WO2013065856A1 - Thermoelectric conversion element and thermoelectric conversion module - Google Patents

Thermoelectric conversion element and thermoelectric conversion module Download PDF

Info

Publication number
WO2013065856A1
WO2013065856A1 PCT/JP2012/078547 JP2012078547W WO2013065856A1 WO 2013065856 A1 WO2013065856 A1 WO 2013065856A1 JP 2012078547 W JP2012078547 W JP 2012078547W WO 2013065856 A1 WO2013065856 A1 WO 2013065856A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conductive
substrate
conductive film
film
Prior art date
Application number
PCT/JP2012/078547
Other languages
French (fr)
Japanese (ja)
Inventor
雅芳 角野
規之 殿内
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013065856A1 publication Critical patent/WO2013065856A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric conversion element and a thermoelectric conversion module using a conductive polymer material.
  • thermoelectric conversion element is an element which mutually converts heat energy and electric energy.
  • An electromotive force can be obtained by applying a temperature difference to both ends of the thermoelectric conversion element.
  • a figure of merit Z shown in Formula 1 as described in Patent Document 1 Japanese Patent No. 4351504.
  • Z S 2 ⁇ / ⁇ (1)
  • S Seebeck coefficient
  • (sigma) Electrical conductivity
  • (kappa) Thermal conductivity.
  • the Seebeck coefficient S represents the magnitude of an electromotive force generated by a temperature difference of 1K.
  • the dimensionless figure of merit ZT which is the product of the figure of merit Z and the absolute temperature T indicating the value, is also an index for evaluating the characteristics of the thermoelectric material.
  • Thermoelectric materials have a unique Seebeck coefficient S, and are roughly classified into p-type thermoelectric materials having a positive Seebeck coefficient S and n-type thermoelectric materials having a negative Seebeck coefficient S.
  • a structure in which p-type and n-type thermoelectric materials are joined in series via a conductive portion serving as an electrode that is, a structure called a ⁇ -type element.
  • a large output power can be obtained.
  • thermoelectric conversion module having a structure in which a plurality of ⁇ -type elements are joined in series can be used to increase the output voltage.
  • a thermoelectric conversion module composed of a ⁇ -type element for example, as in Patent Document 2, electrically connects p-type and n-type thermoelectric conversion elements processed into a rectangular parallelepiped block shape in series on a ceramic substrate such as alumina. It is common to take a structure arranged in Examples of thermoelectric materials used for such thermoelectric conversion elements include Bi—Te, Pb—Te, and Si—Ge.
  • thermoelectric conversion module including N thermoelectric conversion elements
  • P V 2 / (4NR) (2)
  • V the voltage of the entire module
  • R the electrical resistance of one thermoelectric conversion element.
  • thermoelectric conversion module In order to convert waste heat into electric energy without waste, it is desirable to directly install a thermoelectric conversion module in a waste heat duct or pipe where waste heat of electrical equipment is concentrated.
  • a thermoelectric conversion module since it has a structure in which a rigid thermoelectric conversion element is mounted on a rigid ceramic substrate, there is no flexibility. In such a thermoelectric conversion module, it is difficult to attach directly to a heat dissipation surface of an electronic device having a curved surface portion or an uneven portion.
  • Patent Document 3 Japanese Patent No. 3927784
  • a thermoelectric conversion element is formed on a flexible substrate.
  • the thermoelectric conversion element is composed of an inorganic material such as ceramics, there is a problem that the flexibility of the thermoelectric conversion module is insufficient.
  • Patent Document 1 and Patent Document 4 describe the use of a conductive polymer, that is, a conductive polymer as a thermoelectric material. Since a conductive polymer functions as a thermoelectric material due to the Seebeck effect as in a semiconductor, when a temperature difference is given to both ends of a film made of a conductive polymer, electromotive force is generated at both ends.
  • the Seebeck coefficient of polyaniline is 40 ⁇ V / K, which is a sufficient value as a thermoelectric material. If a conductive polymer can be formed as a thermoelectric conversion element by a coating method, mass production of thermoelectric conversion modules can be facilitated, and manufacturing costs can be reduced.
  • Patent Document 5 Japanese Patent Laid-Open No. 2010-205883
  • Patent Document 6 Japanese Patent Laid-Open No. 2006-319119
  • Patent Document 5 describes a thermoelectric element in which only a p-type thermoelectric material or only an n-type thermoelectric material is joined in series.
  • Patent Document 6 describes a thermoelectric conversion element using only p-type polythiophene as a conductive polymer.
  • Patent Document 1 and Patent Document 4 also have a description related to a thermoelectric conversion element using a conductive polymer.
  • the dimensionless figure of merit ZT of the conductive polymers described in Patent Document 1 and Patent Document 4 is 0.1 or less at room temperature, and is 10% or less of the dimensionless figure of merit ZT of general inorganic materials. is there. Therefore, when the conductive polymer is configured with a general ⁇ -type element structure, it is difficult to obtain an output power of 50 ⁇ W or more that can drive a general sensor or a wireless tag.
  • a general conductive polymer sheet has a thickness of about 50 ⁇ m, and even if a thermoelectric conversion element is installed in a waste heat duct of an electronic device of about 40 ° C., the temperature difference between the high temperature portion and the low temperature portion is 0.5 ° C. There was also a problem that it was difficult to obtain an output power of 50 ⁇ W or more.
  • a film-like thermoelectric conversion module is configured using the conductive polymer described in Patent Document 1 and Patent Document 4 described above, a temperature difference of several degrees Celsius is caused on both surfaces of the film in a general element structure. Since it cannot even be generated, there is a problem that sufficient output power cannot be obtained.
  • thermoelectric conversion module including the p-type thermoelectric conversion element having the structure described in Patent Document 6 described above
  • the temperature difference between the heat absorption surface and the exhaust heat surface is small, so that the output power is small.
  • the object of the present invention is to solve the problem that a sufficient temperature difference cannot be generated on both sides of the film in the film-like thermoelectric conversion element and thermoelectric conversion module, which are the problems described above, and the thermoelectric conversion element and thermoelectric conversion To provide a module.
  • the object of the present invention is also a thermoelectric conversion element and a thermoelectric conversion that solve the above-mentioned problem that sufficient output power and output voltage cannot be obtained only with a conductive polymer that is a p-type thermoelectric material. To provide a module.
  • the thermoelectric conversion element of the present invention includes a substrate, an insulating film disposed so as to face the substrate, a conductive film thermally connected to the substrate and the insulating film, and an insulating heat insulator that supports the conductive film.
  • the conductive film includes a conductive polymer that is a thermoelectric material, and the conductive polymer is oriented in a direction substantially perpendicular to the substrate.
  • the thermoelectric conversion module of this invention arrange
  • thermoelectric conversion module of 1st Embodiment It is a perspective view of the thermoelectric conversion module of 1st Embodiment. It is a side view of the thermoelectric conversion module of 1st Embodiment. It is a top view of the module of a 1st embodiment. It is a 1st explanatory view of a manufacturing process of a thermoelectric conversion module of a 1st embodiment. It is 2nd explanatory drawing of the manufacturing process of the thermoelectric conversion module of 1st Embodiment. It is 3rd explanatory drawing of the manufacturing process of the thermoelectric conversion module of 1st Embodiment. It is a perspective view of the thermoelectric conversion module of 2nd Embodiment. It is a side view of the thermoelectric conversion module of 2nd Embodiment.
  • thermoelectric conversion module of 2nd Embodiment It is a top view of the thermoelectric conversion module of 2nd Embodiment. It is the figure which installed the thermoelectric conversion module of Example 1.
  • FIG. 5 is a graph showing the dependency of the temperature difference generated in the conductive film of Example 2 on the occupation ratio. It is the graph which showed the occupation rate dependence of the output power density of the thermoelectric conversion module of Example 3.
  • FIG. 5 is a graph showing the dependency of the temperature difference generated in the conductive film of Example 2 on the occupation ratio. It is the graph which showed the occupation rate dependence of the output power density of the thermoelectric conversion module of Example 3.
  • FIG. 1 is a perspective view of a thermoelectric conversion module according to a first embodiment.
  • FIG. 2 shows a side view of the thermoelectric conversion module according to the first embodiment.
  • FIG. 3 shows a top view of the thermoelectric conversion module according to the first embodiment.
  • FIG. 1 is a perspective view of a part of a module cut along line AB in FIG.
  • FIG. 2 is a side view of a part of the module cut along the line AB, which is drawn on the same object as FIG. In FIG.
  • the thermoelectric conversion module according to the first embodiment includes a substrate 1, a lower electrode 2, a conductive wire 3, an insulating heat insulator 4, a conductive film 5, an upper electrode 6, a first electrode 7, an insulating film 8, and a second electrode 9. Consists of.
  • the conductive film 5 functions as a thermoelectric conversion element. Most of the conductive polymer in one conductive film 5 is oriented in one direction. In the thermoelectric conversion element of the first embodiment, all the conductive films 5 are arranged so that the conductive polymer is oriented in the direction of the arrow 10. In FIG.
  • the first electrode 7 to the second electrode 9 are electrically connected in series.
  • the substrate 1 is installed on the high temperature side and the insulating film 8 is installed on the low temperature side.
  • the low temperature side is the positive electrode and the high temperature side is the negative electrode.
  • the first electrode 7 drawn from the low temperature side is the positive electrode
  • the second electrode 9 drawn from the high temperature side is the negative electrode.
  • blocks 13 made of a plurality of thermoelectric conversion elements are arranged on a substrate 1 so as to form a row, and each block 13 is electrically connected via an electrode 20. Electrically connected in series. The actual number of elements is set so that the output power necessary for driving the sensor or the like can be obtained according to the temperature difference obtained at the installation location.
  • the blocks 13 are formed in which the conductive films 5 and the insulating heat insulators 4 are alternately adjacent to each other.
  • the conductive film 5 is held in a direction perpendicular to the substrate 1.
  • the occupation ratio of the conductive film 5 can be increased.
  • the occupation ratio ⁇ of the conductive film 5 is defined by the ratio of the area occupied by the cross section of the conductive film 5 in the cut surface obtained by cutting the thermoelectric conversion element in a plane parallel to the substrate 1.
  • the orientation direction of the conductive polymer constituting the conductive film 5 is set so as to face the direction perpendicular to the substrate 1.
  • thermoelectric conversion module Since current flows selectively along the orientation direction of the conductive polymer, by orienting the conductive polymer as in the first embodiment, the electric resistance of the thermoelectric conversion element can be reduced, and the output power can be reduced. Can be bigger.
  • the insulating heat insulator 4 and the thin conductive wire 3 are used.
  • the heat insulation between the substrate 1 and the insulating film 8 can be reduced by the insulating heat insulator 4.
  • the movement of heat from the substrate 1 toward the insulating film 8 through the conductive wire 3 can be reduced. As a result, the temperature difference generated in the conductive film 5 can be increased, and the output power can be increased.
  • thermoelectric conversion element including the substrate 1, the insulating film 8, the insulating heat insulating body 4, and the conductive film 5 is used as a minimum structural unit for power generation. Therefore, when taking out and using a single thermoelectric conversion element, the conductive wire 3 does not become an essential structure. Usually, in order to obtain a sufficient voltage, the thermoelectric conversion elements are electrically connected in series by the conductivity 3 and used as a thermoelectric conversion module.
  • the material of the conductive film 5 according to the first embodiment include polythiophene known as a conductive polymer, polyethylene dioxythiophene (PEDOT: Poly (3,4-ethylenedioxythiophene)), polyaniline, polyacetylene, polypyrrole, and polyphenylene.
  • the conductive polymer has a main chain having a ⁇ -conjugated structure in which double bonds and single bonds are alternately arranged, and conductivity is obtained by doping a carrier that is a mobile charge that can move freely. This doping is performed by adding iodine, arsenic pentafluoride, or the like to the polymer, and the additive functions as an acceptor.
  • Examples of the conductive polymer obtained by coating include polythiophene, polyaniline, etc., all of which have p-type conductivity.
  • thermoelectric conversion element and thermoelectric conversion module a p-type thermoelectric material is assumed. Yes.
  • the n-type thermoelectric material can also be applied to this embodiment.
  • the 1st electrode 7 becomes a negative electrode and the 2nd electrode 9 becomes a positive electrode.
  • the conductive film 5 As a method for forming the conductive film 5, there are a spin coating method in which the above-described conductive polymer is dissolved in an organic solvent and spin-coated on the substrate, and a roller method in which the solution is thinly extended with a roller immediately after the solution is applied to the substrate. .
  • the conductive polymer can be oriented in the direction of centrifugal force by the spin coating method and in the direction of pulling the substrate by the roller method. By repeating the above steps, the film oriented in the in-plane direction can be thickened.
  • the same effect can be obtained by adopting the same structure as that of the first embodiment.
  • the length L of the conductive film 5 is 2 mm or less, a sufficient temperature difference between both ends of the conductive film 5 cannot be obtained, so that sufficient output power cannot be obtained. Further, if the thickness of the conductive film 5 is 30 mm or more, the flexibility of the module is reduced. Therefore, the length L of the conductive film 5 is appropriately 2 mm or more and 30 mm or less. The length L of the conductive film 5 is more preferably 5 mm or more and 20 mm or less. The reason for providing a guideline for the length L is to adapt to the required flexibility and output power.
  • the film thickness d of the conductive film 5 When the film thickness d of the conductive film 5 is 30 ⁇ m or less, the cross-sectional area of the conductive film 5 becomes small, so that the contact resistance and electrical resistance increase, and the output power decreases. In addition, when the cross-sectional area S of the conductive film 5 is thicker than 500 ⁇ m, the manufacturing time increases. Therefore, the film thickness d of the conductive film 5 is desirably 30 ⁇ m or more and 500 ⁇ m or less. Further, considering the flexibility of the thermoelectric conversion module and the manufacturing efficiency, the film thickness d of the conductive film 5 is optimally 50 ⁇ m or more and 200 ⁇ m or less.
  • the cross-sectional area S of the conductive wire 3 is preferably 40 square micrometers or more and 400 square micrometers or less.
  • the substrate 1 is optimally polyimide or polyethylene naphthalate.
  • the substrate 1 include ionomer, polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polypropylene, polyester, polycarbonate, polystyrene, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene-vinyl alcohol copolymer. , Ethylene-methacrylic acid copolymer, polyamide, fluororesin and the like can be used.
  • the material mentioned here is only an example, and the material of the substrate 1 is not limited.
  • substrate can be selected also as the material of the insulating film 8.
  • FIG. From the viewpoint of durability, the thickness d of the substrate 1 is desirably 50 ⁇ m or more.
  • the thickness d of the substrate 1 is desirably 5 mm or less.
  • the substrate 1 can be deformed to function as a flexible substrate, and the thermoelectric conversion module can be installed in contact with an installation surface having a certain curvature.
  • the insulating heat insulating body 4 is made of a polymer material having excellent heat insulating properties and insulating properties.
  • a foamed polymer made from polyurethane, phenol resin, or the like exhibits excellent heat insulation performance and insulation performance because it contains a large amount of air in ultrafine bubbles.
  • the thermal conductivity of the polyurethane foam polymer is 0.033 W / mK
  • the thermal conductivity of the phenol foam polymer is 0.020 W / mK, which is the same value as the thermal conductivity of air, 0.024 W / mK.
  • the foaming agent carbon dioxide gas generated by mixing a polyol containing isocyanate and water can be used.
  • polystyrene, polyolefin, polyvinyl chloride, urea resin, silicone, polyimide, melamine resin, and the like can be used as the foamed polymer.
  • the above-mentioned polymer material is an example, and does not limit the insulating heat insulator 4 according to the first embodiment.
  • a specific numerical value is applied to some members for explanation. Note that the first embodiment is not limited to the numerical values shown here.
  • the conductive polymer of the conductive film 5 according to the first embodiment is oriented in a direction perpendicular to the substrate 1.
  • the length L in the direction perpendicular to the substrate of the conductive film 5 is 10 mm
  • the width W is 10 mm
  • the thickness d of the film is 100 ⁇ m.
  • the length of the insulating insulator 4 in the direction perpendicular to the substrate is 10 mm, the width is 10 mm, and the thickness is 150 ⁇ m.
  • the conductive wire 3 has a length of about 10 mm, a width of 40 ⁇ m, and a thickness of 5 ⁇ m.
  • the conductive wire 3 has a thermal conductivity higher than that of the conductive film 5 by about three digits.
  • the lower electrode 2 has a length of 10 mm, a width of 200 ⁇ m, and a thickness of 10 ⁇ m.
  • the upper electrode 6 is also the same size as the lower electrode 2.
  • the conductive wire 3, the lower electrode 2, and the upper electrode 6, and the conductive film 5, the lower electrode 2, and the upper electrode 6 are electrically connected with a conductive adhesive.
  • FIG. 4 the multilayer film 11 formed in the process of manufacturing the thermoelectric conversion element which concerns on 1st Embodiment is illustrated.
  • the multilayer film 11 has a structure in which the conductive film 5 and the insulating heat insulator 4 are laminated.
  • the base material 12 having a thickness of 2 mm the insulating heat insulators 4 and the conductive films 5 are alternately overlapped in a state in which the polymer orientation directions 10 of all the conductive films 5 are aligned in a certain direction.
  • the entire laminated film is pressurized and heated at 150 ° C., an integrated multilayer film 11 is obtained.
  • FIG. 5 illustrates a block 13 formed in the process of manufacturing the thermoelectric conversion element according to the first embodiment.
  • the multilayer film is cut and divided in a direction along the polymer orientation direction 10 with a width of 10 mm by a mechanical cutting method or a cutting method using laser light.
  • the striped conductive lines 3 shown in FIG. 5 are formed at the center of the insulating heat insulator 4 on the cut surface of the divided multilayer film.
  • the conductive line 3 and the polymer orientation direction 10 are parallel to each other.
  • the method of forming the stripe-shaped conductive wire 3 is, for example, a method of spraying a solution containing metal nanoparticles such as gold, silver, copper or the like onto the cut surface by an ink jet method to form a stripe and baking it with light or heat. Can be used. Furthermore, the stripe of the conductive wire 3 having a thickness of several ⁇ m can be formed by overwriting. As another method for forming the conductive wire 3, there is a method in which a gold wire having a diameter of 20 ⁇ m or less is adhered with an epoxy adhesive. Next, the multilayer film is mechanically cut and divided into a width of 10 mm in a direction perpendicular to the conductive wire 3 to obtain the block 13 shown in FIG.
  • a pattern of the lower electrode 2 and the second electrode 9 is formed on the substrate 1.
  • a method of patterning by vapor deposition / exposure, a method of ink-jet printing or screen printing a solution containing metal nanoparticles, and a method of plating are possible.
  • a method by plating a method of forming a lower electrode 2 by patterning polypyrrole resin on a substrate 1 by a printing method in accordance with the shape of the lower electrode 2 and then immersing it in a gold plating solution using Pd particles as a catalyst. is there.
  • a pattern of the upper electrode 6 and the first electrode 7 can be formed on the insulating film 8 by the same method.
  • a conductive adhesive 14 is applied on the pattern of the lower electrode 2 of the substrate 1 and the pattern of the upper electrode 6 of the insulating film 8 by a dispenser.
  • the conductive adhesive 14 an epoxy-based conductive adhesive composed of 84% silver powder, 15% liquid epoxy resin, and 1% amine-based curing agent can be used.
  • the block 13 is directed in a direction in which the conductive line 3 is perpendicular to the substrate 1, and the conductive line 3 and the conductive film 5 are aligned. The pair is bonded so as to contact the lower electrode 2.
  • FIG. 7 is a perspective view of a thermoelectric conversion module according to a second embodiment.
  • FIG. 7 is a perspective view of a thermoelectric conversion module according to a second embodiment.
  • thermoelectric conversion module according to the second embodiment includes a substrate 21, a heat insulating film 211, a lower electrode 22, a conductive wire 23, an insulating heat insulator 24, a conductive film 25, an upper electrode 26, a first electrode 27, and an insulating film. 28 and the second electrode 29.
  • the polymer orientation direction 30 in the conductive film 25 is indicated by an arrow.
  • the heat insulating film 211 is pasted on the substrate 21 in order to reduce the conduction of radiant heat from the substrate 21 to the insulating film 22.
  • a plurality of thermoelectric conversion elements are arranged on the substrate 21 and are electrically coupled in series.
  • the substrate 21 is installed on the high temperature side and the insulating film 28 is installed on the low temperature side.
  • the thermoelectric conversion module made of the p-type thermoelectric material the first electrode 27 drawn from the high temperature side is the negative electrode, and the second electrode 29 drawn from the low temperature side is the positive electrode.
  • the second embodiment is not limited to the numerical values shown here.
  • the length of the insulating heat insulator 24 in the direction perpendicular to the substrate 21 is 8 mm, the width is 16 mm, the thickness is 2 mm, and the conductive film 25 is supported so as to be substantially perpendicular to the substrate 21. Yes.
  • substantially perpendicular means that most of the film surface of the conductive film 25 is oriented in a direction perpendicular to the substrate, but the entire film surface is not strictly perpendicular.
  • the film surface is not a uniform plane. Also, it is not exactly vertical as in the first embodiment. Therefore, the conductive film 5 is supported so as to be substantially perpendicular to the substrate 1.
  • the conductive polymer of the conductive film 25 is oriented in a direction substantially perpendicular to the substrate 21, and is shown as a polymer orientation direction 30.
  • the length L of the conductive film 25 in the direction perpendicular to the substrate 21 is about 8 mm, the width W is 16 mm, and the thickness d of the film is 150 ⁇ m.
  • the length L is an approximate length.
  • the conductive wire 23 is a gold wire having a diameter of 20 ⁇ m and a length of about 10 mm. The diameter of the gold wire was reduced in order to reduce the heat transfer from the high temperature side to the low temperature side and maintain the temperature difference of the elements.
  • the lower electrode 22 has a length of 16 mm, a width of 4 mm, and a thickness of 10 ⁇ m.
  • the upper electrode 26 has a length of 16 mm, a width of 2 mm, and a thickness of 10 ⁇ m.
  • the conductive film 25 is electrically connected to the lower electrode 22 and the upper electrode 26 with a conductive adhesive.
  • the length of the conductive film 25 is reduced for applications that require flexibility, and is increased for applications that require output power.
  • FIG. 9 shows a top view of the thermoelectric conversion module according to the second embodiment. In FIG. 9, the illustration of the upper insulating film 28 is omitted in order to make the inside of the module easier to see.
  • a plurality of thermoelectric conversion elements are arranged in a row on the substrate 21, and each row is electrically connected in series via the electrode 40.
  • the insulating heat insulator 24 supports the conductive film 25 so that at least a part of the surface of the conductive film 25 is substantially perpendicular to the substrate 21.
  • the contact resistance can be reduced and the output power can be increased. it can.
  • thermoelectric conversion module of Example 1 In order to take out the generated output power to the outside, the lead wire (positive electrode) 17 was connected to the second electrode 9, and the lead wire (negative electrode) 19 was connected to the second electrode 7.
  • the effect of making the conductive film 5 perpendicular to the substrate 1 was verified.
  • the basic composition of the thermoelectric conversion module in Example 1 is the same as that of 1st Embodiment.
  • the conductive film 5 a film made of polyaniline was used.
  • the occupation ratio ⁇ of the conductive film 5 was set to about 40%.
  • the height L of the conductive film 5 is 10 mm.
  • the temperature of the installation surface of the thermoelectric conversion module was set to 40 ° C. on the assumption that the electronic device is disposed on the side surface of the waste heat duct.
  • the conductive film 5 was placed horizontally with respect to the substrate 1 and the temperature of the module surface portion 16 was measured. Note that placing the conductive film 5 horizontally with respect to the substrate 1 is equivalent to the case where the height L of the conductive film 5 is 1 mm.
  • Example 1 the temperature difference between the high temperature part and the low temperature part was 0.7 ° C. That is, in Example 1, it was confirmed that a temperature difference 10 times that of the comparative experiment could be maintained. Since the conductive film 5 of Example 1 was installed perpendicularly to the substrate 1, a temperature difference larger by one digit or more was obtained than when the conductive film 5 was installed horizontally. The temperature difference generated at both ends of the conductive film 5 increases in proportion to the length L of the conductive film 5, and the output power obtained increases. From this verification, it was proved that the output voltage can be increased by setting the length L of the insulating heat insulator 4 and the conductive film 5 even in the thermoelectric conversion module formed in a film shape.
  • the height L of the conductive film 5 was adjusted to 10 mm, and verification to change the occupation ratio was performed.
  • the temperature difference generated in the conductive film 5 was measured in the same evaluation environment as in Example 1.
  • the occupation ratio was controlled by fixing the thickness d of the conductive film 5 to 100 ⁇ m and changing the thickness of the insulating heat insulator 4.
  • FIG. 11 shows the occupancy dependency of the temperature difference generated in the conductive film 5. Those having an occupation ratio of 0 are all temperature differences in the case of an insulating heat insulator, and those having an occupation ratio of 1 are all temperature differences in the case of the conductive film 5.
  • the insulating heat insulator 4 has a thermal conductivity that is nearly an order of magnitude smaller than that of the conductive film 5.
  • Example 2 confirmed that the temperature difference between the high temperature part and the low temperature part can be controlled by setting the occupation ratio.
  • the thermoelectric conversion module When the thermoelectric conversion module is put to practical use, it can be confirmed that the temperature difference and the output power can be set by setting the electric resistance and thermal conductivity of the thermoelectric conversion element composed of the conductive film 5 and the insulating heat insulator 4. That's right.
  • thermoelectric conversion module when the length of the conductive film was changed to 2 mm, 5 mm, 10 mm, and 15 mm in the same environment as in Example 1 was measured.
  • thermoelectric conversion module 10 cm square and 15 cm square modules were used.
  • the output power necessary to drive the sensor or the like was set to 50 ⁇ W, and it was determined that the sensor or the like could be driven if an output power of 50 ⁇ W or more was obtained by power generation.
  • FIG. 12 shows the output power of the thermoelectric conversion module when the heating stage 15 is controlled to 40 ° C. and the environmental temperature is controlled to 25 ° C. and the length of the conductive film is changed in a 10 cm square thermoelectric conversion module.
  • the occupancy rate ⁇ dependence of density Pa is shown.
  • the curve in FIG. 12 is a theoretical curve.
  • the peak of the output power is in the vicinity of the occupation ratio of the conductive film of 0.6, and the output power decreased at 0.6 or more.
  • a value of 8.8 microwatt square meters was obtained as the output power density Pa. That is, an output power of 88 ⁇ W can be obtained from the 10 cm square thermoelectric conversion module. Since the electric power necessary for driving the sensor or the like is set to 50 ⁇ W, it can be determined that the sensor or the like can be driven. From FIG.
  • thermoelectric conversion module which can be used as power supplies, such as a sensor, was obtained by the structure which concerns on embodiment of this invention.
  • embodiment of this invention is not limited to the content described as mentioned above. According to the present invention, even a film-like thermoelectric conversion module can generate a sufficient temperature difference on both sides of the film, and can generate electric power and voltage necessary to drive a sensor or the like. become.
  • the present invention has been described with reference to the exemplary embodiments and examples, the present invention is not limited to the above exemplary embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-240282 for which it applied on November 1, 2011, and takes in those the indications of all here.
  • thermoelectric conversion module according to the embodiment of the present invention has a thin film shape and is configured of a flexible member, the thermoelectric conversion module can be installed on various curved surfaces such as pipes and ducts of electronic devices, and the surface of a human body. Therefore, electric power can be extracted not only from high-temperature waste heat generated from factories and cars, but also from low-temperature waste heat generated from electrical equipment such as office air conditioners, servers, personal computers, and lighting. Since the thermoelectric conversion module according to the embodiment of the present invention can be easily manufactured as a module with a large area, it can be applied to mass production and can be reduced in cost. Therefore, a large amount of thermoelectric conversion modules according to the embodiment of the present invention can be manufactured and installed in a large amount in the living environment. If environmental information such as temperature obtained from sensors installed in the living environment can be transmitted to the server using an active wireless tag and the electronic devices in the office can be controlled from the server, it is possible to save wasteful electric energy. You can build a system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

A thermoelectric conversion element of the invention is provided with a substrate, an insulator film positioned opposite the substrate, a conductive film thermally coupled to the substrate and the insulator film, and a heat-insulating material for supporting the conductive film; the conductive film includes a conductive polymer which is a thermoelectric material, and the conductive polymer is positioned in a direction almost perpendicular to the substrate. Further, a thermoelectric conversion module of the invention is provided with a plurality of thermoelectric conversion elements, and a plurality of parts positioned on the conductive film substrate side and a plurality of parts positioned on the conductive film insulator film side adjacent to the conductive film are continuously connected in series using conductive wires.

Description

熱電変換素子および熱電変換モジュールThermoelectric conversion element and thermoelectric conversion module
本発明は導電性高分子材料を用いた熱電変換素子および熱電変換モジュールに関する。 The present invention relates to a thermoelectric conversion element and a thermoelectric conversion module using a conductive polymer material.
 熱電変換素子は、熱エネルギーと電気エネルギーを相互に変換する素子である。熱電変換素子の両端に温度差を与えると起電力を得られる。熱電変換素子に用いられる熱電材料の特性を評価する指標としては、例えば特許文献1(特許第4513504号公報)にあるような式1に示したような性能指数Zが用いられる。
 Z=Sσ/κ(1)
ただし、S:ゼーベック係数、σ:電気伝導度、κ:熱伝導度である。
 ゼーベック係数Sは、1Kの温度差によって生じる起電力の大きさを表す。また、性能指数Zと、その値を示す絶対温度Tの積である無次元性能指数ZTも、熱電材料の特性を評価する指標とされる。
 熱電材料は、固有のゼーベック係数Sを持っており、ゼーベック係数Sが正であるp型熱電材料と、負であるn型熱電材料に大別される。p型またはn型の熱電材料のみで素子形成するよりも、p型とn型の熱電材料を、電極となる導電部を介して直列に接合した構造、すなわちπ型素子とよばれる構造とすることによって、大きな出力電力が得られる。
 例えば、特許文献2(特開平8−316532号公報)に記載されているように、複数のπ型素子を直列で接合した構造の熱電変換モジュールとし、出力電圧を大きくすることができる。π型素子からなる熱電変換モジュールは、例えば、特許文献2のように、直方体ブロック状に加工されたp型およびn型の熱電変換素子を直列に電気的に接続し、アルミナなどのセラミックス基板上に配置した構造をとることが一般的である。このような熱電変換素子に用いられる熱電材料としては、Bi−Te系、Pb−Te系、Si−Ge
 系などの化合物半導体、NaCoO(0.3≦x≦0.8)、(ZnO)mIn(1≦m≦19)、CaCoなどの酸化物セラミックスなどがある。
 N個の熱電変換素子からなる熱電変換モジュールから得られる最大起電力Pは、式2から求められる。
 P=V/(4NR)(2)
ただし、V:モジュール全体の電圧、R:1個の熱電変換素子の電気抵抗である。
 電気機器などから発生する廃熱を熱電変換して利用する場合は、電気機器に熱電変換素子を直接取り付けることによって、効率的に廃熱を電気に変換できる。廃熱を無駄なく電気エネルギーに変換するためには、電気機器の廃熱が集中する廃熱ダクトや配管などに熱電変換モジュールを直接設置することが望ましい。しかしながら、剛直なセラミックス基板上に剛直な熱電変換素子を実装した構造であるために、柔軟性がない。そのような熱電変換モジュールでは、曲面部や凹凸部を有する電子機器の放熱面に直接取り付けることは困難である。
 特許文献3(特許第3927784号公報)では、柔軟性のある基板上に熱電変換素子を形成させた構造としている。しかしながら、熱電変換素子はセラミックスなどの無機物で構成されるため、熱電変換モジュールの柔軟性が不十分であるという問題点があった。
 特許文献1や特許文献4(特開2010−95688号公報)には、導電性を有する高分子、すなわち導電性高分子を熱電材料として用いることについて記載されている。導電性高分子は、半導体と同様にゼーベック効果により熱電材料として機能するため、導電性高分子からなるフィルムの両端に温度差を与えると、両端に起電力が発生する。例えば、ポリアニリンのゼーベック係数は40μV/Kと、熱電材料として十分な値を示す。
 導電性高分子を塗布法によって熱電変換素子として形成できれば、熱電変換モジュールの大量生産を容易とし、製造コストを低減できる。しかしながら、現時点では、大気中で塗布成膜が可能なn型導電性高分子は得られていない。そのため、塗布によって導電性高分子フィルムを形成して熱電変換素子を製造する場合、p型熱電材料のみで構成しなければならないという制約がある。
 p型熱電材料のみで構成した熱電変換素子に関しては、例えば、特許文献5(特開2010−205883号公報)および特許文献6(特開2006−319119号公報)に記載されている。特許文献5には、p型熱電材料のみもしくはn型熱電材料のみを直列接合した熱電素子について記載されている。特許文献6には、導電型高分子としてp型ポリチオフェンのみを用いた熱電変換素子について記載されている。
 特許文献1および特許文献4にも、導電性高分子を用いた熱電変換素子に関する記載がある。しかしながら、特許文献1および特許文献4に記載されている導電性高分子の無次元性能指数ZTは室温で0.1以下であり、一般的な無機材料の無次元性能指数ZTの10%以下である。そのため、一般的なπ型素子構造で導電性高分子を構成した場合、一般的なセンサや無線タグを駆動できる50μW以上の出力電力を得ることも難しい。
 一般的な導電性高分子シートは50μm程度の厚さであり、40℃程度の電子機器の廃熱ダクトに熱電変換素子を設置しても、高温部と低温部の温度差は0.5℃以下であり、50μW以上の出力電力を得るのは難しいという問題点もあった。
 上述した特許文献1および特許文献4に記載されているような導電性高分子を用いてフィルム状の熱電変換モジュールを構成した場合、一般的な素子構造ではフィルムの両面に数℃の温度差を発生させることさえできないため、十分な出力電力が得られないという問題点があった。
 上述した特許文献6に記載されている構造のp型熱電変換素子からなる熱電変換モジュールでは、吸熱面と排熱面の温度差が小さいために出力電力が小さく、また、センサや無線タグの電源として必要な電圧を得ることができないという問題点があった。
 本発明の目的は、上述した課題であるフィルム状の熱電変換素子および熱電変換モジュールにおいて、フィルムの両面に十分な温度差を発生することができない、という問題点を解決する熱電変換素子および熱電変換モジュールを提供することにある。
 また、本発明の目的は、上述した課題である、p型熱電材料である導電性高分子のみでは十分な出力電力および出力電圧が得られない、という問題点を解決する熱電変換素子および熱電変換モジュールを提供することにある。
A thermoelectric conversion element is an element which mutually converts heat energy and electric energy. An electromotive force can be obtained by applying a temperature difference to both ends of the thermoelectric conversion element. As an index for evaluating the characteristics of the thermoelectric material used for the thermoelectric conversion element, for example, a figure of merit Z shown in Formula 1 as described in Patent Document 1 (Japanese Patent No. 4351504) is used.
Z = S 2 σ / κ (1)
However, S: Seebeck coefficient, (sigma): Electrical conductivity, (kappa): Thermal conductivity.
The Seebeck coefficient S represents the magnitude of an electromotive force generated by a temperature difference of 1K. The dimensionless figure of merit ZT, which is the product of the figure of merit Z and the absolute temperature T indicating the value, is also an index for evaluating the characteristics of the thermoelectric material.
Thermoelectric materials have a unique Seebeck coefficient S, and are roughly classified into p-type thermoelectric materials having a positive Seebeck coefficient S and n-type thermoelectric materials having a negative Seebeck coefficient S. Rather than forming an element with only a p-type or n-type thermoelectric material, a structure in which p-type and n-type thermoelectric materials are joined in series via a conductive portion serving as an electrode, that is, a structure called a π-type element. As a result, a large output power can be obtained.
For example, as described in Patent Document 2 (JP-A-8-316532), a thermoelectric conversion module having a structure in which a plurality of π-type elements are joined in series can be used to increase the output voltage. A thermoelectric conversion module composed of a π-type element, for example, as in Patent Document 2, electrically connects p-type and n-type thermoelectric conversion elements processed into a rectangular parallelepiped block shape in series on a ceramic substrate such as alumina. It is common to take a structure arranged in Examples of thermoelectric materials used for such thermoelectric conversion elements include Bi—Te, Pb—Te, and Si—Ge.
Compound semiconductors such as oxides, oxide ceramics such as Na x CoO 2 (0.3 ≦ x ≦ 0.8), (ZnO) mIn 2 O 3 (1 ≦ m ≦ 19), Ca 3 Co 4 O 2, etc. is there.
A maximum electromotive force P obtained from a thermoelectric conversion module including N thermoelectric conversion elements is obtained from Equation 2.
P = V 2 / (4NR) (2)
Where V is the voltage of the entire module, and R is the electrical resistance of one thermoelectric conversion element.
When the waste heat generated from an electric device or the like is used by thermoelectric conversion, the waste heat can be efficiently converted into electricity by directly attaching the thermoelectric conversion element to the electric device. In order to convert waste heat into electric energy without waste, it is desirable to directly install a thermoelectric conversion module in a waste heat duct or pipe where waste heat of electrical equipment is concentrated. However, since it has a structure in which a rigid thermoelectric conversion element is mounted on a rigid ceramic substrate, there is no flexibility. In such a thermoelectric conversion module, it is difficult to attach directly to a heat dissipation surface of an electronic device having a curved surface portion or an uneven portion.
In Patent Document 3 (Japanese Patent No. 3927784), a thermoelectric conversion element is formed on a flexible substrate. However, since the thermoelectric conversion element is composed of an inorganic material such as ceramics, there is a problem that the flexibility of the thermoelectric conversion module is insufficient.
Patent Document 1 and Patent Document 4 (Japanese Patent Laid-Open No. 2010-95688) describe the use of a conductive polymer, that is, a conductive polymer as a thermoelectric material. Since a conductive polymer functions as a thermoelectric material due to the Seebeck effect as in a semiconductor, when a temperature difference is given to both ends of a film made of a conductive polymer, electromotive force is generated at both ends. For example, the Seebeck coefficient of polyaniline is 40 μV / K, which is a sufficient value as a thermoelectric material.
If a conductive polymer can be formed as a thermoelectric conversion element by a coating method, mass production of thermoelectric conversion modules can be facilitated, and manufacturing costs can be reduced. However, at present, an n-type conductive polymer that can be coated and formed in the atmosphere has not been obtained. Therefore, in the case of producing a thermoelectric conversion element by forming a conductive polymer film by coating, there is a restriction that it must be composed only of a p-type thermoelectric material.
For example, Patent Document 5 (Japanese Patent Laid-Open No. 2010-205883) and Patent Document 6 (Japanese Patent Laid-Open No. 2006-319119) describe thermoelectric conversion elements composed only of p-type thermoelectric materials. Patent Document 5 describes a thermoelectric element in which only a p-type thermoelectric material or only an n-type thermoelectric material is joined in series. Patent Document 6 describes a thermoelectric conversion element using only p-type polythiophene as a conductive polymer.
Patent Document 1 and Patent Document 4 also have a description related to a thermoelectric conversion element using a conductive polymer. However, the dimensionless figure of merit ZT of the conductive polymers described in Patent Document 1 and Patent Document 4 is 0.1 or less at room temperature, and is 10% or less of the dimensionless figure of merit ZT of general inorganic materials. is there. Therefore, when the conductive polymer is configured with a general π-type element structure, it is difficult to obtain an output power of 50 μW or more that can drive a general sensor or a wireless tag.
A general conductive polymer sheet has a thickness of about 50 μm, and even if a thermoelectric conversion element is installed in a waste heat duct of an electronic device of about 40 ° C., the temperature difference between the high temperature portion and the low temperature portion is 0.5 ° C. There was also a problem that it was difficult to obtain an output power of 50 μW or more.
When a film-like thermoelectric conversion module is configured using the conductive polymer described in Patent Document 1 and Patent Document 4 described above, a temperature difference of several degrees Celsius is caused on both surfaces of the film in a general element structure. Since it cannot even be generated, there is a problem that sufficient output power cannot be obtained.
In the thermoelectric conversion module including the p-type thermoelectric conversion element having the structure described in Patent Document 6 described above, the temperature difference between the heat absorption surface and the exhaust heat surface is small, so that the output power is small. There was a problem that the required voltage could not be obtained.
The object of the present invention is to solve the problem that a sufficient temperature difference cannot be generated on both sides of the film in the film-like thermoelectric conversion element and thermoelectric conversion module, which are the problems described above, and the thermoelectric conversion element and thermoelectric conversion To provide a module.
The object of the present invention is also a thermoelectric conversion element and a thermoelectric conversion that solve the above-mentioned problem that sufficient output power and output voltage cannot be obtained only with a conductive polymer that is a p-type thermoelectric material. To provide a module.
 本発明の熱電変換素子は、基板と、基板と対面するように配置された絶縁フィルムと、基板及び絶縁フィルムと熱的に接続された導電性フィルムと、導電性フィルムを支持する絶縁性断熱体と、を備え、導電性フィルムは熱電材料である導電性高分子を含み、導電性高分子は基板に対してほぼ垂直な方向に配向している。
 また、本発明の熱電変換モジュールは、上述の熱電変換素子を複数配置して、複数の導電性フィルムの基板側に位置する部位と、複数の前述の導電性フィルムに隣接する導電性フィルムの絶縁フィルム側に位置する部位と、が連続的に導電線によって直列接続されている。
The thermoelectric conversion element of the present invention includes a substrate, an insulating film disposed so as to face the substrate, a conductive film thermally connected to the substrate and the insulating film, and an insulating heat insulator that supports the conductive film. The conductive film includes a conductive polymer that is a thermoelectric material, and the conductive polymer is oriented in a direction substantially perpendicular to the substrate.
Moreover, the thermoelectric conversion module of this invention arrange | positions two or more above-mentioned thermoelectric conversion elements, and isolate | separates the site | part located in the board | substrate side of several electroconductive film, and the electroconductive film adjacent to several electroconductive film mentioned above. The part located in the film side is continuously connected in series by the conductive wire.
第1の実施形態の熱電変換モジュールの斜視図である。It is a perspective view of the thermoelectric conversion module of 1st Embodiment. 第1の実施形態の熱電変換モジュールの側面図である。It is a side view of the thermoelectric conversion module of 1st Embodiment. 第1の実施形態のモジュールの上面図である。It is a top view of the module of a 1st embodiment. 第1の実施形態の熱電変換モジュールの製造工程の第1の説明図である。It is a 1st explanatory view of a manufacturing process of a thermoelectric conversion module of a 1st embodiment. 第1の実施形態の熱電変換モジュールの製造工程の第2の説明図である。It is 2nd explanatory drawing of the manufacturing process of the thermoelectric conversion module of 1st Embodiment. 第1の実施形態の熱電変換モジュールの製造工程の第3の説明図である。It is 3rd explanatory drawing of the manufacturing process of the thermoelectric conversion module of 1st Embodiment. 第2の実施形態の熱電変換モジュールの斜視図である。It is a perspective view of the thermoelectric conversion module of 2nd Embodiment. 第2の実施形態の熱電変換モジュールの側面図である。It is a side view of the thermoelectric conversion module of 2nd Embodiment. 第2の実施形態の熱電変換モジュールの上面図である。It is a top view of the thermoelectric conversion module of 2nd Embodiment. 実施例1の熱電変換モジュールを設置した図である。It is the figure which installed the thermoelectric conversion module of Example 1. FIG. 実施例2の導電性フィルムに生じる温度差の占有率依存性を示したグラフである。5 is a graph showing the dependency of the temperature difference generated in the conductive film of Example 2 on the occupation ratio. 実施例3の熱電変換モジュールの出力電力密度の占有率依存性を示したグラフである。It is the graph which showed the occupation rate dependence of the output power density of the thermoelectric conversion module of Example 3. FIG.
 以下、本発明の実施形態について、図面を参照して説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
 〔第1の実施形態〕図1に、第1の実施形態に係る熱電変換モジュールの斜視図を示す。図2に、第1の実施形態に係る熱電変換モジュールの側面図を示す。図3に、第1の実施形態に係る熱電変換モジュールの上面図を示す。図1は、図3の線ABで切断したモジュールの一部を斜視図として表現した図である。図2は、線ABで切断したモジュールの一部を側面図として表現した図であり、図1と同じ対象について描いている。図3は、モジュール内部を説明しやすくするために上部の導電線3、上部電極6、第1電極7および絶縁フィルム8は省略して図示した。
 第1の実施形態の熱電変換モジュールは、基板1、下部電極2、導電線3、絶縁性断熱体4、導電性フィルム5、上部電極6、第1電極7、絶縁フィルム8、第2電極9からなる。導電性フィルム5は熱電変換素子として働く。一枚の導電性フィルム5中の導電性高分子は、大部分が一方向に配向している。第1の実施形態の熱電変換素子において、全ての導電性フィルム5は、導電性高分子が矢印10の方向に配向するように配置している。
 図2では、上部電極6と導電性フィルム5、導電線3と下部電極2、導電性フィルム5と下部電極2が、それぞれ電気的に接続されており、基板1上に配置された複数の熱電変換素子において、第1電極7から第2電極9まで電気的に直列に接続している。第1の実施形態では、基板1を高温側、絶縁フィルム8を低温側にして設置することを想定している。p型熱電材料の場合、低温側が正極に、高温側が負極になる。第1の実施形態の熱電変換モジュールでは、低温側から引き出された第1電極7が正極、高温側から引き出された第2電極9が負極となる。なお、高温側と低温側を入れ替える場合、電極の極性は逆転する。同様に、p型熱電材料をn型熱電材料に置換した場合、電極の極性は逆転する。
 図3では、基板1上に複数の熱電変換素子からなるブロック13が列を成すように配置し、それぞれのブロック13が電極20を介して電気的に接続しており、全ての熱電変換素子を電気的に直列接続している。実際の素子数は、設置場所で得られる温度差に応じて、センサ等を駆動するのに必要な出力電力が得られるように設定する。
 第1の実施形態では、導電性フィルム5と絶縁性断熱体4を交互に隣接させたブロック13を形成している。そのため、基板1に対して垂直な方向に導電性フィルム5が保持されている。このような形態にすることによって、導電性フィルム5の占有率を大きくすることができる。なお、導電性フィルム5の占有率ηは、基板1に平行な面で熱電変換素子を切った切断面において、導電性フィルム5の断面が占める面積の割合で定義する。このように一定の面積のモジュールに多数の導電性フィルムを充填させることによって、センサ等を駆動するのに必要な出力電圧が得られる。
 また、導電性フィルム5を構成する導電性高分子の配向方向は、基板1に垂直な方向に向くように設置している。電流は、導電性高分子の配向方向に沿って選択的に流れるため、第1の実施形態のように導電性高分子を配向させることによって、熱電変換素子の電気抵抗を小さくでき、出力電力を大きくすることができる。
 第1の実施形態に係る熱電変換モジュールでは、絶縁性断熱体4と細い導電線3を用いる。絶縁性断熱体4によって、基板1と絶縁フィルム8の熱伝導を低減できる。また、導電線3の断面積を小さくすることによって、導電線3を通じた基板1から絶縁フィルム8の方向に向かった熱の移動を小さくすることができる。その結果、導電性フィルム5に生じる温度差を大きくでき、出力電力を大きくすることができる。
 なお、第1の実施形態においては、基板1と、絶縁フィルム8と、絶縁性断熱体4と、導電性フィルム5からなる熱電変換素子を発電の最小構成単位とする。そのため、単一の熱電変換素子を取り出して用いる場合は、導電線3は必須の構成とはならない。通常は、十分な電圧を得るため、熱電変換素子を導電性3によって直列に電気的接続し、熱電変換モジュールとして用いる。
 第1の実施形態に係る導電性フィルム5の材料としては、導電性高分子として知られるポリチオフェン、ポリエチレン・ジオキシ・チオフェン(PEDOT:Poly(3、4−ethylenedioxythiophene))、ポリアニリン、ポリアセチレン、ポリピロール、ポリフェニレンビニレン及びこれらの誘導体を使用できる。あるいはこれらの材料に金属ナノ粒子を分散させた材料も使用できる。
 導電性高分子は、2重結合と単結合が交互に並んだπ共役構造を有する主鎖を持ち、自由に動ける移動電荷であるキャリアをドープすることで導電性が得られる。このドーピングは、ヨウ素や五フッ化砒素などを高分子に添加することで行われ、添加剤はアクセプタとして機能する。
 塗布で得られる導電性高分子には、ポリチオフェン、ポリアニリンなどをあげられるが、いずれもp型の導電性を有する。現在、塗布法でn型の導電性フィルムを製膜する技術は実用化されていないため、第1の実施形態に係るフィルム状の熱電変換素子および熱電変換モジュールでは、p型熱電材料を前提としている。しかしながら、塗布以外の方法でn型熱電材料を得る場合には、本実施形態にn型熱電材料を適用することもできる。なお、n型熱電材料を用いる場合は、第1電極7が負極となり、第2電極9が正極となる。
 導電性フィルム5の形成方法には、上述した導電性高分子を有機溶剤に溶解させ、基板上にスピンコートするスピンコート法や、基板に溶液を塗布した直後にローラで薄く延ばすローラ法がある。導電性高分子は、スピンコート法では遠心力方向に、ローラ法では基板を引っ張った方向に配向できる。上述の工程を繰り返すことで、面内方向に配向したフィルムを厚くできる。なお、その他のフィルム形成方法で導電性フィルム5を形成しても、第1の実施形態と同様な構造とすることによって、同様な作用を得ることができる。
 導電性フィルム5の長さLが2mm以下では、導電性フィルム5の両端の温度差を十分取れないために十分な出力電力が得られない。また、導電性フィルム5の30mm以上だと、モジュールの可撓性が小さくなる。
 そのため、導電性フィルム5の長さLは、2mm以上かつ30mm以下が適切である。導電性フィルム5の長さLは、5mm以上かつ20mm以下であることがより望ましい。長さLに目安を設ける理由は、必要な可撓性と出力電力に適合させるためである。
 導電性フィルム5の膜厚dが30μm以下では、導電性フィルム5の断面積が小さくなるため、接触抵抗と電気抵抗が増大し、出力電力が低下してしまう。また、導電性フィルム5の断面積Sが500μm以上に厚いと、製造時間が増大してしまう。
 そのため、導電性フィルム5の膜厚dは30μm以上かつ500μm以下であることが望ましい。さらに、熱電変換モジュールの柔軟性や製造上の効率などを考慮すると、導電性フィルム5の膜厚dは50μm以上かつ200μm以下であるのが最適である。
 導電線3の断面積Sは、40平方マイクロメートル以上かつ400平方マイクロメートル以下が望ましい。40平方マイクロメートル以下では、電気抵抗が高くなり、機械強度が小さくなる欠点がある。400平方マイクロメートル以上では、熱抵抗が小さくなるために熱電変換モジュールの高温部と低温部の温度差が減少してしまう。導電線3には熱抵抗が大きくかつ電気抵抗が小さい材料を用いるのが望ましい。例えば、金、銀、銅からなる材料が適用可能であるが、本発明の実施形態では、それらの材料に限定されない。
 基板1は、ポリイミドあるいはポリエチレンナフタレートが最適である。また、他の基板1の材料として、アイオノマー、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリプロピレン、ポリエステル、ポリカーボネート、ポリスチレン、ポリアクリロニトリル、エチレン酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−メタクリル酸共重合体、ポリアミド、フッ素樹脂などを用いることができる。ただし、ここであげた材料は一例に過ぎず、基板1の材料を限定するわけではない。また、絶縁フィルム8の材料も、基板と同様の材料を選定することができる。
 耐久性の観点からは、基板1の厚さdは50μm以上が望ましい。また、柔軟性の観点からは、基板1の厚さdは5mm以下であることが望ましい。基板1の厚さが50μm~5mmの範囲にある場合、基板1がフレキシブル基板として機能するために変形可能であり、一定の曲率を有する設置面に熱電変換モジュールを接して設置できる。
 絶縁性断熱体4は、断熱性と絶縁性に優れた高分子材料からなる。特に、ポリウレタンやフェノール樹脂などを原料とした発泡高分子は、超微細気泡の中に多量の空気を含んでいるために優れた断熱性能と絶縁性能を示す。ポリウレタン発泡高分子の熱伝導率は0.033W/mK、フェノール発泡高分子の熱伝導率は0.020W/mKであり、空気の熱伝導率0.024W/mKと同程度の値である。発泡剤としては、イソシアネートと水を含むポリオールを混合することで発生する炭酸ガスを利用できる。また、ポリウレタンやフェノール樹脂以外でも、ポリスチレン、ポリオレフィン、ポリ塩化ビニル、ユリア樹脂、シリコーン、ポリイミド、メラミン樹脂などを発泡高分子として用いることができる。なお、上述の高分子材料は一例であり、第1の実施形態に係る絶縁性断熱体4を限定するわけではない。
 以下において、第1の実施形態を説明するために、一部の部材に具体的な数値を当てはめて説明する。なお、第1の実施形態は、ここで示した数値に限定されるわけではない。
 第1の実施形態に係る導電性フィルム5の導電性高分子は、基板1に垂直な方向に配向させている。導電性フィルム5の基板に垂直な方向の長さLは10mm、幅Wは10mm、フィルムの厚さdは100μmである。絶縁性断熱体4の基板に垂直な方向の長さは10mm、幅は10mm、厚さは150μmである。導電線3は長さ10mm程度、幅40μm、厚さ5μmである。導電線3は、導電性フィルム5より3桁程度熱伝導性が高いので、素子の温度差を保つために細くした。下部電極2は、長さ10mm、幅200μm、厚さ10μmである。上部電極6も下部電極2と同じサイズである。導電線3と下部電極2および上部電極6、導電性フィルム5と下部電極2および上部電極6は、導電性接着剤で電気的に接続している。
 以下に図面を参照して、熱電変換素子および熱電変換モジュールの製造方法の一例を示す。
 図4には、第1の実施形態に係る熱電変換素子を製造するプロセスで形成される、多層フィルム11を図示する。多層フィルム11は、導電性フィルム5と絶縁断熱体4を積層した構造になる。
 2mm厚の基材12上に、すべての導電性フィルム5の高分子の配向方向10を一定の方向に揃えた状態で、絶縁性断熱体4と導電性フィルム5を交互に重ね合わせる。重ね合わせたフィルム全体を加圧して、150℃で加熱すると一体化した多層フィルム11が得られる。なお、多層フィルム11を製造する上で基材12を用いているが、基材12は後の工程でブロック13から分離する。
 図5には、第1の実施形態に係る熱電変換素子を製造するプロセスで形成される、ブロック13を図示した。
 まず、機械的な切断方法もしくはレーザ光を用いた切断方法により、多層フィルムを10mmの幅で高分子の配向方向10に沿った方向に切断分割する。分割した多層フィルムの切断面において、絶縁性断熱体4の中央にあたる部位に、図5に示したストライプ状の導電線3を形成する。導電線3と高分子の配向方向10は平行になっている。
 ストライプ状の導電線3を形成する方法は、例えば、インクジェット法によって、金、銀、銅などの金属ナノ粒子を含む溶液を切断面に吹き付けてストライプを形成し、光や熱で焼成する方法を用いることができる。さらに、重ね描画することによって、数μm厚の導電線3のストライプを形成できる。他の導電線3の形成の方法としては、20μm径以下の金ワイヤをエポキシ系接着剤で接着する方法がある。
 次に、導電線3に対して垂直な方向に機械的に多層フィルムを10mmの幅で切断分割し、図5に示したブロック13を得る。
 さらに、基板1に、下部電極2と第2電極9のパターンを形成する。形成方法としては、蒸着・露光によるパターンニングする方法、金属ナノ粒子を含む溶液をインクジェット印刷もしくはスクリーン印刷する方法、めっきによる方法が可能である。
 例えば、めっきによる方法としては、基板1に、ポリピロール樹脂を下部電極2の形状にあわせて印刷法によってパターンニングした後、Pd粒子を触媒とし、金メッキ液に浸して下部電極2を形成する方法がある。同様の方法で、絶縁フィルム8にも上部電極6と第1電極7のパターンを形成できる。
 図6には、第1の実施形態に係る熱電変換モジュールの製造において、下部電極2および上部電極6にブロック13を接合する工程を図示した。
基板1の下部電極2のパターン上と、絶縁フィルム8の上部電極6のパターン上にディスペンサで導電性接着剤14を塗布する。導電性接着剤14としては、銀粉末84%、液状エポキシ樹脂15%、アミン系硬化剤1%からなるエポキシ系導電性接着剤が利用できる。
 顕微鏡とCCDカメラを有するアライメント用の接合装置を用いて、図6に示したように、ブロック13を、導電線3が基板1に垂直になる方向に向け、導電線3と導電性フィルム5の対が下部電極2と接するように接着する。同様に上部電極6のパターンが形成された絶縁フィルム8を、導電線3と導電性フィルム5の対が上部電極6に接するように接着し、全ての導電性フィルム5が直列接続になるようにする。軽く上下のフィルムを固定冶具で押さえ、150℃のヒータに載せて、接着剤を固化させて固着する。
 以上が第1の実施形態の熱電変換モジュール製造工程の説明である。ただし、第1の実施形態の熱電変換モジュールを製造する方法は、上述の方法に限定するわけではない。
 〔第2の実施形態〕図7には、第2の実施形態に係る熱電変換モジュールの斜視図を示す。図8は、第2の実施形態に係る熱電変換モジュールの側面図である。なお、第2の実施形態に係る熱電変換モジュールを構成する部材や材料は、特に断りのない限り第1の実施形態と同様である。
 第2の実施形態に係る熱電変換モジュールは、基板21、断熱性フィルム211、下部電極22、導電線23、絶縁性断熱体24、導電性フィルム25、上部電極26、第1電極27、絶縁フィルム28、第2電極29からなる。導電性フィルム25における高分子の配向方向30は矢印で示した。第2の実施形態では、基板21から絶縁フィルム22への放射熱の伝導を低減するために、基板21上に断熱性フィルム211を貼った。
 図7では、基板21上に複数の熱電変換素子が配置され、電気的に直列に結合されている。第2の実施形態では、基板21を高温側、絶縁フィルム28を低温側にして設置することを想定する。この場合、p型熱電材料からなる熱電変換モジュールでは、高温側から引き出された第1電極27が負極、低温側から引き出された第2電極29が正極となる。なお、高温側と低温側を入れ替える場合、電極の極性は逆転する。同様に、p型熱電材料をn型熱電材料に置換した場合、電極の極性は逆転する。
 以下において、第2の実施形態を具体的に説明するために、一部の部材に数値を当てはめて説明する。ただし、第2の実施形態は、ここで示した数値に限定されるわけではない。
 絶縁性断熱体24の基板21に対して垂直な方向の長さは8mm、幅は16mm、厚さは2mmであり、導電性フィルム25が基板21に対してほぼ垂直となるように支持している。なお、ほぼ垂直とは、導電性フィルム25のフィルム面の大部分は基板に対して垂直な方向に向いているが、フィルム面の全面が厳密には垂直ではないことを意味する。
 第2の実施形態の構造では、導電性フィルム25の端部を絶縁性断熱体24の端部に接着するため、フィルム面は一様な平面ではない。また、第1の実施形態のように正確に垂直であるわけではない。そのため、導電性フィルム5は、基板1に対してほぼ垂直となるように支持されることとなる。
導電性フィルム25の導電性高分子は、すなわち基板21に対してほぼ垂直な方向に配向しており、高分子の配向方向30として示した。
 導電性フィルム25の基板21に対して垂直な方向の長さLは約8mm、幅Wは16mm、フィルムの厚さdは150μmである。なお、導電性フィルム25の長さL方向の両端には、下部電極22および上部電極26と接着するためののりしろを設けるため、長さLはおよその長さである。
 導電線23は、直径20μmで長さ10mm程度の金ワイヤである。金ワイヤの直径は、高温側から低温側への熱移動を低減し、素子の温度差を保つために細くした。下部電極22は、長さ16mm、幅4mm、厚さ10μmである。上部電極26は、長さ16mm、幅2mm、厚さ10μmである。
導電性フィルム25は、下部電極22と上部電極26に導電性接着剤で電気的に接続されている。導電性フィルム25の長さは、可撓性を要求される用途には小さくし、出力電力を要求される用途には大きくする。
 図9に、第2の実施形態に係る熱電変換モジュールの上面図を示す。図9ではモジュール内部を見やすくするために上部の絶縁フィルム28の記載を省略した。基板21上に、複数の熱電変換素子が列になるように配置し、各列は電極40を介して電気的に直列結合させる。第2の実施形態では、熱電変換素子の間隔が広いため、第1の実施形態と比較すると導電性フィルム25の占有率は小さい。実際の素子数は、設置場所によって得られる温度差に応じて、センサ等を駆動するのに必要な出力電力が得られるように調整する。
 第2の実施形態では、導電性フィルム25の面の少なくとも一部が基板21にほぼ垂直になるように絶縁性断熱体24に支持されている。第2の実施形態では、金ワイヤで余裕をもって配線されているため、熱電変換モジュール全体の変形に対して断線がおこりにくい。さらに、第2の実施形態では、導電性フィルム25が下部電極22と上部電極26に接する面積が第1の実施形態と比較して大きいために接触抵抗を小さくでき、出力電力を大きくすることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following.
[First Embodiment] FIG. 1 is a perspective view of a thermoelectric conversion module according to a first embodiment. FIG. 2 shows a side view of the thermoelectric conversion module according to the first embodiment. FIG. 3 shows a top view of the thermoelectric conversion module according to the first embodiment. FIG. 1 is a perspective view of a part of a module cut along line AB in FIG. FIG. 2 is a side view of a part of the module cut along the line AB, which is drawn on the same object as FIG. In FIG. 3, the upper conductive wire 3, the upper electrode 6, the first electrode 7, and the insulating film 8 are omitted in order to facilitate explanation of the inside of the module.
The thermoelectric conversion module according to the first embodiment includes a substrate 1, a lower electrode 2, a conductive wire 3, an insulating heat insulator 4, a conductive film 5, an upper electrode 6, a first electrode 7, an insulating film 8, and a second electrode 9. Consists of. The conductive film 5 functions as a thermoelectric conversion element. Most of the conductive polymer in one conductive film 5 is oriented in one direction. In the thermoelectric conversion element of the first embodiment, all the conductive films 5 are arranged so that the conductive polymer is oriented in the direction of the arrow 10.
In FIG. 2, the upper electrode 6 and the conductive film 5, the conductive wire 3 and the lower electrode 2, and the conductive film 5 and the lower electrode 2 are electrically connected to each other, and a plurality of thermoelectric elements disposed on the substrate 1. In the conversion element, the first electrode 7 to the second electrode 9 are electrically connected in series. In the first embodiment, it is assumed that the substrate 1 is installed on the high temperature side and the insulating film 8 is installed on the low temperature side. In the case of a p-type thermoelectric material, the low temperature side is the positive electrode and the high temperature side is the negative electrode. In the thermoelectric conversion module of the first embodiment, the first electrode 7 drawn from the low temperature side is the positive electrode, and the second electrode 9 drawn from the high temperature side is the negative electrode. When the high temperature side and the low temperature side are switched, the polarity of the electrode is reversed. Similarly, when the p-type thermoelectric material is replaced with an n-type thermoelectric material, the polarity of the electrode is reversed.
In FIG. 3, blocks 13 made of a plurality of thermoelectric conversion elements are arranged on a substrate 1 so as to form a row, and each block 13 is electrically connected via an electrode 20. Electrically connected in series. The actual number of elements is set so that the output power necessary for driving the sensor or the like can be obtained according to the temperature difference obtained at the installation location.
In the first embodiment, the blocks 13 are formed in which the conductive films 5 and the insulating heat insulators 4 are alternately adjacent to each other. Therefore, the conductive film 5 is held in a direction perpendicular to the substrate 1. By taking such a form, the occupation ratio of the conductive film 5 can be increased. Note that the occupation ratio η of the conductive film 5 is defined by the ratio of the area occupied by the cross section of the conductive film 5 in the cut surface obtained by cutting the thermoelectric conversion element in a plane parallel to the substrate 1. Thus, by filling a module having a certain area with a large number of conductive films, an output voltage necessary for driving a sensor or the like can be obtained.
Further, the orientation direction of the conductive polymer constituting the conductive film 5 is set so as to face the direction perpendicular to the substrate 1. Since current flows selectively along the orientation direction of the conductive polymer, by orienting the conductive polymer as in the first embodiment, the electric resistance of the thermoelectric conversion element can be reduced, and the output power can be reduced. Can be bigger.
In the thermoelectric conversion module according to the first embodiment, the insulating heat insulator 4 and the thin conductive wire 3 are used. The heat insulation between the substrate 1 and the insulating film 8 can be reduced by the insulating heat insulator 4. Further, by reducing the cross-sectional area of the conductive wire 3, the movement of heat from the substrate 1 toward the insulating film 8 through the conductive wire 3 can be reduced. As a result, the temperature difference generated in the conductive film 5 can be increased, and the output power can be increased.
In the first embodiment, a thermoelectric conversion element including the substrate 1, the insulating film 8, the insulating heat insulating body 4, and the conductive film 5 is used as a minimum structural unit for power generation. Therefore, when taking out and using a single thermoelectric conversion element, the conductive wire 3 does not become an essential structure. Usually, in order to obtain a sufficient voltage, the thermoelectric conversion elements are electrically connected in series by the conductivity 3 and used as a thermoelectric conversion module.
Examples of the material of the conductive film 5 according to the first embodiment include polythiophene known as a conductive polymer, polyethylene dioxythiophene (PEDOT: Poly (3,4-ethylenedioxythiophene)), polyaniline, polyacetylene, polypyrrole, and polyphenylene. Vinylene and derivatives thereof can be used. Alternatively, materials in which metal nanoparticles are dispersed in these materials can also be used.
The conductive polymer has a main chain having a π-conjugated structure in which double bonds and single bonds are alternately arranged, and conductivity is obtained by doping a carrier that is a mobile charge that can move freely. This doping is performed by adding iodine, arsenic pentafluoride, or the like to the polymer, and the additive functions as an acceptor.
Examples of the conductive polymer obtained by coating include polythiophene, polyaniline, etc., all of which have p-type conductivity. At present, the technology for forming an n-type conductive film by a coating method has not been put to practical use. Therefore, in the film-like thermoelectric conversion element and thermoelectric conversion module according to the first embodiment, a p-type thermoelectric material is assumed. Yes. However, when obtaining an n-type thermoelectric material by a method other than coating, the n-type thermoelectric material can also be applied to this embodiment. In addition, when using an n-type thermoelectric material, the 1st electrode 7 becomes a negative electrode and the 2nd electrode 9 becomes a positive electrode.
As a method for forming the conductive film 5, there are a spin coating method in which the above-described conductive polymer is dissolved in an organic solvent and spin-coated on the substrate, and a roller method in which the solution is thinly extended with a roller immediately after the solution is applied to the substrate. . The conductive polymer can be oriented in the direction of centrifugal force by the spin coating method and in the direction of pulling the substrate by the roller method. By repeating the above steps, the film oriented in the in-plane direction can be thickened. In addition, even if the conductive film 5 is formed by other film forming methods, the same effect can be obtained by adopting the same structure as that of the first embodiment.
When the length L of the conductive film 5 is 2 mm or less, a sufficient temperature difference between both ends of the conductive film 5 cannot be obtained, so that sufficient output power cannot be obtained. Further, if the thickness of the conductive film 5 is 30 mm or more, the flexibility of the module is reduced.
Therefore, the length L of the conductive film 5 is appropriately 2 mm or more and 30 mm or less. The length L of the conductive film 5 is more preferably 5 mm or more and 20 mm or less. The reason for providing a guideline for the length L is to adapt to the required flexibility and output power.
When the film thickness d of the conductive film 5 is 30 μm or less, the cross-sectional area of the conductive film 5 becomes small, so that the contact resistance and electrical resistance increase, and the output power decreases. In addition, when the cross-sectional area S of the conductive film 5 is thicker than 500 μm, the manufacturing time increases.
Therefore, the film thickness d of the conductive film 5 is desirably 30 μm or more and 500 μm or less. Further, considering the flexibility of the thermoelectric conversion module and the manufacturing efficiency, the film thickness d of the conductive film 5 is optimally 50 μm or more and 200 μm or less.
The cross-sectional area S of the conductive wire 3 is preferably 40 square micrometers or more and 400 square micrometers or less. If it is 40 square micrometers or less, there is a drawback that the electrical resistance increases and the mechanical strength decreases. If it is 400 square micrometers or more, since the thermal resistance is small, the temperature difference between the high temperature part and the low temperature part of the thermoelectric conversion module is reduced. It is desirable to use a material having a large thermal resistance and a small electrical resistance for the conductive wire 3. For example, materials made of gold, silver, and copper are applicable, but the embodiments of the present invention are not limited to these materials.
The substrate 1 is optimally polyimide or polyethylene naphthalate. Other materials for the substrate 1 include ionomer, polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polypropylene, polyester, polycarbonate, polystyrene, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene-vinyl alcohol copolymer. , Ethylene-methacrylic acid copolymer, polyamide, fluororesin and the like can be used. However, the material mentioned here is only an example, and the material of the substrate 1 is not limited. Moreover, the material similar to a board | substrate can be selected also as the material of the insulating film 8. FIG.
From the viewpoint of durability, the thickness d of the substrate 1 is desirably 50 μm or more. Further, from the viewpoint of flexibility, the thickness d of the substrate 1 is desirably 5 mm or less. When the thickness of the substrate 1 is in the range of 50 μm to 5 mm, the substrate 1 can be deformed to function as a flexible substrate, and the thermoelectric conversion module can be installed in contact with an installation surface having a certain curvature.
The insulating heat insulating body 4 is made of a polymer material having excellent heat insulating properties and insulating properties. In particular, a foamed polymer made from polyurethane, phenol resin, or the like exhibits excellent heat insulation performance and insulation performance because it contains a large amount of air in ultrafine bubbles. The thermal conductivity of the polyurethane foam polymer is 0.033 W / mK, the thermal conductivity of the phenol foam polymer is 0.020 W / mK, which is the same value as the thermal conductivity of air, 0.024 W / mK. As the foaming agent, carbon dioxide gas generated by mixing a polyol containing isocyanate and water can be used. In addition to polyurethane and phenol resin, polystyrene, polyolefin, polyvinyl chloride, urea resin, silicone, polyimide, melamine resin, and the like can be used as the foamed polymer. In addition, the above-mentioned polymer material is an example, and does not limit the insulating heat insulator 4 according to the first embodiment.
In the following, in order to describe the first embodiment, a specific numerical value is applied to some members for explanation. Note that the first embodiment is not limited to the numerical values shown here.
The conductive polymer of the conductive film 5 according to the first embodiment is oriented in a direction perpendicular to the substrate 1. The length L in the direction perpendicular to the substrate of the conductive film 5 is 10 mm, the width W is 10 mm, and the thickness d of the film is 100 μm. The length of the insulating insulator 4 in the direction perpendicular to the substrate is 10 mm, the width is 10 mm, and the thickness is 150 μm. The conductive wire 3 has a length of about 10 mm, a width of 40 μm, and a thickness of 5 μm. The conductive wire 3 has a thermal conductivity higher than that of the conductive film 5 by about three digits. The lower electrode 2 has a length of 10 mm, a width of 200 μm, and a thickness of 10 μm. The upper electrode 6 is also the same size as the lower electrode 2. The conductive wire 3, the lower electrode 2, and the upper electrode 6, and the conductive film 5, the lower electrode 2, and the upper electrode 6 are electrically connected with a conductive adhesive.
An example of a method for manufacturing a thermoelectric conversion element and a thermoelectric conversion module will be described below with reference to the drawings.
In FIG. 4, the multilayer film 11 formed in the process of manufacturing the thermoelectric conversion element which concerns on 1st Embodiment is illustrated. The multilayer film 11 has a structure in which the conductive film 5 and the insulating heat insulator 4 are laminated.
On the base material 12 having a thickness of 2 mm, the insulating heat insulators 4 and the conductive films 5 are alternately overlapped in a state in which the polymer orientation directions 10 of all the conductive films 5 are aligned in a certain direction. When the entire laminated film is pressurized and heated at 150 ° C., an integrated multilayer film 11 is obtained. In addition, although the base material 12 is used when manufacturing the multilayer film 11, the base material 12 isolate | separates from the block 13 at a next process.
FIG. 5 illustrates a block 13 formed in the process of manufacturing the thermoelectric conversion element according to the first embodiment.
First, the multilayer film is cut and divided in a direction along the polymer orientation direction 10 with a width of 10 mm by a mechanical cutting method or a cutting method using laser light. The striped conductive lines 3 shown in FIG. 5 are formed at the center of the insulating heat insulator 4 on the cut surface of the divided multilayer film. The conductive line 3 and the polymer orientation direction 10 are parallel to each other.
The method of forming the stripe-shaped conductive wire 3 is, for example, a method of spraying a solution containing metal nanoparticles such as gold, silver, copper or the like onto the cut surface by an ink jet method to form a stripe and baking it with light or heat. Can be used. Furthermore, the stripe of the conductive wire 3 having a thickness of several μm can be formed by overwriting. As another method for forming the conductive wire 3, there is a method in which a gold wire having a diameter of 20 μm or less is adhered with an epoxy adhesive.
Next, the multilayer film is mechanically cut and divided into a width of 10 mm in a direction perpendicular to the conductive wire 3 to obtain the block 13 shown in FIG.
Further, a pattern of the lower electrode 2 and the second electrode 9 is formed on the substrate 1. As a forming method, a method of patterning by vapor deposition / exposure, a method of ink-jet printing or screen printing a solution containing metal nanoparticles, and a method of plating are possible.
For example, as a method by plating, a method of forming a lower electrode 2 by patterning polypyrrole resin on a substrate 1 by a printing method in accordance with the shape of the lower electrode 2 and then immersing it in a gold plating solution using Pd particles as a catalyst. is there. A pattern of the upper electrode 6 and the first electrode 7 can be formed on the insulating film 8 by the same method.
FIG. 6 illustrates a process of joining the block 13 to the lower electrode 2 and the upper electrode 6 in the manufacture of the thermoelectric conversion module according to the first embodiment.
A conductive adhesive 14 is applied on the pattern of the lower electrode 2 of the substrate 1 and the pattern of the upper electrode 6 of the insulating film 8 by a dispenser. As the conductive adhesive 14, an epoxy-based conductive adhesive composed of 84% silver powder, 15% liquid epoxy resin, and 1% amine-based curing agent can be used.
Using an alignment joining apparatus having a microscope and a CCD camera, as shown in FIG. 6, the block 13 is directed in a direction in which the conductive line 3 is perpendicular to the substrate 1, and the conductive line 3 and the conductive film 5 are aligned. The pair is bonded so as to contact the lower electrode 2. Similarly, the insulating film 8 on which the pattern of the upper electrode 6 is formed is bonded so that the pair of the conductive wire 3 and the conductive film 5 is in contact with the upper electrode 6 so that all the conductive films 5 are connected in series. To do. Lightly hold the upper and lower films with a fixing jig and place them on a heater at 150 ° C. to solidify and fix the adhesive.
The above is description of the thermoelectric conversion module manufacturing process of 1st Embodiment. However, the method for manufacturing the thermoelectric conversion module of the first embodiment is not limited to the above-described method.
[Second Embodiment] FIG. 7 is a perspective view of a thermoelectric conversion module according to a second embodiment. FIG. 8 is a side view of the thermoelectric conversion module according to the second embodiment. In addition, the member and material which comprise the thermoelectric conversion module which concerns on 2nd Embodiment are the same as that of 1st Embodiment unless there is particular notice.
The thermoelectric conversion module according to the second embodiment includes a substrate 21, a heat insulating film 211, a lower electrode 22, a conductive wire 23, an insulating heat insulator 24, a conductive film 25, an upper electrode 26, a first electrode 27, and an insulating film. 28 and the second electrode 29. The polymer orientation direction 30 in the conductive film 25 is indicated by an arrow. In the second embodiment, the heat insulating film 211 is pasted on the substrate 21 in order to reduce the conduction of radiant heat from the substrate 21 to the insulating film 22.
In FIG. 7, a plurality of thermoelectric conversion elements are arranged on the substrate 21 and are electrically coupled in series. In the second embodiment, it is assumed that the substrate 21 is installed on the high temperature side and the insulating film 28 is installed on the low temperature side. In this case, in the thermoelectric conversion module made of the p-type thermoelectric material, the first electrode 27 drawn from the high temperature side is the negative electrode, and the second electrode 29 drawn from the low temperature side is the positive electrode. When the high temperature side and the low temperature side are switched, the polarity of the electrode is reversed. Similarly, when the p-type thermoelectric material is replaced with an n-type thermoelectric material, the polarity of the electrode is reversed.
In the following, in order to specifically describe the second embodiment, a description will be given by applying numerical values to some members. However, the second embodiment is not limited to the numerical values shown here.
The length of the insulating heat insulator 24 in the direction perpendicular to the substrate 21 is 8 mm, the width is 16 mm, the thickness is 2 mm, and the conductive film 25 is supported so as to be substantially perpendicular to the substrate 21. Yes. Note that “substantially perpendicular” means that most of the film surface of the conductive film 25 is oriented in a direction perpendicular to the substrate, but the entire film surface is not strictly perpendicular.
In the structure of the second embodiment, since the end portion of the conductive film 25 is bonded to the end portion of the insulating heat insulator 24, the film surface is not a uniform plane. Also, it is not exactly vertical as in the first embodiment. Therefore, the conductive film 5 is supported so as to be substantially perpendicular to the substrate 1.
The conductive polymer of the conductive film 25 is oriented in a direction substantially perpendicular to the substrate 21, and is shown as a polymer orientation direction 30.
The length L of the conductive film 25 in the direction perpendicular to the substrate 21 is about 8 mm, the width W is 16 mm, and the thickness d of the film is 150 μm. In addition, since the margin for adhering with the lower electrode 22 and the upper electrode 26 is provided in the both ends of the length L direction of the electroconductive film 25, the length L is an approximate length.
The conductive wire 23 is a gold wire having a diameter of 20 μm and a length of about 10 mm. The diameter of the gold wire was reduced in order to reduce the heat transfer from the high temperature side to the low temperature side and maintain the temperature difference of the elements. The lower electrode 22 has a length of 16 mm, a width of 4 mm, and a thickness of 10 μm. The upper electrode 26 has a length of 16 mm, a width of 2 mm, and a thickness of 10 μm.
The conductive film 25 is electrically connected to the lower electrode 22 and the upper electrode 26 with a conductive adhesive. The length of the conductive film 25 is reduced for applications that require flexibility, and is increased for applications that require output power.
FIG. 9 shows a top view of the thermoelectric conversion module according to the second embodiment. In FIG. 9, the illustration of the upper insulating film 28 is omitted in order to make the inside of the module easier to see. A plurality of thermoelectric conversion elements are arranged in a row on the substrate 21, and each row is electrically connected in series via the electrode 40. In 2nd Embodiment, since the space | interval of a thermoelectric conversion element is wide, compared with 1st Embodiment, the occupation rate of the electroconductive film 25 is small. The actual number of elements is adjusted so as to obtain the output power necessary for driving the sensor or the like according to the temperature difference obtained depending on the installation location.
In the second embodiment, the insulating heat insulator 24 supports the conductive film 25 so that at least a part of the surface of the conductive film 25 is substantially perpendicular to the substrate 21. In 2nd Embodiment, since it wired with a margin with gold | metal | money wire, a disconnection does not occur easily with respect to a deformation | transformation of the whole thermoelectric conversion module. Further, in the second embodiment, since the area where the conductive film 25 is in contact with the lower electrode 22 and the upper electrode 26 is larger than that in the first embodiment, the contact resistance can be reduced and the output power can be increased. it can.
図10に、実施例1の熱電変換モジュールの設置例を示す。発生した出力電力を外部に取り出すため、引き出し電線(正極)17を第2電極9に、引き出し電線(負極)19を第2電極7に接続した。実施例1では、第1の実施形態に係る熱電変換モジュールにおいて、導電性フィルム5を、基板1に対して垂直にすることによる効果を検証した。なお、実施例1における熱電変換モジュールの基本構成は、第1の実施形態と同様である。
 導電性フィルム5としては、ポリアニリンからなるフィルムを用いた。実施例1においては、導電性フィルム5の占有率ηは約40%に設定した。実施例1では、導電性フィルム5の高さLは10mmである。
 電子機器の廃熱ダクト側面に配置することを想定し、熱電変換モジュールの設置面の温度が40℃に設定した。加熱ステージ15を40℃に、環境温度を25℃に制御して保持し、モジュール表面部16の温度を測定したところ、モジュール表面部16は温度32.6℃であった。すなわち7.4℃(=40.0−32.6)の温度差が得られた。
 また、比較実験のために、導電性フィルム5を基板1に対して水平に寝かせて設置し、モジュール表面部16の温度を測定した。なお、導電性フィルム5を基板1に対して水平に寝かせて設置することは、導電性フィルム5の高さLを1mmとした場合と同等である。この結果、高温部と低温部の温度差は0.7℃であった。
 すなわち、実施例1では、比較実験の10倍の温度差を保持できることが確認できた。実施例1の導電性フィルム5は、基板1に対して垂直に設置しているため、水平に寝かせて設置した場合よりも1桁以上大きな温度差が得られたことになる。
 導電性フィルム5の両端に生じる温度差は、導電性フィルム5の長さLに比例して大きくなり、得られる出力電力が大きくなる。この検証によって、フィルム状に形成した熱電変換モジュールであっても、絶縁性断熱体4と導電性フィルム5の長さLを設定することによって、出力電圧を高めることができることを実証できた。
In FIG. 10, the example of installation of the thermoelectric conversion module of Example 1 is shown. In order to take out the generated output power to the outside, the lead wire (positive electrode) 17 was connected to the second electrode 9, and the lead wire (negative electrode) 19 was connected to the second electrode 7. In Example 1, in the thermoelectric conversion module according to the first embodiment, the effect of making the conductive film 5 perpendicular to the substrate 1 was verified. In addition, the basic composition of the thermoelectric conversion module in Example 1 is the same as that of 1st Embodiment.
As the conductive film 5, a film made of polyaniline was used. In Example 1, the occupation ratio η of the conductive film 5 was set to about 40%. In Example 1, the height L of the conductive film 5 is 10 mm.
The temperature of the installation surface of the thermoelectric conversion module was set to 40 ° C. on the assumption that the electronic device is disposed on the side surface of the waste heat duct. When the heating stage 15 was held at 40 ° C. and the environmental temperature was controlled at 25 ° C. and the temperature of the module surface portion 16 was measured, the module surface portion 16 was at a temperature of 32.6 ° C. That is, a temperature difference of 7.4 ° C. (= 40.0−32.6) was obtained.
For comparison experiments, the conductive film 5 was placed horizontally with respect to the substrate 1 and the temperature of the module surface portion 16 was measured. Note that placing the conductive film 5 horizontally with respect to the substrate 1 is equivalent to the case where the height L of the conductive film 5 is 1 mm. As a result, the temperature difference between the high temperature part and the low temperature part was 0.7 ° C.
That is, in Example 1, it was confirmed that a temperature difference 10 times that of the comparative experiment could be maintained. Since the conductive film 5 of Example 1 was installed perpendicularly to the substrate 1, a temperature difference larger by one digit or more was obtained than when the conductive film 5 was installed horizontally.
The temperature difference generated at both ends of the conductive film 5 increases in proportion to the length L of the conductive film 5, and the output power obtained increases. From this verification, it was proved that the output voltage can be increased by setting the length L of the insulating heat insulator 4 and the conductive film 5 even in the thermoelectric conversion module formed in a film shape.
導電性フィルム5の高さLを10mmにそろえ、占有率を変える検証を行った。実施例2では、実施例1と同様の評価環境で、導電性フィルム5に生じる温度差を測定した。占有率は、導電性フィルム5の厚さdを100μmに固定し、絶縁性断熱体4の厚さを変えることで制御した。
 図11に、導電性フィルム5に生じる温度差の占有率依存性を示す。占有率が0のものは全て絶縁性断熱体の場合の温度差であり、占有率が1のものは全て導電性フィルム5の場合の温度差である。
 絶縁性断熱体4の方が、導電性フィルム5より熱伝導率が1桁近く小さい。そのため、導電性フィルム5の占有率が大きくなると、温度差が減少することを確認できた。
 実施例2の検証により、占有率を設定することによって、高温部と低温部の間の温度差を制御できることが確認できた。熱電変換モジュールを実用化する際には、導電性フィルム5や絶縁性断熱体4からなる熱電変換素子の電気抵抗や熱伝導度を設定することによって、温度差や出力電力を設定できることが確認できたことになる。
The height L of the conductive film 5 was adjusted to 10 mm, and verification to change the occupation ratio was performed. In Example 2, the temperature difference generated in the conductive film 5 was measured in the same evaluation environment as in Example 1. The occupation ratio was controlled by fixing the thickness d of the conductive film 5 to 100 μm and changing the thickness of the insulating heat insulator 4.
FIG. 11 shows the occupancy dependency of the temperature difference generated in the conductive film 5. Those having an occupation ratio of 0 are all temperature differences in the case of an insulating heat insulator, and those having an occupation ratio of 1 are all temperature differences in the case of the conductive film 5.
The insulating heat insulator 4 has a thermal conductivity that is nearly an order of magnitude smaller than that of the conductive film 5. Therefore, it has been confirmed that the temperature difference decreases as the occupation ratio of the conductive film 5 increases.
The verification of Example 2 confirmed that the temperature difference between the high temperature part and the low temperature part can be controlled by setting the occupation ratio. When the thermoelectric conversion module is put to practical use, it can be confirmed that the temperature difference and the output power can be set by setting the electric resistance and thermal conductivity of the thermoelectric conversion element composed of the conductive film 5 and the insulating heat insulator 4. That's right.
導電性フィルム5の長さを変える以外は、実施例1と同様の環境で、導電性フィルムの長さを2mm、5mm、10mm、15mmと変えた際の熱電変換モジュールの出力電力を測定した。熱電変換モジュールには、10cm角と15cm角のものを用いた。なお、実施例3では、センサ等を駆動するために必要な出力電力を50μWに設定し、50μW以上の出力電力を発電によって得られればセンサ等を駆動できると判断した。
 図12には、10cm角の熱電変換モジュールにおいて、加熱ステージ15を40℃に、環境温度を25℃に制御して保持し、導電性フィルムの長さを変えた場合の熱電変換モジュールの出力電力密度Paの占有率η依存性を示す。図12の曲線は理論曲線である。
 出力電力のピークは、導電性フィルムの占有率が0.6の付近にあり、0.6以上では出力電力が減少した。
 導電性フィルムの長さが10mmの場合、出力電力密度Paとして8.8マイクロワット平方メートルという値が得られた。すなわち、10cm角の熱電変換モジュールからは、88μWの出力電力が得られることになる。センサ等を駆動するのに必要な電力を50μWに設定しているため、センサ等を駆動することが可能であると判断できる。
 図12から、導電性フィルム5の長さが10mmの場合、占有率が0.16以上あればセンサ駆動に必要となる50μW以上の出力電力が得られたことが読み取れる。また、導電性フィルム5の長さが5mm以下の場合、センサ駆動に必要な出力電力を得られなかった。
 15cm角の熱電変換モジュールにおいては、占有率が0.1でも100μWの出力電力が得られた。すなわち、15cm角の熱電変換モジュールであれば、占有率が10%と小さい場合であっても、センサ駆動に必要となる出力電力が得られることが確認できたことになる。
 以上の結果より、本発明の実施形態に係る構造により、センサ等の電源として用いることができる熱電変換モジュールが得られることを確認できた。なお、本発明の実施形態は、上述のように記載した内容に限定されるものではない。
 本発明によれば、フィルム状の熱電変換モジュールであっても、フィルムの両面に十分な温度差を発生させることができ、センサなどを駆動するために必要な電力および電圧を発生させることが可能になる。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2011年11月1日に出願された日本出願特願2011−240282を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Except changing the length of the conductive film 5, the output power of the thermoelectric conversion module when the length of the conductive film was changed to 2 mm, 5 mm, 10 mm, and 15 mm in the same environment as in Example 1 was measured. As the thermoelectric conversion module, 10 cm square and 15 cm square modules were used. In Example 3, the output power necessary to drive the sensor or the like was set to 50 μW, and it was determined that the sensor or the like could be driven if an output power of 50 μW or more was obtained by power generation.
FIG. 12 shows the output power of the thermoelectric conversion module when the heating stage 15 is controlled to 40 ° C. and the environmental temperature is controlled to 25 ° C. and the length of the conductive film is changed in a 10 cm square thermoelectric conversion module. The occupancy rate η dependence of density Pa is shown. The curve in FIG. 12 is a theoretical curve.
The peak of the output power is in the vicinity of the occupation ratio of the conductive film of 0.6, and the output power decreased at 0.6 or more.
When the length of the conductive film was 10 mm, a value of 8.8 microwatt square meters was obtained as the output power density Pa. That is, an output power of 88 μW can be obtained from the 10 cm square thermoelectric conversion module. Since the electric power necessary for driving the sensor or the like is set to 50 μW, it can be determined that the sensor or the like can be driven.
From FIG. 12, it can be read that when the length of the conductive film 5 is 10 mm, an output power of 50 μW or more necessary for driving the sensor can be obtained if the occupation ratio is 0.16 or more. Moreover, when the length of the conductive film 5 was 5 mm or less, the output power required for sensor driving could not be obtained.
In the 15 cm square thermoelectric conversion module, an output power of 100 μW was obtained even when the occupation ratio was 0.1. That is, in the case of a 15 cm square thermoelectric conversion module, it has been confirmed that the output power required for driving the sensor can be obtained even when the occupation ratio is as small as 10%.
From the above result, it has confirmed that the thermoelectric conversion module which can be used as power supplies, such as a sensor, was obtained by the structure which concerns on embodiment of this invention. In addition, embodiment of this invention is not limited to the content described as mentioned above.
According to the present invention, even a film-like thermoelectric conversion module can generate a sufficient temperature difference on both sides of the film, and can generate electric power and voltage necessary to drive a sensor or the like. become.
Although the present invention has been described with reference to the exemplary embodiments and examples, the present invention is not limited to the above exemplary embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-240282 for which it applied on November 1, 2011, and takes in those the indications of all here.
 本発明の実施形態に係る熱電変換モジュールは、薄いフィルム形状であり、柔軟な部材で構成されているため、電子機器の配管やダクト、さらには人体表面などの様々な曲面に設置できる。そのため、工場や車から発生する高温廃熱のみならず、オフィスの空調、サーバー、パソコン、照明などの電気機器から発生する低温廃熱から電力を取り出すことができる。
 本発明の実施形態に係る熱電変換モジュールは、容易に大面積のモジュールとして製造できるため、大量生産に適用可能であり、低コスト化が可能となる。そのため、本発明の実施形態に係る熱電変換モジュールを大量に製造し、生活環境に大量に設置することが可能となる。生活環境に設置させたセンサから得られた温度などの環境情報を、アクティブ無線タグによってサーバーに伝送し、サーバーからオフィスの電子機器を制御できれば、無駄に消費される電気エネルギーの節約を可能とするシステムを構築できる。
Since the thermoelectric conversion module according to the embodiment of the present invention has a thin film shape and is configured of a flexible member, the thermoelectric conversion module can be installed on various curved surfaces such as pipes and ducts of electronic devices, and the surface of a human body. Therefore, electric power can be extracted not only from high-temperature waste heat generated from factories and cars, but also from low-temperature waste heat generated from electrical equipment such as office air conditioners, servers, personal computers, and lighting.
Since the thermoelectric conversion module according to the embodiment of the present invention can be easily manufactured as a module with a large area, it can be applied to mass production and can be reduced in cost. Therefore, a large amount of thermoelectric conversion modules according to the embodiment of the present invention can be manufactured and installed in a large amount in the living environment. If environmental information such as temperature obtained from sensors installed in the living environment can be transmitted to the server using an active wireless tag and the electronic devices in the office can be controlled from the server, it is possible to save wasteful electric energy. You can build a system.
1 基板
2 下部電極
3 導電線
4 絶縁性断熱体
5 導電性フィルム
6 上部電極
7 第1電極
8 絶縁フィルム
9 第2電極
10 高分子の配向方向
11 多層フィルム
12 基材
13 ブロック
14 導電性接着剤
15 加熱ステージ
16 モジュール表面部
17 引き出し電線(正極)
19 引き出し電線(負極)
20 電極
21 基板
211 断熱性フィルム
22 下部電極
23 導電線
24 絶縁性断熱体
25 導電性フィルム
26 上部電極
27 第1電極
28 絶縁フィルム
29 第2電極
30 高分子の配向方向
40 電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode 3 Conductive wire 4 Insulating heat insulator 5 Conductive film 6 Upper electrode 7 First electrode 8 Insulating film 9 Second electrode 10 Polymer orientation direction 11 Multilayer film 12 Base material 13 Block 14 Conductive adhesive 15 Heating stage 16 Module surface part 17 Lead wire (positive electrode)
19 Lead wire (negative electrode)
20 electrode 21 substrate 211 heat insulating film 22 lower electrode 23 conductive wire 24 insulating heat insulating body 25 conductive film 26 upper electrode 27 first electrode 28 insulating film 29 second electrode 30 polymer orientation direction 40 electrode

Claims (10)

  1. 基板と、
    前記基板と対面するように配置された絶縁フィルムと、
    前記基板及び前記絶縁フィルムと熱的に接続された導電性フィルムと、
    前記導電性フィルムを支持する絶縁性断熱体と、を備え、
    前記導電性フィルムは熱電材料である導電性高分子を含み、
    前記導電性高分子は前記基板に対してほぼ垂直な方向に配向している、ことを特徴とする熱電変換素子。
    A substrate,
    An insulating film arranged to face the substrate;
    A conductive film thermally connected to the substrate and the insulating film;
    An insulating heat insulator that supports the conductive film,
    The conductive film includes a conductive polymer that is a thermoelectric material,
    The thermoelectric conversion element, wherein the conductive polymer is oriented in a direction substantially perpendicular to the substrate.
  2. 前記基板が、フレキシブル基板であることを特徴とする請求項1に記載の熱電変換素子。 The thermoelectric conversion element according to claim 1, wherein the substrate is a flexible substrate.
  3. 前記導電性フィルム及び前記絶縁性断熱材の主面が互いに接していることを特徴とする請求項2に記載の熱電変換素子。 The thermoelectric conversion element according to claim 2, wherein main surfaces of the conductive film and the insulating heat insulating material are in contact with each other.
  4. 前記導電性高分子がp型熱電材料であることを特徴とする請求項3に記載の熱電変換素子。 The thermoelectric conversion element according to claim 3, wherein the conductive polymer is a p-type thermoelectric material.
  5. 前記導電性フィルムは、ポリアニリン、ポリチオフェン、ポリエチレン・ジオキシ・チオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、及びこれらの誘導体のうちいずれかを含む導電性高分子であることを特徴とする請求項4に記載の熱電変換素子。 5. The conductive film is a conductive polymer containing any one of polyaniline, polythiophene, polyethylene dioxy thiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, and derivatives thereof. The thermoelectric conversion element according to 1.
  6. 前記絶縁性断熱体は、ポリウレタン、フェノール樹脂、ポリスチレン、ポリオレフィン、ポリ塩化ビニル、ユリア樹脂、シリコーン、ポリイミド、メラミン樹脂のうちいずれかを含むことを特徴とする請求項5に記載の熱電変換素子。 6. The thermoelectric conversion element according to claim 5, wherein the insulating heat insulator includes any one of polyurethane, phenol resin, polystyrene, polyolefin, polyvinyl chloride, urea resin, silicone, polyimide, and melamine resin.
  7. 請求項1乃至6のいずれか一項に記載した前記熱電変換素子を複数配置した熱電変換モジュールであって、
    複数の前記導電性フィルムの前記基板側に位置する部位と、複数の前記導電性フィルムに隣接する導電性フィルムの前記絶縁フィルム側に位置する部位と、が連続的に導電線によって直列接続されていることを特徴とする熱電変換モジュール。
    A thermoelectric conversion module in which a plurality of the thermoelectric conversion elements according to any one of claims 1 to 6 are arranged,
    A portion located on the substrate side of the plurality of conductive films and a portion located on the insulating film side of the conductive film adjacent to the plurality of conductive films are continuously connected in series by a conductive wire. A thermoelectric conversion module characterized by comprising:
  8. 前記導電線が前記絶縁性断熱体の側面に付設されていることを特徴とする請求項7に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 7, wherein the conductive wire is attached to a side surface of the insulating heat insulator.
  9. 前記導電性フィルム及び前記絶縁性断熱体の主面が互いに離れていることを特徴とする請求項7に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 7, wherein main surfaces of the conductive film and the insulating heat insulator are separated from each other.
  10. 前記熱電変換素子を前記基板に対して平行な面で切断した切断面において、
    前記切断面の全面積に対して前記導電性フィルムの断面の占める面積占有率が0.1~0.6の範囲内にあることを特徴とする請求項7に記載の熱電変換モジュール。
    In a cut surface obtained by cutting the thermoelectric conversion element in a plane parallel to the substrate,
    The thermoelectric conversion module according to claim 7, wherein an area occupation ratio occupied by a cross section of the conductive film is in a range of 0.1 to 0.6 with respect to a total area of the cut surface.
PCT/JP2012/078547 2011-11-01 2012-10-29 Thermoelectric conversion element and thermoelectric conversion module WO2013065856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-240282 2011-11-01
JP2011240282 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013065856A1 true WO2013065856A1 (en) 2013-05-10

Family

ID=48192193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078547 WO2013065856A1 (en) 2011-11-01 2012-10-29 Thermoelectric conversion element and thermoelectric conversion module

Country Status (2)

Country Link
JP (1) JPWO2013065856A1 (en)
WO (1) WO2013065856A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156099A1 (en) * 2013-03-28 2014-10-02 パナソニック株式会社 Thermoelectric generating element and method for manufacturing thermoelectric generating element
JP2015138877A (en) * 2014-01-22 2015-07-30 株式会社アツミテック Thermoelectric conversion module
WO2016175147A1 (en) * 2015-04-27 2016-11-03 株式会社Eサーモジェンテック Thermoelectric conversion module, method for producing same, thermoelectric power generation system, and method for producing same
JP2017034110A (en) * 2015-08-03 2017-02-09 積水化学工業株式会社 Thermoelectric transducer and thermoelectric conversion device including the same
JP2017163033A (en) * 2016-03-10 2017-09-14 株式会社アツミテック Thermoelectric conversion module
KR101822116B1 (en) * 2017-09-11 2018-01-25 주식회사 테그웨이 Self generation sensor device and self generation sensor system using the same
WO2018230031A1 (en) * 2017-06-16 2018-12-20 三菱電機株式会社 Photovoltaic power generation panel and method for manufacturing same
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
JP2020011410A (en) * 2018-07-17 2020-01-23 株式会社デンソー Joint structure and method for manufacturing the same, and heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127770A (en) * 1983-12-15 1985-07-08 Tdk Corp Thermoelectric generating element
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2006196727A (en) * 2005-01-14 2006-07-27 Saitama Univ Thermoelectric conversion device and manufacturing method thereof
JP2010147379A (en) * 2008-12-22 2010-07-01 Fujitsu Ltd Thermoelectric conversion material and thermoelectric conversion element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127770A (en) * 1983-12-15 1985-07-08 Tdk Corp Thermoelectric generating element
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2006196727A (en) * 2005-01-14 2006-07-27 Saitama Univ Thermoelectric conversion device and manufacturing method thereof
JP2010147379A (en) * 2008-12-22 2010-07-01 Fujitsu Ltd Thermoelectric conversion material and thermoelectric conversion element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306144B2 (en) 2013-03-28 2016-04-05 Panasonic Corporation Thermoelectric generator and production method for thermoelectric generator
WO2014156099A1 (en) * 2013-03-28 2014-10-02 パナソニック株式会社 Thermoelectric generating element and method for manufacturing thermoelectric generating element
JP2015138877A (en) * 2014-01-22 2015-07-30 株式会社アツミテック Thermoelectric conversion module
WO2015111628A1 (en) * 2014-01-22 2015-07-30 株式会社アツミテック Thermoelectric conversion module
WO2016175147A1 (en) * 2015-04-27 2016-11-03 株式会社Eサーモジェンテック Thermoelectric conversion module, method for producing same, thermoelectric power generation system, and method for producing same
JP2016207995A (en) * 2015-04-27 2016-12-08 株式会社Eサーモジェンテック Thermoelectric conversion module and manufacturing method therefor, and electrothermal power generation system and manufacturing method therefor
US10680154B2 (en) 2015-04-27 2020-06-09 E-ThermoGentek Co., Ltd. Thermoelectric conversion module, method for producing same, thermoelectric power generation system, and method for producing same
JP2017034110A (en) * 2015-08-03 2017-02-09 積水化学工業株式会社 Thermoelectric transducer and thermoelectric conversion device including the same
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
JP2017163033A (en) * 2016-03-10 2017-09-14 株式会社アツミテック Thermoelectric conversion module
JPWO2018230031A1 (en) * 2017-06-16 2019-06-27 三菱電機株式会社 Photovoltaic panel and method of manufacturing the same
WO2018230031A1 (en) * 2017-06-16 2018-12-20 三菱電機株式会社 Photovoltaic power generation panel and method for manufacturing same
WO2019050112A1 (en) * 2017-09-11 2019-03-14 한국과학기술원 Self-powered sensor device and self-powered sensor system using same
KR101822116B1 (en) * 2017-09-11 2018-01-25 주식회사 테그웨이 Self generation sensor device and self generation sensor system using the same
JP2020011410A (en) * 2018-07-17 2020-01-23 株式会社デンソー Joint structure and method for manufacturing the same, and heat exchanger
WO2020017193A1 (en) * 2018-07-17 2020-01-23 株式会社デンソー Bonded structure, method for producing same, and heat exchanger

Also Published As

Publication number Publication date
JPWO2013065856A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2013065856A1 (en) Thermoelectric conversion element and thermoelectric conversion module
EP2630670B1 (en) Thermoelectric apparatus and applications thereof
US20100170551A1 (en) Thermoelectric conversion module, thermoelectric conversion device, and their manufacturing method
US8779276B2 (en) Thermoelectric device
WO2013114854A1 (en) Organic thermoelectric power generating element and production method therefor
US9640747B2 (en) Thermoelectric device
US20110150036A1 (en) Flexible thermoelectric generator, wireless sensor node including the same and method of manufacturing the same
US20150179911A1 (en) Wound and folded thermoelectric systems and method for producing same
KR102182765B1 (en) Thermoelectric conversion element
JPWO2005117154A1 (en) High density integrated thin layer thermoelectric module and hybrid power generation system
JP7104684B2 (en) Thermoelectric conversion module with photothermal conversion board
JP6388569B2 (en) Nanofiber thermoelectric power generation module, manufacturing method thereof, and nanofiber manufacturing electrospinning apparatus
US20180261747A1 (en) Thermoelectric device and method of manufacturing the same
JP2015144212A (en) thermoelectric conversion module
JP2014146640A (en) Thermoelectric conversion component
Khan et al. Flexible thermoelectric generator based on transfer printed Si microwires
Mukaida et al. Stable organic thermoelectric devices for self-powered sensor applications
JP4715157B2 (en) Thermoelectric element
CN114242880A (en) Flexible self-healing thermoelectric power generation device and preparation method thereof
KR101843959B1 (en) Thermoelectric generation system for wearable device
JP2016225346A (en) Thermoelectric conversion module and exhaust pipe for vehicle
CN107846157B (en) Thermoelectric power generation device
JP2013251309A (en) Thermoelectric conversion device
EP2521191A1 (en) Thermoelectric devices
JP7116465B2 (en) thermoelectric converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541875

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846051

Country of ref document: EP

Kind code of ref document: A1