.
 (2)熱電変換材料層形成工程
 本発明に係る熱電変換材料ペーストを用意する。p型熱電変換材料ペースト104は、p型半導体熱電変換材料粒子105とp型半導体ガラス106と溶剤(例えば、ブチルカルビトールアセテート)とを混合して作製される。同様に、n型熱電変換材料ペースト107は、n型半導体熱電変換材料粒子108とn型半導体ガラス109と溶剤(例えば、ブチルカルビトールアセテート)とを混合して作製される。
(2) Thermoelectric conversion material layer formation process The thermoelectric conversion material paste which concerns on this invention is prepared. The p-type thermoelectric conversion material paste 104 is prepared by mixing p-type semiconductor thermoelectric conversion material particles 105, p-type semiconductor glass 106, and a solvent (for example, butyl carbitol acetate). Similarly, n-type thermoelectric conversion material paste 107 is prepared by mixing n-type semiconductor thermoelectric conversion material particles 108, n-type semiconductor glass 109, and a solvent (for example, butyl carbitol acetate).
 熱電変換材料ペーストの極性が交互になるように、各熱電変換材料ペースト104,107を電極103上に塗布する。塗布方法としては、スクリーン印刷法、インクジェット法、スタンプ法、およびフォトレジストフィルム法等を好適に用いることができる。その後、150℃程度に加熱して溶剤を除去し、熱電変換材料層(熱電変換素子の前駆体)を形成する。 The thermoelectric conversion material pastes 104 and 107 are applied on the electrode 103 so that the polarities of the thermoelectric conversion material paste are alternated. As a coating method, a screen printing method, an ink jet method, a stamp method, a photoresist film method, or the like can be suitably used. Thereafter, the solvent is removed by heating to about 150 ° C. to form a thermoelectric conversion material layer (precursor of thermoelectric conversion element).
 (3)熱電変換素子・熱電変換モジュール形成工程
 次に、前述の電極形成工程で用意した電極103が形成された基板101を熱電変換材料層の上に重ね合わせる。このとき、熱電変換材料の極性が交互に直列接続されるように、電極103が形成された基板101を配置することが好ましい。その後、半導体ガラス106,109の軟化点Tsよりも20~40℃程度高い温度で焼成することで、電気的に接続された複数の熱電変換素子(すなわち、熱電変換モジュール)が形成される。
(3) Thermoelectric Conversion Element / Thermoelectric Conversion Module Formation Step Next, the substrate 101 on which the electrode 103 prepared in the above-described electrode formation step is formed is overlaid on the thermoelectric conversion material layer. At this time, it is preferable to arrange the substrate 101 on which the electrodes 103 are formed so that the polarities of the thermoelectric conversion materials are alternately connected in series. Thereafter, baking is performed at a temperature about 20 to 40 ° C. higher than the softening point T s of the semiconductor glasses 106 and 109, thereby forming a plurality of electrically connected thermoelectric conversion elements (that is, thermoelectric conversion modules).
 (4)封着工程
 さらに、熱電変換モジュールの耐久性を向上させるために、対となる2枚の基板101の端部をガラス封着することは好ましい。図3に示すように、基板101の端部に封着用ガラスペースト111(封着用ガラスフリットでもよい)を塗布した後、電気炉中で焼成・封着する。このとき、熱電変換モジュール内部を真空引きしながら封着することは好ましい。
(4) Sealing step Further, in order to improve the durability of the thermoelectric conversion module, it is preferable to seal the ends of the two substrates 101 to be paired with glass. As shown in FIG. 3, a glass paste 111 for sealing (or glass frit for sealing) may be applied to the end of the substrate 101, and then fired and sealed in an electric furnace. At this time, it is preferable to seal the inside of the thermoelectric conversion module while evacuating.
 封着用ガラスペースト111に用いるガラスとして特段の限定はないが、熱電変換素子内の半導体熱電変換材料と半導体ガラスとが化学反応を起こさない温度領域で封着可能なガラスを用いることが望ましい。また、封着用のガラスは、耐水性に優れたガラスであることが好ましい。 Although there is no special limitation as glass used for the glass paste 111 for sealing, it is desirable to use the glass which can be sealed in the temperature range which does not cause a chemical reaction between the semiconductor thermoelectric conversion material in the thermoelectric conversion element and the semiconductor glass. Moreover, it is preferable that the glass for sealing is glass excellent in water resistance.
 図4は、本発明に係る熱電変換モジュールの製造工程の他の1例を示す断面模式図である。図4に沿って本発明に係る熱電変換モジュールの製造工程の他の1例について説明する。 FIG. 4 is a schematic cross-sectional view showing another example of the manufacturing process of the thermoelectric conversion module according to the present invention. Another example of the manufacturing process of the thermoelectric conversion module according to the present invention will be described with reference to FIG.
 図3と同様に電極形成工程において、まず、基板201の片側表面に、高絶縁性の絶縁層202を形成する。その後、絶縁層202上に電極203を形成する。電極203が形成された基板201を一対用意する。 As in FIG. 3, in the electrode forming step, first, a highly insulating insulating layer 202 is formed on one surface of the substrate 201. After that, an electrode 203 is formed over the insulating layer 202. A pair of substrates 201 on which electrodes 203 are formed are prepared.
 次に、熱電変換材料層形成工程において、一方の基板201の電極203上に、p型半導体熱電変換材料粒子205とp型半導体ガラス206とを含むp型熱電変換材料ペースト204を塗布し、他方の基板201の電極203上に、n型半導体熱電変換材料粒子208とn型半導体ガラス209とを含むn型熱電変換材料ペースト207を塗布する。その後、それぞれの基板を150℃程度に加熱して溶剤を除去し、熱電変換材料層(熱電変換素子の前駆体)を形成する。 Next, in the thermoelectric conversion material layer forming step, a p-type thermoelectric conversion material paste 204 including p-type semiconductor thermoelectric conversion material particles 205 and p-type semiconductor glass 206 is applied on the electrode 203 of one substrate 201, and the other An n-type thermoelectric conversion material paste 207 containing n-type semiconductor thermoelectric conversion material particles 208 and n-type semiconductor glass 209 is applied on the electrode 203 of the substrate 201. Thereafter, each substrate is heated to about 150 ° C. to remove the solvent, thereby forming a thermoelectric conversion material layer (thermoelectric conversion element precursor).
 次に、熱電変換素子・熱電変換モジュール形成工程において、熱電変換材料層が形成された基板同士を、熱電変換材料の極性が交互に直列接続されるように重ね合わせる。その後、半導体ガラス206,209の軟化点Tsよりも20~40℃程度高い温度で焼成することで、電気的に接続された複数の熱電変換素子(すなわち、熱電変換モジュール)が形成される。なお、図4においては封着工程を省略したが、封着工程が行われることは、もちろん好ましい。 Next, in the thermoelectric conversion element / thermoelectric conversion module forming step, the substrates on which the thermoelectric conversion material layers are formed are overlapped so that the polarities of the thermoelectric conversion materials are alternately connected in series. Thereafter, firing is performed at a temperature about 20 to 40 ° C. higher than the softening point T s of the semiconductor glasses 206 and 209, thereby forming a plurality of electrically connected thermoelectric conversion elements (that is, thermoelectric conversion modules). In addition, although the sealing process was abbreviate | omitted in FIG. 4, it is of course preferable that a sealing process is performed.
 図5は、本発明に係る熱電変換モジュールの1例を示す斜視模式図である。図5に示したように、本発明に係る熱電変換モジュール300は、対向する2枚の基板301の間に複数の熱電変換素子(p型熱電変換素子304、n型熱電変換素子305)が配列されており、p型熱電変換素子304とn型熱電変換素子305とが交互になるように、基板301上に形成された電極302を介して電気的に直列接続されている。直列接続された熱電変換素子の両端には、引出電極303が取り付けられている。なお、図中に示した熱電変換素子の形状・寸法は例示であり、最適な形状・寸法は、使用する熱電変換複合材料の熱伝導率、熱電変換複合材料と電極との界面熱抵抗率や界面電気抵抗率、および熱電変換モジュールの用途などを考慮して適宜設計される。 FIG. 5 is a schematic perspective view showing an example of the thermoelectric conversion module according to the present invention. As shown in FIG. 5, in the thermoelectric conversion module 300 according to the present invention, a plurality of thermoelectric conversion elements (p-type thermoelectric conversion element 304, n-type thermoelectric conversion element 305) are arranged between two opposing substrates 301. The p-type thermoelectric conversion elements 304 and the n-type thermoelectric conversion elements 305 are electrically connected in series via the electrodes 302 formed on the substrate 301 so as to alternate. Extraction electrodes 303 are attached to both ends of the thermoelectric conversion elements connected in series. The shape and dimensions of the thermoelectric conversion element shown in the figure are examples, and the optimum shape and dimensions are the thermal conductivity of the thermoelectric conversion composite material to be used, the interfacial thermal resistivity between the thermoelectric conversion composite material and the electrode, It is designed as appropriate in consideration of the interface electrical resistivity and the use of the thermoelectric conversion module.
 (熱電変換モジュールの使用例)
 図6は、本発明に係る熱電変換モジュールを利用した太陽光・太陽熱複合発電システムの1例を示す断面模式図である。図6に示したように、本発明に係る熱電変換モジュールを利用した太陽光・太陽熱複合発電システム400は、太陽電池モジュール401と本発明に係る熱電変換モジュール402と熱交換器403とが積層された構成を有している。
(Use example of thermoelectric conversion module)
FIG. 6 is a schematic cross-sectional view showing an example of a combined solar / solar heat power generation system using the thermoelectric conversion module according to the present invention. As shown in FIG. 6, a combined solar / solar thermal power generation system 400 using a thermoelectric conversion module according to the present invention includes a solar cell module 401, a thermoelectric conversion module 402 according to the present invention, and a heat exchanger 403. It has a configuration.
 太陽電池モジュール401は、太陽光に面する位置に配置され、一例として、リードフレーム407を介して接続された複数の太陽電池セル406が透明樹脂408によって固定されている構造を有している。太陽光の入射面は、強化ガラス405によって保護されている。太陽電池モジュール401の裏面に配設される熱電変換モジュール402は、図3~5と同様の構造を有し、対向する2枚の基板409の間に複数の熱電変換素子(p型熱電変換素子412、n型熱電変換素子413)が配列されており、p型熱電変換素子412とn型熱電変換素子413とが交互になるように、基板409上に絶縁層410を介して形成された電極411により電気的に直列接続されている。熱電変換モジュール402の他方の面には、熱交換器403が配設されている。また、太陽光・太陽熱複合発電システム400の側面は、封着ガラス414を介して側板404が取り付けられている。 The solar cell module 401 is disposed at a position facing sunlight, and has a structure in which a plurality of solar cells 406 connected through a lead frame 407 are fixed by a transparent resin 408 as an example. The incident surface of sunlight is protected by tempered glass 405. The thermoelectric conversion module 402 disposed on the back surface of the solar cell module 401 has a structure similar to that shown in FIGS. 3 to 5, and includes a plurality of thermoelectric conversion elements (p-type thermoelectric conversion elements) between two opposing substrates 409. 412, n-type thermoelectric conversion elements 413) are arranged, and electrodes formed on the substrate 409 via the insulating layer 410 so that the p-type thermoelectric conversion elements 412 and the n-type thermoelectric conversion elements 413 are alternately arranged. 411 is electrically connected in series. A heat exchanger 403 is disposed on the other surface of the thermoelectric conversion module 402. Further, a side plate 404 is attached to the side surface of the solar / solar heat combined power generation system 400 via a sealing glass 414.
 太陽光・太陽熱複合発電システム400は、太陽電池モジュール401による太陽光発電と、太陽電池モジュール401の下面と熱交換器403の上面との温度差を利用した熱電変換モジュール402による太陽熱発電と、熱電変換モジュール402で利用できなかった廃熱の熱交換器403による回収(例えば、給湯)とを行うことができる。すなわち、電力と熱とのコージェネレーションシステムを構築することができる。 The combined solar and solar power generation system 400 includes solar power generation by the solar cell module 401, solar power generation by the thermoelectric conversion module 402 using a temperature difference between the lower surface of the solar cell module 401 and the upper surface of the heat exchanger 403, and thermoelectric power generation. Recovery (for example, hot water supply) of waste heat that could not be used in the conversion module 402 can be performed by the heat exchanger 403. That is, a cogeneration system of electric power and heat can be constructed.
 また、太陽光・太陽熱複合発電システム400は、太陽電池モジュール401の熱を熱電変換モジュール402で積極的に抜熱することにより、太陽電池セル406の温度上昇による効率低下を抑制することができる。さらに、熱電変換モジュール402の他方の面(太陽電池モジュール401と反対側の面)の熱を熱交換器403で積極的に抜熱することにより、熱電変換モジュール402の上下面における温度差を拡大し熱電変換効率を向上することができる。 Moreover, the combined solar / solar heat power generation system 400 can suppress the decrease in efficiency due to the temperature increase of the solar battery cell 406 by actively removing the heat of the solar battery module 401 by the thermoelectric conversion module 402. Furthermore, the temperature difference between the upper and lower surfaces of the thermoelectric conversion module 402 is expanded by actively removing heat from the other surface of the thermoelectric conversion module 402 (surface opposite to the solar cell module 401) with the heat exchanger 403. The thermoelectric conversion efficiency can be improved.
 以下、本発明を具体的な実施例に基づいてより詳細に説明する。ただし、本発明は、ここで取り上げた実施例に限定されることはなく、そのバリエーションを含むものとする。 Hereinafter, the present invention will be described in more detail based on specific examples. However, the present invention is not limited to the embodiments described here, and includes variations thereof.
 [実施例1]
 本実施例においては、種々の組成を有する半導体ガラスを作製し、該半導体ガラスの評価を行った。
[Example 1]
In this example, semiconductor glasses having various compositions were prepared, and the semiconductor glass was evaluated.
 (半導体ガラスの評価)
 (1-1)半導体ガラスの軟化点
 表1に示す名目組成を有する半導体ガラス(SG-01~SG-19)を作製した。表中の組成は、各成分の酸化物換算における質量比率で表示してある。出発原料としては、(株)高純度化学研究所製の酸化物粉末(純度99.9%)を用いた。表に示した質量比で各出発原料粉末を混合し、白金るつぼに入れた。混合にあたっては、原料粉末への余分な吸湿を避けることを考慮して、金属製スプーンを用いて白金るつぼ内で混合した。
(Evaluation of semiconductor glass)
(1-1) Softening point of semiconductor glass Semiconductor glasses (SG-01 to SG-19) having the nominal compositions shown in Table 1 were prepared. The composition in the table is indicated by the mass ratio in terms of oxide of each component. As a starting material, oxide powder (purity 99.9%) manufactured by Kojundo Chemical Laboratory Co., Ltd. was used. Each starting material powder was mixed at a mass ratio shown in the table and placed in a platinum crucible. In mixing, in consideration of avoiding excessive moisture absorption into the raw material powder, mixing was performed in a platinum crucible using a metal spoon.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 原料混合粉末が入った白金るつぼをガラス溶融炉内に設置し、加熱・融解した。5℃/minの昇温速度で昇温し、設定温度(900~1000℃)で融解しているガラスを撹拌しながら1時間保持した。その後、白金るつぼをガラス溶解炉から取り出し、あらかじめ150~300℃に加熱しておいた黒鉛鋳型に鋳込んだ。次に、鋳込まれたガラスを、あらかじめ歪取り温度に加熱しておいた歪取り炉に移動し、1時間保持により歪を除去した後、1℃/minの速度で室温まで冷却した。室温まで冷却したガラスブロックを粉砕し、表に示した名目組成を有する半導体ガラスSG-01~SG-19の粉末を作製した。 The platinum crucible containing the raw material mixed powder was placed in a glass melting furnace and heated and melted. The temperature was raised at a rate of 5 ° C./min, and the glass melted at the set temperature (900 to 1000 ° C.) was held for 1 hour with stirring. Thereafter, the platinum crucible was taken out of the glass melting furnace and cast into a graphite mold heated to 150 to 300 ° C. in advance. Next, the cast glass was moved to a strain relief furnace that had been heated to a strain relief temperature in advance, strain was removed by holding for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min. The glass block cooled to room temperature was pulverized to prepare semiconductor glass SG-01 to SG-19 powders having the nominal compositions shown in the table.
 上記で得られた各半導体ガラス粉末に対して、示差熱分析(DTA)により軟化点Tsを測定した。DTA測定は、参照試料(α-アルミナ)および測定試料の質量をそれぞれ650 mgとし、大気中5℃/minの昇温速度で行い、第2吸熱ピークのピーク温度を軟化点Tsとして求めた(図1参照)。結果を表2に示す。DTA測定の結果、本発明に係る半導体ガラスSG-01~SG-19は、いずれも軟化点が480℃以下であることが確認された。 The softening point T s was measured by differential thermal analysis (DTA) for each semiconductor glass powder obtained above. The DTA measurement was performed with the reference sample (α-alumina) and the measurement sample each having a mass of 650 mg and a temperature increase rate of 5 ° C / min in the atmosphere, and the peak temperature of the second endothermic peak was determined as the softening point T s (See FIG. 1). The results are shown in Table 2. As a result of DTA measurement, it was confirmed that all of the semiconductor glasses SG-01 to SG-19 according to the present invention had a softening point of 480 ° C. or lower.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (1-2)半導体ガラスの極性
 前記(1-1)で作製した半導体ガラスSG-01~SG-19中のバナジウムイオンの価数と濃度とを、JIS G1221に準拠した酸化還元滴定法によって測定した。得られた測定結果から、「4価のバナジウムイオン濃度:[V4+]」に対する「5価のバナジウムイオン濃度:[V5+]」の比が「1」より小さい場合([V5+]/[V4+]<1)にはp型半導体と判定し、「1」より大きい場合([V5+]/[V4+]>1)にはn型半導体と判定した。その結果を表2に併記する。表2に示したように、添加元素によって半導体ガラスの極性を制御できることが確認された。
(1-2) Polarity of the semiconductor glass The valence and concentration of vanadium ions in the semiconductor glasses SG-01 to SG-19 prepared in (1-1) above were measured by the oxidation-reduction titration method based on JIS G1221. did. From the obtained measurement result, when the ratio of “pentavalent vanadium ion concentration: [V 4+ ]” to “pentavalent vanadium ion concentration: [V 5+ ]” is smaller than “1” ([V 5+ ] / [V 4+ ] <1) was determined as a p-type semiconductor, and when it was larger than “1” ([V 5+ ] / [V 4+ ]> 1), it was determined as an n-type semiconductor. The results are also shown in Table 2. As shown in Table 2, it was confirmed that the polarity of the semiconductor glass can be controlled by the additive element.
 (1-3)半導体熱電変換材料との化学反応性
 前記(1-1)で作製した半導体ガラスSG-01~SG-19と、半導体熱電変換材料であるBi2Te3(株式会社豊島製作所製、粒径:200メッシュ以下、純度:3N以上)との化学反応性を調査した。半導体ガラス粉末とBi2Te3粉末との混合粉末(Bi2Te3に対して半導体ガラスを30体積%混合)を冷間プレスにより成型した後、アルゴン雰囲気中または大気中にて所定の温度で30分間焼成した。焼成温度は、熱電変換素子を作製する際の焼成条件を考慮して、混合した半導体ガラスの軟化点Tsよりも20~40℃高い温度とした。
(1-3) Chemical reactivity with semiconductor thermoelectric conversion material Semiconductor glass SG-01 to SG-19 prepared in (1-1) above, and Bi 2 Te 3 which is a semiconductor thermoelectric conversion material (manufactured by Toshima Seisakusho Co., Ltd.) , Particle size: 200 mesh or less, purity: 3N or more) and chemical reactivity were investigated. After molding a mixed powder of semiconductor glass powder and Bi 2 Te 3 powder (mixed with 30% by volume of semiconductor glass to Bi 2 Te 3 ) by cold pressing, at a predetermined temperature in an argon atmosphere or in the air Baked for 30 minutes. The firing temperature was set to a temperature 20 to 40 ° C. higher than the softening point T s of the mixed semiconductor glass in consideration of the firing conditions when manufacturing the thermoelectric conversion element.
 焼成後の成型体を乳鉢にて粉砕し、広角X線回折測定法(いわゆる、θ-2θ法)により反応生成物の同定を行った。なお、検出されたピークの同定には、X線回折標準データ集であるICDD(International Centre for Diffraction Data)カードを用いた。測定装置には、広角X線回折装置(株式会社リガク製、型式:RU200B)を用いた。測定条件は、X線としてCuKα線を用い、X線出力を50 kV×150 mAとし、走査範囲を2θ=5~100 degとし、発散スリットをDS=1.0 degとし、走査速度を2.0 deg/minとした。 The fired molded body was pulverized in a mortar, and the reaction product was identified by a wide-angle X-ray diffraction measurement method (so-called θ-2θ method). For identification of detected peaks, an ICDD (International Center for Diffraction Data) card, which is a collection of X-ray diffraction standard data, was used. A wide-angle X-ray diffractometer (manufactured by Rigaku Corporation, model: RU200B) was used as the measuring device. Measurement conditions are CuKα ray as X-ray, X-ray output 50 kV × 150 mA, scanning range 2θ = 5 ~ 100 deg, diverging slit DS = 1.0 deg, scanning speed 2.0 deg / min It was.
 得られたX線回折パターンが、ガラスに由来するハローパターンおよびBi2Te3に由来する回折ピークのみで構成されている場合、混合した半導体ガラスはBi2Te3と化学反応しなかったと判断し「合格」と評価した。得られたX線回折パターンが、ガラスに由来するハローパターンとBi2Te3に由来する回折ピークの他に、半導体ガラスとBi2Te3との反応生成物(例えば、Bi2TeO5やBi4TeO8)と思われる回折ピークで構成されており、回折ピーク強度から計算される反応生成物の体積分率がBi2Te3の体積分率の1/5以下であった場合、「許容」と評価した。回折ピーク強度から計算される反応生成物の体積分率がBi2Te3の体積分率の1/5超であった場合には、「不合格」と評価した。評価した結果を表2に併記する。 When the obtained X-ray diffraction pattern is composed only of a halo pattern derived from glass and a diffraction peak derived from Bi 2 Te 3 , it was determined that the mixed semiconductor glass did not chemically react with Bi 2 Te 3. Evaluated as “pass”. In addition to the halo pattern derived from glass and the diffraction peak derived from Bi 2 Te 3 , the obtained X-ray diffraction pattern is a reaction product of semiconductor glass and Bi 2 Te 3 (for example, Bi 2 TeO 5 or Bi 4 TeO 8 ), and the volume fraction of the reaction product calculated from the diffraction peak intensity is less than 1/5 of the volume fraction of Bi 2 Te 3 ". When the volume fraction of the reaction product calculated from the diffraction peak intensity was more than 1/5 of the volume fraction of Bi 2 Te 3 , it was evaluated as “failed”. The evaluation results are also shown in Table 2.
 表2に示したように、本発明の半導体ガラスSG-01~SG-19は、アルゴン雰囲気中で焼成した場合に、いずれもBi2Te3との化学反応性が低いことが確認された。また、SG-01,SG-02,SG-15,SG-17では、大気中の焼成においても、Bi2Te3との化学反応性が低いことが確認された。これらの結果は、本発明の半導体ガラスが高い化学的安定性を有すると共に、低い軟化点を有することに起因すると考えられた。 As shown in Table 2, it was confirmed that the semiconductor glasses SG-01 to SG-19 of the present invention all have low chemical reactivity with Bi 2 Te 3 when fired in an argon atmosphere. SG-01, SG-02, SG-15, and SG-17 were confirmed to have low chemical reactivity with Bi 2 Te 3 even in firing in the atmosphere. These results were attributed to the fact that the semiconductor glass of the present invention has a high chemical stability and a low softening point.
 なお、詳細は省略するが、Pb-Te系材料、Zn-Sb系材料、Mg-Si系材料、Si-Ge系材料、GeTe-AgSbTe系材料、(Co,Ir,Ru)-Sb系材料、(Ca,Sr,Bi)Co2O5系材料、Fe-Si系材料、およびFe-V-Al系材料においても、同様の結果が得られることを別途確認した。 Although details are omitted, Pb-Te materials, Zn-Sb materials, Mg-Si materials, Si-Ge materials, GeTe-AgSbTe materials, (Co, Ir, Ru) -Sb materials, It was separately confirmed that the same results were obtained with (Ca, Sr, Bi) Co 2 O 5 -based material, Fe-Si based material, and Fe-V-Al based material.
 [実施例2]
 本実施例においては、本発明に係る熱電変換素子を作製し、その特性評価を行った。
[Example 2]
In this example, a thermoelectric conversion element according to the present invention was produced and its characteristics were evaluated.
 (熱電変換素子の特性評価)
 半導体熱電変換材料として、p型のBi0.3Sb1.7Te3粉末(株式会社豊島製作所製、純度: 3N以上、粒径(D50):3.2μm)と、n型のBi2Te3粉末(株式会社豊島製作所製、純度:3N以上、粒径(D50):2.5μm)とを用意した。また、複合する半導体ガラスとして、p型のSG-07とn型のSG-15とを用意した。p型のBi0.3Sb1.7Te3粉末(70体積%)とp型のSG-07(30体積%)とを混合し、該混合粉末に対して、エチルセルロース(EC)とブチルカルビトールアセテート(BCA)との混合溶液を15質量%配合して、p型の熱電変換材料ペーストを作製した。同様に、n型のBi2Te3粉末(70体積%)とn型のSG-15(30体積%)とを混合し、該混合粉末に対して、ECとBCAとの混合溶液を15質量%配合して、n型の熱電変換材料ペーストを作製した。
(Characteristic evaluation of thermoelectric conversion elements)
As a semiconductor thermoelectric conversion material, p-type Bi 0.3 Sb 1.7 Te 3 powder (manufactured by Toyoshima Seisakusho Co., Ltd., purity: 3N or more, particle size (D50): 3.2 μm) and n-type Bi 2 Te 3 powder (Co., Ltd.) Made by Toshima Seisakusho, purity: 3N or more, particle size (D50): 2.5 μm) were prepared. In addition, p-type SG-07 and n-type SG-15 were prepared as compound semiconductor glasses. p-type Bi 0.3 Sb 1.7 Te 3 powder (70% by volume) and p-type SG-07 (30% by volume) were mixed, and ethyl cellulose (EC) and butyl carbitol acetate (BCA) were mixed with the mixed powder. 15% by weight of the mixed solution was prepared to produce a p-type thermoelectric conversion material paste. Similarly, n-type Bi 2 Te 3 powder (70% by volume) and n-type SG-15 (30% by volume) are mixed, and 15 masses of a mixed solution of EC and BCA is added to the mixed powder. An n-type thermoelectric conversion material paste was prepared.
 次に、これらのペーストをステンレス製の型に流し込み、アルゴンガス雰囲気中430℃で30分間焼成することにより、約3×3×10 mm3の角柱状の熱電変換素子を作製した。また、比較試料として、半導体熱電変換材料のみをホットプレスにより圧粉成型・焼結した熱電変換素子(株式会社豊島製作所製)も用意した。これらの熱電変換素子のゼーベック係数および電気導電率を熱電特性評価装置(アルバック理工株式会社製、型式:ZEM-3)により測定した。測定は、低圧ヘリウムガス中で、323 K、373 K、423 Kの各温度でそれぞれ3回ずつ行い、平均値を求めた。結果を表3に示す。 Next, these pastes were poured into a stainless steel mold and baked at 430 ° C. for 30 minutes in an argon gas atmosphere to produce a prismatic thermoelectric conversion element of about 3 × 3 × 10 mm 3 . Further, as a comparative sample, a thermoelectric conversion element (manufactured by Toshima Seisakusho Co., Ltd.) in which only a semiconductor thermoelectric conversion material was compacted and sintered by hot pressing was also prepared. The Seebeck coefficient and electrical conductivity of these thermoelectric conversion elements were measured with a thermoelectric property evaluation apparatus (manufactured by ULVAC-RIKO, model: ZEM-3). The measurement was performed three times in each of the temperatures of 323 K, 373 K, and 423 K in low-pressure helium gas, and the average value was obtained. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示したように、本発明に係る熱電変換素子は、従来のバルク形熱電変換素子と比較して、同等の熱電特性を維持していることが確認された。言い換えると、本発明の半導体ガラスおよびそれを用いた熱電変換材料ペーストは、半導体熱電変換材料の熱電特性に悪影響を与えないことが確認された。さらに、本発明に係る熱電変換複合材料を用いると、従来のバルク形熱電変換素子の場合よりも低温焼成で、熱電変換素子が作製可能であることが確認された。 As shown in Table 3, it was confirmed that the thermoelectric conversion element according to the present invention maintained the same thermoelectric characteristics as compared with the conventional bulk type thermoelectric conversion element. In other words, it was confirmed that the semiconductor glass of the present invention and the thermoelectric conversion material paste using the same do not adversely affect the thermoelectric properties of the semiconductor thermoelectric conversion material. Furthermore, it was confirmed that when the thermoelectric conversion composite material according to the present invention is used, a thermoelectric conversion element can be produced by firing at a lower temperature than in the case of a conventional bulk thermoelectric conversion element.
 [実施例3]
 本実施例においては、本発明に係る熱電変換モジュールを作製し、その変換効率を測定した。
[Example 3]
In this example, a thermoelectric conversion module according to the present invention was produced, and its conversion efficiency was measured.
 (熱電変換モジュールの評価)
 実施例2で作製した熱電変換材料ペーストを用いて、図5に示した熱電変換モジュールを作製した。熱電変換素子304、305の寸法・形状を一辺約100μmの立方体状とし、該熱電変換素子を70 cm角の基板301上に144万個集積させた。製造条件の概略を表4に示す。
(Evaluation of thermoelectric conversion module)
The thermoelectric conversion module shown in FIG. 5 was produced using the thermoelectric conversion material paste produced in Example 2. The dimensions and shape of the thermoelectric conversion elements 304 and 305 were made into a cubic shape with a side of about 100 μm, and 1.44 million thermoelectric conversion elements were integrated on a 70 cm square substrate 301. Table 4 shows an outline of the manufacturing conditions.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図7は、熱電変換モジュールの変換効率の測定方法を示す断面模式図である。作製した熱電変換モジュール502を加熱ヒータ501と熱伝導率が既知の銅ブロック504との間に設置した。銅ブロック504の他端側には、抜熱するためのヒートシンク505を配設した。 FIG. 7 is a schematic cross-sectional view showing a method for measuring the conversion efficiency of the thermoelectric conversion module. The produced thermoelectric conversion module 502 was installed between the heater 501 and the copper block 504 having a known thermal conductivity. On the other end side of the copper block 504, a heat sink 505 for removing heat was disposed.
 加熱ヒータ501で熱電変換モジュール502の一方の面を加熱し、引出電極503から出力されるモジュール出力Pと銅ブロック504を流れる熱流束Qとを測定した。測定した出力Pと熱流束Qとから次式「η=P/(Q+P)」を用いて変換効率ηを求めた。ヒータ温度を150℃に設定し、熱電変換モジュール502の上下面の温度差ΔTが50 K、銅ブロック504に流れる熱流束Qが10 W/cm2の条件下で測定した結果、熱電変換モジュール502の変換効率ηは約2%と十分に高い性能が得られることが確認された。 One surface of the thermoelectric conversion module 502 was heated by the heater 501, and the module output P output from the extraction electrode 503 and the heat flux Q flowing through the copper block 504 were measured. The conversion efficiency η was obtained from the measured output P and heat flux Q using the following equation “η = P / (Q + P)”. As a result of measuring under the condition that the heater temperature is set to 150 ° C., the temperature difference ΔT between the upper and lower surfaces of the thermoelectric conversion module 502 is 50 K, and the heat flux Q flowing through the copper block 504 is 10 W / cm 2 , the thermoelectric conversion module 502 It was confirmed that a sufficiently high performance was obtained with a conversion efficiency η of about 2%.
 101, 201…基板、102, 202…絶縁層、103, 203…電極、
 104, 204…p型熱電変換材料ペースト、105, 205…p型半導体熱電変換材料粒子、
 106, 206…p型半導体ガラス、
 107, 207…n型熱電変換材料ペースト、108, 208…n型半導体熱電変換材料粒子、
 109, 209…n型半導体ガラス、111…封着ガラスペースト、
 300…熱電変換モジュール、301…基板、302…電極、303…引出電極、
 304…p型熱電変換素子、305…n型熱電変換素子、
 400…太陽光・太陽熱複合発電システム、401…太陽電池モジュール、
 402…熱電変換モジュール、403…熱交換器、404…側板、405…強化ガラス、
 406…太陽電池セル、407…リードフレーム、408…透明樹脂、409…基板、
 410…絶縁層、411…電極、412…p型熱電変換素子、413…n型熱電変換素子、
 414…封着ガラス、
 501…加熱ヒータ、502…熱電変換モジュール、503…引出電極、504…銅ブロック、
 505…ヒートシンク。
101, 201 ... substrate, 102, 202 ... insulating layer, 103, 203 ... electrode,
104, 204 ... p-type thermoelectric conversion material paste, 105, 205 ... p-type semiconductor thermoelectric conversion material particles,
106, 206… p-type semiconductor glass,
107, 207 ... n-type thermoelectric conversion material paste, 108, 208 ... n-type semiconductor thermoelectric conversion material particles,
109, 209 ... n-type semiconductor glass, 111 ... sealing glass paste,
300 ... thermoelectric conversion module, 301 ... substrate, 302 ... electrode, 303 ... extraction electrode,
304 ... p-type thermoelectric conversion element, 305 ... n-type thermoelectric conversion element,
400 ... Combined solar and solar power generation system, 401 ... Solar cell module,
402 ... thermoelectric conversion module, 403 ... heat exchanger, 404 ... side plate, 405 ... tempered glass,
406 ... Solar cell, 407 ... Lead frame, 408 ... Transparent resin, 409 ... Substrate,
410 ... insulating layer, 411 ... electrode, 412 ... p-type thermoelectric conversion element, 413 ... n-type thermoelectric conversion element,
414 ... sealing glass,
501 ... Heater, 502 ... Thermoelectric conversion module, 503 ... Lead electrode, 504 ... Copper block,
505 ... Heat sink.

Claims (12)

  1.  半導体熱電変換材料と結着材とが複合された熱電変換複合材料であって、
    前記結着材は、前記半導体熱電変換材料と同極性の半導体ガラスであり、
    前記半導体ガラスは、成分を酸化物で表したときに酸化バナジウムを含有し、軟化点が480℃以下の無鉛ガラスであることを特徴とする熱電変換複合材料。
    A thermoelectric conversion composite material in which a semiconductor thermoelectric conversion material and a binder are combined,
    The binder is a semiconductor glass having the same polarity as the semiconductor thermoelectric conversion material,
    The thermoelectric conversion composite material, wherein the semiconductor glass is a lead-free glass containing vanadium oxide when a component is represented by an oxide and having a softening point of 480 ° C or lower.
  2.  請求項1に記載の熱電変換複合材料において、
    前記半導体ガラス中で、5価のバナジウムイオンの濃度と4価のバナジウムイオンの濃度とが異なることを特徴とする熱電変換複合材料。
    In the thermoelectric conversion composite material according to claim 1,
    A thermoelectric conversion composite material characterized in that the concentration of pentavalent vanadium ions and the concentration of tetravalent vanadium ions in the semiconductor glass are different.
  3.  請求項1または請求項2に記載の熱電変換複合材料において、
    前記半導体ガラスは、成分を酸化物で表したときに二酸化テルルおよび/または五酸化二燐を更に含有し、前記酸化バナジウムを全て五酸化二バナジウムとして換算した場合に、前記五酸化二バナジウムと前記二酸化テルルと前記五酸化二燐との合計配合率が60質量%以上であることを特徴とする熱電変換複合材料。
    In the thermoelectric conversion composite material according to claim 1 or 2,
    The semiconductor glass further contains tellurium dioxide and / or diphosphorus pentoxide when the component is represented by an oxide, and when all of the vanadium oxide is converted as divanadium pentoxide, the divanadium pentoxide and the above-mentioned A thermoelectric conversion composite material, wherein the total blending ratio of tellurium dioxide and diphosphorus pentoxide is 60% by mass or more.
  4.  請求項3に記載の熱電変換複合材料において、
    前記半導体熱電変換材料がp型であり、
    前記半導体ガラスは、成分を酸化物で表したときに、三酸化二砒素、酸化鉄(III)、三酸化アンチモン、酸化ビスマス(III)、三酸化タングステン、三酸化モリブデン、および酸化マンガンのうち少なくとも1種類以上を更に含有することを特徴とする熱電変換複合材料。
    In the thermoelectric conversion composite material according to claim 3,
    The semiconductor thermoelectric conversion material is p-type,
    The semiconductor glass has at least one of diarsenic trioxide, iron (III) oxide, antimony trioxide, bismuth (III) oxide, tungsten trioxide, molybdenum trioxide, and manganese oxide when the component is represented by an oxide. A thermoelectric conversion composite material further comprising at least one kind.
  5.  請求項3に記載の熱電変換複合材料において、
    前記半導体熱電変換材料がn型であり、
    前記半導体ガラスは、成分を酸化物で表したときに、酸化銀(I)、酸化銅(II)、アルカリ金属酸化物、およびアルカリ土類金属酸化物のうち少なくとも1種類以上を更に含有することを特徴とする熱電変換複合材料。
    In the thermoelectric conversion composite material according to claim 3,
    The semiconductor thermoelectric conversion material is n-type,
    The semiconductor glass further contains at least one of silver oxide (I), copper oxide (II), alkali metal oxide, and alkaline earth metal oxide when the component is represented by an oxide. Thermoelectric conversion composite material characterized by
  6.  請求項1乃至請求項5のいずれかに記載の複合熱電変換材料において、
    前記半導体ガラスの配合率が10~50体積%であることを特徴とする熱電変換複合材料。
    In the composite thermoelectric conversion material according to any one of claims 1 to 5,
    A thermoelectric conversion composite material, wherein the compounding ratio of the semiconductor glass is 10 to 50% by volume.
  7.  請求項1乃至請求項6のいずれかに記載の熱電変換複合材料において、
    前記半導体熱電変換材料が、Bi-(Te,Se,Sn,Sb)系材料、Pb-Te系材料、Zn-Sb系材料、Mg-Si系材料、Si-Ge系材料、GeTe-AgSbTe系材料、(Co,Ir,Ru)-Sb系材料、(Ca,Sr,Bi)Co2O5系材料、Fe-Si系材料、およびFe-V-Al系材料から選ばれる少なくとも1種であることを特徴とする熱電変換複合材料。
    In the thermoelectric conversion composite material according to any one of claims 1 to 6,
    The semiconductor thermoelectric conversion material is a Bi- (Te, Se, Sn, Sb) material, Pb-Te material, Zn-Sb material, Mg-Si material, Si-Ge material, GeTe-AgSbTe material. , (Co, Ir, Ru) -Sb material, (Ca, Sr, Bi) Co 2 O 5 material, Fe-Si material, and Fe-V-Al material Thermoelectric conversion composite material characterized by
  8.  請求項1乃至請求項7のいずれかに記載の熱電変換複合材料と、溶剤とを含むことを特徴とする熱電変換材料ペースト。 A thermoelectric conversion material paste comprising the thermoelectric conversion composite material according to any one of claims 1 to 7 and a solvent.
  9.  請求項8に記載の熱電変換材料ペーストにおいて、
    前記溶剤がブチルカルビトールアセテートまたはα-テルピネオールであり、
    樹脂バインダーとしてエチルセルロースまたはニトロセルロースを更に含むことを特徴とする熱電変換材料ペースト。
    In the thermoelectric conversion material paste according to claim 8,
    The solvent is butyl carbitol acetate or α-terpineol;
    A thermoelectric conversion material paste further comprising ethyl cellulose or nitrocellulose as a resin binder.
  10.  請求項1乃至請求項7のいずれかに記載の熱電変換複合材料からなる熱電変換素子であって、
    前記半導体ガラスの少なくとも一部が結晶化していることを特徴とする熱電変換素子。
    A thermoelectric conversion element comprising the thermoelectric conversion composite material according to any one of claims 1 to 7,
    A thermoelectric conversion element, wherein at least a part of the semiconductor glass is crystallized.
  11.  請求項10に記載の熱電変換素子において、
    前記結晶化している部分はバナジウム複合酸化物結晶であることを特徴とする熱電変換素子。
    In the thermoelectric conversion element according to claim 10,
    The crystallized portion is a vanadium complex oxide crystal.
  12.  基板と、前記基板上に配列された複数の熱電変換素子と、前記基板に形成され隣接する前記熱電変換素子の間を電気的に接続する複数の電極とを具備する熱電変換モジュールであって、
    前記熱電変換素子は、請求項1乃至請求項7のいずれかに記載の熱電変換複合材料からなる熱電変換素子であり、隣接する前記熱電変換素子の極性が交互になるように電気的に直列接続されていることを特徴とする熱電変換モジュール。
    A thermoelectric conversion module comprising a substrate, a plurality of thermoelectric conversion elements arranged on the substrate, and a plurality of electrodes electrically connected between the adjacent thermoelectric conversion elements formed on the substrate,
    The thermoelectric conversion element is a thermoelectric conversion element made of the thermoelectric conversion composite material according to any one of claims 1 to 7, and is electrically connected in series so that the polarities of the adjacent thermoelectric conversion elements are alternated. The thermoelectric conversion module characterized by being made.
PCT/JP2012/075593 2011-10-25 2012-10-03 Composite thermoelectric conversion material, thermoelectric conversion material paste using same, and themoelectric conversion module using same WO2013061739A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-233584 2011-10-25
JP2011233584A JP5526104B2 (en) 2011-10-25 2011-10-25 Thermoelectric conversion composite material, thermoelectric conversion material paste using the same, and thermoelectric conversion module using the same

Publications (1)

Publication Number Publication Date
WO2013061739A1 true WO2013061739A1 (en) 2013-05-02

Family

ID=48167574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075593 WO2013061739A1 (en) 2011-10-25 2012-10-03 Composite thermoelectric conversion material, thermoelectric conversion material paste using same, and themoelectric conversion module using same

Country Status (3)

Country Link
JP (1) JP5526104B2 (en)
TW (1) TWI505523B (en)
WO (1) WO2013061739A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902518A3 (en) * 2014-01-29 2015-12-09 LG Innotek Co., Ltd. Thermoelectric material and thermoelectric element including the same
WO2018230031A1 (en) * 2017-06-16 2018-12-20 三菱電機株式会社 Photovoltaic power generation panel and method for manufacturing same
CN110770924A (en) * 2017-06-29 2020-02-07 三菱综合材料株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN111710775A (en) * 2020-07-22 2020-09-25 中国科学院宁波材料技术与工程研究所 Tin selenide-based thermoelectric material, and preparation method and application thereof
CN113161470A (en) * 2021-04-09 2021-07-23 河南鸿昌电子有限公司 Material for producing semiconductor refrigeration element, semiconductor crystal grain and refrigeration element

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101998697B1 (en) * 2012-06-28 2019-07-10 엘지이노텍 주식회사 Thermoelectric cooling module and manufacturing method thereof
CN104641479B (en) * 2013-08-09 2016-06-15 琳得科株式会社 Thermo-electric converting material and manufacture method thereof
JP6347025B2 (en) * 2013-12-25 2018-06-27 株式会社小松プロセス Thermoelectric conversion material, circuit manufacturing method, and thermoelectric conversion module
JP2015164393A (en) * 2014-01-28 2015-09-10 学校法人日本大学 Heat sink and compound type solar energy conversion device
JP6683132B2 (en) * 2014-12-26 2020-04-15 リンテック株式会社 Peltier cooling element and manufacturing method thereof
JP6791544B2 (en) * 2015-06-24 2020-11-25 リンテック株式会社 Thermoelectric semiconductor composition, thermoelectric conversion material and its manufacturing method
CN105256161B (en) * 2015-11-04 2017-09-29 武汉理工大学 A kind of Ag2The unburned densification preparation technology of Se block thermoelectric materials
KR102088009B1 (en) * 2016-12-27 2020-03-11 주식회사 엘지화학 Thermoelectric composite material and preparation method thereof
JP2019153664A (en) * 2018-03-02 2019-09-12 株式会社ミクニ Manufacturing method of thermoelectric conversion module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832123A (en) * 1994-07-19 1996-02-02 Matsushita Electric Works Ltd Manufacture of thermoelectric conversion device
JPH11251647A (en) * 1998-02-27 1999-09-17 Ueki Corporation:Kk Thermoelectric converter element, thermoelectric converter and their manufacture
JP2008116445A (en) * 2006-10-11 2008-05-22 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Thermocouple-type temperature sensor, and manufacturing method therefor
JP2011129832A (en) * 2009-12-21 2011-06-30 Denso Corp Thermoelectric conversion element and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227178A (en) * 2007-03-13 2008-09-25 Sumitomo Chemical Co Ltd Thermoelectric conversion module and substrate therefor
JP5414409B2 (en) * 2009-01-16 2014-02-12 日立粉末冶金株式会社 Low melting glass composition, low-temperature sealing material and electronic component using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832123A (en) * 1994-07-19 1996-02-02 Matsushita Electric Works Ltd Manufacture of thermoelectric conversion device
JPH11251647A (en) * 1998-02-27 1999-09-17 Ueki Corporation:Kk Thermoelectric converter element, thermoelectric converter and their manufacture
JP2008116445A (en) * 2006-10-11 2008-05-22 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Thermocouple-type temperature sensor, and manufacturing method therefor
JP2011129832A (en) * 2009-12-21 2011-06-30 Denso Corp Thermoelectric conversion element and method of manufacturing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. I. SHARMA ET AL.: "Electrical properties of V2O5-CaO-P2O5 glasses exhibiting majority charge carrier reversal", JOURNAL OF MATERIALS SCIENCE, vol. 40, 2005, pages 5125 - 5131, XP019210770 *
SUMIO SAKKA ET AL., GLASS HANDBOOK, ASAKURA SHOTEN, 30 September 1975 (1975-09-30), pages 720 - 724 *
YOSHIHIRO KOUHARA ET AL.: "Particle optimize of the vanadium system low-melting lead-free glass", THE RESEARCH REPORTS OF THE FACULTY OF ENGINEERING, no. 49, 2007, pages 1 - 6, XP003031615 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902518A3 (en) * 2014-01-29 2015-12-09 LG Innotek Co., Ltd. Thermoelectric material and thermoelectric element including the same
US9595652B2 (en) 2014-01-29 2017-03-14 Lg Innotek Co., Ltd. Thermoelectric material and thermoelectric element including the same
WO2018230031A1 (en) * 2017-06-16 2018-12-20 三菱電機株式会社 Photovoltaic power generation panel and method for manufacturing same
JPWO2018230031A1 (en) * 2017-06-16 2019-06-27 三菱電機株式会社 Photovoltaic panel and method of manufacturing the same
CN110770924A (en) * 2017-06-29 2020-02-07 三菱综合材料株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN110770924B (en) * 2017-06-29 2023-11-14 三菱综合材料株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN111710775A (en) * 2020-07-22 2020-09-25 中国科学院宁波材料技术与工程研究所 Tin selenide-based thermoelectric material, and preparation method and application thereof
CN113161470A (en) * 2021-04-09 2021-07-23 河南鸿昌电子有限公司 Material for producing semiconductor refrigeration element, semiconductor crystal grain and refrigeration element

Also Published As

Publication number Publication date
JP5526104B2 (en) 2014-06-18
TW201332170A (en) 2013-08-01
JP2013093397A (en) 2013-05-16
TWI505523B (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5526104B2 (en) Thermoelectric conversion composite material, thermoelectric conversion material paste using the same, and thermoelectric conversion module using the same
US20130243946A1 (en) Thermoelectric converter element and conductive member for thermoelectric converter element
JP4797148B2 (en) Conductive paste for thermoelectric conversion material connection
EP4099411A1 (en) Thermoelectric conversion module
WO2011013529A1 (en) Thermoelectric conversion material, and thermoelectric conversion module using same
TWI469928B (en) New compound semiconductors and their application
CN108238796A (en) Copper seleno solid solution thermoelectric material and preparation method thereof
JP2002151751A (en) Method of manufacturing thermoelectric element and thermoelectric module
JP2006278997A (en) Compound thermoelectric module
JP4024294B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
WO2011148686A1 (en) Method for production of thermoelectric conversion module, and thermoelectric conversion module
TWI469927B (en) New compound semiconductors and their application
CN115240897A (en) Conductive thick film paste with multiple discrete frits and application thereof
CN101503765B (en) Method for preparing Mg-Si-Sn based thermoelectric material by fluxing medium
JP6347025B2 (en) Thermoelectric conversion material, circuit manufacturing method, and thermoelectric conversion module
JP4876721B2 (en) Thermoelectric conversion material and method for producing the same
US7417186B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic apparatus and cooling device comprising the element
WO2014073095A1 (en) Thermoelectric conversion module and method for manufacturing same
JP5218285B2 (en) Thermoelectric conversion material
JP6358449B2 (en) Thermoelectric material and manufacturing method thereof
WO2009098947A1 (en) Infrared sensor
KR102621179B1 (en) Thermoelectric materials, and thermoelectric element and thermoelectric module comprising the same
Howells et al. Rapid Printing of Pseudo-3D Printed SnSe Thermoelectric Generators Utilizing an Inorganic Binder
KR101401078B1 (en) Method for fabricating thermoelectric powder having a bimodal size distribution
WO2022114239A1 (en) Thermoelectric material, thermoelectric conversion element, thermoelectric power generation module, and peltier cooler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843002

Country of ref document: EP

Kind code of ref document: A1